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Abstract 

We study some properties of recognizable M-subsets of a free 
monoid A* (M Rec A*) a.nd of two of its subfamilies: the simple 
M-subsets (M SRecA*) and the M-subsets which are nondeter­
ministic complexities of finite automata (M CRecA*). At first, 

we study some necessary conditions for membership in each one 
of these families and we show that M CRecA* ~ M SRecA* ~ 
M Rec A•. We also study the closure properties of these families 
under several operations and the existing relations among these 
families and the families 1-l,, (p ~ 0) obtained by Simon; in partic­
ular, we study some properties of the limited M-subsets. We also 
show that the equality problem for M CRec A• is undecidable. 

1 Introduction 

The study of recognizable subsets with multiplicities in a field had its origin 

in the fundamental works of M. P. Schiitzenberger [16, 17, 18] written in the 

*This research was supported by CNPq, PROTEM-2-TCPAC project and Proc. No. 
523390 /94-7. 
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beginning of the sixties. In the seventies, S. Eilenberg (4] systematized this 
theory for an arbitrary semiring K, paying special attention to the cases of 
the Boolean semiring and the semiring of natural numbers. A more algebraic 
treatment of recognizable K-subsets is given by J. Berstel and C. Reutenauer 
(2]. 

In this paper, we study some properties of the family of recognizable 
M-subsets of A•, M Rec A*, where M denotes the tropical semiring, which 
consists of the natural numbers extended with oo and equipped with the op­
erations of minimum and addition. An M-subset of A• is a function that 
associates a multiplicity in M to each word in A*. An M-A-automaton is 
a finite automaton in which one associates multiplicities in M to the initial 
states, final states and edges. This allows to associate a multiplicity in M to 
each word in A* and one says that the resulting M-subset of A* is recogniz­
able. 

The semiring M is known in Operation Research [3], where it has been 
used in problems of cost minimization. In the Theory of Automata the study 
of the multiplicities in the semiring M was introduced by I. Simon [20], in 
1978, to give a characterization of recognizable subsets of a free monoid which 
has the finite power property. An independent solution were also obtained by 
K. Hashiguchi [6]. In the last yea.rs, other important problems related with 
the semiring M were solveq.. For instance, K. Hashiguchi [7, 8] characterized 
the recognizable and limited M-subsets through a great complexity reason­
ing; H. Leung [15] and I. Simon [22, 24] obtained, independently, other more 
algebraic solutions to decide whether a recognizable M-subset is limited; K. 
Hashiguchi [9] solved the star height problem of recognizable sets. A survey 
of the most important results about recognizable M-subsets was written by 
I. Simon (23]. More recently, D. Krob [14] showed that the equality problem 
for recognizable M-subsets is undecidable. 

In particular, we study two of the subfamilies of M Rec A*: the family 
of simple M-subsets, M SRecA-, and the family of the M-subsets which 
are nondeterministic complexities, M CRecA*. An M-subset of A* is sim­
ple if it is recognized by an M-A-automaton whose multiplicities belong to 
{O, 1, oo} and it is a nondeterministic complexity if it is recognized by an 
M-A-automaton which can be obtained by taking a (nondeterministic) finite 
automaton and associating multiplicity O to its deterministic edges, 1 to its 
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nondeterministic edges and O to its initial and final states. 

At first, we study some necessary conditions for membership in each one 
of these three families and we show that 

M CRecA* ~ M SRecA* ~ M Rec A* , 

where A is an alphabet with at least two letters. 
We present some properties of recognizable and limited M-subsets and 

we study their relation with the families M RecA*, M SRecA*, M CRecA* 
and the families 'H.,, (p ~ 0) obtained by I. Simon [21]. 

We also study the closure properties of the families M Rec A*, M SRec A* 
and M CRec A* under several operations. 

In the last section, we show that the equality problem for M CRec A*, 
when A has at least two letters, is undecidable. Our proof of this result uses 
the same ideas and constructions of Krob [14]. 

2 The semiring M, M-subsets and M-A-au­
tomata 

The tropical semiring M has as support lN U oo and as operations the mini­
mum and the addition. The minimum plays the role of semiring addition and 
the addition plays the role of semiring multiplication. Note that Mis a com­
mutative semiring and-the identities with respect to minimwn and addition 
are oo and O, respectively. Moreover, Mis a positive and complete semiring 
in the sense of Eilenberg [4]. 

Let A be a finite alphabet. An M-subset X of A* is a function X: A*-+ 
M. For each w in A•, wX is called the multiplicity with which w belongs to 
X. If lX = oo, we also say that Xis an M-subset of A+. 

The following operations are defined over M-subsets of A-, where {Xi : 
i E J} is a family of M-subsets of A* indexed by a set I (not necessarily 
finite), X and Y are M-subsets of A*, and m EM. 

(a) Vw EA*, w(millie1Xi) = millie1(wXi) 

(b) Vw EA\ w(EieIX;) = 1:;e1(wX;) 

(c) VwEA*, w(m+X)=m+wX 
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(d) Vw EA-, w(XY) = miDq,::v,(xX + yY) (concatenation) 

(e) Vw EA•, 

(f) X* = min(1,X+), where the M-subset 1 is defined by Vw EA•, wl = 0 
if w = I and wl = oo, otherwise. 

Recall that, for any semiring K, one naturally has the operations of ad­
dition, intersection, and multiplication of K-subsets. For the semiring M, 
these operations are, respectively, the ones given in (a), (b) and (d) above. 

Note that the operations in (a) and (b) are well defined for any set I. In 
particular, if / = 0, minieI( m;) = oo and E,er mi = O; if I is infinite and 
there are infinitely many elements m; i= 0, E,eI m; = oo. As a consequence 
of this, the M-subsets x+ and x• are well defined even when IX 'f= oo. 

The family M «A» of all M-subsets of A* with the minimum (a) 
and concatenation ( d) operations constitutes a semiring, whose identities are, 
respectively, the M-subset 0 (where, for all w E A•, w0 = oo) and the 
M-subset 1. 

The operations in (a), (c), (d) and (f) are called rational operations in 
M«A» and we say that a set :F ~ M«A» is rationally closed if it is 
closed under the rational operations and it contains the identities 0 and 1. 

We denote by M Rat A* the smallest rationally closed subset of M«A>>, 
containing the single M-subset a, for each a E A, such that wa = 0 if w = a 
and wa = oo, otherwise. • 

For a given subset :F of M«A», we define the rational closure of :F as 
being the smallest rationally closed subset of M«A», containing :F. 

An M-A-automaton A= (Q, I, T) is an automaton over A, with a finite 
set Q of states, two M-subsets I and T of Q and an M-subset E.,i. of Q x Ax Q. 

If pl# oo (resp. pT # oo), we say that pis an initial state (resp. final 
state) of A. 

If (p, a, q) is an edge in A, we say that its label is a and that its multiplicity 
is (p, a, q)E.A.. H (p, a, q)E.A. # oo, the edge (p, a, q) is said to be a useful edge 
of A. 

If Pis a path of length n in A, with origin Po and terminus Pn, that is 
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then its label is IPI = a1a2••·an and its multiplicity IIPII is the sum of the 

multiplicities of its edges, that is 

n 

IIPII = ~)P,-1, a;,p,)E.A. 
i=l 

For convenience, if P is the path above, we also write 

Concatenations, factorizations and factors of paths are defined as usual. 

A path Pis useful if IIPII -:/- oo. A useful path, whose origin i and terminus 

t satisfy ii -::f: oo and tT -::f: oo, is called successful. 

The behavior of .A is the M-subset II.All of A• that associates a multiplicity 

to each word as follows. Let w be in A• and let C be the set of successful 

paths Pin .A with label IPI = w. Then 

wllAII = min(il + IIPII + tT) ' Pee 

where i and t are the origin and the terminus of the path P, respectively. 

A successful path P in A, with label w, origin i and terminus t, is called 

victorious, if ii+ IIPII + tT = wllAII. 
The unique paths of length zero are the trivial paths (q, 1, q), for every 

q E Q. Their labels are the empty word and their multiplicities are equal to 

zero. 
We say that an M-A-a.utomaton A= (Q, I, T) is normalized if A has a 

unique initial state i and a unique final ·state t, with t -::/: i and if= tT = 0, 

and, moreover, there a.re neither useful edges with terminus i nor useful edges 

with origin t. 
An M-subset of A• is recognizable if it is the behavior of some M-A­

automaton. It is well known that every recognizable M-subset of A+ is the 

behavior of a normalized M-A-automaton. The family of all recognizable 

M-subsets of A• is denoted by M Rec A•. 
Let us denote by A+ the M-subset of A• such that 

VwEA., wA+ -{ 
00 

- 0 
if w = l 
otherwise . 

Then one can easily verify the following result. 
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Proposition 1 For every recognizable M-subset X of A* there is a normal­
ized M-A-automaton A such that IIAII = X +A+. ■ 

Remark: In a normalized M-A-automaton A, every victorious path P with 
label w satisfies I IPI I = wll.AII (because QI, QT ~ {O, oo}) and every success­
ful path P' with label w is such that wll.AII ::; IIP'II (because IIPII ::; IIP'jl). 
These properties will be frequently used in the proofs and they are also valid 
for simple or type nc M-A-automaton, which we present in the following 
sections. 

3 Some necessary conditions for recognizable 
M-subsets 

In this section, we study some necessary conditions so that an M-subset of 
A* be recognizable. 

The condition in the next proposition is valid for K-subsets, for every 
positive semiring K. (See Berstel and Reutenauer [2].) 

Proposition 2 Let X be a recognizable M-subset of A*. Then support(X) = 
{ w E A* : wX # oo} is a recognizable subset of A*. ■ 

Proposition 3 Let X be ·a recognizable M-subset of A*. Then there is a 
positive integer k such that for every w E A+, either wX = oo or wX :5 
kiwi, ■ 

Proposition 4 Let X be a recognizable M-subset of A•. Then, for every 
m EM, mx-• is a recognizable subset of A*. 

Proof. As ooX-1 = A• - support(X), the result follows from Proposition 2. 
Let m EM - {oo}. As Xis a recognizable M-subset of A•, by Propo­

sition 1 there exists a normalized M-A-automaton A = (Q, I, T) such that 
II.All = X + A+. From A, let us construct an M-A-automaton B, which 
accepts only the words that are recognized by A with multiplicity at most m. 
We define B = ( Q', I', T') as follows: 

Q' = Q x ([O,m] U {oo}); 
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the M-subset /' of Q' is given by 

\:/qE Q, (q, i)I' = { q
00
l if i = 0 

if i E [1,m] U {oo} 

and the M-subset T' of Q' is given by 

\:/q E Q, (q, i)T' = { q
00
T if i E [O, m] 

if i = 00. 

For each useful edge (p, a, q) of A, 

• if (p, a, q)EA = 0, then, for each i E [O, m]U{ oo }, ((p, i), a, (q, i))E8 = O; 

• if (p,a,q)EA = k, with O < k < oo, then, for each i E [O,m] U {oo}, 
((p, i), a, (q,j))Ea = k, with j = i + k, if i + k :s; m, and j = oo, 
otherwise. 

One can verify that IBI = [O, m]IIAll-1
• Hence, [O, m]IIAll-1 is a recog­

nizable subset of A*. In a similar way, we have that [O,m - l]IIAll-1 is a 
recognizable subset of A•. 

Therefore, mllAll-1 = [O, m]IIAll-1 - [O, m - l]IIAll-1 is a recognizable 
subset of A•. 

Thus, mx-1 = ml!All-1 U {1}, if lX = m, and mx-1 = mllAll-1 , 

otherwise. Therefore, mX~1 is a recognizable subset of A•. ■ 

Lemma 5 The conditions of Propositions 2, 3 and 4 are not sufficient for a 
given M-subset to be recognizable. 

Proof. Let A= {a,b} and let X be the M-subset of A• defined by 

lX = oo and \:/w EA+, wX = max{lwla, lwlb} . 

It is easy to verify that X satisfies the conditions of Propositions 2, 3 and 
4. Let us show that Xis not a recognizable M-subset of A*. 

Suppose that Xis a recognizable M-subset of A*. Then, by Proposition 1, 
there is a normalized M-A-automa.ton A with n states such that IIAII = X. 

Consider the word w = anbn. Then wX = n. 
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Let P be a victorious path in A with label w. Then IIPII = wllAII = 
wX = n and there are naturals r, s and t, with s > 0 and r + s + t = n, such 
that the path P can be factorized as follows: 

If ll(q2,b6 ,q2)II = 0, then there is a successful path P' in A, 

• an br b' b' b' 
P' : , ---+ q1 ---+ ~ ---+ ~ ---+ q2 ---+ f , 

spelling the word w' = anbn+• such that IIP'II = l!PII = n. Hence, w'X = 
w'IIAII $ IIP'II = n. This is a contradiction because w'X = max{ n, n+s} ~ 
n + 1. 

If ll(q2,b .. ,q2)II > 0, then there is a successful path P" in A, 

II • 11" 6r 6' 
p : I ---+ q1 ---+ q2 ---+ f , 

spelling the word w" = a"br+t such that IIP"II < IIPII = n. So, w"X = 
w"IIAII $ IIP"II < n. This is a contradiction because w"X = max{ n,r + 
t} = n. 

Therefore, Xis not a recognizable M-subset of A*. ■ 

The technique used in the proof of the previous lemma, that is, to iterate 
or to remove a factor of a given path, is frequent in all this work. 

Another necessary condition for a given M-subset to be recognizable looks 
like the 'Pumping Lemma' for the regular languages; more precisely, with the 
Ogden's Iteration Lemma [1). 

Let x EA* such that x = x 1 •• . x,., with x; EA (1 $ i $ n). A position 
in x is any integer i, 1 $ i ~ n. Given a subset I of [1, n], we say that a 
position i is fixed with respect to I if and only if i E /. 

Lemma 6 Let X be a recognizable M-subset of A*. Then there is a positive 
integer m such that for every word x in A* with xX < oo and, for every 
choice of at least m fixed positions in x, the word x admits a factorization of 
the form x = uvw, in such a way that 
(i) v contains at least one and at most m fixed positions; 
(ii) there exists c ~ 0 such that for every k ~ 0, (uvkw)X $ xX +(k-l)c. 
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Proof. Let X be a recognizable M-subset of A•. Then there is a normalized 

M-A-automaton A such that IIAII = X + A+. 
Let m be the number of states of A and let x E A• such that xX < oo 

and x = X1 ••• Xn, with x1 E A (I S l S n ). 

We consider the subset I of [1, n] as being a choice of at least m positions 

in x. As III ~ m, it follows that n 2::: m. 

Let i1, ... , im be them smallest elements of I, with 1 S i1 < ... < im S 
n. We define the following factorization for x, 

X = YoY1Y2 • · · YmYm+l , 

with 

{ 
Yo = X1 • • • Xi1-l 

Y1 X;l 

YI = X;1_ 1 +1 • , , Xin for2$l$m 

Ym+i = X;m+l •• ,Xn 

Then, for each l, 1 S l $ m, YI contains exactly one fixed position. 

Let P be a victorious path in A with label x. Consider the following 

factorization: 

Then there are hand j, 0 :5 h < j :5 m, such that Qh = q;. We define 

u = YoYt • • • Yh, v -= Yh+i • • • Yi and w = Yi+i • • • Ym+1 • 

Then x = uvw, uw # 1, and v contains exactly j - h fixed positions, with 

0 < j-h $ m. 
Let us consider the words 

and the factor Pi= (qh,v,q;) of P. 
As IIP1 II ~ O, by considering c = IIP1II, it results that 

Vk ~ 0, (uvkw)X ~ IIPII + (k- l)IIAII = xX + (k- l)c . 

• 
Observe that the proof of the following lemma uses a different strategy to 

prove that an M-subset is not recognizable. 
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Lemma 7 The condition of Lemma 6 is also not sufficient for a given M­
subset to be recognizable. 

Proof. Let A= { a, b, c} and let X be the M-subset of A* defined by 

X = { lwla + lwlb if w E c+ { a"b" : n ~ 0} 
w min{ lwla, lwlb} otherwise . 

One can verify that X satisfies the conditions of Propositions 2, 3 and 4, 
and of Lemma 6. Let us show that Xis not a recognizable M-subset. 

Suppose that X be a recognizable M-subset of A•. Then there is a nor­
malized M-A-automaton .A= (Q,I,T) such that II.All= X +A+. Denote 
by p the initial state of A and by r the final state of A. 

Let m be a positive integer and define, for each natural l, the subset Qz 
of Q, as follows: 

c"'a1 b,. Qz = { q : there is a victorious path p--+q --t r, for some h -::/- l} . 

Then there are naturals i and j such that i < j and Q; = Q;. We observe 
that Q, is not empty, for every l. 

As cmail,i E IAI, there is a victorious path P in A, spelling cmail,i, with 
the following factorization: 

c"'11i ~ 
p : p--+q --+ r , 

for some q E Q. But, as j -::/- i, we conclude that q E Q; = Q;. Then there is 
a victorious path P' in A, spelling email/', for some k-::/- j, with the following 
factorization: 

e"'ai b• 
P' : p---tq --+ r . 

However, since the following equalities are true, 

IIPII = {cmaib')IIAII = {cmaib')X = min{i,j} = i 
and IIP'II = (c'"aib'°)IIAII = (cma;b'°)X = min{j,k} , 

we conclude that the factors A = (p, cm a;, q) of P' and P2 = ( q, bi, r) of P 
satisfy IIP1II $ j and IIP2II $ i. 

Hence, the path P1P2 = (p, c'"ai, q)(q, bi, r) satisfies 



Then 
2j = (cmaill)X = (cmaibi)IIAII S IIP1P2II < 2j 

that is a contradiction. 
Therefore, Xis not a recognizable M-subset of A*. ■ 

4 Simple M-subsets 

In this section, we study the family of simple M-subsets of A•, denoted by 
MSRecA*. 

An M-subset of A* is simple if it is the behavior of some simple M-A­

automaton. We say that an M-A-automaton A = (Q, I, T) is simple if it 
satisfies 

(Q x Ax Q)E.A £; {0,1,oo}, QI£; {O,oo} and QT£; {O,oo} . 

Note that, by definition, if X is a simple M-subset, then lX E {O, oo }. 

A necessary condition for an M-subset to be simple is given in the fol­
lowing proposition whose proof is immediate. 

Proposition 8 Let X be a recognizable M-subset of A*. If X is simple, 

then for every w EA*, either wX = oo or wX S lwl. ■ 

A consequence of the previous proposition is that the simple M-subsets 
form a proper subfamily of all recognizable M-subsets. 

Corollary 9 M SRec A* ~ M Rec A*. 

Proof. Let X betheM-subset of A* defined by wX = 2lwl, foreveryw EA*. 
It is clear that Xis a recognizable M-subset; however, by Proposition 8, X 
is not simple. 

■ 

The next theorem shows that the converse of Proposition 8 is not valid. 

Theorem 10 There is a recognizable M-subset X of A* such that for each 

w E A-, either wX = oo or wX S jwj, but X is not simple. 
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Proof. Let A= {a,b} and let X be the M-subset of A* defined by 

Vw EA*, wX = 2min{lwl .. , lwlb} . 
It is clear that Xis a recognizable M-subset of A* and X satisfies wX::; lwl, 
for every w EA*. 

Let us suppose that X is a simple M-subset. In this case, there is a 
simple M-A-automaton A= (Q, I, T) such that IIAII = X. 

Let n = IQI and let us consider the word 

Then there is a victorious path Pin A, with !Pl= wand IIPII = wllAII = 
wX = 2n. Moreover, there are naturals r, sand t, withs > 0 and r+s+t = n, 
such that the path P can be decomposed in 

w'X = 2min{ lw'l .. , lw'lb} = 2min{ n + s,m} 

As n+s s 2n and m = 2n+l, we have that n+s < m. Thus, w'X = 2n+2s. 
Let us consider the factor Pi = (p, a•, p) of P. Then, by inserting another 

factor P1 in P, the resulting path is 

, . u" 4• •• a1 h"' p : I --+ p --+ p --+ p --+ q --+ f • 

Since A is a simple M-A-automaton, 0 $ IIAII $ s. Then we have that 

w'IIAII S IIP'II = IIPII + II AII $ IIPII +" = 2n + s < 2n + 2s = w'X , 

contradicting that X = IIAII. 
Therefore, X is not a simple M-subset. ■ 

5 M-subsets which are nondeterministic com­
plexities 

In this section, we study another subfamily of recognizable M-subsets of A-, 
that is, the family of nondeterministic complexities, denoted by M CRec A•. 
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The idea of the nondeterministic complexity of a finite automaton consists 

in to a.c;sociate, for each word, the minimum number of decisions which are 

necessary to spell it in a nondeterministic finite automaton. This idea ap­

peared, by the first time, for the Turing machines and was formalized by Kin­

tala and Fischer in 1977 [10]. In 1980, Kintala and Wotschke [11) considered 

this idea for the finite automata. Recently, Goldstine, Leung and Wotschke 

[5] related the ambiguity and the non-determinism in finite automata. 

Let A = (Q,I, T) be a finite automaton (not necessarily deterministic) 

over an alphabet A. We say that an edge (p, a, q) of A is non-deterministic 

if there is another edge (p, a, q1) in A, with q1 f= q and, is deterministic, oth­

erwise. From A, we construct an M-A-automaton B = (Q,Is,Ts), defining 

the M-subsets Is and Ts of Q by 

if q is an initial (final) state of A 
otherwise 

and the M-subset Es of Q x Ax Q by 

(p,a,q)Es = { L if (p, a, q) is a deterministic edge of A 
if (p, a, q) is a non-deterministic edge of A 
if (p, a, q) is not an edge of A . 

Then, for each w E A*, wllBII is exactly the minimum number of non­

deterministic edges necessary to spell w in .A from some initial state to some 

final state. 
Now, let C be a simple M-A-automaton such that for each useful edge 

(p, a, q) of C, 

( 
a )E _ { 0 if there is no other useful edge (p, a, q') in C with q' j q 

P, ' q c - 1 otherwise . 

Then we say that the M-A-automaton C is of type nc. The M-A-automaton 

B previously constructed is also of type nc. 
An M-subset X of A• is a nondeterministic complexity if it is the behavior 

of some M-A-automaton A which is of type nc. Indeed, it is enough that 

A be a simple M-A-automaton such that for each useful edge (p, a, q) in .A, 
with multiplicity zero, there is no other useful edge (p, a, r) .in .A with r f= q. 

Note that every nondeterministic complexity is a simple M-subset. 
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Before stating a necessary condition for an M-subset to be a nondeter­
ministic complexity, we give a definition. 

We say that a recognizable M-subset X is of differentiable multiplicity if 
there exist words x, y, u and v in A• such that for each k ~ 1, there exists a. 
word z1c E A+ satisfying 

\:/l ~ 0 and 'vm > k, w1c11cX = w,.uX < w1c1cmX < oo , 

where w1c1m = x(uz;v)1uz;:'y. That is, for each k ~ 1, the word wu1c = 
x( uzZv )4'uzzy has a factor ZI, which occurs in two distinct contexts. In one 
of these contexts, the factor uzZv can be eliminated from wu1c or can be 
infinitely iterated without to modify the multiplicity of the resulting word 
W1c11c = x(uz!v)1uzzy, 1 ~ o. However, in another context, if the factor 
z1c is iterated m times, with m > k, the multiplicity of the resulting word 
w1c1mi = x( uz;v )kuzfy is greater than the multiplicity of wu1c-

Remarks: (1) Note that an M-subset X being a nondeterministic complex­
ity is a property which depends of the existence of a type nc M-A-automaton 
with behavior X. But, X being of differentiable multiplicity is independent 
of any M-A-automaton recognizing X. 
(2) In this paper, in all proofs in which an M-subset is shown to be a non­
deterministic complexity ( except in the proof of Theorem 23), it is possible 
to consider the same word z, for every k ~ 1. 

The following lemma presents a necessary condition for an M-subset to 
be a nondeterministic complexity. 

Lemma 11 If an M-subset X is a nondeterministic complexity then X is 
not of differentiable multiplicity. 

Before proving this lemma, we state some properties of paths in an M­
A-automaton which is of type nc. One of these properties is in the following 
proposition whose proof is immediate. 

Proposition 12 Let A be a type nc M-A-automaton. Let P and P' be 
useful and distinct paths in A with the same labels. If P and P' have the 
same origin, then their multiplicities are different of zero. ■ 
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Lemma 13 Let A be a type nc M-A-automaton. Let P be a path in .A 
spelling wn, for some w E A+ and n > 0, 

If there are j and k, 0 $ j < k :$ n, such that q; = q,. and the factor 

( q;, w"-i, q1,) of P has multiplicity zero, then qn E { q; : 0 S i :$ n - 1}, and 

the factor (qi,wn-l,qn) of P, with l = min{i: 0 $ i :$ n -1 and q; = qn}, 
has multiplicity zero. 

Proof. Let .A be a type nc M-A-automaton and let w EA+. 

Consider a useful path P in A, spelling wn, for some n > 0, 

Suppose that there are j and k, 0 :$ j < k :$ n, such that q; = q,. and the 
factor (q;, wk-;, q,.) of P has multiplicity zero. Then we can determine the 
maximum m of the following set: 

m = max{ i : 1 $ i $ n and there exists h, 0 Sh< i such that qh = q; 

and the factor ( Qh, wi-h, q;) of P has multiplicity zero} . 

Lett, 0 S t :$ m -1, such that q, = q.,. and the factor Pi = (q,, wm-t, q.,.) 
of P has multiplicity zero. 

If m =f= n, by the choice"of m, we conclude that the path P has two factors 

with q, = qm and q,+1 =f= qm+l• As A is of type nc, from Proposition 12 it 
results that P2 and P3 must have positive multiplicities. But, P'J is also factor 

of Pi; then IIP:.ill S IIP1II- Hence, we have that O < IIP'JII S IIPill = O; this is 
a contradiction. Therefore, m = n. 

Let l be the minimum of the following set: 

l = min{ i : 0 $ i S n - 1 and q; = qn} 

Then l < t. 
If l ;: t, we know that the factor Pi = ( q1, w"-1, qn) of P has multiplicity 

zero. 
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If l < t, we consider the paths 

P.f. = (q1,wt-l,qt) and Pr,= (P1Y(qt,Wr,qt+r) 

such that P4 is a factor of P, ( qt, wr, qt+r) is a factor of P1 and, s and r are 
naturals satisfying t-l = s(n-t)+r and O ~ r < n-t. As !!Pill= 0, it follows 
that IIPsll = 0. Then, as .A is of type nc, qt = qn = q,, IP.f.l = IP51 = wt-l 
and \IPsll = 0, by Proposition 12 it results that P4 coincides with Pi;. Hence, 
IIP.f.11 =0. 

Thus, the factor P4 Pi = ( q,, wn-1, qn) of P has multiplicity zero. ■ 

Proof of Lemma 11. Let X be an M-subset of A* which is a nondetermin­
istic complexity. Let A be a type nc M-A-automaton such that IIAII = X. 

Suppose that X is of differentiable multiplicity. Then there are words 
x, y, u and v in A* such that for every k ~ 1, there is a word z1r in A+ in such 
a way that for every l ~ 0 and for every m > k, w1r11rX = w1r1r1rX < w1r1rrnX < 
oo, where w1r1m = x(uz;v)1uz;:'y. 

Let k be the number of states of A and let us consider the word 

( Ir )" Ir w = w1r1r1r = x uz1,v UZ1,Y 

and a victorious path P in A, spelling w. To simplify the notation, let us use 
z, instead of z1c, throughout this proof. 

The path P can be dec?mposed as follows: 

Then there are integers j and h, 0 5 j < h 5 k such that q; = qh. 
Consider the factor Pi= (q;,(uz"vt-i,qh) of P. H IIAII =/ 0, the word 

w' = WfcJ+lr-h,lr = x( uz"v )i+k-huz"y 

can be spelled in A by the following successful path 

P
l "' (uz"v)i (u.s"v)k-ll d II' 

: Po -4 (Jo---oq; = qh- ---+q1,:-----+q1r+1 ~ q1r+1 

Hence, it results that w'IIAll 5 IIP'II < IIPII = wl!AII = wX. 
However, as X is of differentiable multiplicity, it follows that wX = 

w1r1r1rX = w1r.;+1r-h,1cX = w'X. So, w'IIAII < w'X, contradicting that X = 
IIAII. Therefore, IIP1ll = 0. 
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Thus, by Lemma 13, there is an integer i, 0 ~ i ~ k-1, such that Qi= Qlc 

and the factor P2 = ( q;, ( uzkv l-i, q1,) of P has multiplicity zero. 

Consider, now, the factor P3 = ( q,, uzkv, q;+l) of P2, with the following 

factorization: 

As IIP3II = 0 and k is the number of states of A, it results that P3 has a factor 

(r;11 zi2 -i1 , r;2 ) with multiplicity zero such that O ~ i1 < i2 ~ k and r;1 = r,2 • 

Then, by Lemma 13, there is an integer l, 0 ~ l ~ k - l, such that r1 = r,.. 
As A is of type nc, IIP31i = 0 and q; = q,., we conclude that the factor 

( qk, uzk, qk+l) of P coincides with the following factor of P3 : 

hence, r,. = r, = q,.+i. Then the word 

11 ( k )k k+k-l 
W = Wk,k,k+k-l = X UZ V UZ y 

can be spelled in A by the following successful path 

So, w"IIAII :$ IIP"II = IIPII = wllAII = wX. 
But, as Xis of differentiable multiplicity, wX = Wkk1cX < Wk,k,lc+k-lx = 

w"X. Therefore, w"IIAII < w"X, contradicting that X = IIAII, Thus, X is 

not of differentiable multiplicity. ■ 

The condition presented in Lemma 11 is useful to give examples of simple 

M-subsets which are not nondeterministic complexities. 

Theorem 14 M CRec A* s; M SRec A* for an alphabet A with at least two 

letters. 

Proof. Let A= {a,b}. The M-subset X of A* defined by 

if w = uan, with u E (aa*b)* 
otherwise 

is simple but it is not a nondeterministic complexity. 

It is easy to see that Xis a simple M-subset of A* and we can verify that 

X satisfies the following conditions: 
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Vk ~ 1, 

Vk~ 1, 

Vk ~ 1, 

( ( a"'W'a"')X = k; 

Vm > k, ((a"'b)kam)X = m > k; 

Vl ~ 0, ((akb)1ak)X = k. 

Then we conclude that, 

Therefore, by considering the words x = y = l, u = 1, v =band z,. = a, 
for every k ~ l, it results that X is of differentiable multiplicity. Thus, by 
Lemma.11, X is not a. nondeterministic complexity. ■ 

6 Closure properties under the basic opera­
tions 

In this section, we present the closure properties of the families M Rec A•, 
M SRec A• and M CRec A• under the basic operations. These properties are 
summarized in Table 1 and their proofs can be found in (12]. 

As M is a commutative semiring, the majority of these properties for 
M Rec A• follows from the corresponding properties showed by Eilenberg 
[4] for the family of recognizable K-subsets of A-, where K is an arbitrary 
commutative semiring. 

For the operations under which the families M SRecA* and M CRecA* 
are closed, either the proofs follow from the respective proofs for M Rec A*, 
or it is necessary to use different constructions to maintain the property of 
being simple or a nondeterministic complexity. And, for the operations under 
which some family is not closed, the idea is to obtain M-subsets which do 
not satisfy one of the necessary conditions seen in the Sections 3, 4 and 5. 

One knows by the Kleene-Schiitzenberger Theorem that for every finite 
alphabet A, M Rec A* = M Rat A•. That is, M Rec A* is the rational clo­
sure of MCRecA•. 

In Table 1, we observe that M CRecA* is not closed under concatenation 
and star. Investigating the closure of M CRecA* under these operations, we 
showed in [12] the following result, whose proof is based on the proof of the 
Kleene Theorem given by McNaughton and Yamada. 
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I! Operation I MRec I MSRec I MCRec II 
min(X, Y) yes yes yes 
m+X, 0 < m < oo yes no no 
m+X, m =oo or 

0 :::; m :::; min{ lwl - wX : wX < oo} yes yes yes 
X+Y yes no no 
X + Y, max{ wY: wY < oo}:::; 

min{ lwl - wX : wX < oo} yes yes yes 
Xp, p is the reverse function yes yes no 
XY x· x+ yes yes no 
XWY, W is the shuffle yes yes yes 
X J, J is a morphism yes no no 
Xf, f is a morphism s.t. lj- 1 = 1 yes yes no 
X f, f is a fine and injective morphism yes yes yes 
X J-1 

, f is a morphism yes no no 
X J-1 , f is a fine morphism yes yes yes 

Table 1: Closure properties of M Rec, M SRec and M CRec under the basic 
operations. 

Theorem 15 For every finite alphabet A, the closure of M CRecA* under 
the minimum, concatenation and star operations is exactly M SRecA*. ■ 

7 Limited M-subsets 

We say that an M-subset X of A* is limited if A*X is a .finite subset of M. 
Let us first consider some limited M-subsets X of A* such that, either 

A*X = { m,0} or A*X = {m,oo }, for some m EM. 
Let R be a subset of A• and m E M. We define two M-subsets of A*, 

LR, m J and r R, ml, as follows. 

{ 
m ifwER 

Vw EA*, wLR,mJ = 0 otherwise 

and wfR,ml = {: 
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The single M-subsets w, for every w E A*, are particular cases of the 
M-subsets we just define; that is, w = r{w},Ol. Thus, for every M-subset 
X of A-, a expansion of X can be given by 

X = min(wX + r{w},01) = minr{w},wXl weA• weA• 

It is interesting to observe that, for every M-subset X of A•, there is 
another kind of expansion which uses the addition instead of the minimum. 

wX 

X = ~ (~l{w},lJ) = L L{w},wXJ 
weA• 

We observe that if wX = 0, then E~~l{w}, lj = lA*,OJ. 

The following proposition verifies when l R, m J and r R, ml are recogniz­
able M-subsets. 

Proposition 16 Let R ~ A* and m E M. LR,mJ (resp. rR,ml) is a 
recognizable M-subset of A• if and only if either m = 0 (resp. m = oo) or 
R is a recognizable subset of A•. 

Proof. Suppose that R is a recognizable subset of A*. It is easy to verify 
that f R, ml is a recognizable M-subset of N. 

To show that LR,mj is a recognizable M-subset, one can consider the 
identity 

LR,mj = min(f R,ml, rA· - R,Ol) 
and the property that M Rec A• is closed under the minimum operation. 

Now, suppose that lR,mj is a recognizable M-subset of A*. If m f, 0, 
then R = m(lR,mJ)-1, and by Proposition 4, Risa recognizable subset of 
A*. If R is not a recognizable subset of A*, then R ¥ m(lR,mJ>-1; however, 
this occurs only if m = 0. 

The proof for f R, ml is similar. ■ 

The following lemma shows that every (recognizable and) limited M­
subset is the sum of a finite number of M-subsets of the form l R, m J and the 
minimum of a finite number of M-subsets of the form r R, ml-
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Lemma 17 An M-subset X of A* is (recognizable and} limited if and only if 
there is a positive integer n and, there are n (recognizable) subsets X 1 , ••• , Xn 
of A* and n elements m 1 , ••• , mn of M such that 

" 
X = LlX;,m;J 

i=l 

and X = min fX;,m;l 
19:Sn 

Proof. Let X be a limited M-subset of A• and let n = I A• XI. Denote the 
elements of A* X by m 1 , .•• , mn and consider, for each i, 1 $ i $ n, the set 

Then one can verify that 

n 

Vw EA*, wX = w LlX;,m;J 
i=l 

Moreover, if X is a recognizable M-subset of A*, from Proposition 4 it 
results that for each i, 1 $ i $ n, X; is a recognizable subset of A". 

The converse is immediate. ■ 

The following proposition shows that some M-subsets can be defined from 
others, by using an M-subset of the form fR,Ol (resp. LR,ooJ) and the 
addition (resp. minimum) operation. 

Proposition 18 Let R be a subset of A* and X be an M-subset of A*. Then 
the M-subsets Yi and Y2 defined by 

VwEA'", wYi = { wX ifw ER 
00 otherwise 

and { wX ifw ER 
wY:i = 0 otherwise 

satisfy 
Yi. = X + f R, Ol and Y:i = min(X, lR,ooJ) 

Moreover, if R is a recognizable subset of A* and X E M Rec A" (resp. 
M SRecA*, M CRecA"}, then Yi and Y:i E M RecA* (resp. M SRecA", 
MCRecA*). 
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Proof. It is easy to verify that Yi= X + fR,0l and½= min(X, lR,ooJ). 
If Risa recognizable subset of A•, from Proposition 16 it results that the 

M-subsets f R, 0l and l R, oo J E M Rec A•. Thus, if X E M Rec A•, we have 
that Yi and ½ E M Rec A* since M Rec A* is closed under the addition and 
minimum operations. 

Moreover, if R is a recognizable subset of A•, it is clear that f R, 0l and 
l R, oo J = f A• - R, 0l are nondeterministic complexities. Then, if X E 
M SRec A•, we have that Yi and ½ E M SRec A*, since M SRec A• is closed 
under the minimum operation and under the _addition with r R, Ol. If X E 
M CRec A•, the proof is similar. ■ 

In the sequel, we study when the recognizable and limited M-subsets are 
nondeterministic complexities. 

Proposition 19 Let R be a recognizable subset of A* and m E M. If 
m $ min{ lwl : w E R} then l R, m j and f R, ml are nondeterministic com­
plexities. 

Proof. Let R be a subset of A• and m EM. Then 

r R, m 1 = m + r R, 01 and l R, m J = min(r R, m 1, r A* - R, 01) 

Let us suppose that R is recognizable. Then, from Proposition 16 it results 
that f R, 0l and f A*-R, 0l are recognizable M-subsets, and it is easy to verify 
that both are nondeterministic complexities. If m $ min{ lwl : w E R }, then 
m + fR,0l E MCRecA*. (See Table l.) Therefore, fR,ml E MCRecA*. 
Moreover, as M CRecA• is closed under the minimum operation, we have 
that l R, m J E M CRec A•. ' ■ 

Lemma 20 Let X be a recognizable and lim_ited M-subset of A• such that 
for each w EA•, either wX = oo or wX :$ lwl. Then XE M CRecA*. 

Proof. Let X be as in the statement of this lemma. Consider n = IA• XI and 
denote the elements of A• X by mi, ... , mn. Then, from Lemma 17 (and its 
proof), there are n recognizable subsets m1x-1 , ••• , mnx-1 of A* such that 

X = min f m,x-1,m,l . 1:::;,:::;n 

Let us consider i, 1 $ i $ n. If mi = oo, then r oox-1 ' 00 l = 0 is 
a nondeterministic complexity. If mi -1- oo, then for every w E mix-1 , 
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m; = wX ~ lwl. Thus, by Proposition 19 it follows that the M-subset 
r m;X-1

, m; l is a nondeterministic complexity. As M CRec A• is closed under 
the minimum operation, we have that X E M CRec A*. ■ 

In Proposition 8 we saw that every simple M-subset X of A* satisfies, 
for each w E A*, either wX = oo or wX $ lwl. Then, by Lemma 20 
we conclude that every limited and simple M-subset is a nondeterministic 
complexity. Thus, we just prove the following corollary, where 1lo denotes 
the family of the recognizable and limited M-subsets. · 

Corollary 21 M SRecA* n 1{0 = M CRecA* n 1-lo- ■ 

8 The Simon hierarchy for M Rec A* and its 
relation to M SRec A* and M CRec A* 

There exists a proper hierarchy for M Rec A* that was obtained by I. Simon 
[21J through the families 14 (p? 0) of recognizable M-subsets of A* defined 
by 

14 ={XE MRecA": sh(X,m) E O(m")} , 

where sh(X,m) = min{ lwl : w EA*, m ~ wX < oo }; that is, sh(X,m) is 
the minimum length that a. word needs to Ii.ave so that its multiplicity be at 
least m. 

Theorem 22 (I. Simon (211) 
For an alphabet A with at least two let_ters, M RecA* = Up~o14 and, for 
every p ? 1, there is a nondeterministic complexity function in 14 -14-1-
lf the alphabet A has only one letter, M Rec A* = 'Ho U 'H1 . 

We also studied in [12] the relations among the families 14 (p ? 0) and 
the families M CRec A• and M SRec A•, and showed the following result 
which uses a convenient extension of the Simon's nondeterministic complexity 
functions [21] and Lemma. 11. It is ea.sy to verify that a similar result holds. 
for the families 14 (p? 0) restricted to the recognizable M-subsets tha.t are 
not simple. 

Theorem 23 For each p ? l, (M CRec A* n 14) ~ "(M SRec A* n 14) ~ 
14, where A is an alphabet with at least two letters. ■ 
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Let us represent in a diagram (Figure 1) the known relations for the 
families M Rec A*, M SRecA\ M CRecA• and 1-lp (p ~ 0), considering 
the alphabet A with at least two letters. These relations are described in 
Corollaries 9 and 21, Theorems 14 and 23, and Theorem 22 (Simon). 

M RecA'" . . . 1tp 

• 

• 

Figure 1: Relating the families M RecA*, M SRecA-, M CRecA* and 1l,, 
(p ~ 0), where IAI ~ 2. 

9 Closure properties under other operations 
In this section, let us only show the results with respect to the closure prop­
erties of the families~ Rec A•, M SRecA• and M CRecA• under the max­
imum, remainder and minusp operations. These properties are summarized 
in Table 2. The results and the corresponding proofs about the closure of the 
families M Rec A• and M SRec A• under the div d operation can be found in 
[12, 13]. 

At first, consider the maximum operation (denoted by max) over the 
semiring M. This operation can be extended to the M-subsets of A• as 
follows. Let X and Y be M-subsets of A•. The M-subset max(X, Y) is 
defined by 

Vw EA*, w(max(X,Y)) = max(wX,wY) . 
A property that can be easily verified is the distributivity of the maximum 

with respect to the minimum. Let X, Yi, ... , Yn be M-subsets of A•. Then 

max(X, m_in Y.) = m_in (max(X, Y.)) 
1:S•:Sn l~•~n 
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II Operation ! MRec I MSRec I MCRec II 
max(X, Y) no no no 
max(X, Y), Y is limited yes yes yes 
Ymod d, d > I no no no 
Y mod d, d > 0, Y is limited yes yes yes 
X...:.. Y,...:.. is the minusp no no no 
X ...:.. Y, Y is limited yes yes yes 
Y div d, d > 0 yes yes ? 

Table 2: Closure properties of M Rec, M SRec and M CRec under other 
operations. 

Proposition 24 M Rec A• is not closed under the maximum operation. 

Proof. Let A= { a, b} and consider the M-subsets X and Y of A+ defined 
by 

Vw EA+, wX = jwj,. and wY = lwl~. 
Then X, YEM Rec A* and the M-subset max(X, Y) is given by 

Vw EA+, w(max(X, Y)) = max(wX,wY) = max(jwj,., lwlb) 

Hence, by the proof of _Lemma 5 it results that max(X, Y) (/ M Rec A*. 
Thus, M RecA* is not closed under maximum. ■ 

Now, let us see when the maximum of two recognizable M-subsets is a 
recognizable M-subset. 

Proposition 25 Let XE M RecA*, m EM and R be a recognizable subset 
of A*. Then max(X, fR,ml) E MRecA•. 

Proof. Consider XE M RecA*. Let m EM and R be a recognizable subset 
of A•. Then, 

Vw EA*, w(max(X, f R,ml)) = { : 
wX 

25 
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Now, we define some recognizable M-subsets from which we can obtain 
the M-subset max(X, f R, ml), using only operations under which M Rec A* 
is closed. 

Consider the subsets 

m 

R1 = LJ iX-1 n R = { w E A* : w E R and wX $ m} 
i=O 

m 

and R2 = (A* - LJ iX-1
) n R = { w EA*: w ER and m < wX} 

i=O 

By Proposition 4, the subsets R1 and R2 are recognizable. From these 
subsets, we define the M-subsets 

Then, from Propositions 16 and 18, it results that X1 and X2 EM Rec A*. 
But, as R1 n R2 = 0, we can verify that max(X, f R,ml) = min(X1,X2). 

Thus, as M Rec A• is closed under minimum, we have that max ( X, f R, m 1) 
E MRecA*. ■ 

Proposition 26 Let R be a recognizable subset of A* and m E M such 
that rR,ml E MSRecA*. If XE MSRecA• {resp. MCRecA*), then 
max(X, r R, ml) EM SRecA* (resp. M CRecA*). 

Proof. Consider X E M SRecA*. Let R be a recognizable subset of A* 
and m EM such that rR,ml E MSRecA•. If R = 0 or m = oo, then 
r R, ml = 0. And, in this case, max(X, f R, ml) = 0 E M CRec A*. Then 
we can assume that R =I- 0 and m < 00. As r R, ml is simple, we have that 
m $ min{lwl: w ER}. 

Thus, the proof that max(X, r R, ml) is simple results from the proof of 
Proposition 25 and from the following remarks: 

1. Since R1 ~ R, we conclude that for every w E R1 , lwl ~ m. Then, by 
Proposition 19, X1 = f R1,ml EM CRecA*. 

2. By Proposition 18, if X E M SRecA*, then X 2 = X + f R2, Ol E 
MSRecN. 
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3. M SRecA* is closed under the minimum operation. 

The proof is similar if X E M CRec A•. ■ 

By using Proposition 25 and one of the characterizations of limited M­
subsets, we can extend the subfamily of recognizable M-subsets that is closed 
under the maximum operation. 

Lemma 27 Let X, Y E M Rec A•. If Y is limited, then max(X, Y) E 
MRecA•. 

Proof. Let X, YEM Rec A* and assume that Y is limited. Consider n = 
IA*YI and denote the elements of A•Y by m1, ... , mn. Then, by Lemma 17 
(and its proof), there are n recognizable subsets m1Y-1, ••• , mnY-1 such 
that 

Hence, 

By Proposition 25, for each i, 1 ::::; i::;; n, max(X, rm;Y-1,m;l) is a recog­
nizable M-subset. As M Rec A* is closed under the minimum operation, we 
have that max(X, Y) E M Rec A*. ■ 

Lemma28 Let X, YE MSRecA" {resp. MCRecA"). IJY is limited, 
then ma.x(X, Y) EM SRecA* (resp. M CRecA*). 

Proof. H X, Y E M SRecA* and Y is limited, the result follows from 
Lemma 27, by considering the following remarks: 

1. By the proof of Lemma 20, for each i, 1 $ i $ n, fm;Y-1,m;l is a 
nondeterministic complexity. 

2. By Proposition 26, for each i, 1 $ i $ n, max(X, rm;Y-1,m;l) E 
MSRecA*. 

3. M SRecA• is closed under the minimum operation. 
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The proof is similar if XE M CRecA*. ■ 

Now, let us consider the remainder of the integer division of m E M by 

a positive integer d, denoted by m mod d. Form E lN, m mod dis given by 

the usual definition and oo mod d = oo. This operation can be extended to 

the M-subsets of A* as follows. 
Let X be an M-subset of A* and let d be a positive integer. We define 

the M-subset X mod d by 

Vw EA*, w(X modd) = wX mod d. 

The following proposition states that the mod d operation is distributive 
with respect to the addition (resp. minimum) of M-subsets of the type l R, m J 
(resp. r R, m 1). 

Proposition 29 Let Ri, ... , Rk be recognizable subsets of A* such that R; n 
R; = 0, for every i, j, 1 ~ i, j ~ k, and i # j. Let m1, ... , me be 
elements of M and d a positive integer. Then 

( min f R;, m; 1) mod d = min ( f R;, m; 1 mod d) 
l~i:~k l~i~k 

" " 
and (I) R;, m;J) mod d = L) l R;, m;J mod d) 

■ 

Proposition 30 Let d be an integer, d_> 1. M Rec A* is not closed under 
the mod d operation. 

Proof. Let A= { a, b} and consider the M-subset X of A* defined by 

It is clear that XE M Rec A*. 

However, l(X mod 2)-1 = { w E A* : lwlb < lwla.} is not a recognizable 
subset of A*. Then, from Proposition 4, it follows that X mod 2 ¢ M Rec A•. 

Thus, M RecA• is not closed under mod d, d > 1. ■ 

The following lemma presents a subfamily of recognizable M-subsets 
which is closed under mod d, d > 0. 
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Lemma 31 Let d be a positive integer. If X E M Rec A'" and is limited, 
then X mod d EM Rec A'" . Moreover, if X EM SRec A•, then X mod d E 
MCRecA'". 

Proof. Let X be a recognizable and limited M-subset. If d = l, then 
X mod 1 = rsupport(X),Ol is a recognizable M-subset. 

Consider d > 1 and let n = IA'"Xj. We denote the elements of A'"X by 
m1, ... , mn. Then, by Lemma 17 (and its proof), there are n recognizable 
subsets m 1x-1, ... , mnx-1 such that 

Hence, as m;X-1 n m;X-1 = 0, for every i, j, 1 :Si, j :Sn, and i =/- j, 
by Proposition 29 it results that 

However, for each i, 1 :Si$ n, 

r m;x-1
, m; l mod d = f m;x-1

, m; mod ell , 

which is a recognizable M-subset by Proposition 16. 
Thus, 

X mod d = min r m;x-1
, m; mod d7 

1:s;i:s;n 

and, as M Rec A• is closed under minimum, X mod d EM Rec A•. 

Moreover, if XE M SRecA*, from Lemma 20 (and its proof) it follows 
that, for each i, 1 :S i :S n, r m,x-1

' m, mod dl E M CR.ec A·. And, as 
M CRecA* is closed under minimum, we have that X mod d EM CRecA'". 

■ 

Now, we define over M a binary operation which is similar to the subtrac­
tion over the integer numbers. This operation is also extended to the family 
of M-subsets. 

Consider the minusp operation,...:....: M 2 ➔ M, defined by 

'vm, n E lN, m ...:.... n = { ; - n 
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oo ..:.. n = oo, m ..:.. oo = 0 and oo ..:.. oo = oo . 

For the M-subsets X and Y of A*, we define the M-subset X -=-- Y by 

Vw EA*, w(X ..:..Y) = wX -=--wY. 

The following proposition states a property relating the minusp and the 
addition of M-subsets. 

Proposition 32 Let X, Yi, ... , Y,. be M-subsets of A*. Then 

,. 
X-=-- L)'i = (((X -=--Yi)-=-½)-=-···)-=-- Y,. 

i=l 

Proof. It is enough to use induction on k. 

Proposition 33 M Rec A* is not closed under the minusp operation. 

Proof. Consider A =: { a, b }. 
Let X and Y be the M-subsets of A+ defined by 

Vw E A+, wX = lwl and wY = min{ lwla, lwlb} 

• 

Then X and Y are recognizable M-subsets and the M-subset X..:.. Y is given 
by . 

Vw EA+, w(X-=-- Y) = lwl - min{ lwla, lwlb} = max{ lwla, lwlb} . 

Then, from the proof of Lemma 5, it follows that X ..:.. Y f/. M Rec A•. ■ 

The following theorem states when the minusp of two recognizable M-
subsets is a recognizable M-subset. 

Theorem 34 Let X, Y E M Rec A•. If Y is limited, then X ..:.. Y E 
MRecA•. 

Before to prove this theorem, we study the particular case in which the 
M-subset Y is of the form l R, m J, for some m E M and some recognizable 
subset R. 
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Proposition 35 Let X be a recognizable M-subset of A+. Then X..:.. lA*, lj 
is a recognizable M-subset of A+. Moreover, if X E M SRecA•, then X ..:.. 
lA*, lJ EM SRecA'". 

Proof. Let X be a recognizable M-subset of A+. Then there is a normalized 
M-A-automaton A= (Q, I,T) such that IIAII = X. 

The M-subset X ..:.. l A*, 1 J satisfies 

Vw E A", w( X ..:.. l A•, I J) = { : 
wX-1 

if wX = oo 
if wX = 0 
if 1 ~ wX < oo 

From A, let us construct an M-A-automaton B = (Qs, ls, Ts) such that 
IIBII = X..:.. lA*,lJ, as follows: 

Qs = { </ I q E Q} U { </' I q E Q }, 
IB is the M-subset of QB defined by 

Vq E Q, q'ls = qi and q"IB = oo 

and TB is the M-subset of QB defined by 

Vq E Q, q'Ts = q"TB = qT . 

The useful edges of Bare defined as follows. For each useful edge (p, a, q) 
of A, 

• if (p, a, q)E.A = 0, then (p', a, q') and (p", a,</') are useful edges of B 
and their multiplicities are equal to 0; 

• if (p,a,q)E.A > 0, then (rf,a,q'') and (p',a,q'') are useful edges of B 
and their multiplicities are given by 

(p',a,q")EB = (p,a,q)E.1,. -1 and (p",a,q")EB = (p,a,q)E.1,. . 

Thus, one can easily verify that IIB II = X ..:.. l A", I J. Hence, X ..:.. 
lA*, lJ EM RecA*. 

If XE M SRecA", by Proposition 1 it follows that the M-A-automaton 
A can be simple. Then, by the construction of B, QBlB and QsTB ~ { 0, oo} 
and the multiplicities of the useful edges of B are O or 1. Hence, 8 is simple 
and we conclude that X..:.. lA", lJ EM SRecA*. ■ 
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Proposition 36 If X E M CRec A*, then X ..:... lA*, 1 J E M CRec A*. 

Proof. If Xis a nondeterministic complexity, the construction of the M-A­
automaton B given in the proof of the previous proposition does not guarantee 
that X ..:.. l A•, 1 J is a nondeterministic complexity. Thus, we present a dif­
ferent construction. 

Consider a type nc M-A-automaton A= (Q, I, T) such that IIAII = X. 
Let us construct an M-A-automaton B such that II 8 II = X ..:.. l A•, 1 J. 
At first, we consider the M-A-automaton C = (Qc, le, Tc), which is the 

. 0-accessible part of A; that is, 

Qc = { q': q E Q and q is accessible in A through a path P, with IIPII = 0 }. 

Note that if q is an initial state of A, then </ E Qc. 

le: Qc ➔ M, defined by q'/c = qi 

and Tc: Qc ➔ M, defined by q'Tc = qT. 

For every p', q' E Qc and for every a E A, if (p', a, q') is a useful edge of 
C, then (p,a,q)EA = 0. Moreover, (p',a,q')Ec = 0. It is clear that, for every 
w EA-, wllAII = 0 if and only if w!ICII = 0. 

Consider the following subset 

R = { useful edges a = (p, a, q) of A, with I !al I = 1 and p' E Qc } 

Let k = IRI and consider an arbitrary enumeration of its elements, say 
from 1 to k. 

The M-A-automaton 8 will be constructed from k 'copies' of the M-A­
automata A and C. That is, 

Qs = (Qc x [I,k]) U (Q x [1,k]); 

IB: QB ➔ M, defined by 

Vq' E Qc, Vi E [1, k], (q', i)IB = qi and Vq E Q, Vi E [1, k], (q, i)/8 = oo ; 

Ts: Qs ➔ M, defined by 

Vq' E Qc, Vi E [1,k], (q',i)Ts = qT and Vq E Q, Vi E [1,k], (q,i)T8 = qT . 

As A is of type n'c, we have that Qsls and QsTs f { 0, oo }. 

The useful edges of B are defined as follows: 
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• for each useful edge (p, a, q) of A, ( (p, i), a, ( q, i)) is a useful edge of B, 
for every i, 1 $ i $ k, and ((p,i),a, (q,i))Es = (p,a,q)E.,,.; 

• for each useful edge (p', a, q') of C, ((p', i), a, (q', i)) is a useful edge of 
B, for every i, 1 $ i $ k, and ((p',i),a, (q',i))Es = 0; 

• for each i, 1 $ i $ k, if a;= (p, a, q) is the edge of number i in R, then 
((p', i), a, (q, i)) is a useful edge of Band ((p', i), a, (q, i))E8 = 0. 

Thus, one can verify that Bis of type nc and IIB II = IIAII ..:.. l A*, 1 J. Therefore, 
X..:.. lA•, lJ EM CRecA•. ■ 

Proposition 37 Let X be a recognizable M-subset of A+ and m E M. 
Then X ..:.. lA*,mJ is a recognizable M-subset of A+. Moreover, if X E 
M SRecA*, then X..:.. lA*,mJ EM SRecA*. 

Proof. Let X be a recognizable M-subset of A+ and m EM. 
ff m = 0, then X..:.. LA*, OJ= X. 
ff m = oo, then X ..:.. l A*, 00 J = r support(X), 0l Thus, by Propositions 2 

and 16 it results that X ..:.. LA*, oo J is a recognizable M-subset. 
Now, consider O < m < oo. One can verify that 

X..:.. lA*,mJ = (((X --=--LA*,lJ)..:.. LA*,lJ) .:...···)--=--LA*,lJ 

m timea 

Thus, by Proposition 35, we have that X--=-- lA*,mJ, with 0 < m < oo, is 
a recognizable M-subset. 

The proof is similar if X E M SRec A*. ■ 

Proposition 38 Let X E M CRecA• and m E M. Then X .:... LA•,mJ 
E MCRecA*. 

Proof. It follows from Propositions 37 and 36, observing that X..:.. LA*,ooJ 
= rsupport(X),0l EM CRecA*. ■ 

Proposition 39 Let X be a recognizable M-subset of A+. Let m EM and 
let R be a recognizable subset of A•. Then X..:.. LR,mJ is a recognizable M­
subset of A+. Moreover, if X E M SRec A•, then X ..:.... LR, m J E M SRec A*. 
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Proof. Let X be a recognizable M-subset of A+. Let m E M and let R be a 
recognizable subset of A•. HR= A*, the result follows from Proposition 37. 
Then assume that R #, A*. 

If m = 0, then X .:.. l R, 0 J = X, and there is nothing to prove. 
Let us consider O < m < oo. Then 

VweA., w(X.:.. lR,mJ) = { fx 
wX-m 

if wX = oo 
if wX < m and w E R 
if wX < oo and w ft R 
if (m $; wX < oo and w E R) 

~ow, we define some recognizable M-subsets, from which it is possible to 
obtain X .:.. l R, m J, using only operations under which M Rec A• is closed. 

Consider the subsets 

m-1 

R1 = LJ iX-1 n R = { w EA*: wX < m and w ER} , 
i=O 

m-1 

R3 = (A*-( LJ ix-1u(X)x-1))nR = { w EA*: m $ wX < oo and w ER} 
i=O 

By Proposition 4 it follows that the subsets R1 , R2 and R3 are recognizable. 
Define the M-subsets X1, X2 and X3 as follows: 

Hence, from Propositions 16, 18 and 37, it results that Xi, X2 and X 3 E 
MRecA*. 

Moreover, one can verify that X.:.. lR,mJ = min(Xi,X2,X3). 

Therefore, for O < m < oo, X .:.. l R, m J E M Rec A*, since M Rec A* is 
closed under the minimum operation. 

We can observe that X1 E M CRecA*, and if X E M SRecA*, then, 
by Table 1 and Proposition 37, it results that X2 and X 3 are also simple. 
And, as M SRec A• is closed under the minimum operation, X .:.. l R, m J E 
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M SRecA•, for 0 < m < oo. 

Now, let us consider m = oo. Then X..:... lR,ooJ = min(X1,X2). Thus, 
X....:.... lR,ooJ E MRecA•. 

In a similar way, one can prove that if X E M SRec A•, then X ..:... 
lR,ooJ EM SRecA*. ■ 

Proposition 40 Let X E M CRec A• and m E M. Then X _ l R, m j 
E MCRecA•. 

Proof. The statement follows from Propositions 39 and 38. ■ 

Now, we can prove that if X and YEM Rec A* and Y is limited, then 
X....:.... YE MRecA*. 

Proof of Theorem 34. Let X E M Rec A•. Consider X' = X + A+. By 
Table 1, it follows that X' EM RecA*. 

Let Y be a recognizable and limited M-subset of A*. Consider n = IA'"YI 
and denote the elements of A*Y by m1 , .•. , mn. Then, by Lemma 17 (and 
its proof), there are n recognizable subsets m1Y-1 , ••• , m,.Y-1 such that 

n 

Y = I)miy-t ,miJ 
i=l 

Thus, from Proposition 32, it follows that 

Let us denote X 0 = X' and, for each i, 1 $ i $ n, 

xi= ((X'..:... lm1Y-1,m.J)..:... .. ·)..:... lmiY-1,m;J 

By Proposition 39, for each i, l $ i $ n, X;_1 ..:... lm;Y-1
, m;J is a recog­

nizable M-subset of A*. Therefore, X'....:.... YEM RecA• and l(X'....:.... Y) = 
lX' ....:.... 1 Y = oo ....:.... 1 Y = oo. 

However, X ..:... Y = min(X' ....:.... Y, (lX ....:.... lY) + 1 ). And, as M Rec A* is 
closed under scalar addition and minimum, we have that X ..:... Y E M Rec A*. 

■ 
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Theorem 41 Let X, YEM SRecA* {resp. M CRecA*). lf Y is limited, 
then X..:... YEM SRecA* (resp. M CRecA*). 

Proof. If X, YE M SRecA* and Y is limited, then the result follows from 
Theorem 34 and Table 1, observing that IX ..:... 1 Y E { O, oo } . 

If X, Y E M CRec A* and Y is limited, then the result follows from 
Theorem 34, Proposition 40 and Table 1, considering the above observation. 

■ 

10 Some undecidable problems for M CRecA* 

We start this section by describing four problems studied by Krob [14]. 
Let K be a totally ordered semiring. Let us consider the following prob-

lems for every X and Yin the family of recognizable K-subsets of A*: 

• equality problem: X = Y? 

• inequality problem: X ~ Y? 

• local equality problem: there exists win A* such that wX = wY? 

• local inequality problem: there exists w in A* such that wX ~ w Y? 

Kroh [14] showed that if A is an alphabet with at least two letters, the 
four problems above are undecidable foJ the families Z Rec A*, M Rec A*, 
M SRecA* and 1-l; (i ~ 1). In his paper, Krob also showed that these prob­
lems are decidable when A has only one letter. 

By the other hand, it is easy to prove that the equality problem for 1-lo, 
the family of recognizable and limited M-suhsets of A*, is decidable. Hence, 
with respect to the diagram in the Section 8, we only need to verify if the 
problems mentioned above are decidable to M CRecA*. 

Let A be an alphabet and let n be a positive integer. Consider the sub­
stitution O'n: A*-+ A* defined by aun = an, for every a EA. 
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Proposition 42 Let A be a normalized M-A-automaton such that the mul­
tiplicities of its edges are positive. Let m be the maximum value of the mul­
tiplicities of its useful edges. Then, for every n ~ m, there is a type nc 
M-A-automaton An such that 

Vw EA*, wll/4.11 = { ~All 
if w = UO"n, with u E A* 
ifw(/.A*un. 

Proof. Let A= (Q, I, T) be a normalized M-A-automaton such that for each 
useful edge a of A, llall > 0. Let m = max{ !loll : a is a useful edge of A} 
and consider an integer n ~ m. 

We construct an M-A-automaton An= (Q', I', T') from A as follows: 
Q' = Q U R, where R is the set of new states; 
the M-subset I' of Q' is given by 

Vq E Q', qi'= { q
00

/ if q E Q 
if q ER 

and the M-subset T' of Q' is given by 

V q E Q'' qT' = { qooT if q E Q 
ifqE R. 

For each useful edge (p, a, q) of A, let us consider n edges in An: 

where r 1 , ••• , r_1 E Rare new states and the multiplicities of these edges 
are defined as follows: 

ll(P, a, r1)II = 1, 

ll(r;, a, r;+i)II = 1, if i E (1, k - 1], 

ll(r;, a, r;+i)II = O, if i E (k, n - 2) and 

ll(rn-1,a,q)II = 0, 

where k is the multiplicity of (p, a, q) in A. 
It is easy to verify that An is a simple M-A-automaton. Moreover, we can 

observe that if (p,a,q) is an edge in An with ll(p,a,q)II = O, then p ER and 

37 



there is no other edge in A,. with origin p. Hence, A,. can be easily extended 
to a type nc M-A-automaton. 

By construction, it is also clear that A,. satisfies 

VwEA-, if W = UO'n, with U EA* 
ifw ¢ A*O'n • 

• 
Theorem 43 The equality problem, the inequality problem, the local equality 
problem or the local inequality problem for M Rec A• is decidable if and only 
if the same problem is decidable for M CRec A•. 

Proof. Let us only show the equivalence between the decidability of the 
equality problems for M Rec A* and M CRecA*. The proofs of the other 
equivalences are similar. 

It is clear that it is enough to prove that the decidability of the equivalence 
problem for M CRec A• implies the decidability of the same problem for 
MRecA*. 

Let X a.nd Y E M Rec A• such tha.t IX = 1 Y. Let A and B be normalized 
M-A-automata such that IIAII = X + A+ a.nd 11811 = Y +A+. 

Let k be a positive integer a.nd consider the M-A-automata A' a.nd B' 
obtained from A and 8, respectively, by adding k in the multiplicity of each 
one of their useful edges. It is easy to see that, for every w E A*, wllA'II = 
wllAII + kiwi and wllB'II ::i: wllBII + kiwi. Therefore, IIAII = IIBII if and only 
if IIA'II = IIB'II• 

However, by Proposition 42, from the M-A-automata A' a.nd B', there a.re 
M-A-automata A" a.nd B" which are of type nc and satisfy IIA'II = llB'II if 
and only if IIA"II = IIB"II• 

Thus, the decidability of the equality problem for the M-subsets which are 
nondeterministic complexities implies the decidability of the same problem for 
the recognizable M-subsets. ■ 

By the undecidability of the four problems showed by Krob [14] a.nd from 
the statement in the previous theorem, we conclude the following result. 

Corollary 44 Let A be an alphabet with at least two letters. The equal­
ity problem, the inequality problem, the local equality problem and the local 
inequality problem are undecidable for M CRecA*. ■ 
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