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STABILITY, CONVERGENCE TO EQUILIBRIUM AND

SIMULATION OF NON-LINEAR HAWKES PROCESSES WITH

MEMORY KERNELS GIVEN BY THE SUM OF ERLANG KERNELS

Aline Duarte1, Eva Löcherbach2 and Guilherme Ost3,*

Abstract. Non-linear Hawkes processes with memory kernels given by the sum of Erlang kernels are
considered. It is shown that their stability properties can be studied in terms of an associated class
of piecewise deterministic Markov processes, called Markovian cascades of successive memory terms.
Explicit conditions implying the positive Harris recurrence of these processes are presented. The proof is
based on integration by parts with respect to the jump times. A crucial property is the non-degeneracy
of the transition semigroup which is obtained thanks to the invertibility of an associated Vandermonde
matrix. For Lipschitz continuous rate functions we also show that these Markovian cascades converge
to equilibrium exponentially fast with respect to the Wasserstein distance. Finally, an extension of the
classical thinning algorithm is proposed to simulate such Markovian cascades.
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1. Introduction

Hawkes processes have regained a lot of interest in the recent years, in particular in econometrics, as good
models to account for contagion risk and clustering arrival of events. They have shown to be very useful in
neuroscience also due to their capacity of reproducing the typical time dependencies observed in spike trains of
neurons as well as the interaction structure of neural nets. Originally introduced by [13] and [14] as a model for
the appearances of earthquakes, their key feature is the fact that any event is able to trigger future events –
for this reason, Hawkes processes are sometimes called “self-exciting point processes”. In their by now classical
paper, Bremaud and Massoulie [4] develop the stability theory of general non-linear Hawkes processes, also in a
multivariate frame. Hansen, Reynaud-Bouret and Rivoirard [12] have put the foundations for the use of Hawkes
processes as models of spike trains in neuroscience, see [6] also, and recently some effort has been spent to study
Hawkes processes in high dimensions, especially focusing on properties such as the propagation of chaos, see [8]
and [5], see [9] also in a multi-class frame. Finally, we refer to [23] for a study of the large deviation properties
of non-linear Hawkes processes having Markovian intensity function.
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In the present paper Hawkes processes with memory kernels given by the sum of Erlang kernels are considered.
It is shown that the longtime behaviour and stability properties of these processes can be studied in terms of
an associated class of piecewise deterministic Markov processes (PDMPs). More precisely, let N be a counting
process on R+ characterised by its intensity process (λt)t≥0 defined, for each t ≥ 0, through the relation

P(N has a jump in ]t, t+ dt]|Ft) = λtdt,

where Ft = σ(N(]u, s]), 0 ≤ u < s ≤ t) and

λt = f

(
δ +

∫
]0,t[

h(t− s)dNs

)
. (1.1)

Here, f : R → R+ is the jump rate function and h : R+ → R is the memory kernel. The parameter δ ∈ R is
interpreted as an initial input to the jump rate function.

The memory kernel h is assumed to be given by the sum of Erlang kernels, that is, h =
∑L
i=1 hi, where each

function hi is of the form

hi(t) = cie
−αit t

ni

ni!
, t ≥ 0, (1.2)

where ci ∈ R, αi > 0 and ni ∈ N.
Erlang kernels are widely used in the modelling literature, for example to model delays in the hemodynamics

in nephrons, see [10, 22] or to prove the existence of oscillations in large-scale limits of interacting neurons
in a mean-field frame, see [9]. This is the main motivation for the particular choice taken for the memory
kernel h. Moreover, it is well known that the class of memory kernels having this form is dense in L1(R+),
see e.g., [16]. Therefore, any Hawkes process having integrable memory kernel can be well approximated by a
Hawkes process having an Erlang memory kernel, see (2.9) below, at least over compact time intervals. Finally,
the specific memory structure induced by Erlang kernels allow a completely new approach to simulation of
non-linear Hawkes processes.

Erlang kernels depend on three parameters, ci, ni and αi. Here, ni + 1 is the order of the delay of the influence
of a past event on a future event. It takes its maximum absolute value at (ni + 1)/αi time units back in time.
The mean is (ni + 1)/αi (if normalising to a probability density). The higher the order of the delay, the more
concentrated is the delay around its mean value, and in the limit of ni → ∞ while keeping (ni + 1)/αi fixed,
the delay converges to a discrete delay. The sign of ci indicates if the influence of past events on future events
is inhibitory or excitatory.

The use of Erlang kernels allows to relate the study of the longtime behaviour of a Hawkes process having
intensity (1.1) to the study of an associated system of PDMPs. More specifically, it is easily shown that the

system of stochastic processes X
(i,0)
t =

∫
]0,t]

hi(t − s)dNs, t ≥ 0, for each 1 ≤ i ≤ L, can be completed, by

introducing
∑L
i=1 ni auxiliary processes, to a piecewise deterministic Markov process in dimension L+

∑L
i=1 ni,

see (2.4) below. Between successive jumps of N, the evolution of each X
(i,0)
t , together with its auxiliary processes,

is explicitly given by a deterministic flow. Jumps do only occur in the auxiliary variables X(i,ni), 1 ≤ i ≤ L. We
shall call this class of PDMPs Markovian cascades of successive memory terms.

We prove that these Markovian cascades are recurrent in the sense of Harris under the usual sub-criticality
condition

‖f‖Lip
∫ ∞

0

|h(t)|dt < 1.1 (1.3)

1if all αi are equal and all ci are of the same sign. In the case of bounded rate functions, we do not need to impose this condition.
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Under (1.3), we are able to construct a Lyapunov function implying that these processes return to a compact
set infinitely often, almost surely. Under the additional condition of some minimal ellipticity, that is, some
minimal jump activity, we establish, in Theorem 3.11, a Doeblin like lower bound based on integration by parts
with respect to the jump times. A crucial property is the non-degeneracy of the transition semigroup which
is obtained, thanks to the invertibility of an associated Vandermonde matrix and structure of the flow of the
Markovian cascades (see (2.8) below). In the case of Lipschitz continuous rate functions we also show that the
Markovian cascades converge to equilibrium exponentially fast with respect to the Wasserstein distance.

The fact that the flow governing the evolution of the Markovian cascades in between successive jump times
is explicitly given and enables us to introduce an efficient simulation algorithm which allows to sample from N
on [0, T ] for any finite time horizon T > 0 and any fixed parameter δ ∈ R. This method is straightforward to
implement, and can be easily extended to multi-dimensional versions.

The paper is organised as follows. In Section 2, we present the model and provide some preliminary remarks.
In Section 3, the long-time behaviour of the Markovian cascades is investigated. The statement and proof for the
case L = 1 of Theorem 3.11, establishing the Doeblin lower bound for the Markovian cascades, is also included
in this section. In Section 4, a simulation algorithm to simulate a Hawkes process simultaneously with memory
kernel given by the sum of Erlang kernels and its Markovian cascade is proposed. In Section 5, numerical
examples are presented. Finally, in the Appendix A, we prove Theorem 3.11 in the general case.

2. Model definition and preliminary remarks

Throughout the article the set N denotes the set of non-negative integers, N∗ the set of positive integers
{1, 2, . . .} and B((0,∞)) (resp. B((a, b]), for real numbers 0 ≤ a ≤ b < ∞) the Borel sigma-algebra on (0,∞)
(resp. on (a, b]).

We work on the following filtered space (Ω,F ,F). Let Ω be the canonical path space of simple point processes,
i.e.,

Ω = {w = (tn)n∈N∗ ∈]0,∞]N
∗

: tn ≤ tn+1, tn < tn+1 if tn < +∞, lim
n→+∞

tn = +∞}.

For each w ∈ Ω and n ∈ N∗, we define Tn(w) = tn. For each w ∈ Ω, we associate the canonical point measure
B((0,∞)) 3 A 7→ N(w)(A) =

∑
n∈N∗ δTn(w)(A). We shall write for short N(A) rather than N(w)(A); when

A = (0, t] for some t ≥ 0, we simply write Nt to denote N((0, t]). Finally, we define Ft = σ{N(A) : A ∈ B((0, t])}
for each t ≥ 0, F = σ{N(A) : A ∈ B((0,∞))} and F = (Ft)t≥0.

Let f : R → R+ and h : R+ → R be measurable functions and let n be a deterministic point process
on ]−∞, 0] such that

∫
]−∞,0]

h(t− s)n(ds) is finite for all t ≥ 0.

Definition 2.1. A Hawkes process with parameters (f, h) and with initial condition n is a probability measure

P on the filtered space (Ω,F ,F) such that the compensator of (Nt)t≥0 is given by (
∫ t

0
λsds)t≥0, where (λt)t≥0

is the non-negative F−predictable process defined for t ≥ 0 by

λt = f

(∫
]−∞,0]

h(t− s)n(ds) +

∫
]0,t[

h(t− s)dNs

)
. (2.1)

The stochastic process (λt)t≥0 is called intensity process. The functions f : R → R+ and h : R+ → R are
called jump rate function and memory kernel respectively. We shall work under the following assumptions.

Assumption 2.2. The rate function f : R → R+ is either bounded or Lipschitz continuous with Lipschitz
constant ‖f‖Lip.
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Assumption 2.3. The memory kernel h : R+ → R can be written as sum of Erlang kernels, i.e, for each t ≥ 0,

h(t) =

L∑
i=1

cie
−αit t

ni

ni!
, (2.2)

where for each 1 ≤ i ≤ L, ci ∈ R, αi > 0 and ni ∈ N.

Under Assumption 2.3, the intensity process (2.1) can be described by an associated PDMP. Indeed, for each
1 ≤ i ≤ L and 0 ≤ k ≤ ni, writing for each t ≥ 0,

X
(i,k)
t =

∫
]−∞,0]

cie
−αi(t−s) (t− s)(ni−k)

(ni − k)!
n(ds) +

∫
]0,t]

cie
−αi(t−s) (t− s)(ni−k)

(ni − k)!
dNs, (2.3)

we have

λt = f
(
X

(1,0)
t− + . . .+X

(L,0)
t−

)
,

and one easily deduces that for t ≥ 0 and 1 ≤ i ≤ L,

dX
(i,0)
t = X

(i,1)
t dt− αiX(i,0)

t dt (2.4)

...

dX
(i,ni−1)
t = X

(i,ni)
t dt− αiX(i,ni−1)

t dt

dX
(i,ni)
t = −αiX(i,ni)

t dt+ cidNt,

with initial condition X
(i,k)
0 = x

(i,k)
0 =

∫
]−∞,0]

cie
αis (−s)(ni−k)

(ni−k)! n(ds).

Write κ = L+
∑L
i=1 ni. The associated PDMP is the Markov process X = (Xt)t≥0 having càdlàg paths and

taking values in Rκ, defined, for each t ≥ 0, by

Xt =
(
X

(1)
t , . . . , X

(L)
t

)
with X

(i)
t =

(
X

(i,0)
t , . . . , X

(i,ni)
t

)
, 1 ≤ i ≤ L. (2.5)

If L = 1, that is, h is a pure Erlang kernel, we write for short Xt = (X
(k)
t , 0 ≤ k ≤ n1). We call the process

X Markovian cascade of successive memory terms. Its infinitesimal generator L is given for any smooth test
function g : Rκ 7→ R by

Lg(x) = 〈F (x),∇g(x)〉+ f
( L∑
i=1

x(i,0)
)(
g
(
x+

L∑
i=1

cie(i,ni)

)
− g(x)

)
, (2.6)

where x =
(
x(1), . . . , x(L)

)
with x(i) = (x(i,0), . . . , x(i,ni)) and e(i,ni) ∈ Rκ is the unit vector having entry 1 in

the coordinate (i, ni), and 0 elsewhere. Finally, F : Rκ 7→ Rκ is the vector field associated to the system of
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first-order ODE’s



d

dt
x

(i,0)
t = x

(i,1)
t − αix(i,0)

t

...
d

dt
x

(i,ni−1)
t = x

(i,ni)
t − αix(i,ni−1)

t

d

dt
x

(i,ni)
t = −αx(i,ni)

t , 1 ≤ i ≤ L,

(2.7)

given by F (x) = ((F (1)(x), . . . , F (L)(x)), where F (i)(x) = (F (i,0)(x), . . . , F (i,ni)(x)) with

F (i,k)(x) = −αix(i,k) + x(i,k+1) for 0 ≤ k < ni, and F (i,ni)(x) = −αix(i,ni).

Notice that jumps introduce discontinuities only in the coordinates X
(i,ni)
t of Xt. Figure 1 depicts a realisation

of the joint processes (Nt, Xt)t≥0 in the case L = 1.

Hereafter, we write ϕt(x) = (ϕ
(1)
t (x), . . . , ϕ

(L)
t (x)) for the unique solution, starting from x ∈ Rκ, of the

system (2.7). It is immediate to check that for each 1 ≤ i ≤ L and t ≥ 0,

ϕ
(i)
t (x) =


e−αit(x(i,0) + tx(i,1) + . . .+ tni

ni!
x(i,ni))

...
e−αit(x(i,ni−1) + tx(i,ni))

e−αitx(i,ni)

. (2.8)

Notice that ϕ
(i)
t (x) depends only on the variable x(i). Given the Markovian cascade of successive memory terms

(2.4)–(2.6), one recovers immediately the non-linear Hawkes processes with intensity (2.1) as shows the following
proposition. In what follows, for any x0 ∈ Rκ, we write Px0 for the probability measure on Rκ under which
X0 = x0, and denote by Ex0 the expectation taken with respect to Px0 .

Proposition 2.4. Suppose Assumptions 2.2 and 2.3. Fix any initial condition n on ] − ∞, 0] such

that
∫

]−∞,0]
h(t − s)n(ds) < ∞ for all t ≥ 0 and put, for each 1 ≤ i ≤ L and 0 ≤ k ≤ ni, x

(i,k)
0 =∫

]−∞,0]
cie

αis (−s)(ni−k)
(ni−k)! n(ds). Let X = (Xt)t≥0 be the Markov process having generator (2.6), starting from

X0 = x0. Then X is non-explosive, i.e., X has Px0
-almost surely a finite number of jumps on each interval

[s, t], 0 ≤ s < t <∞. Finally, introduce Nt =
∑
s≤t 1{∆Xs 6=0} the counting process associated to the jumps of X.

Then (Nt)t≥0 is a non-linear Hawkes process with intensity (2.1).

Proof. Let us define µ(dt) =
∑
n≥1 δTn(dt) and ν(dt) = f

(∑L
i=1X

(i,0)
t

)
dt. Then Proposition 3.1 in [15] implies

that ν is the predictable compensator of µ. In particular, the compensator of Nt is given by
∫ t

0
λsds with

λs = f
(∑L

i=1X
(i,0)
s−

)
.

It remains to prove the non-explosiveness of the process X. In the case of bounded f , nothing
has to be proved. Suppose therefore that f is Lipschitz continuous and define g(x) = f(0)(

∑L
i=1 |ci|) +∑L

i=1

∑ni
k=0 |x(i,k)| for x ∈ Rκ. Let A = max1≤i≤L αi and c =

∑L
i=1 |ci|. By plugging g in (2.6),
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Figure 1. A finite joint realisation of the Markovian cascade X = (Xt)0≤t≤T (upper panel)
and its associated counting process N = (Nt)0≤t≤T (lower panel) for the choices L = 1, n1 = 2,

c1 = 2, α1 = 1, T = 20 and f(x) = x/5 + 1 with initial input x0 = (x
(0)
0 , x

(1)
0 , x

(2)
0 ) = (0, 0, 0).

The blue (resp. red and black) trajectory corresponds to the realisation of (X
(2)
t )0≤t≤T (resp.

(X
(1)
t )0≤t≤T and (X

(0)
t )0≤t≤T ). Notice that the smaller the index 0 ≤ k ≤ n1 the smoother the

correspondent process (X
(k)
0≤t≤T ).

we have

Lg(x) ≤
L∑
i=1

( ni−1∑
k=0

sg(x(i,k))
(
x(i,k+1) − αix(i,k)

)
− αi|x(i,ni)|+ |ci|f

( L∑
j=1

x(j,0)
))

≤ cf(0) + (c ‖f‖Lip + α)

L∑
i=1

|x(i,0)|+ (1 +A)

L∑
i=1

n∑
k=1

|x(i,k)|

≤ Cg(x),

where C = C(A, c, ‖f‖Lip) and sg(y) is the sign of y ∈ R. In the second inequality above we have used that
f(y) ≤ ‖f‖Lip|y|+ f(0) for any y ∈ R. Thus, by applying Dynkin’s formula and then using Lg(x) ≤ Cg(x), one
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concludes that

Ex0
[g(Xt)] = g(x0) +

∫ t

0

Ex0
[Lg(Xs)]ds ≤ g(x0) + C

∫ t

0

Ex0
[g(Xs)]ds.

Then by Gronwall’s inequality, Ex0
[g(Xt)] ≤ g(x0)eCt. From this last estimate we conclude the proof noticing

that

Ex0
(N([s, t])) = Ex0

∫ t

s

f
( L∑
i=1

X(i,0)
u

)
du ≤ ‖f‖Lip

∫ t

s

L∑
i=1

Ex0
|X(i,0)

u |du+ f(0)(t− s).

Since
∑L
i=1 |X

(i,0)
u | ≤ g(Xu), it follows immediately from the inequality above that

Ex0(N([s, t])) ≤ ‖f‖Lip
∫ t

s

Ex0 [g(Xu)]du+ f(0)(t− s)

≤ g(x0)
‖f‖Lip
C

(eCt − eCs) + f(0)(t− s) <∞.

Remark 2.5. The converse statement of the above proposition does also hold true. More precisely, let (Nt)t≥0 be
a non-linear Hawkes process with intensity (2.1) where h is given by (2.2). Suppose moreover that N starts from

the n(ds) on R−, where n is some discrete point measure on R− such that x
(i,k)
0 :=

∫ 0

−∞ cie
−αi(−s) (−s)(ni−k)

(ni−k)! n(ds)

are well-defined. Introduce the associated processes X
(i,k)
t , 1 ≤ i ≤ L, 0 ≤ k ≤ ni as in (2.3). Then X = (Xt)t≥0

is Markov with generator (2.6).

2.1. Some comments on the use of Erlang kernels

Erlang kernels are widely used in the modelling literature. They have been introduced by Erlang in the
1920’s to provide an efficient approach for analyzing telephone networks. Nowadays, they are widely used in the
theoretical and mathematical biology literature, see e.g., [10, 22] where they serve as a good model to describe
delays in the hemodynamics in nephrons. They are also the building block to prove the existence of oscillations
in large-scale limits of interacting neurons in a mean-field frame, see [9].

Notice also that the class of Erlang memory kernels is dense in L1(R+), see e.g., [16]. Therefore, any Hawkes
process N having general integrable memory kernel h can be approximated by a sequence of Hawkes processes
N (n) having Erlang memory kernel h(n) such that ‖h(n) − h‖L1(R+) → 0 as n→∞ and

E‖|N −N (n)‖|t ≤ CT
∫ t

0

|h(n) − h|(s)ds, (2.9)

for all t ≤ T (see Lem. (3.4) of [21]), where ‖|N −N (n)‖|t denotes the total variation distance between N and
N (n) on [0, t].

Finally, the Markovian representation of Hawkes processes having memory kernels as in Assumption 2.3 in
terms of the PDMP (2.5)–(2.6) has two advantages. The first advantage is that stability properties and the
longtime behaviour of such Hawkes processes can be studied via the well-established theory of PDMPs. Since it
is straightforward to simulate the PDMP (2.5)–(2.6) (see Sect. 4), one can also simulate Hawkes processes with
memory kernels given by sum of Erlang kernels by using this representation. This is the second advantage.

In the next section we discuss stability properties of the associated PDMP (2.5)–(2.6) with random jump
heights. A simulation algorithm for this PDMP will be presented in Section 4.
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3. Long-time behaviour of the associated Markovian cascade
with random jump heights

In this section we consider the Markov process X = (Xt)t≥0 taking values in Rκ with (possibly) random
jump heights. Its generator is given for any smooth and bounded function g : Rκ 7→ R by

Lg(x) = 〈F (x),∇g(x)〉+ f
( L∑
i=1

x(i,0)
) ∫ (

g(x+

L∑
i=1

cie(i,ni))− g(x)
)
G(dc1, . . . ,dcL), (3.1)

where F : Rκ 7→ Rκ is the vector field associated to the system (2.7) and G(dc1, . . . ,dcL) is a probability measure
on RL.

Assumption 3.1. The probability measure G on RL has finite first moments, i.e.,

∫ L∑
i=1

|ci|G(dc1, . . . ,dcL) <∞. (3.2)

The above process is well-defined under Assumptions 2.2 and 3.1, as shows the following proposition.

Proposition 3.2. Assume Assumptions 2.2 and 3.1. Let N = (Nt)t≥0 be the counting process associated to the
jumps of the Markov Process X = (Xt)t≥0 having generator given by (3.1), starting from x0 ∈ Rκ. Then N has
Px0

-almost surely a finite number of jumps on each interval [s, t], 0 ≤ s < t <∞.

The proof of this proposition is analogous to the proof of Proposition 2.4.

3.1. A Foster–Lyapunov condition

We start showing that there exists a compact set K of Rκ such that the process X = (Xt)t≥0 possessing the
generator defined in (3.1) visits K infinitely often almost surely. Let n = max1≤i≤L ni and α = min1≤i≤L αi. In
what follows, we write 0κ to denote the vector in Rκ having all coordinates equal to 0.

Proposition 3.3. Suppose Assumptions 2.2 and 3.1. Let L be the generator defined in (3.1) and consider the
function V : Rκ 7→ R+ defined by

V (x) = 1 +

L∑
i=1

ni∑
k=0

b(k + 1)

αki
|x(i,k)|, (3.3)

where b : {0, 1, . . . n+1} → R+ is a strictly increasing function. If f is not bounded but only Lipschitz continuous,
we suppose moreover that

‖f‖Lip

(∫ L∑
i=1

1

αni
|ci|G(dc1, . . . ,dcL)

)
< α, (3.4)

and choose the function b so that

b(n+ 1)

b(1)
‖f‖Lip

(∫ L∑
i=1

1

αni
|ci|G(dc1, . . . ,dcL)

)
< α. (3.5)
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Then there exist positive constants λ, β and R such that the following Foster–Lyapunov type drift condition
holds

LV (x) ≤ −λV (x) + β1K(x), (3.6)

where K = B̄R(0κ) is the (closed) ball of center 0κ and radius R.

Remark 3.4. If αi = α for all 1 ≤ i ≤ L and sg(ci) = sg(cj) (where sg(u) is the sign of u ∈ R) for all i 6= j,
then condition (3.4) is equivalent to the sub-criticality condition (1.3) required in Theorem 1 of [4]. For values

of α = min1≤i≤L αi ≥ 1, we could have taken the simpler Lyapunov function V (x) = 1 +
∑L
i=1

∑n
k=0 |x(i,k)|.

Proof. Indeed, one immediately verifies that

LV (x) = A(x) +B(x),

where

A(x) =

L∑
i=1

(
ni−1∑
k=0

b(k + 1)

αki

(
x(i,k+1) − αix(i,k)

)
sg
(
x(i,k)

)
− b(ni + 1)

αni−1
i

|x(i,n)|

)
,

and

B(x) = f
( L∑
i=1

x(i,0)
) ∫ L∑

i=1

b(ni + 1)

αnii

(
|x(i,ni) + ci| − |x(i,ni)|

)
G(dc1, . . . ,dcL).

Defining b∗ = min{b(k + 1) − b(k), 0 ≤ k ≤ n} and r = αb∗(b(n + 1))−1, it is also straightforward to check
that

A(x) ≤ −b(1)

L∑
i=1

αi|x(i,0)| − α
L∑
i=1

ni∑
k=1

1

αki

(
b(k + 1)− b(k)

)
|x(i,k)|

≤ −α
L∑
i=1

b(1)|x(i,0)| − r
L∑
i=1

ni∑
k=1

b(k + 1)

αki
|x(i,k)|. (3.7)

Suppose first that is f is bounded by f∗. In this case, one can easily verify that

B(x) ≤ f∗b(n+ 1)

∫ L∑
i=1

α−nii |ci|G(dc1, . . . ,dcL).

Since r < α, it follows from the above estimates that

LV (x) ≤ −rV (x) + p,

where p = r + f∗b(n+ 1)
∫ ∑L

i=1 α
−ni
i |ci|G(dc1, . . . ,dcL).

Let q = 1 + b(1)(1∧ α−n)R and observe that V (x) ≥ q, for x /∈ K = B̄R(0κ). Thus, taking any R sufficiently
large such that p/q < r, we deduce that

LV (x) ≤ −
(
r − p

q

)
V (x) + p1K(x),
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which proves (3.6) for bounded jump rates f with λ = r − p
q > 0 and β = p > 0.

Assuming now that f is unbounded and Lipschitz continuous, we have that

B(x) ≤
(
‖f‖Lip

L∑
i=1

|x(i,0)|+ f(0)
)
b(n+ 1)

∫ L∑
i=1

α−nii |ci|G(dc1, . . . ,dcL),

which, together with the first inequality in (3.7), implies that

LV (x) ≤ −dV (x) + d+ f(0)b(n+ 1)

∫ L∑
i=1

α−nii |ci|G(dc1, . . . ,dcL),

where d =
(
α−‖f‖Lip b(n+1)

b(1)

∫ ∑
i α
−ni
i |ci|G(dc1, . . . ,dcL)

)
∧ r is positive thanks to (3.4). Using the inequality

above and proceeding as before, we establish also the drift condition (3.6) for Lipschitz jump rates.

As a corollary of Proposition 3.3, we obtain exponential moments for the return times to the compact set K
appearing in (3.6).

Corollary 3.5. Let K = B̄R(0κ) and V be as in Proposition 3.3. Write TK = inf{t > 0 : Xt ∈ K}. Then for
all η ≤ λ and x0 ∈ Rκ,

Ex0
[eηTK ] ≤ V (x0). (3.8)

The proof of this corollary is classical, see for instance Theorem 6.1 of [11].

3.2. Wasserstein contraction for Lipschitz jump rates

Throughout this section we suppose that the jump rate f is Lipschitz continuous. In this case, we are able
to prove the exponential convergence to equilibrium in Wasserstein distance, under the sub-criticality condition
(3.4).

More precisely, in the sequel, for any x ∈ Rκ, we will write ‖x‖1 =
∑L
i=1

∑ni
k=0 |x(i,k)|. Let µ and ν be two

probability measures on Rκ. We call coupling of µ and ν any probability measure on Rκ ×Rκ whose marginals
are µ and ν, and we denote by Γ(µ, ν), the set of all such couplings. The Wasserstein distance between µ and ν
is defined by

W1(µ, ν) = inf

{∫
Rκ

∫
Rκ
‖x− y‖1γ(dx, dy), γ ∈ Γ(µ, ν)

}
. (3.9)

In the following, we write (Pt)t≥0 for the transition semigroup of the process X with generator (3.1). Recall
that A = max1≤i≤L αi, α = min1≤i≤L αi and n = max1≤i≤L ni. The following theorem states the exponential
rate of convergence to equilibrium of the process with respect to the Wasserstein distance.

Theorem 3.6. Suppose f is Lipschitz continuous, assume condition (3.4) and choose the function b as in (3.5).
1. Then, for any choice of probability measures µ and ν on B(Rκ),

W1(µPt, νPt) ≤ Ce−dtW1(µ, ν), (3.10)

where

C =
An ∨ 1

1 ∧ αn+1

b(n+ 1)

b(1)
,
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and d =
(
α − ‖f‖Lip b(n+1)

b(1)

∫ ∑L
i=1 α

−ni
i |ci|G(dc1, . . . ,dcL)

)
∧
(
αb∗(b(n + 1))−1

)
, with b∗ = min{b(k + 1) −

b(k), 0 ≤ k ≤ n}.
2. In particular, there exists a unique invariant probability measure π of the process X such that for any

probability measure ν on B(Rκ),

W1(π, νPt) ≤ Ce−dtW1(π, ν).

Proof. The assertion of point 1. follows from a standard Wasserstein coupling. More precisely, denote by (X, X̃)
the Markov processes taking values in Rκ × Rκ having the infinitesimal generator defined for any smooth test
function ϕ(x, y) : Rκ × Rκ → R by

L2ϕ(x, y) =〈F (x),∇xϕ(x, y)〉+ 〈F (y),∇yϕ(x, y)〉

+ f
(∑

i

x(i,0)
)
∧ f
(∑

i

y(i,0)
) ∫

G(dc1, . . . ,dcL)

[
ϕ(x+

∑
i

cie(i,ni), y +
∑
i

cie(i,ni))− ϕ(x, y)

]

+

(
f
(∑

i

x(i,0)
)
− f

(∑
i

y(i,0)
))

+

∫
G(dc1, . . . ,dcL)

[
ϕ(x+

∑
i

cie(i,ni), y)− ϕ(x, y)

]

+

(
f
(∑

i

y(i,0)
)
− f

(∑
i

x(i,0)
))

+

∫
G(dc1, . . . ,dcL)

[
ϕ(x, y +

∑
i

cie(i,ni))− ϕ(x, y)

]
, (3.11)

where F : Rκ 7→ Rκ is the vector field associated to the system (2.7).
This is the usual coupling which consists of making the two processes jump together as much as possible.

Define

H(x, y) =

L∑
i=1

ni∑
k=0

b(k + 1)

αki
|x(i,k) − y(i,k)|.

Then an analogous calculus as the one used in the proof of Proposition 3.3 yields

L2H(x, y) ≤ −dH(x, y),

implying that

Ex,yH(Xt, X̃t) ≤ H(x, y)e−dt.

Observing that

‖x− y‖1 ≤
An ∨ 1

b(1)
H(x, y); H(x, y) ≤ b(n+ 1)

1 ∧ αn+1
‖x− y‖1,

we conclude the proof of item 1.
To prove item 2., let µn := µPn for any probability measure µ on B(Rκ). Observe that W1(µn+m, µm) ≤

Ce−dmW1(µn, µ), implying that (µn)n is Cauchy and thus, by the completeness of the space of all probability
measures on (Rκ,B(Rκ)), endowed with the metric induced by W1 (see e.g., [20] or [3]), convergent to some
limit measure µ∞. This limit measure must be invariant. Indeed we have W1(µmPt, µm) ≤ Ce−dmW1(µPt, µ).
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But

|W1(µmPt, µm)−W1(µ∞Pt, µ∞)| ≤ W1(µmPt, µ∞Pt) +W1(µ∞, µm)

≤ [Ce−dt + 1]W1(µ∞, µm)→ 0,

as m → ∞, where we have used (3.10) once again to obtain the second inequality. As a consequence,
W1(µ∞Pt, µ∞) = 0, implying that µ∞ is the (necessarily unique) invariant measure. This concludes our
proof.

Remark 3.7. Under the conditions of Theorem 3.6, write N̄t for the stationary version of the non-linear

Hawkes process having intensity (2.1); that is, N̄t has intensity λ̄t = f
(∑L

i=1 X̄
(i,0)
t

)
, where X̄ is the stationary

process evolving according to (2.6). Let moreover Nt be the non-linear Hawkes process with intensity λt =

f
(∑L

i=1X
(i,0)
t

)
starting from some fixed initial condition X0 = x0 ∈ Rκ. Then the Lipschitz-continuity of

f together with (3.10) imply that E
∫∞

0
|λt − λ̄t|dt < ∞. It is then straightforward to deduce from this by

standard coupling arguments, as explained e.g., the proof of Theorem 1 in [4], that N and N̄ couple almost
surely in finite time; that is, there exists T > 0 such that for all t ≥ 0, NT+t −NT = N̄T+t − N̄t, meaning that
N and N̄ have the same jump times after time T. This is what is called stability in variation in [4] (see their
Def. 1). Therefore, our Theorem 3.6 implies Theorem 1 of [4].

In the next section we prove a stronger result, showing that the process is even recurrent in the sense of
Harris.

3.3. Harris recurrence

In this section, we use the regeneration method based on Nummelin splitting to show that X is recurrent in
the sense of Harris having a unique invariant probability measure π. We recall (e.g., from [1]) that

Definition 3.8. The process (Xt)t≥0 is said to be recurrent in the sense of Harris if there exists a sigma-finite
measure m on B(Rκ) such that m(A) > 0 implies that for all x ∈ Rκ, Px−almost surely,

lim sup
t→∞

1A(Xt) = 1.

By [1], Harris recurrence of X implies in particular the existence of a unique invariant measure (which is
sigma-finite but does not need to be finite) π such that the above property holds with π in place of m. X is
called positive Harris recurrent if π(Rκ) <∞. We have the following

Theorem 3.9. Suppose that f is bounded or Lipschitz continuous satisfying (3.4). Suppose moreover that

Assumption 3.1 holds and that G(dc1, . . . ,dcL) =
∏L
i=1Gi(dci) for probability measures Gi on (R,B(R))

satisfying supp (Gi) ∩ {0}c 6= ∅, for all 1 ≤ i ≤ L. Finally, suppose that f is lower bounded.
1. Then (Xt)t≥0 is positive Harris recurrent with unique invariant measure π(dx).

2. Let X̄t be a stationary version of the process and suppose that (Xt)t≥0 starts from X0 = x0 ∈ Rκ, both
evolving according to (2.6). Then X̄ and X couple almost surely in finite time; that is, it is possible to construct
them on the same probability space such that there exists τc <∞ almost surely satisfying

t ≥ τc implies that Xt = X̄t and P (τc > t) ≤ C(p)V (x)t−p, (3.12)

for every p ≥ 1, where C(p) is a constant depending on p.

Remark 3.10. In particular, using the notation of Remark 3.7 above, (3.12) implies that λt = λ̄t for all t ≥ τc
meaning that N̄ and N couple as well. As a consequence, our Theorem 3.9 is a refinement of the results of
Theorems 1 and 2 in [4] – however at the prize of imposing a lower bound on f.
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The proof of this theorem uses the regeneration technique based on Nummelin splitting. It is well known that
it is easier to implement this method in the frame of discrete time Markov chains rather then Markov processes
in continuous time – although some effort has been spent to introduce regeneration times in a continuous time
framework, see e.g., [18]. Therefore, we start by showing that the sampled chain (Yk)k≥0 = (XkT )k≥0, for some
fixed T > 0, is positive Harris recurrent.

We recall that the chain (Yk)k≥0 is said to be recurrent in the sense of Harris with invariant measure π
on B(Rκ) if whenever π(A) > 0, we have, for all x ∈ Rκ, Px−almost surely, lim supk→∞ 1A(Yk) = 1. Obvi-
ously, Harris recurrence of the chain (Yk)k≥0 implies the Harris recurrence of the process X, and the invariant
probability measures of both processes coincide (if they exist).

The rest of this section is devoted to prove that the sampled chain (Yk)k≥0 is Harris which follows from the
following Doeblin type lower bound. Recall that (Pt)t≥0 denotes the transition semigroup of the process X,
therefore, PT is the transition operator of the sampled chain (Yk)k≥0.

Theorem 3.11. Assume the assumptions of Theorem 3.9. For all x∗ ∈ Rκ, there exist R > 0, an open set
I ⊂ Rκ and a constant β ∈ (0, 1), depending on I,R, L, n1, . . . , nL, α1, . . . , αL and f , such that

PLT (x,dy) ≥ β1C(x)ν(dy), (3.13)

where C = BR(x∗) is the (open) ball of radius R centered at x∗, and where ν is the uniform probability measure
on I.

Proof. Part I. L = 1.
We start by proving the result in the case L = 1, c1 = c, α1 = α and n1 = n, that is, h(t) = ce−αt t

n

n! . The

corresponding Markov process is then given by Xt = (X
(0)
t , . . . , X

(n)
t ) taking values in Rn+1. Clearly, for all

A ∈ B(Rn+1),

PT (x,A) ≥ Ex(1A(XT ), NT = n+ 1).

Recall the definition of the flow in (2.8). On the event {NT = n+ 1}, starting from X0 = x, we first let the
flow evolve starting from x up to some first jump time t1. At that jump time we choose an associated jump
height c1. We then successively choose the following inter-jump waiting times t2, . . . , tn+1 under the constraint
t1 + . . .+ tn+1 < T and the associated jump heights c2, . . . , cn+1.Write s1 = T − t1, s2 = T − (t1 + t2), . . . , sn+1 =
T − (t1 + . . .+ tn+1).

Conditionally on X0 = x, the successive choices of c = (c1, . . . , cn+1) and s = (s1, . . . , sn+1) as above, the
position of XT is given by

γ(x, c, s) = ϕT (x) + c1e
−αs1v(s1) + . . .+ cn+1e

−αsn+1v(sn+1), (3.14)

where for each 1 ≤ k ≤ n+ 1,

v(sk) =



snk
n!
sn−1
k

(n−1)!

...
sk
1

 . (3.15)

We omitted the dependence on T of the map γ(x, c, s) since we keep the value T > 0 fixed once for all and
work with sequences s satisfying the constraints 0 < sn+1 < sn < . . . < s1 < T . Finally, in what follows we shall
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write, for any fixed pair (x, c),

γ(x,c) : s 7→ γ(x, c, s).

We will use the jump noise which is created by the n+ 1 jumps, i.e., we will use a change of variables on the
account of s1, . . . , sn+1. Therefore, in what follows we write

∂γx,c(s)

∂s
=
[∂γx,c(s)

∂s1
, . . . ,

∂γx,c(s)

∂sn+1

]

to denote the Jacobian matrix of the the map s 7→ γx,c(s). This matrix does not depend on the initial position
x nor on the first jump height c0. Indeed, one easily finds that

∂γx,c(s)

∂s
=
[
C(1), . . . , C(n+1)

]
,

where for each 1 ≤ k ≤ n+ 1, C(k) is a column vector given by

C(k) = cke
−αsk



sn−1
k

(n−1)! − α
snk
n!

sn−2
k

(n−2)! − α
sn−1
k

(n−1)!

...
1− αsk
−α


.

As a consequence the determinant of
∂γx,c(s)

∂s is given by

det
(
C(1), . . . , C(n+1)

)
= (−1)n+1α

n+1∏
k=1

cke
−αskdet

(
C̃(1), . . . , C̃(n+1)

)
, (3.16)

where for each 1 ≤ k ≤ n+ 1, C̃(k) is a column vector given by

pC̃(k) =



α
snk
n! −

sn−1
k

(n−1)!

α
sn−1
k

(n−1)! −
sn−2
k

(n−2)!

...
αsk − 1

1


.

Thus the invertibility of the matrix
∂γx,c(s)

∂s follows from the invertibility of the matrix J = [C̃(1), . . . , C̃(n+1)].

In the sequel, for each 1 ≤ k ≤ n+ 1, let rk denote the k th row of J . By replacing successively (bottom-up) ri
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by α−1(ri + ri−1)(n+ 1− i)!, we deduce that J is equivalent to the Vandermonde matrix
sn1 sn2 . . . snn+1

sn−1
1 sn−1

2 . . . sn−1
n+1

...
s1 s2 . . . sn+1

1 1 . . . 1

 ,

which is know to be invertible if and only if 0 < sn+1 < sn < . . . < s1. In conclusion, we have just shown that
for any x ∈ Rn+1, any choice of c having non null coordinates, the Jacobian of the map s 7→ γx,c(s) is invertible
at any s such that 0 < sn+1 < sn < . . . < s1.

It will be proved now that this uniform invertibility of the Jacobian matrix of the map s 7→ γx,c(s) implies
inequality (3.13). For that sake, we shall also need the following notation. For each triple (x, c, s), we write
x0 = x, x1 = ϕT−s1(x) + c1en+1

2 and then recursively xk = ϕsk−1−sk(xk−1) + cken+1 for 2 ≤ k ≤ n + 1. The
sequence x1, . . . xn+1 corresponds to the positions right after successive jumps, starting from the initial location
x ∈ Rn+1, induced by the heights c and the inter-jump waiting times T − s1, s1 − s2, . . . sn − sn+1 which are
determined by s.

Introduce now for each x ∈ Rn+1 and t ≥ 0,

e(x, t) = exp
{
−
∫ t

0

f
(
ϕ(0)
s (x)

)
ds
}

(3.17)

and define for each triple (x, c, s) (here we set s0 = T ),

qx,c(s) =

(
n∏
k=0

f(ϕ
(0)
sk−sk+1

(xk))e(xk, sk − sk+1)

)
e(xn+1, sn+1). (3.18)

Since f is bounded away from 0 and from the definition of e(·, ·), we deduce that for any triple (x∗, c∗, s∗)
there are neighborhoods Ws∗ , Ux∗ and Vc∗ of s∗, x∗ and c∗ respectively such that

inf
(x,c,s)∈Ux∗×Vc∗×W∗

s

qx,c(s) > 0. (3.19)

Let us now fix a triple (x∗, c∗, s∗) such that the matrix
∂γx∗,c∗ (s∗)

∂s is invertible. Recall that by (3.16), the

vector c∗ must have all coordinates non-null. By Lemma 6.2 of [2], there exist an open neighborhood Jx∗,c∗ =
BR(x∗)×BR(c∗) of the pair (x∗, c∗), an open set I ⊂ Rn+1, and for any pair (x, c) ∈ Jx∗,c∗ , an open set Wx,c

such that

γ̃x,c(s) :

{
Wx,c → I

s 7→ γx,c(s),

is a diffeomorphism, with Wx,c ⊂W ∗s and also

inf
x,c∈Jx∗,c∗

inf
s∈Wx,c

∣∣∣det
(∂γx,c(s)

∂s

)−1∣∣∣ > 0. (3.20)

2en+1 denotes the n+ 1−st unit vector in Rn+1
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Reducing (if necessary) R, we may assume also that Jx∗,c∗ ⊂ Ux∗ ×Vc∗ . Thus we have that by (3.19) and (3.20),

inf
x,c∈Jx∗,c∗

inf
s∈Wx,c

qx,c(s)
∣∣∣det

(∂γx,c(s)

∂s

)−1∣∣∣ > 0. (3.21)

Since supp(G) ∩ {0}c 6= ∅ there exists an interval (a, b) such that 0 /∈ (a, b) and G((a, b)) > 0. Thus, by taking

c∗ = ((a+ b)/2, . . . , (a+ b)/2), we have (reducing R again if necessary) that for 1 ≤ k ≤ n, G((c∗(k)−R, c∗(k) +
R)) > 0 which together with (3.21) implies

β̃ =
( n∏
k=1

G((c∗(k) −R, c∗(k) +R))
)

inf
x,c∈Jx∗,c∗

inf
s∈Wx,c

qx,c(s)
∣∣∣det

(∂γx,c(s)

∂s

)−1∣∣∣ > 0. (3.22)

Finally, we have for any measurable A ∈ B(Rn+1) and x ∈ BR(x∗), using the change of variables y = γ̃x,c(s),

Ex(1A(XT , NT = n+ 1) ≥
∫
BR(c∗)

G(dc)

∫
Wx,c

qx,c(s)1A(γx,c(s))ds1 . . . dsn+1

≥ β̃

∫
I∩A

dy1 . . . dyn+1 = βν(A), (3.23)

where G(dc) = G(dc1) . . . G(dcn+1) and β = β̃ν(I), establishing the desired result in case L = 1.
The proof of the general case L > 1 follows the same strategy and is given in the Appendix.

We are now able to conclude the proof of Theorem 3.9.

Proof of Theorem 3.9.
(1) By Corollary 3.5, we know thatX comes back toK infinitely often almost surely. Moreover, supx∈K |ϕt(x)| →
0 as t → ∞, by the explicit form of the flow in (2.8). Therefore, for any ε > 0 there exists t∗ such that
ϕt(x) ∈ Bε(0) for all t ≥ t∗, for all x ∈ K. Since f is bounded on K̃ := {ϕt(x) : t ≥ 0, x ∈ K}, we have
infx∈K Px(T1 > t∗ + 2T ) > 0. This implies that

inf
x∈K

P ( the trajectory of X ∈ Bε(0) during a time interval of length > T |X0 = x) > 0,

and therefore, using a conditional version of the Borel–Cantelli lemma, (Yk)k∈N visits Bε(0) infinitely often
almost surely.
(2) Applying the result of Theorem 3.11 with x∗ = 0 and ε = R and using the standard regeneration technique
allows to conclude that (YLk)k and therefore (Xt)t are Harris recurrent. This implies item 1. of the theorem.
(3) To prove item 2., it is straightforward to show that Proposition 3.3 implies the existence a coupling of Xt

and X̃t, both evolving according to (2.6), such that for TK×K := inf{t ≥ 0 : (Xt, X̃) ∈ K ×K}, we have

Ex,y(eηTK×K ) ≤ V (x) + V (y).

Indeed, if suffices to define the 2κ−dimensional Lyapunov function V̄ (x, y) := V (x) + V (y) and to check that
(3.6) holds for L̄ where L̄ denotes the generator of the process (Xt, X̃t). Moreover, (3.13) can be immediately
extended to a lower bound for the joint transition kernel of (Xt, X̃t), whenever both of them start within the
set C = BR(0). Thus X and X̃ couple at least with probability β, each time they are within C at the same
time. The proof that this coupling time has polynomial moments of any order follows then the same arguments
as those given in the proof of Proposition 2.15 in [17], implying that

Ex,y[τpc ] ≤ C(p)[V (x) + V (y)]. (3.24)
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Finally, Theorem 4.3 of [19] implies that
∫
V dπ <∞ such that we are able to integrate (3.24) against π(dx) in

order to replace Xt by the invariant process X̄t starting from X̄0 ∼ π. This concludes the proof.

4. Simulation Algorithm

As a consequence of Proposition 2.4 it follows that any Hawkes process possessing memory kernels given by
the sum of Erlang kernels can be represented as the counting process associated to the jumps of its Markovian
cascade. Based on this Markovian representation we propose an algorithm (hereafter Algorithm 1) for simulating
such Hawkes processes.

In what follows, for any x ∈ Rκ, we shall write ‖x‖∞ = max{|x(i,k)|, 1 ≤ i ≤ L, 0 ≤ k ≤ ni}. For a practical
implementation of our algorithm the remark below will be important. Recall that n = max1≤i≤L ni and α =
min1≤i≤L αi.

Lemma 4.1. For each x ∈ Rκ, let M(x) = max{|ϕ(i,0)
t (x)| : 1 ≤ i ≤ L, t ≥ 0} where ϕ

(i,0)
t (x) is defined in (2.8).

Then

M(x) ≤ e‖x‖∞
(

1 ∨
( n
αe

)n)
. (4.1)

Proof. Indeed, it follows from (2.8) that for each x ∈ Rn+1 and t ≥ 0,

|ϕ(0)
t (x)| ≤ ‖x‖∞e−αt(1 + t+ . . .+ tn/n!) ≤ e‖x‖∞e−αt(1 ∨ tn) ≤ e‖x‖∞e−(α−1)t,

so that if α > 1, then clearly (4.1) holds. Now, assume 0 < α ≤ 1. Under this assumption, from standard calculus
arguments we deduce that arg max{e−αt(1∨ tn) : t ≥ 1} = n/α. This fact and the second inequality above imply
the bound in (4.1) as stated.

In the sequel, for any rate function f satisfying Assumption 2.2 we define the function Rκ ∈ x 7→ f∗(x) by

f∗(x) =

 max{f(y) : y ∈ [0, LM(x)]}, if x ∈ Rκ+
max{f(y) : y ∈ [−LM(x), 0]}, if x ∈ Rκ−
max{f(y) : y ∈ [−LM(x), LM(x)]}, else

 .

Here, L is the number of terms in the sum defining the memory kernel h (recall Assumption 2.3). It follows
immediately from Lemma 4.1 that the function f∗ is well-defined, that is f∗(x) is finite for all x ∈ Rκ. Let T0 = 0
and (Tk)k≥1 denote the sequence of jump times of the Markovian cascade X having generator (2.6). Observe
that the non-explosiveness of X (thanks to Proposition 2.4) ensures that the sequence (Tk)k≥1 is well-defined.
Suppose that XTk = x is given for some k ∈ N. Algorithm 1 works as follows. Draw an exponential random

variable τ with parameter f∗(x) and a uniform random variable U on [0, 1]. If U ≤ f(
∑L
i=1 ϕ

(i,0)
Tk+τ (x))/f∗(x),

then define the next jump time Tk+1 = Tk + τ . If not, repeat this procedure starting from XTk+τ = ϕτ (x) .
Notice that Algorithm 1 is an extension (to our framework) of the classical thinning algorithm for simulating
non-homogeneous Poisson processes. Moreover, it provides an exact simulation of the Markovian cascade X
(and consequently of the associated Hawkes process) in the sense that no approximation procedure is required.
Its formal definition is given below as a pseudo-code.

Proposition 2.4 and Lemma 4.1 ensure that Algorithm 1 is well-defined and works properly. More precisely,
we have the following result.

Proposition 4.2. Assume Assumption 2.2. For any choice of T > 0, x0 ∈ Rκ, L ≥ 1 and ni ∈ N, ci ∈ R,
αi > 0 for 1 ≤ i ≤ L, Algorithm 1 terminates almost surely within finite time. If additionally x0 is given as in
Theorem 2.4, the output of Algorithm 1 follows the distribution of a Hawkes process with intensity (2.1).
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Algorithm 1. Simulation algorithm for the Markovian cascade X.

1: Input: bounded or Lipschitz continuous f , constants αi > 0, ci ∈ R and T > 0; and a vector of initial

conditions
(
X

(i,k)
0 , 1 ≤ i ≤ L, 0 ≤ k ≤ ni

)
=
(
x

(i,k)
0 , 1 ≤ i ≤ L, 0 ≤ k ≤ ni

)
∈ Rκ.

2: Output: The counting process (Nt)t∈[0,T ].

3: Initial values: x←
(
x

(i,k)
0 , 1 ≤ i ≤ L, 0 ≤ k ≤ ni

)
, D ← 0 and N0 ← 0.

4: while D < T do
5: f∗ ← f∗(x)
6: draw τ ∼ E(f∗)
7: if τ ≤ T −D then
8: draw U ∼ U [0, 1]

9: if U ≤ f(
∑
i ϕ

(i,0)
D+τ (x))/f∗ then

10: x← ϕτ (x) +
∑L
i=1 cie(i,ni)

11: Nt ← ND, for D ≤ t < D + τ
12: ND+τ ← ND + 1
13: else
14: x← ϕτ (x)
15: Nt ← ND, for D ≤ t ≤ D + τ
16: end if
17: else
18: Nt ← ND, for D ≤ t ≤ T
19: end if
20: D ← D + τ
21: end while
22: Return (Nt)t∈[0,T ].

It is worth noting that Algorithm 1 does not require the sub-criticality condition (1.3) for non-linear Hawkes
processes. Indeed, Algorithm 1 applies for instance for the choice L = 1, n1 = 0, c1 = α1 and f(x) = (µ +
x)1[0,∞)(x) with µ ≥ 0 for which (1.3) does not hold. The only restriction we have to impose is to work with
memory kernels which are sum of Erlang kernels, which is a generalization of the approach proposed in [7].
In the next section some numerical examples are presented both for bounded and unbounded Lipschitz jump
rates f .

5. Numerical examples

In this section four numerical examples are given. Specifically, we generate first a sample of the Markovian
cascade with L = 1, for a time window T = 100, order delay n1 = 3, jump height c1 = 1, decay rate α1 = 1 and
jump rate f(x) = (µ+x)1[0,∞)(x) with µ = 1. We also simulate a Markovian cascade with random jump heights

c1 following a Normal distribution N (0, 100) and f(x) = (1 + (x/2)3/2) ∧ 30, keeping all others parameters as
in the preceding example. The extension of Algorithm 1 for random jump heights is straightforward. Next, we
simulate jointly three Markovian cascades with L = 1 possessing rates of decay α1 = 0.8, α1 = 1 and α1 = 1.4
respectively; in this example T = 500, n1 = 3, the jump heights follow a Normal distribution N (0, 100) and
f(x) = 1 + σ/(1 + e−β(x−ρ)) where σ = 20, β = 1/3 and ρ = 10. Finally, we simulate a Markovian cascade for
the choices L = 3, n1 = 1, n2 = 3, n3 = 2, α1 = 1.3, α2 = 0.8, α3 = 1, T = 30, f(x) = (2 + exp(x/10)) ∧ 20,
random jump heights c1 = c2 = c3 following a Normal distribution N (0, 25).

The results are presented in Figures 2, 3, 4 and 6 respectively. In order to test if Algorithm 1 works properly,
we use the following result.
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Figure 2. A realization of the process S = (St)0≤t≤T where St =
∑n1

k=0X
(k)
t for the choices

L = 1, n1 = 3, c1 = α1 = 1, T = 100 and f(x) = (1 + x/5)1[0,∞)(x) with initial configuration
S0 = 0. The dashed line corresponds to the theoretical mean E[St] = t of St, conditionally on
S0 = 0, obtained by Proposition 5.1.
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Figure 3. A realization of the process X = (Xt)0≤t≤T with random jump heights fol-
lowing a Normal distribution N (0, 100) for the choices L = 1, n1 = 3, α1 = 1, T = 100,
f(x) = (1 + (x/2)3/2)∧ 30 and X0 = (0, 0, 0, 0). The black trajectory (resp. red) corresponds to

the realization of the process (X
(0)
t )0≤t≤T (resp. (X

(3)
t )0≤t≤T ). The blue trajectories correspond

to the realization of the processes (X
(1)
t )0≤t≤T and (X

(2)
t )0≤t≤T .

Proposition 5.1. Let X be the Markov process whose generator is given by (2.6) with L = 1, c1 = 1, α1 >

0, n1 ∈ N and f(x) = (µ + x)1[0,∞)(x) with µ ≥ 0. For any t ≥ 0, we write St =
∑n1

k=0X
(k)
t . Then for any

x = (x(0), . . . , x(n1)) ∈ Rn1+1
+ ,

E[St] =

n1∑
k=0

x(k) +

{ µ

1− α
(
et(1−α) − 1

)
, if α 6= 1

µt if α = 1.
(5.1)
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Figure 4. A joint realization of three Markovian cascades with α1 = 0.8 (upper panel), α1 = 1
(middle panel) and α1 = 1.2 (lower panel) respectively. Here, L = 1, T = 500, n = 3, the
jump heights follow a Normal distribution N (0, 100) and f(x) = 1 + σ/(1 + e−β(x−ρ)) where
σ = 20, β = 1/3 and ρ = 10. Notice that the smaller the rate of decay α the larger the oscillations

of the process (X
(0)
t )0≤t≥T are.
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Figure 5. The graph of (E[St])0≤t≤T , conditionally on S0 = 0, for the choices L = 1, n1 =
3, c1 = 1, α1 = 1.2, T = 30 and f(x) = (1 + x/5)1[0,∞)(x). The marks ∗ corresponds to the

empirical expected value Ŝt of St computed at times t ∈ {0, 1, . . . , 30} based on 100 simulated
samples of (St)0≤t≤T .
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Figure 6. A realization of the process X = (Xt)0≤t≤T for L = 3, n1 = 1, n2 = 3, n3 = 2, α1 =
1.3, α2 = 0.8, α3 = 1, T = 30, f(x) = (2 + exp(x/10)) ∧ 20, random jump heights c1 = c2 = c3
following a Normal distribution N (0, 25) and initial configuration X0 = 09. In the upper panel

it is shown separately the realization of the process (X
(1)
t )0≤t≤T , in the middle panel (resp.

lower panel) that of (X
(2)
t )0≤t≤T (resp. (X

(3)
t )0≤t≤T ).
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Proof. For Rn1+1
+ 3 (y(0), . . . , y(n1)) 7→ g(y(0), . . . , y(n1)) = y(0) + . . .+ y(n1) one checks that

Lg(y(0), . . . , y(n1)) = µ+ (1− α)g(y(0), . . . , y(n1)).

By Dynkin’s formula it follows that for each t ≥ 0,

E[St] = E[g(Xt)] = E[g(X0)] +

∫ t

0

E[Lg(Xs)]ds

=

n1∑
k=0

x(k) + µt+ (1− α)

∫ t

0

E[Ss]ds,

from which it is easy to deduce the result by applying Gronwall’s inequality.

A comparison between the formula for E[St] and and its estimated counterpart denoted by Ŝt is presented
in Figure 5.

Appendix A. Proof of Theorem 3 for general L

Proof. We now prove Theorem 3.11 in the case L > 1. We write Xt = (X
(1)
t , . . . , X

(L)
t ) and ϕt(x) =

(ϕ
(1)
t (x), . . . , ϕ

(L)
t (x)) for the flow given in (2.8). Recall that elements of Rκ are denoted by x = (x(1), . . . , x(L)),

where x(i) = (x(i,0), . . . , x(i,ni)) for each 1 ≤ i ≤ L.
We prove by induction that for all 1 ≤ k ≤ L, for all x∗ ∈ Rκ there exists a neighbourhood C of x∗ such that

for all x ∈ C,

PkT (x, dy) ≥ βkνk(y(1), . . . , y(k))

Qk((x, y(1), . . . , y(k)),dy(k+1) . . . dy(L))dy(1) . . . dy(k), (A.1)

where for open sets Il ⊂ Rnl+1, 1 ≤ l ≤ k, νk is the uniform density on I1× . . .× Ik, and where Qk is a transition
kernel from Rκ × Rn1+...+nk+k → Rnk+1+...+nL+L−k.

Proof of (A.1) for k = 1. We proceed as in part I and use the jump noise produced by n1 + 1 jumps occur-
ring during [0, T ] to produce a density for X(1) : We impose inter-jump waiting times t1, . . . , tn1+1 under the
constraint that t1 + . . .+ tn1+1 < T. To each jump time we associate jump heights c1, . . . , cn1+1, where each cl
is an element of RL, that is, cl = (c

(i)
l , 1 ≤ i ≤ L), 1 ≤ l ≤ n1 + 1.

In what follows we shall write c = (c1, . . . , cn1+1) and c(i) = (c
(i)
1 , . . . , c

(i)
n1+1). Moreover, we define s =

(s1, . . . , sn1+1), for sk = T − t1 + . . .+ tk. We call s admissible if T > s1 > . . . > sn1+1 > 0.
Then, conditionally on X0 = x and on the above choices, the position of XT is given by

γ(x, c, s) := ϕT (x) +

L∑
i=1

(
c
(i)
1 e−αis1vi(s1) + . . .+ c

(i)
n1+1e

−αisn1+1vi(sn1+1)
)
. (A.2)

Here, vi(s) ∈ Rκ, 1 ≤ i ≤ L, is the vector given by (vi(s))
(i,k) = sni−k

(ni−k)! , for 0 ≤ k ≤ ni, and with zero entries

else. We shall write shortly γ(i)(x, c, s) ∈ Rni+1 for the i−the coordinate of γ(x, c, s), that is,

γ(x, c, s) = (γ(i)(x, c, s), 1 ≤ i ≤ L).
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In what follows, we will use the product form of the flow (2.8). By this we mean the fact that by the explicit
form of the flow in (2.8), for each 1 ≤ i ≤ L, we have that

ϕ
(i,k)
t (x) = e−αit

ni−k∑
m=0

tm

m!
x(i,k+m) =: ϕ

(i,k)
t (x(i));

that is ϕ
(i)
t (x) = ϕ

(i)
t (x(i)) does only depend on x(i), for any 1 ≤ i ≤ L. As a consequence,

γ(i)(x, c, s) = γ(i)(x(i), c(i), s)

does also depend only on x(i) and on c(i). As usual, we shall write, for any fixed pair (x(i), c(i)),

γ
(i)

(x(i),c(i))
: s 7→ γ(i)(x(i), c(i), s)

and similarly,

γ
(i)

(c(i),s)
: x(i) 7→ γ(i)(x(i), c(i), s).

Fix any x∗ ∈ Rκ and fix c∗ such that c
(∗,i)
l = (ai + bi)/2, for all 1 ≤ l ≤ n1 + 1, where (ai, bi) ⊂ R such that

0 /∈ (ai, bi) and Gi((ai, bi)) > 0, for all 1 ≤ i ≤ L. Then there exists an open neighbourhood J1 = BR(x(∗,1))×
BR(c(∗,1)) of the pair (x(∗,1), c(∗,1)) with R < mini(bi − ai), and an open set I ⊂ Rn1+1 and for any pair
(x(1), c(1)) ∈ J1 an open set Wx(1),c(1) ⊂ Rn1+1

+ such that

γ̃
(1)

x(1),c(1)(s) :

{
Wx(1),c(1) → I

s 7→ γ(1)(x(1), c(1), s),

is a diffeomorphism. Moreover,

β̃1 = inf
x∈BR(x∗),c∈BR(c∗)

inf
s∈W

x(1),c(1)

qx,c(s)
∣∣∣det

∂γ̃(1)

x(1),c(1)(s)

∂s

−1 ∣∣∣ > 0.

Let now Ai ∈ B(Rni+1), for all 1 ≤ i ≤ L. Then for all x ∈ BR(x∗), using the change of variables y(1) =

γ̃
(1)

x(1),c(1)(s),

PT (x,A1 × . . .×AL) ≥ β̃1

∫
I

1A1
(y(1))dy(1)

[ ∫
BR(c∗)

L∏
i=1

Gi(dc(i))

1A2
(γ

(2)

x(2),c(2) ◦ (γ̃
(1)

x(1),c(1))
−1(y(1))) . . . 1AL (γ

(L)

x(L),c(L) ◦ (γ̃
(1)

x(1),c(1))
−1(y(1)))

]
=: β1

∫
Rn1+1

ν1(y(1))1A1
(y(1))dy(1)

∫
A2×...×AL

Q1((x, y(1)),dy(2) . . . dy(L)),

where ν(1) is the uniform density on I, β1 = β̃ν1(I) and Gi(dc(i)) =
∏n1+1
l=1 Gi(dc

(i)
l ). This proves (A.1) for

k = 1.
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Induction step: k − 1 implies k. Suppose that we have already established the result for k − 1. Let Ai ∈
B(Rni+1), for all 1 ≤ i ≤ L. We have

PkT (x,A1 × . . .×AL) =

∫
PT (y,A1 × . . .×AL)P(k−1)T (x, dy)

≥ βk−11C(x)

∫
PT (y,A1 × . . .×AL)νk−1(y(1), . . . , y(k−1))

Qk−1((x, y(1), . . . , y(k−1)),dy(k) . . . dy(L))dy(1) . . . dy(k−1). (A.3)

We work conditionally on the choice of y = (y(1), . . . , y(L)) and proceed as in the first part, using the jump noise
(of a sufficient number of jumps) to create a density for the variable y(k) and proving that the already produced
density νk−1(y(1), . . . , y(k−1)) of the first k − 1 variables is well preserved.

As in the first step, we start with

PT (y,A1 × . . .×AL) ≥ Ey

(
L∏
i=1

1Ai(X
(i)
T ), NT = nk + 1

)
. (A.4)

We impose inter-jump waiting times t1, . . . , tnk+1 under the constraint that t1 + . . .+ tnk+1 < T and associated

jump heights c1, . . . , cnk+1, where each cl is an element of RL, that is, cl = (c
(i)
l , 1 ≤ i ≤ L). These inter-jump

waiting times will produce a density for the k−th variable X
(k)
T as in the preceding steps.

To start with, let us introduce the following notation. For all 1 ≤ l < m ≤ L, we write yl:m := (y(l), . . . , y(m)),
dyl:m := dy(l) . . . dy(m),cl:m := (c(l), . . . , c(m)). For x ∈ C we have

∫
PT (y,A1 × . . .×AL)νk−1(y1:k−1)Qk−1((x, y1:k−1)),dyk:L)dy1:k−1

≥
∫
νk−1(y1:k−1)Qk−1((x, y1:k−1),dyk:L)dy1:k−1

∫ L∏
i=1

Gi(dc(i))∫
ds1 . . . dsnk+11A1×...×Ak−1

(γ1:k−1(y1:k−1, c1:k−1, s))1Ak(γ(k)(y(k), c(k), s))

1Ak+1×...×AL(γk+1:L(yk+1:L, ck+1:L, s))qy,c(s). (A.5)

Let N1 :=
∑k−1
l=1 (nl + 1) be the dimension of y1:k−1. We introduce now for any fixed c1:k having all entries

non zero and y(k) ∈ Rnk+1,

Φ(c1:k,y(k)) :

{
RN1 × Rnk+1 → RN1+nk+1

(y1:k−1, s) 7→ (γ1:k−1(y1:k−1, c1:k−1, s), γ(k)(y(k), c(k), s)).

We write

∂Φ(c1:k,y(k))(y
1:k−1, s)

∂y1:k−1∂s
=
[∂Φ(c1:k,y(k))(y

1:k−1, s)

∂y(1)
, . . . ,

∂Φ(c1:k,y(k))(y
1:k−1, s)

∂snk+1

]
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to denote the Jacobian matrix of the the map (y1:k−1, s) 7→ Φ(c1:k,y(k))(y
1:k−1, s). By the properties of the flow

(2.8), it follows that

∂Φ(c1:k,y(k))(y
1:k−1, s)

∂y(1)
=


∂γ(1)(y(1),c(1),s)

∂y(1)

0
...
0

 =


∂ϕT (y(1))
∂y(1)

0
...
0

,

where by the “cascade structure” of the flow (2.8),

∂ϕT (y(1))

∂y(1)
=


e−α1T ∗ ∗ ∗

0 e−α1T ∗ ∗
...

. . . ∗
0 · · · 0 e−α1T

.
Therefore,

∂Φ(c1:k,y(k))(y
1:k−1, s)

∂y1:k−1∂s
=

(
A ∗
0 B

)
,

where A is an N1 ×N1 upper diagonal matrix having entries of the type e−αiT , 1 ≤ i ≤ k − 1, on the diagonal,

where 0 is the (nk + 1) × N1 matrix having all zero entries, and where B =
(
∂γ(k)(y(k),c(k),s)

∂s

)
. According to

Part I of the proof, detB 6= 0 whenever c(k) has only non zero coordinates, for any fixed y(k), for admissible s.
It is immediate to see that

det

(
∂Φ(c1:k,y(k))(y

1:k−1, s)

∂y1:k−1∂s

)
= e−(α1(n1+1)+...αk−1(nk−1+1))T · detB 6= 0

in this case. Therefore, arguing as in Part I, for any y(∗,k) ∈ Rnk+1 and c(∗,1:k) having non zero entries, for all
y(∗,1:k−1) and an admissible s∗ there exist open neighbourhoods Jk = BR(y(∗,k))×BR(c(∗,1:k)) and an open set
I ⊂ RN1+nk+1 containing (y(∗,1:k−1), s∗) and for any pair (y(k), c(1:k)) ∈ Jk an open set Wy(k),c(1:k) such that

Φ̃(c1:k,y(k))(y
1:k−1, s) :

{
Wy(k),c(1:k) → I

(y1:k−1, s) 7→ Φ(c1:k,y(k))(y
1:k−1, s),

is a diffeomorphism.
In what follows, in order to ease notation, we shall shortly write

Φ̃(y1:k−1, s) := Φ̃(c1:k,y(k))(y
1:k−1, s)

and

Ψ = Φ̃−1 (A.6)

for the associated inverse function. Ψ taking values in some (subset of) RN1+nk+1, we shall write as before Ψ(i)

for its coordinates and Ψ1:N1 for the first N1 of its coordinates, corresponding to y1:k−1, and ΨN1+1:N1+nk+1

for the last coordinates, corresponding to s.
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We choose any x ∈ C and y∗ ∈ supp (νk−1(y1:k−1)Qk−1((x, y1:k−1),dyk:L)dy1:k−1) and obtain (recall (A.4)
and (A.5)), ∫

PT (y,A1 × . . .×AL)νk−1(y1:k−1)Qk−1((x, y1:k−1)),dyk:L)dy1:k−1

≥
∫
BR(y∗)

νk−1(y1:k−1)Qk−1((x, y1:k−1),dyk:L)dy1:k−1

∫
BR(c∗)

L∏
i=1

Gi(dc(i))∫
Rnk+1

+

1W
y(k),c(1:k)

(y1:k−1, s) qy,c(s) 1A1×...×Ak(Φ̃(y1:k−1, s))

1Ak+1×...AL(γk+1:L
yk+1:L,c

(s))ds1 . . . dsnk+1.

In the above formula, R is chosen sufficiently small such that BR(c∗) contains only jump heights with non zero
entries. We then use the change of variables

z1:k := Φ̃(y1:k−1, s).

Choose now R sufficiently small such that

β̃k := inf
y∈BR(y∗)

inf
c∈BR(c∗)

inf
s : (y1:k−1,s)∈W

y(k),c1:k

qy,c(s)

×
∣∣∣det

(∂Φ̃(y1:k−1, s)

∂y1:k−1∂s

)−1∣∣∣νk−1(y1:k−1) > 0.

Let C∗2 = BR(y(∗,k), . . . , y(∗,L)). Then∫
PT (y,A1 × . . .×AL)νk−1(y1:k−1)Qk−1((x, y1:k−1)),dyk:L)dy1:k−1

≥ β̃k
∫
I

(

k∏
j=1

1Aj (z
(j))dz1:k

[ ∫
BR(c∗)

L∏
i=1

Gi(dc(i))∫
C∗

2

Qk−1((x,Ψ1:N1(z1:k),dyk:L)1Ak+1×...AL(γk+1:L
yk+1:L,c

◦ΨN−1+1:N1+nk+1)(z1:k)
]

=: β̃k

∫
I

(

k∏
j=1

1Aj (z
(j))dz1:k

[∫
Qk((x, z1:k),dzk+1:L)1Ak+1

(z(k+1)) · . . . · 1AL(z(L))

]
.

Together with (A.3), this shows that (A.1) holds also for k, and this finishes the induction step. By taking
finally k = L in (A.1), this implies the assertion of the Theorem.

Acknowledgements. The authors thank an anonymous referee for critical reading and useful remarks. E.L. thanks B. Cloez
for fruitful discussions concerning Wasserstein coupling at an early stage of this work. This research has been conducted
as part of the project Labex MME-DII (ANR11-LBX-0023-01); it is part of USP project Mathematics, computation,
language and the brain, FAPESP project Research, Innovation and Dissemination Center for Neuromathematics (grant
2013/07699-0), CNPq projects Stochastic modelling of the brain activity (grant 480108/2012-9) and Plasticity in the
brain after a brachial plexus lesion (grant 478537/2012-3). A.D. and G.O. were fully supported by a FAPESP fellowship
(grants 2016/17791-9 and 2016/17789-4 respectively).



796 A. DUARTE ET AL.

References
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[18] E. Löcherbach and D. Loukianova, On nummelin splitting for continuous time harris recurrent Markov processes and application

to kernel estimation for multi-dimensional diffusions. Stoch. Process. Appl. 118 (2008) 1301–1321.
[19] S.P. Meyn and R.L. Tweedie, Stability of Markovian processes III : Foster-Lyapunov criteria for continuous-time processes.

Adv. Appl. Probab. 25 (1993) 487–548.
[20] S.T. Rachev, Probability Metrics and the Stability of Stochastic Models. John Wiley and Sons, Chichester, USA (1991).
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