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STABILITY, CONVERGENCE TO EQUILIBRIUM AND
SIMULATION OF NON-LINEAR HAWKES PROCESSES WITH
MEMORY KERNELS GIVEN BY THE SUM OF ERLANG KERNELS

ALINE DUARTE!, EvA LOCHERBACH? AND GUILHERME OST®*

Abstract. Non-linear Hawkes processes with memory kernels given by the sum of Erlang kernels are
considered. It is shown that their stability properties can be studied in terms of an associated class
of piecewise deterministic Markov processes, called Markovian cascades of successive memory terms.
Explicit conditions implying the positive Harris recurrence of these processes are presented. The proof is
based on integration by parts with respect to the jump times. A crucial property is the non-degeneracy
of the transition semigroup which is obtained thanks to the invertibility of an associated Vandermonde
matrix. For Lipschitz continuous rate functions we also show that these Markovian cascades converge
to equilibrium exponentially fast with respect to the Wasserstein distance. Finally, an extension of the
classical thinning algorithm is proposed to simulate such Markovian cascades.
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1. INTRODUCTION

Hawkes processes have regained a lot of interest in the recent years, in particular in econometrics, as good
models to account for contagion risk and clustering arrival of events. They have shown to be very useful in
neuroscience also due to their capacity of reproducing the typical time dependencies observed in spike trains of
neurons as well as the interaction structure of neural nets. Originally introduced by [13] and [14] as a model for
the appearances of earthquakes, their key feature is the fact that any event is able to trigger future events —
for this reason, Hawkes processes are sometimes called “self-exciting point processes”. In their by now classical
paper, Bremaud and Massoulie [4] develop the stability theory of general non-linear Hawkes processes, also in a
multivariate frame. Hansen, Reynaud-Bouret and Rivoirard [12] have put the foundations for the use of Hawkes
processes as models of spike trains in neuroscience, see [6] also, and recently some effort has been spent to study
Hawkes processes in high dimensions, especially focusing on properties such as the propagation of chaos, see [8]
and [5], see [9] also in a multi-class frame. Finally, we refer to [23] for a study of the large deviation properties
of non-linear Hawkes processes having Markovian intensity function.
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In the present paper Hawkes processes with memory kernels given by the sum of Erlang kernels are considered.
It is shown that the longtime behaviour and stability properties of these processes can be studied in terms of
an associated class of piecewise deterministic Markov processes (PDMPs). More precisely, let N be a counting
process on R, characterised by its intensity process (A:)i>0 defined, for each ¢ > 0, through the relation

P(N has a jump in J¢, ¢ + dt]|F;) = Aedt,

where F; = o(N(Ju, s]), 0 <u < s <t)and

A=f <6+/]0t[h(t - s)dNS>. (1.1)

Here, f : R — R is the jump rate function and h : Ry — R is the memory kernel. The parameter § € R is
interpreted as an initial input to the jump rate function.

The memory kernel h is assumed to be given by the sum of Erlang kernels, that is, h = Zle h;, where each
function h; is of the form

_ oot ”
hi(t) = cie " t >0, (1.2)

where ¢; € R,a; > 0 and n; € N.

Erlang kernels are widely used in the modelling literature, for example to model delays in the hemodynamics
in nephrons, see [10, 22| or to prove the existence of oscillations in large-scale limits of interacting neurons
in a mean-field frame, see [9]. This is the main motivation for the particular choice taken for the memory
kernel h. Moreover, it is well known that the class of memory kernels having this form is dense in L'(R,),
see e.g., [16]. Therefore, any Hawkes process having integrable memory kernel can be well approximated by a
Hawkes process having an Erlang memory kernel, see (2.9) below, at least over compact time intervals. Finally,
the specific memory structure induced by Erlang kernels allow a completely new approach to simulation of
non-linear Hawkes processes.

Erlang kernels depend on three parameters, ¢;, n; and «;. Here, n; + 1 is the order of the delay of the influence
of a past event on a future event. It takes its maximum absolute value at (n; + 1)/« time units back in time.
The mean is (n; + 1)/a; (if normalising to a probability density). The higher the order of the delay, the more
concentrated is the delay around its mean value, and in the limit of n; — oo while keeping (n; + 1)/« fixed,
the delay converges to a discrete delay. The sign of ¢; indicates if the influence of past events on future events
is inhibitory or excitatory.

The use of Erlang kernels allows to relate the study of the longtime behaviour of a Hawkes process having
intensity (1.1) to the study of an associated system of PDMPs. More specifically, it is easily shown that the
system of stochastic processes Xt(z’o) = jio,t] hi(t — s)dNg,t > 0, for each 1 < i < L, can be completed, by
introducing Zle n; auxiliary processes, to a piecewise deterministic Markov process in dimension L + Zle g,
see (2.4) below. Between successive jumps of N, the evolution of each Xt(m)7 together with its auxiliary processes,
is explicitly given by a deterministic flow. Jumps do only occur in the auxiliary variables X (47 1 < i < L. We
shall call this class of PDMPs Markovian cascades of successive memory terms.

We prove that these Markovian cascades are recurrent in the sense of Harris under the usual sub-criticality
condition

1l / Ih(D]dt < 1.1 (1.3)

Tif all a; are equal and all ¢; are of the same sign. In the case of bounded rate functions, we do not need to impose this condition.
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Under (1.3), we are able to construct a Lyapunov function implying that these processes return to a compact
set infinitely often, almost surely. Under the additional condition of some minimal ellipticity, that is, some
minimal jump activity, we establish, in Theorem 3.11, a Doeblin like lower bound based on integration by parts
with respect to the jump times. A crucial property is the non-degeneracy of the transition semigroup which
is obtained, thanks to the invertibility of an associated Vandermonde matrix and structure of the flow of the
Markovian cascades (see (2.8) below). In the case of Lipschitz continuous rate functions we also show that the
Markovian cascades converge to equilibrium exponentially fast with respect to the Wasserstein distance.

The fact that the flow governing the evolution of the Markovian cascades in between successive jump times
is explicitly given and enables us to introduce an efficient simulation algorithm which allows to sample from N
on [0, 7] for any finite time horizon T > 0 and any fixed parameter § € R. This method is straightforward to
implement, and can be easily extended to multi-dimensional versions.

The paper is organised as follows. In Section 2, we present the model and provide some preliminary remarks.
In Section 3, the long-time behaviour of the Markovian cascades is investigated. The statement and proof for the
case L =1 of Theorem 3.11, establishing the Doeblin lower bound for the Markovian cascades, is also included
in this section. In Section 4, a simulation algorithm to simulate a Hawkes process simultaneously with memory
kernel given by the sum of Erlang kernels and its Markovian cascade is proposed. In Section 5, numerical
examples are presented. Finally, in the Appendix A, we prove Theorem 3.11 in the general case.

2. MODEL DEFINITION AND PRELIMINARY REMARKS

Throughout the article the set N denotes the set of non-negative integers, N* the set of positive integers
{1,2,...} and B((0,00)) (resp. B((a,b]), for real numbers 0 < a < b < o) the Borel sigma-algebra on (0, c0)
(resp. on (a,b]).

We work on the following filtered space (€2, F,F). Let Q be the canonical path space of simple point processes,
i.e.,

Q= {w = (tw)nex- €]0,00N ity <tpy1,tn < tpyr if t, < 400, lim t, = +oo}.
n—-+oo

For each w € Q and n € N*| we define T,,(w) = t,,. For each w € Q, we associate the canonical point measure
B((0,00)) 3 A= N(w)(A) = >, cn+ 01, () (A). We shall write for short N(A) rather than N(w)(A); when
A = (0, 1] for some t > 0, we simply write N; to denote N((0,t]). Finally, we define F; = c{N(A) : A € B((0,t])}
for each ¢t > 0, F = o{N(A) : A € B((0,00))} and F = (F);>0-

Let f: R — Ry and A : Ry — R be measurable functions and let n be a deterministic point process
on | — 00, 0] such that -f]foo,O] h(t — s)n(ds) is finite for all ¢ > 0.

Definition 2.1. A Hawkes process with parameters (f, k) and with initial condition n is a probability measure
P on the filtered space (2, F,F) such that the compensator of (N);>¢ is given by (fot Asds)i>0, where (A¢)i>o0
is the non-negative F—predictable process defined for ¢ > 0 by

M= Ff (/]00,0] h(t — s)n(ds) + /]O,t[ h(t — s)st> . (2.1)

The stochastic process (A\;)i>0 is called intensity process. The functions f : R — Ry and h: Ry — R are
called jump rate function and memory kernel respectively. We shall work under the following assumptions.

Assumption 2.2. The rate function f : R — R, is either bounded or Lipschitz continuous with Lipschitz
constant || f||Lip-
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Assumption 2.3. The memory kernel h : Ry — R can be written as sum of Erlang kernels, i.e, for each ¢t > 0,

)
Tli!

L
t’rbi
h(t) = cie it — (2.2)
=1

where for each 1 <i< L, ¢; €R, o; >0 and n; € N.

Under Assumption 2.3, the intensity process (2.1) can be described by an associated PDMP. Indeed, for each
1<i< Land0 <k <n;, writing for each ¢ > 0,

X = / et L= / et (=) (2.3)
1—00,0] (n; — k)! 10,] (n; — k)!
we have
M= f (X0 x (1),
and one easily deduces that for t >0 and 1 <i < L,
dx0 = xBYat -, xB0dt (2.4)

ax (it = x g — g x Y ae
AX{"") = —a; X" dt + cid Ny,
with initial condition Xéi’k) = xéi’k) = f]_oo 0] Cieais%n(ds).

Write kK = L + Z{;l n;. The associated PDMP is the Markov process X = (X;);>0 having cadlag paths and
taking values in R”, defined, for each ¢ > 0, by

X, = (Xt(l),...,Xt(L)) with X7 = (Xt(w), . ,Xt“”“)), 1<i<L. (2.5)

If L =1, that is, h is a pure Erlang kernel, we write for short X; = (Xt(k),O < k < mnq). We call the process
X Markovian cascade of successive memory terms. Its infinitesimal generator £ is given for any smooth test
function g : R* — R by

Lo(x) = (F(x), Vg()) + f(ZL: 200) (g(a + Z Cling) —9()). (2.6)

where z = (I, ..., 2)) with 2 = (209, ... (7)) and €(i,n;) € R* is the unit vector having entry 1 in
the coordinate (i,n;), and 0 elsewhere. Finally, F' : R* — R" is the vector field associated to the system of
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first-order ODE’s

d (o0 i1 0,0

E:pi )= z{t) — ;200

.d imi—1 i imi—1 (2.7)
axi )= gt _ g )

d no (i) .

&xt = —ax, , 1<i< L,

given by F(z) = (FM(x),..., FY) (x)), where FO (z) = (FGO(z), ..., F:m) () with
FOR (1) = —a;20%) 4+ 208D for 0 < k < ny, and FO™) (z) = —aa(™),

Notice that jumps introduce discontinuities only in the coordinates Xt(i’ni) of X;. Figure 1 depicts a realisation
of the joint processes (N, X;)¢>o0 in the case L = 1.
Hereafter, we write ¢¢(z) = (<p§1)( )y .- .,gng)( )) for the unique solution, starting from z € R", of the

system (2.7). It is immediate to check that for each 1 <4 < L and ¢ > 0,

e~ it (p(00) 41 4 %x(zm))

(%) :

' : 2.8

pr () = et (g(imi=1) 4 g (ina)) (2.8)
e—aitx(i,ni)

Notice that gagl)(:v) depends only on the variable #("). Given the Markovian cascade of successive memory terms
(2.4)—(2.6), one recovers immediately the non-linear Hawkes processes with intensity (2.1) as shows the following
proposition. In what follows, for any zo € R, we write P, for the probability measure on R* under which
Xo = zo, and denote by E,, the expectation taken with respect to P, .

Proposition 2.4. Suppose Assumptions 2.2 and 2.5. Fiz any initial condition n on ] — 00,0] such
that f oo()] —s)n(ds) < oo for all t > 0 and put, for each 1 < i < L and 0 < k < ny, xél’k) =

(n ‘ ,
f}_oo 0] cie™ ﬁn(ds) Let X = (X¢)i>0 be the Markov process having generator (2.6), starting from
Xo = zo. Then X is non-explosive, i.e., X has Py, -almost surely a finite number of jumps on each interval
[5,2],0 < s <t < 0o. Finally, introduce Ny =Y, 1{ax, 20} the counting process associated to the jumps of X.
Then (N¢)e>o is a non-linear Hawkes process with intensity (2.1).

Proof. Let us define pu(dt) = 3°, -, 67, (dt) and v(dt) = f( ZiL:1 Xt(i’o))dt. Then Proposition 3.1 in [15] implies
that v is the predictable compensator of p. In particular, the compensator of V; is given by fg Asds with

= F(2r, x5,

It remains to prove the non-explosiveness of the process X. In the case of bounded f, nothing
has to be proved. Suppose therefore that f is Lipschitz continuous and define g(z) = f(())(z:f:1 leil) +

ZiL:1 Siiolz@R| for z € R Let A = maxj<i<ro; and ¢ = ZiL:l\ciL By plugging ¢ in (2.6),
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FIGURE 1. A finite joint realisation of the Markovian cascade X = (X¢)o<i<r (upper panel)
and its associated counting process N = (Ny)o<i<7 (lower panel) for the choices L =1, ny = 2,
¢ =2,a1=1,T=20and f(z) = x/5+ 1 with initial input 2o = (xéo)wg ) x (2)) (0,0,0).
The blue (resp. red and black) trajectory corresponds to the realisation of (X t( ))OStST (resp.
(Xt(l))ogth and (Xt(o))ogtg;p). Notice that the smaller the index 0 < k < n; the smoother the
correspondent process (X (gli)t <1)-
we have

n;—1 L
EDD ( 3 sg(@l) (2R — iR - a2 4 Icilf(zw(”)))
i=1 k=0 =
L n A
< ef(O) + (ellfllzip +a) ZWO)H 1+ 4)3 3 [0
i=1 i=1 k=1
< Cyg(),

where C'= C(A, ¢, || fllLip) and sg(y) is the sign of y € R. In the second inequality above we have used that
F) < Ifllziplyl + f(0) for any y € R. Thus, by applying Dynkin’s formula and then using Lg(z) < Cg(z), one
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concludes that
B l9(X0)] = g(zo) + / B, [Lg(X.)]ds < g(zo) + C / By [(X2))ds.

Then by Gronwall’s inequality, E,,[g(X:)] < g(x0)e*. From this last estimate we conclude the proof noticing
that

t L t L
Ery (N (s0t)) = Eay [ £ XEO)du < 1F iy [ 3 Eugl X(0ldu+ F0)(t = ).
5 =1 5 =1
Since Zf:l |X1(f’0)| < g(Xyu), it follows immediately from the inequality above that

Ero(N([s,t])) < ||f||Lz'p/ Erol9(Xu))du+ f0)(t — 5)

/1l zip

C (€€t — %) + F(0)(t — 5) < 0.

< g(wo)

O

Remark 2.5. The converse statement of the above proposition does also hold true. More precisely, let (IV;);>0 be
a non-linear Hawkes process with intensity (2.1) where h is given by (2.2). Suppose moreover that N starts from

1 _g)(ni—k)
the n(ds) on R_, where n is some discrete point measure on R_ such that :Eg"k) = f_ooo cie=i(=9) %n(ds)

are well-defined. Introduce the associated processes Xt(i’k), 1<i<L,0<k<n;asin (2.3). Then X = (X;)i>0
is Markov with generator (2.6).

2.1. Some comments on the use of Erlang kernels

Erlang kernels are widely used in the modelling literature. They have been introduced by Erlang in the
1920’s to provide an efficient approach for analyzing telephone networks. Nowadays, they are widely used in the
theoretical and mathematical biology literature, see e.g., [10, 22] where they serve as a good model to describe
delays in the hemodynamics in nephrons. They are also the building block to prove the existence of oscillations
in large-scale limits of interacting neurons in a mean-field frame, see [9].

Notice also that the class of Erlang memory kernels is dense in L!(R.), see e.g., [16]. Therefore, any Hawkes
process N having general integrable memory kernel i can be approximated by a sequence of Hawkes processes
N having Erlang memory kernel 2("™) such that ||h(") — hllzr(r,) — 0 as n — oo and

t
E|IN - N™||, < Oy / A — h(s)ds, (2.9)
0

for all t < T (see Lem. (3.4) of [21]), where ||N — N()||; denotes the total variation distance between N and
N on [0,1].

Finally, the Markovian representation of Hawkes processes having memory kernels as in Assumption 2.3 in
terms of the PDMP (2.5)—(2.6) has two advantages. The first advantage is that stability properties and the
longtime behaviour of such Hawkes processes can be studied via the well-established theory of PDMPs. Since it
is straightforward to simulate the PDMP (2.5)—(2.6) (see Sect. 4), one can also simulate Hawkes processes with
memory kernels given by sum of Erlang kernels by using this representation. This is the second advantage.

In the next section we discuss stability properties of the associated PDMP (2.5)—(2.6) with random jump
heights. A simulation algorithm for this PDMP will be presented in Section 4.
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3. LONG-TIME BEHAVIOUR OF THE ASSOCIATED MARKOVIAN CASCADE
WITH RANDOM JUMP HEIGHTS

In this section we consider the Markov process X = (X;);>o taking values in R* with (possibly) random
jump heights. Its generator is given for any smooth and bounded function g : R® — R by

L L
Lg(z) = (F(z),Vg(z)) + f( Z x(i,O)) / (9(z + Z ci€im) — 9(x))G(der, ..., der), (3.1)
i i=1

i=1

where F': R* — R" is the vector field associated to the system (2.7) and G(dey, . . .,dcr) is a probability measure
on RE.

Assumption 3.1. The probability measure G on R” has finite first moments, i.e.,

L
/Z lei|G(dey, . . ., deg) < oco. (3.2)
=1

The above process is well-defined under Assumptions 2.2 and 3.1, as shows the following proposition.

Proposition 3.2. Assume Assumptions 2.2 and 3.1. Let N = (N;)i>0 be the counting process associated to the
jumps of the Markov Process X = (X;)i>0 having generator given by (3.1), starting from xo € R*. Then N has
P, -almost surely a finite number of jumps on each interval [s,t],0 < s < t < oo.

The proof of this proposition is analogous to the proof of Proposition 2.4.

3.1. A Foster—Lyapunov condition

We start showing that there exists a compact set K of R” such that the process X = (X;);>0 possessing the
generator defined in (3.1) visits K infinitely often almost surely. Let n = maxj<;<z, n; and o = mini<;<z o;. In
what follows, we write 0" to denote the vector in R” having all coordinates equal to 0.

Proposition 3.3. Suppose Assumptions 2.2 and 3.1. Let L be the generator defined in (3.1) and consider the
function V : R* — R defined by

L n;
Vie)=1+) Y b(%l)wk) ., (3.3)

i=1 k=0

whereb : {0,1,...n+1} = Ry is a strictly increasing function. If f is not bounded but only Lipschitz continuous,
we suppose moreover that

Lo
1 lip ( / Zam|ci|G<dch...,ch>> <a, (3.4)
=1

and choose the function b so that

L
D s ( [3 ... ,ch>> “a (55
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Then there exist positive constants \, B and R such that the following Foster—Lyapunov type drift condition
holds

LV (z) < =AV(z) + flk(x), (3.6)

where K = Br(0%) is the (closed) ball of center 0% and radius R.

Remark 3.4. If a; = o for all 1 <i < L and sg(¢;) = sg(c;) (where sg(u) is the sign of u € R) for all ¢ # j,
then condition (3.4) is equivalent to the sub-criticality condition (1.3) required in Theorem 1 of [4]. For values

of & = minj<;<y a; > 1, we could have taken the simpler Lyapunov function V(z) =1+ Zle S o 2GR

Proof. Indeed, one immediately verifies that
LV (xz) = A(x) + B(x),

where

ni—1
_ - EAD Gk (k) Gryy _ ot
=3 (3 M D s )y D)

i=1 k=0 Z 7

and

)G(dcl, [SPN ,dCL).

Zx(z 0 /Z nz |x(z i) + ¢ | ‘x(z,nl)

Defining b, = min{b(k + 1) — b(k),0 < k < n} and r = ab.(b(n + 1))}, it is also straightforward to check
that

L
Za|x(zo)\ az % (k+1) — b(k))|2@R)|

i=1 k=1
L L
i, k+1 i
< —a) (1)) - ZZ gt (3.7)
=1 =1 k=1

Suppose first that is f is bounded by f*. In this case, one can easily verify that

‘|G(d01, .. .,dCL).

L
B(z) < f*b(n + 1)/20%_"’

Since r < a, it follows from the above estimates that
LV (z) < —rV(z) +p,
where p =r + f*b(n +1) fziLzl a; "¢ |G(dey, . .., der).

Let ¢ =14+ b(1)(1 Aa~")R and observe that V(z) > ¢, for z ¢ K = Bg(0%). Thus, taking any R sufficiently
large such that p/q < r, we deduce that

LV() < ~(r = 2) Vi) +pix()
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which proves (3.6) for bounded jump rates f with A =r — % >0and 5=p>0.
Assuming now that f is unbounded and Lipschitz continuous, we have that

B(x) < (IIfIIszZ\x“O)IJrf b(n+1) /Za—"w@m ey, .. dey),

i=1

which, together with the first inequality in (3.7), implies that

L
LV () < —dV () +d+ f(O)b(n +1) / S 07" el Glder, .., deg),

where d = (04 — I fllzip b(l:l—f)l) I3 e
above and proceeding as before, we establish also the drift condition (3.6) for Lipschitz jump rates. O

¢i|G(deq, . .. ,ch)> Ar is positive thanks to (3.4). Using the inequality

As a corollary of Proposition 3.3, we obtain exponential moments for the return times to the compact set K
appearing in (3.6).

Corollary 3.5. Let K = Br(0%) and V be as in Proposition 3.3. Write T = inf{t > 0: X; € K}. Then for
alln < X and xy € R,

Ego[e"™] <V (x0). (3.8)
The proof of this corollary is classical, see for instance Theorem 6.1 of [11].

3.2. Wasserstein contraction for Lipschitz jump rates

Throughout this section we suppose that the jump rate f is Lipschitz continuous. In this case, we are able
to prove the exponential convergence to equilibrium in Wasserstein distance, under the sub-criticality condition
(3.4).

More precisely, in the sequel, for any x € R*, we will write ||z|; = 25:1 Siio 2R Let p and v be two
probability measures on R”. We call coupling of x4 and v any probability measure on R* x R* whose marginals
are p and v, and we denote by I'(u, v), the set of all such couplings. The Wasserstein distance between p and v
is defined by

Wi =int{ [ [ o= ylrtanan. eviun}. (3.9)

In the following, we write (P;);>¢ for the transition semigroup of the process X with generator (3.1). Recall
that A = maxi<;<r a3, & = mini<;<z, a; and n = max;<;<r n;. The following theorem states the exponential
rate of convergence to equilibrium of the process with respect to the Wasserstein distance.

Theorem 3.6. Suppose f is Lipschitz continuous, assume condition (3.4) and choose the function b as in (3.5).
1. Then, for any choice of probability measures p and v on B(R"),

Wi(uPs,vP;) < Ce” MWy (1, v), (3.10)

where

_ A"W1 b(n+1)
1Aantl (1)
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and d = (a Il R 0 el Gde, ,ch)) A (ab*(b(n + 1))71), with by = min{b(k + 1) —
b(k),0 < k <n}.

2. In particular, there exists a unique invariant probability measure m of the process X such that for any
probability measure v on B(R"),

Wi (m,vP,) < Ce” YWy (m,v).

Proof. The assertion of point 1. follows from a standard Wasserstein coupling. More precisely, denote by (X, X )
the Markov processes taking values in R” x R” having the infinitesimal generator defined for any smooth test
function ¢(z,y) : R® x R® — R by

Lop(z,y) =(F(z), Vop(z,y)) + (F(y), Vyp(z,y))

+ f( Z x(w)) Ao Z y(i,O)) /G(dcl, oo der) |z + Z Ci€(in,)> Y + Z Ci€(iny)) — P, y)]
+ <f(zx(i,0)) _ f(zyum)) /G(dcl7 .ooyder) [o(x + Zcie(i,ni),y) — @(m,y)]
i i 4 i
+ <f(zy(i,o)) _ f(zx(iﬁ))) /G(dcl7 ...,der) [ap(w, Y+ Zcie(iﬁni)) — @(m,y)] , (3.11)
i i 4 i

where F': R® — R" is the vector field associated to the system (2.7).

This is the usual coupling which consists of making the two processes jump together as much as possible.
Define

n;

ZL:Z k+1|<zk> o

Then an analogous calculus as the one used in the proof of Proposition 3.3 yields
LoH(z,y) < —dH(z,y),
implying that
B, H(Xy, X)) < H(z,y)e .
Observing that

A"V 1 b(n+1)
— <~ ——H i H < —— |z —
Iz = ylh < Sy H@y): Hzy) < 7=l =yl

we conclude the proof of item 1.

To prove item 2., let p, := pP, for any probability measure p on B(R"*). Observe that W1 (tntm, thm) <
Ce= YW, (pin, 1), implying that (i, ), is Cauchy and thus, by the completeness of the space of all probability
measures on (R, B(R*)), endowed with the metric induced by Wi (see e.g., [20] or [3]), convergent to some

limit measure fioo. This limit measure must be invariant. Indeed we have Wi (i Py, pim) < Ce™ MWy (1P, ).
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But

|Wl(/~LmPt7Mm) - Wl(,ufooPta ,U/oo)| S Wl(,U/mPt»/f/ooPt) + Wl(ﬂm»ﬂm)
< [Ce™ ¥ + 1IWy (ftoos ftrm) — O,

as m — oo, where we have used (3.10) once again to obtain the second inequality. As a consequence,
W1 (oo P, ftoo) = 0, implying that peo is the (necessarily unique) invariant measure. This concludes our
proof. O

Remark 3.7. Under the conditions of Theorem 3.6, write N; for the stationary version of the non-linear
Hawkes process having intensity (2.1); that is, N; has intensity \; = f( Zle )_(t(l’o)), where X is the stationary
process evolving according to (2.6). Let moreover Ny be the non-linear Hawkes process with intensity A; =
f (Zle Xt(z’o)) starting from some fixed initial condition Xy = x¢ € R*. Then the Lipschitz-continuity of
f together with (3.10) imply that Efooo |\t — A\¢|dt < co. Tt is then straightforward to deduce from this by
standard coupling arguments, as explained e.g., the proof of Theorem 1 in [4], that N and N couple almost
surely in finite time; that is, there exists 7' > 0 such that for all ¢ > 0, Ny — Ny = Np,; — Ny, meaning that
N and N have the same jump times after time 7. This is what is called stability in variation in [4] (see their
Def. 1). Therefore, our Theorem 3.6 implies Theorem 1 of [4].

In the next section we prove a stronger result, showing that the process is even recurrent in the sense of
Harris.

3.3. Harris recurrence

In this section, we use the regeneration method based on Nummelin splitting to show that X is recurrent in
the sense of Harris having a unique invariant probability measure m. We recall (e.g., from [1]) that

Definition 3.8. The process (X;)¢>o is said to be recurrent in the sense of Harris if there exists a sigma-finite
measure m on B(R") such that m(A) > 0 implies that for all = € R*, P,—almost surely,

limsup1a(X:) = 1.

t—o0

By [1], Harris recurrence of X implies in particular the existence of a unique invariant measure (which is
sigma-finite but does not need to be finite) 7 such that the above property holds with 7 in place of m. X is
called positive Harris recurrent if 7(R”) < co. We have the following

Theorem 3.9. Suppose that f is bounded or Lipschitz continuous satisfying (3.4). Suppose moreover that
Assumption 3.1 holds and that G(decy,...,dc) = HiL=1 G;(de¢;) for probability measures G; on (R,B(R))
satisfying supp (G;) N {0} #£ 0, for all 1 <i < L. Finally, suppose that [ is lower bounded.

1. Then (Xy)i>o0 is positive Harris recurrent with unique invariant measure w(dz).

2. Let X; be a stationary version of the process and suppose that (X¢)i>0 starts from Xo = x9 € R*, both
evolving according to (2.6). Then X and X couple almost surely in finite time; that is, it is possible to construct
them on the same probability space such that there exists T, < oo almost surely satisfying

t > 7. implies that X; = X; and P(1. >t) < C(p)V(z)t ™7, (3.12)

for every p > 1, where C(p) is a constant depending on p.

Remark 3.10. In particular, using the notation of Remark 3.7 above, (3.12) implies that A\; = M\ for all t > 7,
meaning that N and N couple as well. As a consequence, our Theorem 3.9 is a refinement of the results of
Theorems 1 and 2 in [4] — however at the prize of imposing a lower bound on f.
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The proof of this theorem uses the regeneration technique based on Nummelin splitting. It is well known that
it is easier to implement this method in the frame of discrete time Markov chains rather then Markov processes
in continuous time — although some effort has been spent to introduce regeneration times in a continuous time
framework, see e.g., [18]. Therefore, we start by showing that the sampled chain (Yy)r>0 = (Xkr)i>0, for some
fixed T' > 0, is positive Harris recurrent.

We recall that the chain (Yj)r>0 is said to be recurrent in the sense of Harris with invariant measure 7
on B(R") if whenever 7(A) > 0, we have, for all € R”, P,—almost surely, limsup,_, . 14(Y%) = 1. Obvi-
ously, Harris recurrence of the chain (Y%)g>o implies the Harris recurrence of the process X, and the invariant
probability measures of both processes coincide (if they exist).

The rest of this section is devoted to prove that the sampled chain (Y} )r>o is Harris which follows from the
following Doeblin type lower bound. Recall that (P,);>o denotes the transition semigroup of the process X,
therefore, Pr is the transition operator of the sampled chain (Y3)g>0.

Theorem 3.11. Assume the assumptions of Theorem 3.9. For all x* € R”, there exist R > 0, an open set
I C R* and a constant B € (0,1), depending on I, R,L,ny,...,np,a1,...,ar and f, such that

Ppr(x,dy) > flo(z)v(dy), (3.13)

where C = Bgr(x*) is the (open) ball of radius R centered at x*, and where v is the uniform probability measure
on I.

Proof. Part I. L = 1.

We start by proving the result in the case L = 1,¢; = ¢,a; = « and ny = n, that is, h(t) = ce““%. The
corresponding Markov process is then given by X; = (Xt(o)7 e ,Xt(")) taking values in R"*!. Clearly, for all
A€ B(R™),

Pr(z,A) > E,(1a(X7), Np =n+1).

Recall the definition of the flow in (2.8). On the event { Ny = n + 1}, starting from Xy = z, we first let the
flow evolve starting from x up to some first jump time ¢;. At that jump time we choose an associated jump
height ¢;. We then successively choose the following inter-jump waiting times ¢s,...,t,+1 under the constraint
t1+...+tyr1 < T and the associated jump heights ¢, ..., cpp1. Write s =T —t1,80 =T — (t1 +12), ..., Spt1 =
T—(t14+...+thy1)

Conditionally on Xy = z, the successive choices of ¢ = (¢1,...,¢,41) and 8 = (s1,...,8,41) as above, the
position of X is given by

Y(z,c,8) = pr(z) + cre”*w(s1) + ... + cpp1e” ¥ 0(Sn41), (3.14)

where for each 1 <k <n+1,

v(sg) = . . (3.15)

We omitted the dependence on T of the map ~(z,c,s) since we keep the value T > 0 fixed once for all and
work with sequences s satisfying the constraints 0 < s,4+1 < s, < ... < 81 <T. Finally, in what follows we shall
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write, for any fixed pair (z,c),
V(z,c) - 8 v(z,¢c,8).

We will use the jump noise which is created by the n + 1 jumps, i.e., we will use a change of variables on the
account of s1, ..., s,41. Therefore, in what follows we write

Mwels) [3%,9@) 8%,9(5)}
Os ds1 7 Osp

to denote the Jacobian matrix of the the map s +— 7, ¢(s). This matrix does not depend on the initial position
2 nor on the first jump height cy. Indeed, one easily finds that

0Vec(8) _ (1) (n+1)
R ]

where for each 1 < k <n+ 1, C® is a column vector given by

n—1 n
S S
oty — Xt
n— n—1
o~ OGey
n—2)! n—1)!
CF) = cpe= %k .

1— as

—a
As a consequence the determinant of M’é‘ii(g) is given by
n+1
det (0(1)7 e C("'H)) = (=1)""a H cre” *rdet (C’(l), e C'(”'H)), (3.16)
k=1

where for each 1 <k <n+1, C™®) is a column vector given by

n—1

ah — (2111)!2
Sk Sy
Db — A=D1 ~ =2\
asp — 1
1

Thus the invertibility of the matrix 0’718,75@) follows from the invertibility of the matrix J = [é(l), ey é(”"'l)].
In the sequel, for each 1 < k < n+ 1, let ry denote the k th row of J. By replacing successively (bottom-up) r;
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by a=t(r; +7;_1)(n + 1 —i)!, we deduce that J is equivalent to the Vandermonde matrix

st 8y ... Sy
syt oSt oL s
)
S1 52 Sn+1
1 1 1

which is know to be invertible if and only if 0 < 5,41 < s, < ... < s1. In conclusion, we have just shown that
for any z € R, any choice of ¢ having non null coordinates, the Jacobian of the map s — 7, ¢(s) is invertible
at any s such that 0 < s,,41 < s, < ... < s1.

It will be proved now that this uniform invertibility of the Jacobian matrix of the map s +— 7, c(s) implies
inequality (3.13). For that sake, we shall also need the following notation. For each triple (z,c,s), we write
o =, T1 = pr_s, (T) + c1€,412 and then recursively zy, = @5, _,—s, (Tk_1) + ckeny1 for 2 < k < n+ 1. The
sequence T1,...T,+1 corresponds to the positions right after successive jumps, starting from the initial location
2z € R induced by the heights ¢ and the inter-jump waiting times T'— s1, s — 82, ... 5, — Sp,41 Which are
determined by s.

Introduce now for each z € R**! and ¢t > 0,

e(z,t) = exp{ - /Ot f(gogo)(x))ds} (3.17)

and define for each triple (z,c,s) (here we set so =T,

e (H f( Soskfsk_*_l zy))e(xr, s — 5k+1)> e(Tnt1,8n+1)- (3.18)

Since f is bounded away from 0 and from the definition of e(-,-), we deduce that for any triple (z*,c*,s*)
there are neighborhoods W+, U~ and V¢~ of 8*, * and c* respectively such that

8 nel®) =0 3.19
(z,g,g)eUiI}X Vor X W q ,7(§) ( )

Let us now fix a triple (z*,c*,s*) such that the matrix 8%%@) is invertible. Recall that by (3.16), the
vector ¢* must have all coordinates non-null. By Lemma 6.2 of [2], there exist an open neighborhood Jy+ ¢+ =
Bgr(z*) x Br(c*) of the pair (z*,c*), an open set I C R"*1 and for any pair (z,c) € Jy ¢+, an open set W, ¢

such that

S o(s) ¢ Wye —1
Teel® s s v, 6(8),

is a diffeomorphism, with W, . C W' and also

inf inf
T,e€J % ox SEWy ¢

det(a%a’ii@))_l’ > 0. (3.20)

S — p——— : :
en+1 denotes the n + 1—st unit vector in Rnt1
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Reducing (if necessary) R, we may assume also that Jy« ¢+ C Uy+ X Vg«. Thus we have that by (3.19) and (3.20),

Prase))
ol e (T[>0 21

Since supp(G) N {0}¢ # O there exists an interval (a,b) such that 0 ¢ (a,b) and G((a,b)) > 0. Thus, by taking
c* = ((a+b)/2,...,(a+b)/2), we have (reducing R again if necessary) that for 1 < k < n, G((c¢*® — R, ¢*® +
R)) > 0 which together with (3.21) implies

Z,CEJpx ox SEWy ¢ (9§

n 0 - -1
(H (@® — R, ® +R))) nf il gels ’d t( i 72@)) ’ > 0. (3.22)
Finally, we have for any measurable A € B(R"*!) and x € Br(z*), using the change of variables y = 7, (s),

Eo(la(Xrs Np =n+1) > /B e /W Goe(8)La(Yoe(8))ds1 - dsnin

x,c

>B [ dyr...dyn1 = Br(A), (3.23)

INA

where G(dc) = G(dey) ... G(denyq) and 8 = Bu(I), establishing the desired result in case L = 1.
The proof of the general case L > 1 follows the same strategy and is given in the Appendix. O

We are now able to conclude the proof of Theorem 3.9.

Proof of Theorem 3.9.

(1) By Corollary 3.5, we know that X comes back to K infinitely often almost surely. Moreover, sup,.c i |0¢ ()| —
0 as t — oo, by the explicit form of the flow in (2.8). Therefore, for any € > 0 there exists ¢* such that
@i(x) € B.(0) for all t > t*, for all z € K. Since f is bounded on K := {¢;(z) : t > 0,z € K}, we have
infyex Pp(Ty > t« +2T) > 0. This implies that

in}f{ P( the trajectory of X € B.(0) during a time interval of length > T' | Xy = z) > 0,
e

and therefore, using a conditional version of the Borel-Cantelli lemma, (Yj)ren visits Be(0) infinitely often
almost surely.

(2) Applying the result of Theorem 3.11 with 2* = 0 and € = R and using the standard regeneration technique
allows to conclude that (Y7x)x and therefore (X;); are Harris recurrent. This implies item 1. of the theorem.
(3) To prove item 2., it is straightforward to show that Proposition 3.3 implies the existence a coupling of X;
and X;, both evolving according to (2.6), such that for Tk g := inf{t > 0: (X;, X) € K x K}, we have

E:L’,y(enTKXK) <V(z)+V(y).

Indeed, if suffices to define the 2x—dimensional Lyapunov function V(z,y) := V(z) 4+ V(y) and to check that
(3.6) holds for £ where £ denotes the generator of the process (X;, X;). Moreover, (3.13) can be immediately
extended to a lower bound for the joint transition kernel of (X;, X;), whenever both of them start within the
set C = Bg(0). Thus X and X couple at least with probability 3, each time they are within C' at the same
time. The proof that this coupling time has polynomial moments of any order follows then the same arguments
as those given in the proof of Proposition 2.15 in [17], implying that

Eqy[r8] < C)[V () + V(y)]. (3.24)
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Finally, Theorem 4.3 of [19] implies that [ Vdr < oo such that we are able to integrate (3.24) against (dx) in
order to replace X; by the invariant process X; starting from Xy ~ 7. This concludes the proof. O

4. SIMULATION ALGORITHM

As a consequence of Proposition 2.4 it follows that any Hawkes process possessing memory kernels given by
the sum of Erlang kernels can be represented as the counting process associated to the jumps of its Markovian
cascade. Based on this Markovian representation we propose an algorithm (hereafter Algorithm 1) for simulating
such Hawkes processes.

In what follows, for any = € R*, we shall write ||2||oc = max{|z(**)|, 1 <i < L,0 <k < n;}. For a practical
implementation of our algorithm the remark below will be important. Recall that n = max;<;<z n; and a =
min1 <i<L 0.

Lemma 4.1. For each z € R*, let M (z) = max{|cp§i’0)(x)| 11 <i<L,t >0} where <pff’°) (x) is defined in (2.8).
Then

M(z) < e||:z:Hoo(1 v (i)") (4.1)

ae

Proof. Indeed, it follows from (2.8) that for each x € R"*! and t > 0,
01" (@) < llalloce™ (L4t 4.+ 1"/n)) < ellzflooe™ (L 1) < ella]| e,

so that if @ > 1, then clearly (4.1) holds. Now, assume 0 < o < 1. Under this assumption, from standard calculus
arguments we deduce that arg max{e~**(1Vv¢™) : t > 1} = n/a. This fact and the second inequality above imply
the bound in (4.1) as stated. O

In the sequel, for any rate function f satisfying Assumption 2.2 we define the function R* € x — f*(z) by

max{f(y) : y € [0, LM(z)]}, if z € RY.
ff(x) =4 max{f(y):y e [-LM(x),0]}, ifx e RE
max{f(y):y € [-LM(x), LM (z)]}, else

Here, L is the number of terms in the sum defining the memory kernel h (recall Assumption 2.3). It follows
immediately from Lemma 4.1 that the function f* is well-defined, that is f*(x) is finite for all x € R*. Let Ty = 0
and (T)k>1 denote the sequence of jump times of the Markovian cascade X having generator (2.6). Observe
that the non-explosiveness of X (thanks to Proposition 2.4) ensures that the sequence (T})r>1 is well-defined.
Suppose that X7, = x is given for some k € N. Algorithm 1 works as follows. Draw an exponential random
variable 7 with parameter f*(z) and a uniform random variable U on [0,1]. If U < f(Zle go%(i)T(x))/f*(x),
then define the next jump time Tyy1 = Tk + 7. If not, repeat this procedure starting from X, 1. = ¢ (z) .
Notice that Algorithm 1 is an extension (to our framework) of the classical thinning algorithm for simulating
non-homogeneous Poisson processes. Moreover, it provides an exact simulation of the Markovian cascade X
(and consequently of the associated Hawkes process) in the sense that no approximation procedure is required.
Its formal definition is given below as a pseudo-code.

Proposition 2.4 and Lemma 4.1 ensure that Algorithm 1 is well-defined and works properly. More precisely,
we have the following result.

Proposition 4.2. Assume Assumption 2.2. For any choice of T > 0, o € R®, L > 1 and n; € N, ¢; € R,
a; >0 for 1 <i <L, Algorithm 1 terminates almost surely within finite time. If additionally xo is given as in
Theorem 2.4, the output of Algorithm 1 follows the distribution of a Hawkes process with intensity (2.1).
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Algorithm 1. Simulation algorithm for the Markovian cascade X.
1: Input: bounded or Lipschitz continuous I, constants «; > 0, ¢; € R and T" > 0; and a vector of initial
conditions (X§"™ 1 <i < L,0<k<n;) = (a1 <i<L,0<k<n)eR"

2: Output: The counting process (Nt)ie[o,1]-
3. Initial values: x < (xél’k), 1<i<L0<k< ni), D + 0 and Ny < 0.
4: while D < T do

5 e I7(@)

6: draw 7 ~ E(f*)

7. if 7<T — D then

8: draw U ~ U[0, 1]

o if U< f(X;¢5%(x)/f" then

10: x4 pr(r) + ZiL:1 Ci€(in,)

11: Ny Np,for D<t<D+r7

12: ND+T «~ Np+1

13: else

14: z < ()

15: Ny < Np,for D<t<D+r71

16: end if

17:  else

18: Ny« Np,for D<t<T

19: end if

200 D+ D+
21: end while
22: Return (Ng).c(o,71-

It is worth noting that Algorithm 1 does not require the sub-criticality condition (1.3) for non-linear Hawkes
processes. Indeed, Algorithm 1 applies for instance for the choice L =1, ny =0, ¢; = a1 and f(z) = (u +
7)1[0,00)(x) with g > 0 for which (1.3) does not hold. The only restriction we have to impose is to work with
memory kernels which are sum of Erlang kernels, which is a generalization of the approach proposed in [7].
In the next section some numerical examples are presented both for bounded and unbounded Lipschitz jump
rates f.

5. NUMERICAL EXAMPLES

In this section four numerical examples are given. Specifically, we generate first a sample of the Markovian
cascade with L = 1, for a time window 7" = 100, order delay n; = 3, jump height ¢; = 1, decay rate a; = 1 and
jump rate f(x) = (4 + )1 00) () with u = 1. We also simulate a Markovian cascade with random jump heights
c1 following a Normal distribution A(0,100) and f(x) = (1 4 (x/2)%/?) A 30, keeping all others parameters as
in the preceding example. The extension of Algorithm 1 for random jump heights is straightforward. Next, we
simulate jointly three Markovian cascades with L = 1 possessing rates of decay vy = 0.8,a;3 =1 and oy = 1.4
respectively; in this example 7' = 500,n; = 3, the jump heights follow a Normal distribution N(0,100) and
f(z) =14 0/(1 + e P@=r) where o = 20,8 = 1/3 and p = 10. Finally, we simulate a Markovian cascade for
the choices L=3,n1 =1, no =3, n3 =2, a1 =13, ap =08, a3 =1, T = 30, f(z) = (2 + exp(x/10)) A 20,
random jump heights ¢; = ¢o = ¢3 following a Normal distribution A (0, 25).

The results are presented in Figures 2, 3, 4 and 6 respectively. In order to test if Algorithm 1 works properly,
we use the following result.
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FIGURE 2. A realization of the process S = (S¢)o<t<r where S; = 21:0 Xt(k) for the choices

L=1,n =3¢ =a1=1,T=100 and f(z) = (1 +2/5)1) o) (2) with initial configuration
So = 0. The dashed line corresponds to the theoretical mean E[S;] =t of S;, conditionally on
So = 0, obtained by Proposition 5.1.

500

10 20 30 40 50 60 70 80 90

FIGURE 3. A realization of the process X = (X;)o<i<r with random jump heights fol-
lowing a Normal distribution A(0,100) for the choices L = 1,n; = 3, a1 = 1, T = 100,
f(z) = (1+ (2/2)*?) A30 and X, = (0,0,0,0). The black trajectory (resp. red) corresponds to

the realization of the process (Xt(o))ogtST (resp. (Xt(3))0§t§T). The blue trajectories correspond

)

to the realization of the processes (Xt(1 Jo<i<T and (X,5(2))0§t§T-

100

Proposition 5.1. Let X be the Markov process whose generator is given by (2.6) with L = 1,¢4 = 1,14 >
0,n1 € N and f(x) = (1 + x)1jo,00) (@) with p > 0. For any t > 0, we write Sy = > ;1 Xt(k). Then for any
= (2©,.. . z)) e R

n1 M t(l—o) _ 1 : 1
pis = 3 [ TE 0 W as
=0 ut if a=1.

(5.1)
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FIGURE 4. A joint realization of three Markovian cascades with «; = 0.8 (upper panel), a3 =1
(middle panel) and «; = 1.2 (lower panel) respectively. Here, L = 1, T = 500,n = 3, the
jump heights follow a Normal distribution A(0,100) and f(z) = 14 o/(1 + e ?*=P)) where
o =20, =1/3 and p = 10. Notice that the smaller the rate of decay « the larger the oscillations

of the process (Xt(O))OStZT are.

6F N |
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E(S)

0 | | | | | |
0 5 10 15 20 25 30

F1GURE 5. The graph of (E[Si])o<i<r, conditionally on Sy = 0, for the choices L = 1,n; =
3,c1 = 1,00 = 1.2,7 =30 and f(x) = (1 + 2/5)1[9,00)(x). The marks * corresponds to the

empirical expected value S; of S; computed at times ¢ € {0,1,...,30} based on 100 simulated
samples of (S;)o<i<7.
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FIGURE 6. A realization of the process X = (X;)o<i<r for L=3,n1 =1, np=3,n3 =2, ay =
1.3, a0 =0.8, az =1, T =30, f(z) = (2 + exp(z/10)) A 20, random jump heights ¢; = co = c3
following a Normal distribution N(0,25) and initial configuration X, = 0°. In the upper panel

it is shown separately the realization of the process (Xt(l))ogtST, in the middle panel (resp.

lower panel) that of (Xt(2))0§t§T (resp. (Xt(s))ogth)-
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Proof. For R% 1 5 (y©, ... ym)) s g(y©, ... ym)) = y© + .+ y(™) one checks that
Ly, .,y™) = p+ (1= a)g(y@,...,y").
By Dynkin’s formula it follows that for each ¢ > 0,
t
B[S = Elg(X,)] = Elg(X0)] + | EIL(X.)ds
0
n1 t
= Zx(k) +pt+ (11— a)/ E[S;]ds,
k=0 0

from which it is easy to deduce the result by applying Gronwall’s inequality. O

A comparison between the formula for E[S;] and and its estimated counterpart denoted by S, is presented
in Figure 5.

APPENDIX A. PROOF OF THEOREM 3 FOR GENERAL L

Proof. We now prove Theorem 3.11 in the case L > 1. We write X; = (Xt(l)7 e 7Xt(L)) and @i(x) =
(gogl)(x), .. ,<p£L)(a:)) for the flow given in (2.8). Recall that elements of R* are denoted by = = (¢, ... z(F),
where () = (29 2(7)) for each 1 <i < L.

We prove by induction that for all 1 < k < L, for all * € R” there exists a neighbourhood C of * such that
for all x € C,

PkT(l’,dy) > ﬂkyk(y(l)a ce 7y(k))
Qr((z, y(l), ... ,y(k))7 dy(k"'l) .. dy(L))dy(l) .. dy(k)7 (A1)

where for open sets I; ¢ R+ 1 <[ <k, v}, is the uniform density on I; x ... x Ij, and where Q) is a transition
kernel from R* x Rmttnetk _y Rresi+.4np+L—k

Proof of (A.1) for k = 1. We proceed as in part I and use the jump noise produced by n; + 1 jumps occur-
ring during [0, 7] to produce a density for X(*) : We impose inter-jump waiting times ti,...,t, 41 under the
constraint that ¢; + ...+ ¢y, 41 < T. To each jump time we associate jump heights cy, ..., cn, +1, where each ¢
is an element of R, that is, ¢; = (cl(l),l <i<L),1<i<n +1

In what follows we shall write ¢ = (¢1,...,¢n,+1) and c® = (cgi)7...,c£fl)+1). Moreover, we define s =
(81y.+y8ny41), for sp =T —t; + ...+ t. We call s admissible if T > s1 > ... > sp,41 > 0.

Then, conditionally on Xy = = and on the above choices, the position of X is given by

L

v(z,c,8) := or(z) + Z (cgi)e_aislvi(sl) +...+ Cg:l)+1€_aisnl+1vi(Sn1+1)). (A.2)
i=1

Here, v;(s) € R®,1 <4 < L, is the vector given by (v;(s))("*) = %, for 0 < k < n;, and with zero entries

(ni

else. We shall write shortly 4 (z,c,s) € R™*! for the i—the coordinate of v(z,c,s), that is,

v(z,c,8) = (v (z,c,8),1 <i< L)
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In what follows, we will use the product form of the flow (2.8). By this we mean the fact that by the explicit
form of the flow in (2.8), for each 1 <4 < L, we have that

nifk tm

ik —a i, m) __. ik 7).
oM () = et YT el = oD (a0,
m=0 ’

that is <p§i) () = @Ei) () does only depend on z(, for any 1 < i < L. As a consequence,

VD (z, e, 8) =D (2@, D s)
does also depend only on (" and on ¢(. As usual, we shall write, for any fixed pair (a:(i),g(i)),
7((;)<i)7g(i)) ‘S ’Y(i) (x(i)vg(i)’ §)

and similarly,

@ .
Tie.s) °

20 5 40 () ) g).

Fix any z* € R* and fix ¢* such that gl(*’i) = (a; + b;)/2, for all 1 <1 < mny + 1, where (a;,b;) C R such that
0 ¢ (a;,b;) and Gy((a;,b;)) > 0, for all 1 <4 < L. Then there exists an open neighbourhood J; = Br(z*1)) x
Bgr(c™Y) of the pair (z(*V c*V) with R < min;(b; — a;), and an open set I € R™*! and for any pair
(™, cM) € J; an open set W ey C RT‘H such that

~(1) . Wew ey = 1
%m,g(l)@) s WD, e ),

is a diffeomorphism. Moreover,

e -1

879(5(2)’2(1) (s)

95 > 0.

= inf inf  ggc(8) ‘det
zE€BR(z*),c€Br(c*) s€EW ) 1) =

Let now A; € B(R™*1), for all 1 <4 < L. Then for all z € Bg(z*), using the change of variables y1) =

~(1
73(5(2),2(1) (s),

L

Pr(z, Ay x ... x AL) > B / La, (y™M)dy™ {/ [1Gi(ac®)
I Br(c*) j—1
2 ~(1 — L ~(1 —
14, (’Yi(;)’g(z) © (’Yi(i)@l)) l(y(l))) oo lag (’Yg(c(L))&(L) © (’Yi(i)@l)) l(y(l)))}
=5 [ e [ Qu(a V). dy® ...y ),
Rr1t1 Ao x..XAL

where v(1) is the uniform density on I, 8; = Br1(I) and G,(dc®) = ?:11_1 Gi(dcl(i)). This proves (A.1) for
kE=1.
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Induction step: k — 1 implies k. Suppose that we have already established the result for k — 1. Let A; €
B(R™*1) for all 1 <i < L. We have

Per(z, A1 x ... x A) = /PT(y7A1 X oo X AL)Pe—1yr(z,dy)

> kallc(x)/PT(yaAl X . oox A g1 (yW, .yt )

Qr—1((z,y M, ..y * D), dy®) L dyFydy ™ . dyE Y. (A.3)

We work conditionally on the choice of y = (y(l), e ,y(L)) and proceed as in the first part, using the jump noise
(of a sufficient number of jumps) to create a density for the variable y®*) and proving that the already produced
density v, _1(y™V, ..., y*=1) of the first k — 1 variables is well preserved.

As in the first step, we start with

PT(y,Al X . XAL >E (H 1A NT—nk+1> (A4)
We impose inter-jump waiting times ¢1, ..., ¢,,+1 under the constraint that ¢t; 4+ ... +1%,,41 < T and associated
jump heights ci,...,¢,, +1, where each ¢; is an element of RL, that is, ¢, = (q (¢ ) ,1 <i < L). These inter-jump

waiting times will produce a density for the k—th variable X(Tk) as in the preceding steps.
To start with, let us introduce the following notation. For all 1 <1 < m < L, we write "™ := (y(l), . ,y(m)),
dytm = dy®W . dy(™ b= (c®, ... c™). For € C we have

/PT(y7A1 X oo X AR (Y Quo 1 ((w, y MR Y), dymE)dy R

> / viea () Qo (e y ), dy By / H G;(dc")

~

/d51 s dsnk+11A1><--~><Ak—1 (’Yl:kil(ylzkilvglzkilﬂ§))1Ak (V(k) (y(k)’g(k)7§))

1Ak+1 X...XAL (7k+1:L(yk+1:L79k+1:L7§>)Qy,9(§)' (A5)

Let Ny := Z;:ll (n; + 1) be the dimension of y'*~!. We introduce now for any fixed c¢'** having all entries
non zero and y®) € R™+1,

i : { RM x Rt RNt
1:k (k)Y - k— k— R— k=
@Ry T (yhhls) s (Rl elhL ) (R (y(R) (R g)).

We write

3@(91;1‘4!(16))(2/1:’671 ,S) - |:({9(I>(91:k7y(k)) (ylefl ,8) 3‘1’(21;k7y(k))(y1:k71 ) §)]
dylE—19s - oy Y O0Sny +1
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to denote the Jacobian matrix of the the map (y**~! s) (D(gl:k’y(k))(y1:k_l,§). By the properties of the flow
(2.8), it follows that

37(1)(y(1),9(1),§) awT(y(l))
ETION y®
3<I>(91;k7y<k>)(yl:k_17§) . 0 . 0
Oy B : - : ’
0 0
where by the “cascade structure” of the flow (2.8),
e*l)élT * *
Opr(y") 0 e o«
o | ok
0 0 e T

Therefore,

8‘I>(g1;k’y<k))(yl:k_1,§)_ A %
OyLk—19s “\0 B)’

where A is an Ny x N; upper diagonal matrix having entries of the type e=®7,1 <4 < k — 1, on the diagonal,

P (y* ™ s)
Js

where 0 is the (ng 4+ 1) x Ny matrix having all zero entries, and where B = ( . According to

Part I of the proof, det B # 0 whenever ¢(*) has only non zero coordinates, for any fixed y*), for admissible s.
It is immediate to see that

aq) 1. 1:k717s
o PR ) T

in this case. Therefore, arguing as in Part I, for any y(**) € R™*! and ¢(*1%) having non zero entries, for all
y*1k=1) and an admissible s* there exist open neighbourhoods .J, = Br(y™*) x Br(c®*'*)) and an open set
I ¢ RMi+7e+1 containing (y(*’l:’“_l)@*) and for any pair (y(k),g(lik)) € Ji an open set W) o) such that

- _ W, , -1
) 1:k—1 . y(k),g(l-k)
(I)(glAk,y(k))(y 7§) : { (ylzk—1’§) — ¢(91=k’y(k))(y1:k_1’§);

is a diffeomorphism.
In what follows, in order to ease notation, we shall shortly write

T é(glzk7y(k))(y1:kil,§)
and
U =1 (A.6)
for the associated inverse function. ¥ taking values in some (subset of) RV1+7++1 we shall write as before o)

for its coordinates and W M for the first N; of its coordinates, corresponding to y*#~! and WwNi+1:Ni+ne+l
for the last coordinates, corresponding to s.
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We choose any = € C and y* € supp (v,_1(y** 1) Qp_1((z,y** 1), dy*L)dy'*~1) and obtain (recall (A.4)
and (A.5)),

/PT(y,fh XX AL (¥ Quo (2, yP D), dyF L) dy !
L

2/ Vkil(ylzk—l)Qkil((x’ylzk—1)7dyk:L)dylzk—l/ Hgi(dg(z‘))
Br(y*) Br(c*) ;-1

/n e 1Wy(k) o(1:k) (yl:k_1a§) Qy,9(§) 1A1><--~><Ak ((i)(yl:k_lv@)
R ©
lAk+1 X...AL (ryzljlj_ﬁ»ll:;[i, 7g(§))d81 AR dsn;ﬁ-l-

In the above formula, R is chosen sufficiently small such that Br(c*) contains only jump heights with non zero
entries. We then use the change of variables

Zl:k = (i)(ylzk717 S).

Choose now R sufficiently small such that

;= inf inf inf <(s
Pr YEBR(y*) c€Br(c*) s: (y*~18)EW ) 1 qy_(,)
0P (y' 1 s)\ 1 Lik—1
X’det(m> ‘l/kfl(y ) > 0.

Let C3 = Br(y™",...,y*5). Then
/PT(y7A1 XX AR (Y Qo (g Y)Yt )y

> [T o[ TG 0e0)

r(c*) ;21

. Quon (0, N (220 dybly1, oy, (V;j#f:ﬁ& ° \I/N71+1:N1+nk+1)(21:k)}
2

k
=: B /I(H g, (z))dzt* [/ Qr((w, 27F), 1)1, (2D 1AL(Z(L)):| )
j=1

Together with (A.3), this shows that (A.1) holds also for k, and this finishes the induction step. By taking
finally £k = L in (A.1), this implies the assertion of the Theorem.
O
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