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Abstract

We study some properties of recognizable M-subsets of a free
monoid A* (M Rec A*) and of two of its subfamilies: the simple
M-subsets (M SRec A*) and the M-subsets which are nondeter-
ministic complexities of finite automata (M CRec A*). At first,
we study some necessary conditions for membership in each one
of these families and we show that M CRec A* & M SRecA” ¢
M Rec A*. We also study the closure properties of these families
under several operations and the existing relations among these
families and the families H,, (p > 0) obtained by Simon; in partic-
ular, we study some properties of the limited M-subsets. We also
show that the equality problem for M CRec A* is undecidable.

1 Introduction

The study of recognizable subsets with multiplicities in a field had its origin
in the fundamental works of M. P. Schiitzenberger {16, 17, 18] written in the
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beginning of the sixties. In the seventies, S. Eilenberg [4] systematized this
theory for an arbitrary semiring K, paying special attention to the cases of
the Boolean semiring and the semiring of natural numbers. A more algebraic
treatment of recognizable K-subsets is given by J. Berstel and C. Reutenauer

2.

In this paper, we study some properties of the family of recognizable
M-subsets of A*, M Rec A*, where M denotes the tropical semiring, which
consists of the natural numbers extended with co and equipped with the op-
erations of minimum and addition. An M-subset of A* is a function that
associates a multiplicity in M to each word in A*. An M-A-automaton is
a finite automaton in which one associates multiplicities in M to the initial
states, final states and edges. This allows to associate a multiplicity in M to
each word in A* and one says that the resulting M-subset of A* is recogniz-
able.

The semiring M is known in Operation Research [3], where it has been
used in problems of cost minimization. In the Theory of Automata the study
of the multiplicities in the semiring M was introduced by I. Simon [20], in
1978, to give a characterization of recognizable subsets of a free monoid which
has the finite power property. An independent solution were also obtained by
K. Hashiguchi [6]. In the last years, other important problems related with
the semiring M were solved. For instance, K. Hashiguchi [7, 8] characterized
the recognizable and limited M-subsets through a great complexity reason-
ing; H. Leung {15] and I. Simon [22, 24] obtained, independently, other more
algebraic solutions to decide whether a recognizable M-subset is limited; K.
Hashiguchi [9] solved the star height problem of recognizable sets. A survey
of the most important results about recognizable M-subsets was written by
L. Simon [23]. More recently, D. Krob [14] showed that the equality problem
for recognizable M-subsets is undecidable.

In particular, we study two of the subfamilies of M Rec A*: the family
of simple M-subsets, M SRec A*, and the family of the M-subsets which
are nondeterministic complexities, M CRec A*. An M-subset of A* is sim-
ple if it is recognized by an M-A-automaton whose multiplicities belong to
{0,1,00} and it is a nondeterministic complexity if it is recognized by an
M- A-automaton which can be obtained by taking a (nondeterministic) finite
automaton and associating multiplicity 0 to its deterministic edges, 1 to its
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nondeterministic edges and 0 to its initial and final states.

At first, we study some necessary conditions for membership in each one
of these three families and we show that

M CRec A* ¢ M SRec A G MRecA* |

where A is an alphabet with at least two letters.

We present some properties of recognizable and limited M-subsets and
we study their relation with the families M Rec A*, M SRec A*, M CRec A”
and the families H, (p > 0) obtained by I. Simon [21].

We also study the closure properties of the families M Rec A*, M SRec A*
and M CRec A* under several operations.

In the last section, we show that the equality problem for M CRec A*,
when A has at least two letters, is undecidable. Qur proof of this result uses
the same ideas and constructions of Krob [14].

2 The semiring M, M-subsets and M-A-au-
tomata

The tropical semiring M has as support INU oo and as operations the mini-
mum and the addition. The minimum plays the réle of semiring addition and
the addition plays the réle of semiring multiplication. Note that M is a com-
mutative semiring and the identities with respect to minimum and addition
are oo and 0, respectively. Moreover, M is a positive and complete semiring
in the sense of Eilenberg [4].

Let A be a finite alphabet. An M-subset X of A is a function X : A* —
M. For each w in A*, wX is called the multiplicity with which w belongs to
X. f1X = oo, we also say that X is an M-subset of A*.

The following operations are defined over M-subsets of A*, where { X; :
i € 1} is a family of M-subsets of A* indexed by a set I (not necessarily
finite), X and Y are M-subsets of A*, and m € M.

(a) Yw € A*, w(mines X;) = minjer(wXi) (minimum)
(b) Yw e A", w(Tier Xi) = Tier(wX:) (addition)
(c) Ywe A*, w(m+ X)=m+wX
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(d) Vw e A*, w(XY) = mingy=y(zX +yY) (concatenation)
(e) Yw € A*, wX™* = w(mina» X™) = miny; (wX™)

(f) X* = min(1, X*), where the M-subset 1 is defined by Vw € A*, w1 =0
if w =1 and wl = oo, otherwise.

Recall that, for any semiring K, one naturally has the operations of ad-
dition, intersection, and multiplication of K-subsets. For the semiring M,
these operations are, respectively, the ones given in (a), (b) and (d) above.

Note that the operations in (a) and (b) are well defined for any set I. In
particular, if I = @, minjes(m;) = oo and )., m; = 0; if I is infinite and
there are infinitely many elements m; # 0, ) ,., m; = 0o. As a consequence
of this, the M-subsets X+ and X* are well defined even when 1X # oo.

The family M « A>> of all M-subsets of A* with the minimum (a)
and concatenation (d) operations constitutes a semiring, whose identities are,
respectively, the M-subset @ (where, for all w € A*, wd = oo) and the
M-subset 1.

The operations in (a), (c), (d) and (f) are called rational operations in
MLA> and we say that a set F C M<K A is rationally closed if it is
closed under the rational operations and it contains the identities @ and 1.

We denote by M Rat A* the smallest rationally closed subset of M<&A>,
containing the single M-subset a, for each @ € A, such that wa=0ifw=a
and wa = oo, otherwise.

For a given subset F of M« A>, we define the rational closure of F as
being the smallest rationally closed subset of M<A>>, containing F.

An M-A-automaton A = (Q,I,T) is an automaton over A, with a finite
set @ of states, two M-subsets I and T of Q and an M-subset E4 of @x AxQ.

If pI # oo (resp. pT' # o), we say that p is an initial state (resp. final
state) of A.

If (p,a, q) is an edge in A, we say that its label is a and that its multiplicity
is (p,a,q)E4. K (p,a,q)E4 # oo, the edge (p, a,q) is said to be a useful edge
of A.

If P is a path of length n in A, with origin py and terminus p,, that is

P= (Po, a, pl)(plr a2ap2) e (pn—la Ay, Pn) ’



then its label is |P| = a;a5...a, and its multiplicity ||P]| is the sum of the
multiplicities of its edges, that is

n
1Pl =" (Pi-1, 9, p) Ea -
i=1

For convenience, if P is the path above, we also write

3182..-0n

P =(po,a162...0n,pn) and P:pp——pn .

Concatenations, factorizations and factors of paths are defined as usual.

A path P is useful if || P]| # oo. A useful path, whose origin ¢ and terminus
t satisfy 1] # oo and tT # oo, is called successful.

The behavior of A is the M-subset ||.A|| of A* that associates a multiplicity
to each word as follows. Let w be in A* and let C be the set of successful
paths P in A with label |P| = w. Then

w||All = min(i] +[| P[] +¢T) ,

where 7 and ¢ are the origin and the terminus of the path P, respectively.

A successful path P in A, with label w, origin ¢ and terminus ¢, is called
victorious, if iI + ||P|| + tT = w||A|}.

The unique paths of length zero are the trivial paths (q,1,¢), for every
g € Q. Their labels are the empty word and their multiplicities are equal to
Z€ero.

We say that an M-A-automaton A = (Q, I, T) is normalized if A has a
unique initial state ¢ and a unique final state ¢, with ¢ # ¢ and il = T =0,
and, moreover, there are neither useful edges with terminus i nor useful edges
with origin £.

An M-subset of A* is recognizable if it is the behavior of some M-A-
automaton. It is well known that every recognizable M-subset of A% is the
behavior of a normalized M-A-automaton. The family of all recognizable
M-subsets of A* is denoted by M Rec A*.

Let us denote by At the M-subset of A" such that

oo fw=1
0 otherwise .

Ywe A", wAt = {
Then one can easily verify the following result.
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Proposition 1 For every recognizable M-subset X of A* there is a normal-
ized M-A-automaton A such that ||Al| = X + At. =

Remark: In a normalized M-A-automaton A, every victorious path P with
label w satisfies || P|| = w||A|| (because @I, QT C {0,00}) and every success-
ful path P’ with label w is such that w||A|| < ||P'|| (because ||P|| < ||P’}})-
These properties will be frequently used in the proofs and they are also valid
for simple or type nc M-A-automaton, which we present in the following
sections.

3 Some necessary conditions for recognizable
M-subsets

In this section, we study some necessary conditions so that an M-subset of
A* be recognizable.

The condition in the next proposition is valid for K-subsets, for every
positive semiring K. (See Berstel and Reutenauer [2).)

Proposition 2 Let X be a recognizable M-subset of A*. Then support(X) =
{we A*: wX # o} is a recognizable subset of A*. |

Proposition 3 Let X be‘a recognizable M-subset of A*. Then there is a
positive integer k such that for every w € AY, either wX = o0 or wX <
k|w|. |

Proposition 4 Let X be a recognizable M-subset of A*. Then, for every
m € M, mX~! is a recognizable subset of A*.

Proof. As coX~! = A* — support(X), the result follows from Proposition 2.
Let m € M — {oo}. As X is a recognizable M-subset of A*, by Propo-
sition 1 there exists a normalized M-A-automaton A = (Q, I,T) such that
lAll = X + A*. From A, let us construct an M-A-automaton B, which
accepts only the words that are recognized by .4 with multiplicity at most m.
We define B = (Q', I', T") as follows:
Q' =Q x([0,m] U {oo}) ;



the M-subset I of Q' is given by

N gl Hi=0
Vg€ Q, (qaz)l—{oo if i € [1,m] U {oo}

and the M-subset T’ of )’ is given by

qT ifi € [0,m]
o ifi=00.

Vo€ Q, (g, = {

For each useful edge (p, a,q) of A,
o if (p,a,q)Ea = 0, then, for each i € [0, m}U{c0}, ((p,1),a,(g,1))Es = 0;

o if (p,a,q)E4 = k, with 0 < k < oo, then, for each i € [0,m] U {o0},
((p,i),a,(q,j))E'B =k, with j =i+ k,ifi+k < m, and J = oo,
otherwise.

One can verify that |B] = [0,m]||A]|~'. Hence, [0, m]||A|~! is a recog-
nizable subset of A*. In a similar way, we have that [0,m — 1]||4||"! is a
recognizable subset of A*.

Therefore, m|A||~! = [0,m]||4]|! - [0,m — 1]]|A||"! is a recognizable
subset of A”.

Thus, mX~1 = m|A]|"? U {1}, if 1X = m, and mX~! = m|A4|",
otherwise. Therefore, mX ‘.1 is a recognizable subset of A*. [

Lemma 5 The conditions of Propositions 2, 3 and 4 are not sufficient for a
given M-subset to be recognizable.

Proof. Let A = {a,b} and let X be the M-subset of A* defined by
1X =00 and Vwe AY, wX =max{|wl.,|w} .

It is easy to verify that X satisfies the conditions of Propositions 2, 3 and
4. Let us show that X is not a recognizable M-subset of A*.

Suppose that X is a recognizable M-subset of A*. Then, by Proposition 1,
there is a normalized M-A-automaton A with n states such that || A|| = X.

Consider the word w = a®b®. Then wX = n.



Let P be a victorious path in A with label w. Then ||P|| = w|]A| =
wX = n and there are naturals r, s and ¢, with s > 0 and r + s+ = n, such
that the path P can be factorized as follows:

P:i“—")ql —’L)QQ—b:')qg—P:-)f.
If ||(g2, 5%, ¢2)|| = 0, then there is a successful path P’ in A,

n r ¢ ] ' ] t
P':i-"—)ql—“—-)qu»qu)qg—b—)f,

spelling the word w’ = a"b"** such that |[P']] = ||P|| = n. Hence, w'X =
w'||A]l < ||P'|| = n. This is a contradiction because w'X = max{n,n+s} >
n+1.

If ||(g2,°, q2)|| > 0, then there is a successful path P” in A,

. n b" b'
Plii—sqg—qg—f,

spelling the word w” = a™b™** such that ||P”|| < ||P]] = n. So, w"X =
w”||A|| < ||P"|| < n. This is a contradiction because w”X = max{n,r +
t} =n.

Therefore, X is not a recognizable M-subset of A*. ]

The technique used in the proof of the previous lemma, that is, to iterate
or to remove a factor of a given path, is frequent in all this work.

Another necessary condition for a given M-subset to be recognizable looks
like the ‘Pumping Lemma’ for the regular languages; more precisely, with the
Ogden’s Iteration Lemma [1].

Let £ € A* such that z = z,...2,, with z; € A (1 <i < n). A position
in z is any integer ¢, 1 < ¢ < n. Given a subset I of [1,n], we say that a
position i is fized with respect to [ if and only if 1 € [.

Lemma 6 Let X be a recognizable M-subset of A*. Then there is a positive
integer m such that for every word z in A* with zX < oo and, for every
choice of at least m fized positions in z, the word z admits a factorization of
the form ¢ = uvw, in such a way that

(i) v contains at least one and at most m fized positions;

(ii) there ezists ¢ > 0 such that for every k > 0, (uv*w)X < zX+(k—1)c.



Proof. Let X be a recognizable M-subset of A*. Then there is a normalized
M-A-automaton A such that [|A| = X + A*.

Let m be the number of states of A and let z € A” such that zX < oo
andz=2;...2n, withz; € A (1 <1 <n). ‘

We consider the subset I of [1,n] as being a choice of at least m positions
in z. As |I| > m, it follows that n > m.

Let iy, ..., i, be the m smallest elements of I, with1 <4 < ... <ip <
n. We define the following factorization for z,

T = YoWni¥Y2. .- YmlYm+1

with
Yo = T1...T4-1
h = Zy
YW = Ti,41...%ip, for2<1<m
Ym+1 = Tip4t---Tm -

Then, for each I, 1 <1 < m, y; contains exactly one fixed position.
Let P be a victorious path in A with label z. Consider the following
factorization:
PipBgorq 2 . . 0 2 g .
Then there are h and j, 0 < h < j < m, such that g, = g;. We define

U= Yolr---Yhy V=Yht1---Y; and W =Yina-.Ymir -

Then z = uvw, uw # 1, and v contains exactly j — h fixed positions, with
0<j—h<m.
Let us consider the words

uo*w = yoyr - - Yn(Uhs1 - - U5) Vit - - Ymyr, fork 20

and the factor P, = (g»,v,q;) of P.
As |P,)| > 0, by considering ¢ = || Py ||, it results that

VE>0, (uww)X <||Pl+G-D|P]=zX+(k-1)c.
B

Observe that the proof of the following lemma uses a different strategy to
prove that an M-subset is not recognizable.
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Lemma 7 The condition of Lemma 6 is also not sufficient for a given M-
subset to be recognizable.

Proof. Let A= {a,b,c} and let X be the M-subset of A* defined by

wX = 1wla 1wl fwecH{a:n >0}
~ | min{|w|,,|w|s} otherwise .

One can verify that X satisfies the conditions of Propositions 2, 3 and 4,
and of Lemma 6. Let us show that X is not a recognizable M-subset.

Suppose that X be a recognizable M-subset of A*. Then there is a nor-
malized M-A-automaton A4 = (Q, I,T) such that ||A]] = X + A*. Denote
by p the initial state of A and by r the final state of A.

Let m be a positive integer and define, for each natural /, the subset Q;
of @, as follows:

m . A
Q1 = { ¢ : there is a victorious path p—3¢ 2oy r, forsome h # 1} .

Then there are naturals i and j such that i < j and Q; = Q;. We observe
that Q; is not empty, for every [.

As c™a't’ € |A|, there is a victorious path P in A, spelling c™a'd, with
the following factorization:

m i By
.P:pgiq-—-—}r,

for some g € Q. But, as j # i, we conclude that ¢ € @i = Q;. Then there is
a victorious path P’ in A, spelling c™a’b*, for some k # j, with the following
factorization: , \
P pﬂ{)q .
However, since the following equalities are true,
[P]| = (c™a't)|| A]| = (c™a'¥')X = minfi, j} =i
and [|P']] = (c"a’b*)||A] = (¢™a?8*) X = min{j,k} ,

we conclude that the factors Py = (p,c™a?,q) of P! and P, = (q,¥,7) of P
satisfy ||P1|| < j and ||P,|| < i
Hence, the path P,P; = (p,c™a’, q)(g, ¥, r) satisfies

PR =Pl +]IPI<j+i<25 .

10



Then 1
2j = ("a'V)X = (c"a’?)||A|| < |PPal| < 25 5

that is a contradiction.
Therefore, X is not a recognizable M-subset of A, ]

4 Simple M-subsets

In this section, we study the family of simple M-subsets of A*, denoted by
M SRec A*.

An M-subset of A* is simple if it is the behavior of some simple M-A-
automaton. We say that an M-A-automaton A = (Q,I,T) is simple if it
satisfies

(@ x Ax Q)E4 € {0,1,00}, QIC {0,00} and QT C {0,00} .
Note that, by definition, if X is a simple M-subset, then 1X € {0, 00}.

A necessary condition for an M-subset to be simple is given in the fol-
lowing proposition whose proof is immediate.

Proposition 8 Let X be a recognizable M-subset of A*. If X is simple,
then for every w € A*, either wX = oo or wX < ju|. ]

A consequence of the previous proposition is that the simple M-subsets
form a proper subfamily of all recognizable M-subsets.

Corollary 9 M SRec A* & M Rec A*.

Proof. Let X be the M-subset of A* defined by wX = 2|w}, for every w € A*.
It is clear that X is a recognizable M-subset; however, by Proposition 8, X

is not simple.
=

The next theorem shows that the converse of Proposition 8 is not valid.

Theorem 10 There is a recognizable M-subset X of A* such that for each
w € A*, either wX = o0 or wX < |w|, but X is not simple.
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Proof. Let A = {a,b} and let X be the M-subset of A* defined by
Ywe A*, wX =2min{|w|,, lwh} -

It is clear that X is a recognizable M-subset of A* and X satisfies wX < |w],
for every w € A*.

Let us suppose that X is a simple M-subset. In this case, there is a
simple M-A-automaton A = (@, I, T) such that ||4)j = X.

Let n = |@| and let us consider the word

w=a"h", withm=2n+1.

Then there is a victorious path P in A, with |P| = w and ||P|| = w||A]| =
wX = 2n. Moreover, there are naturals r, s and ¢, with s > 0 and r4s4t = n,
such that the path P can be decomposed in

P:ithpfp oy,
Let w' = a"**b™. Then
w'X = 2min{ |w']s, [w'}y } = 2min{n+s,m} .

Asn+s < 2nand m = 2n+1, we have that n+s < m. Thus, w'X = 2n+2s.
Let us consider the factor P, = (p,a’,p) of P. Then, by inserting another
factor P, in P, the resulting path is

P':ji)p—f;pi)p—i)qﬂ)f .
Since A is a simple M-A-automaton, 0 < ||P,|| < s. Then we have that
WA S NIPl[ =[P+ |12l < [IPll+s=2n+s<2n+ 2 =w'X ,

contradicting that X = ||A]}.
Therefore, X is not a simple M-subset. |

5 M-subsets which are nondeterministic com-
plexities

In this section, we study another subfamily of recognizable M-subsets of A,
that is, the family of nondeterministic complexities, denoted by M CRec A*.
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The idea of the nondeterministic complexity of a finite automaton consists
in to associate, for each word, the minimum number of decisions which are
necessary to spell it in a nondeterministic finite automaton. This idea ap-
peared, by the first time, for the Turing machines and was formalized by Kin-
tala and Fischer in 1977 [10]. In 1980, Kintala and Wotschke [11] considered
this idea for the finite automata. Recently, Goldstine, Leung and Wotschke
[5] related the ambiguity and the non-determinism in finite automata.

Let A = (@,1,T) be a finite automaton (not necessarily deterministic)
over an alphabet A. We say that an edge (p,a,q) of A is non-deterministic
if there is another edge (p,a,¢’) in A, with ¢’ # ¢ and, is deterministic, oth-
erwise. From A, we construct an M-A-automaton B = (@, Is, Ts), defining
the M-subsets Ig and T of Q) by :

0 if q is an initial (final) state of A
oo otherwise

Vo€ Q, qls(qTs) = {

and the M-subset Eg of Q x A x @ by

0 if (p,a,q) is a deterministic edge of A
(p,a,q)Es = ¢ 1 if (p,e,q) is a non-deterministic edge of A
oo if (p,a,q) is not an edge of A .

Then, for each w € A*, w||B| is exactly the minimum number of non-
deterministic edges necessary to spell w in A from some initial state to some
final state. ‘

Now, let C be a simple M-A-automaton such that for each useful edge

(p,a,q) of C,

0 if there is no other useful edge (p,,¢’) in C with ¢’ # ¢
1 otherwise .

(5,0 0) i = {

Then we say that the M-A-automaton C is of type nc. The M-A-automaton
B previously constructed is also of type nc.

An M-subset X of A* is a nondeterministic complezity if it is the behavior
of some M-A-automaton A which is of type nc. Indeed, it is enough that
A be a simple M-A-automaton such that for each useful edge (p,a, g)in A,
with multiplicity zero, there is no other useful edge (p,a,r) in A with r # q.

Note that every nondeterministic complexity is a simple M-subset.
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Before stating a necessary condition for an M-subset to be a nondeter-
ministic complexity, we give a definition.

We say that a recognizable M-subset X is of differentiable multiplicity if
there exist words z,y,u and v in A* such that for each k > 1, there exists a
word 2z € A* satisfying

Vi>0 and Ym> k, win X = wie X < Wik X < 00 5

where Wy, = :c(uz,’:v)‘uz;"‘y. That is, for each k > 1, the word wi =
z(uzfv)*uzfy has a factor z, which occurs in two distinct contexts. In one
of these contexts, the factor uz,’:v can be eliminated from wyx or can be
infinitely iterated without to modify the multiplicity of the resulting word
wir = z(uzfv)'uzfy, I > 0. However, in another context, if the factor
#; is iterated m times, with m > k, the multiplicity of the resulting word

Whkm = z(uz,’:v)"uz}:'y is greater than the multiplicity of wgs.

Remarks: (1) Note that an M-subset X being a nondeterministic complex-
ity is a property which depends of the existence of a type nc M-A-automaton
with behavior X. But, X being of differentiable multiplicity is independent
of any M-A-automaton recognizing X.

(2) In this paper, in all proofs in which an M-subset is shown to be a non-
deterministic complexity (except in the proof of Theorem 23), it is possible
to consider the same word z, for every k > 1.

The following lemma presents a necessary condition for an M-subset to
be a nondeterministic complexity.

Lemma 11 If an M-subset X is a nondeterministic complezity then X is
not of differentiable multiplicity.

Before proving this lemma, we state some properties of paths in an M-
A-automaton which is of type nc. One of these properties is in the following
proposition whose proof is immediate.

Proposition 12 Let A be a type nc M-A-automaton. Let P and P’ be
useful and distinct paths in A with the same labels. If P and P’ have the
same origin, then their multiplicities are different of zero. [ ]
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Lemma 13 Let A be a type nc M-A-automaton. Let P be a path in A
spelling w™, for some w € At and n > 0,

Pigg =g — ¢ — - > a1 — Gn -

If there are j and k, 0 < j < k < n, such that g; = g and the factor
(g, w*™7,qx) of P has multiplicity zero, then g, € {q::0<i<n—1}, and
the factor (qr,w™ ', q,) of P, with l=min{i: 0<i<n—1andg =qn},
has multiplicity zero.

Proof. Let A be a type nc M-A-automaton and let w € A*.
Consider a useful path P in A, spelling w", for some n > 0,

Piqol}ql—lv—)(h—w‘) e i)qn .

Suppose that there are j and k, 0 < j < k < n, such that ¢; = ¢x and the
factor (g;,w*7,qi) of P has multiplicity zero. Then we can determine the
maximum m of the following set:

m = max{t:1 < i< n and there exists 2, 0 < h < i such that g, = ¢;

and the factor (gx,w'™*,¢;) of P has multiplicity zero } .

Let t,0 < t < m—1, such that ¢; = g, and the factor P; = (g, w™ ", gm)
of P has multiplicity zero.
If m # n, by the choice of m, we conclude that the path P has two factors

p,= (Qt, w,q41) and P3= (Qm, w, (Im+1) ’

with ¢ = ¢m and Gi41 # Gms1- As A is of type nc, from Proposition 12 it
results that P; and Ps must have positive multiplicities. But, P; is also factor
of Pi; then ||P;]| < ||P1||- Hence, we have that 0 < || P3]] < ||A|| = 0; this is
a contradiction. Therefore, m = n.

Let [ be the minimum of the following set:

I=min{i:0<i<n—landg=¢.} -

Then ! < ¢.
If | = t, we know that the factor P, = (@, w™", gn) of P has multiplicity
zero.
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If [ < t, we consider the paths
P4 =i (QI, wt_la Qt) and P5 = (Pl).(qta wr’ q1+r)

such that Py is a factor of P, (g:, w", g:4-) is a factor of P, and, s and r are
naturals satisfying t—I = s(n—t)+rand 0 < r < n—t. As||P|| = 0, it follows
that |[Ps]| = 0. Then, as A is of type nc, ¢ = ¢, = @, |P4} = |Bs| = w*™!
and || Ps|| = 0, by Proposition 12 it results that P, coincides with P. Hence,
|| Pa]] = 0.

Thus, the factor P4P, = (g, w",¢,) of P has multiplicity zero. [

Proof of Lemma 11. Let X be an M-subset of A* which is a nondetermin-
istic complexity. Let A be a type nc M-A-automaton such that [[Af| = X.
Suppose that X is of differentiable multiplicity. Then there are words
z,Yy,u and v in A* such that for every k > 1, there is a word z; in At in such
a way that for every [ > 0 and for every m > k, winX = wanr X < wim X <
00, where wum = z(uzfv)uzPy.
Let k be the number of states of .4 and let us consider the word

w = wgi = z(uzfv)fuzly

and a victorious path P in A, spelling w. To simplify the notation, let us use
z, instead of 2z, throughout this proof.
The path P can be decomposed as follows:

z ulku uz"v uz"v uz" v
P a
PPo —F Qo————rqi—q2 c ——FQk———F k41 — Qry2 -

Then there are integers j and 4, 0 < j < h < k such that q; = G-
Consider the factor P, = (g, (uz*v)*~9,q3) of P. If || P|| # 0, the word

’ k, \itk—h_k
W = wijpkong = o(uztv) T ryty

can be spelled in A by the following successful path

o wek )i wzk p)k—h uzk
Pip 5 g0 = g 0 g 2 i D i
Hence, it results that w'||Al| < ||P|| < ||P|| = w|| 4] = wX.

However, as X is of differentiable multiplicity, it follows that wX
Wik X = Wi jpi-nip X = w'X. So, w' A} < w'X, contradicting that X
[l.A]|. Therefore, ||P;|| = 0.
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Thus, by Lemma 13, there is an integer i, 0 < i < k—1, such that ¢; = g
and the factor P, = (g, (uz*v)*~, gi) of P has multiplicity zero.

Consider, now, the factor Ps = (gi,uz*v,gi1) of P;, with the following
factorization:

P3Zq,‘—u-+1"o—f—)1‘ll)1‘2—z—') s —i+rk—')—)q;+1.

As || P3| = 0 and k is the number of states of A, it results that P; has a factor
(ri,, 227", 7;,) with multiplicity zero such that 0 < 4y <1z <k and 1y, =ri;.
Then, by Lemma 13, there is an integer /, 0 <1 < k — 1, such that r; = rs.
As A is of type nc, ||Ps|| = 0 and ¢ = gx, we conclude that the factor
(g, uz*, qr1) of P coincides with the following factor of Ps:
Qi —u—} To—zx—)r'zﬂ-)rk H
hence, i = 71 = qx41. Then the word

"_ Wik krk—l = I(uzkv)ku2k+k_ly
can be spelled in A by the following successful path

k 2* -l

P" . x uzky uzrhv uz® v
Ipg — Qo1 G Qk41 = Tk = k41 —> Qk+2 -

So, w”|lA|| < [|P"l| = |IP]| = w||A|| = wX.

But, as X is of differentiable multiplicity, wX = Wi X < Wi gkt X =
w"X. Therefore, w”||A|| < w"X, contradicting that X = ||A||. Thus, X is
not of differentiable multiplicity. ]

The condition presented in Lemma 11 is useful to give examples of simple
M-subsets which are not nondeterministic complexities.

Theorem 14 M CRec A* ¢ M SRec A* for an alphabet A with at least two
letters.

Proof. Let A = {a,b}. The M-subset X of A* defined by

wX = { n ifw= .ua", with u € (aa"b)*
oo otherwise

is simple but it is not a nondeterministic complexity.
It is easy to see that X is a simple M-subset of A* and we can verify that
X satisfies the following conditions:

17



VE>1, ((a*d)*a®)X =k;
Ye>1, Vm>k, ((@*b)fa™)X=m>k;
Ve>1, VI>0, ((a*b)la*)X =k.

Then we conclude that,
Yk >1, VI >0, Vm >k, ((6*b)'a")X = ((¢*b)%a*)X < ((a*8)*a™)X < oo .

Therefore, by considering the words 2 =y = 1, u = 1,v = b and z; = a,
for every k > 1, it results that X is of differentiable multiplicity. Thus, by
Lemma 11, X is not a nondeterministic complexity. (]

6 Closure properties under the basic opera-
tions

In this section, we present the closure properties of the families M Rec A*,
M SRec A* and M CRec A* under the basic operations. These properties are
summarized in Table 1 and their proofs can be found in [12].

As M is a commutative semiring, the majority of these properties for
M Rec A* follows from the corresponding properties showed by Eilenberg
[4] for the family of recognizable K-subsets of A*, where K is an arbitrary
commutative semiring.

For the operations under which the families M SRec A* and M CRec A*
are closed, either the proofs follow from the respective proofs for M Rec A*,
or it is necessary to use different constructions to maintain the property of
being simple or a nondeterministic complexity. And, for the operations under
which some family is not closed, the idea is to obtain M-subsets which do
not satisfy one of the necessary conditions seen in the Sections 3, 4 and 5.

One knows by the Kleene-Schiitzenberger Theorem that for every finite
alphabet A, M Rec A* = M Rat A". That is, M Rec A* is the rational clo-
sure of M CRec A~.

In Table 1, we observe that M CRec A" is not closed under concatenation
and star. Investigating the closure of M CRec A* under these operations, we
showed in [12] the following result, whose proof is based on the proof of the
Kleene Theorem given by McNaughton and Yamada.
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Operation MRec | MSRec | M CRec
min(X,Y) yes yes yes
m+X,0<m< oo yes no no
m+ X, m=o0 or

0<m<min{|w —wX: :wX <oo}| yes yes yes
X+Y yes no no
X +Y, max{wY :wY <00} <

min{ jw] —wX :wX < oo} yes yes yes

Xp, p is the reverse function yes yes no
XY X* Xt yes yes no
XY, L is the shuffle yes yes yes
Xf, f is a morphism yes no no
Xf, fis a morphisms.t. 1f~' =1 yes yes no
Xf, f is a fine and injective morphism yes yes yes
X7, f is a morphism yes no no
Xf~1, f is a fine morphism yes yes yes

Table 1: Closure properties of M Rec, M SRec and M CRec under the basic

operations.

Theorem 15 For every finite alphabet A, the closure of M CRec A™ under
the minimum, concatenation and star operations is ezactly M SRecA*. =

7 Limited M-subsets

We say that an M-subset X of A* is limited if A*X is a finite subset of M.
Let us first consider some limited M-subsets X of A™ such that, either
A*X ={m,0} or A*X = {m, o0}, for some m € M.
Let R be a subset of A and m € M. We define two M-subsets of A",

LR,m| and [R,m], as follows.

Ywe A*, w|R,m]| ={ Bn
and w[R,m]= { Z

19
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The single M-subsets w, for every w € A*, are particular cases of the
M-subsets we just define; that is, w = [{w},0]. Thus, for every M-subset
X of A%, a expansion of X can be given by

X = min(X +[{0},0]) = min{u}, wX] .

It is interesting to observe that, for every M-subset X of A*, there is
another kind of expansion which uses the addition instead of the minimum.

wX
X =3 O lwhi))= Y [{w}wx] .
weA® i=1 weA*
We observe that if wX = 0, then 327 | {w},1] = | 4",0).
The following proposition verifies when | R,m| and [R,m] are recogniz-
able M-subsets.

Proposition 16 Let R C A* and m € M. |R,m]| (resp. [R,m]) is a
recognizable M-subset of A* if and only if either m = 0 (resp. m = o0) or
R is a recognizable subset of A*.

Proof. Suppose that R is a recognizable subset of A*. It is easy to verify
that [R,m] is a recognizable M-subset of A*.

To show that |R,m| is a recognizable M-subset, one can consider the
identity :

R, m| = min([ R, m], [4" ~ R,01)

and the property that AM Rec A* is closed under the minimum operation.

Now, suppose that |R,m] is a recognizable M-subset of A*. If m #0,
then R = m({R,m|)?, and by Proposition 4, R is a recognizable subset of
A™. If R is not a recognizable subset of A*, then R # m(| R, m|)™!; however,
this occurs only if m = 0.

The proof for [R, m] is similar. ]

The following lemma shows that every (recognizable and) limited M-

subset is the sum of a finite number of M-subsets of the form | R,m| and the
minimum of a finite number of M-subsets of the form [R,m].
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Lemma 17 An M-subset X of A* is (recognizable and) limited if and only if
there is a positive integer n and, there aren (recognizable) subsets Xy, ..., Xa
of A* and n elements my, ..., m, of M such that

X = Z[X;,m.-] and X = lréliisnnl'X;,m,-] .

=1

Proof. Let X be a limited M-subset of A* and let n = [A*X|. Denote the
elements of A*X by m;, ..., m, and consider, for each i, 1 < ¢ < n, the set

Xi={weA : wX=m}=mX".

Then one can verify that

Vwe A", wX =w) |Ximi .

i=1

Moreover, if X is a recognizable M-subset of A*, from Proposition 4 it
results that for each 1, 1 < i < n, X; is a recognizable subset of A.
The converse is immediate. ]

The following proposition shows that some M-subsets can be defined from
others, by using an M-subset of the form [R,0] (resp. |R,oc]) and the
addition (resp. minimum) operation.

Proposition 18 Let R be a subset of A* and X be an M-subset of A*. Then
the M-subsets Y and Yz defined by

Vwe A, wy,={ WX YwER
00 otherwise

_ wX i'-fw [S R

and  why = { 0 otherwise

satisfy
Yi=X+[R,0] and Y;=min(X,|R,00]) .

Moreover, if R is a recognizable subset of A* and X € M Rec A™ (resp.
MSRec A*, M CRecA*), then Y; and Y; € MRecA* (resp. MSRecA”,
M CRec A*).
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Proof. It is easy to verify that ¥; = X + [R, 0] and Y; = min(X, | R, o0]).

If R is a recognizable subset of A*, from Proposition 16 it results that the
M-subsets [R,0] and | R,00] € M Rec A*. Thus, if X € M Rec A*, we have
that Y; and Y; € M Rec A* since M Rec A* is closed under the addition and
minimum operations.

Moreover, if R is a recognizable subset of A*, it is clear that [R,0] and
|R,00] = [A* — R,0] are nondeterministic complexities. Then, if X €
M SRec A*, we have that Y; and Y; € M SRec A*, since M SRec A* is closed
under the minimum operation and under the addition with [R,0]. If X €
M CRec A*, the proof is similar. [ ]

In the sequel, we study when the recognizable and limited M-subsets are
nondeterministic complexities.

Proposition 19 Let R be a recognizable subset of A* and m € M. If
m < min{ |w| : w € R} then |R,m] and [R,m] are nondeterministic com-
plezities.

Proof. Let R be a subset of A® and m € M. Then
[R,m]=m+[R,0] and [R,m)|=min([R,m],[A* - R,0]) .

Let us suppose that R is recognizable. Then, from Proposition 16 it results
that [R, 0] and [A*— R, 0] are recognizable M-subsets, and it is easy to verify
that both are nondeterministic complexities. If m < min{|w|: w € R}, then
m + [R,0] € M CRec A*. (See Table 1.) Therefore, [R,m] € M CRec A*.
Moreover, as M CRec A* is closed under the minimum operation, we have
that | R,m] € M CRec A*. ]

Lemma 20 Let X be a recognizable and limited M-subset of A* such that
for each w € A*, either wX = oo or wX < |w|. Then X € M CRec A*.

Proof. Let X be as in the statement of this lemma. Consider n = |A*X| and
denote the elements of A*X by m,, ..., m,. Then, from Lemma 17 (and its
proof), there are n recognizable subsets m; X!, ..., mpX~! of A* such that

X = llgln [miX~ ,m,-] .

Let us consider ¢, 1 < i < n. If m; = oo, then [0 X!, 0] = @ is
a nondeterministic complexity. If m; # oo, then for every w € m;X™?,
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m; = wX < |w]. Thus, by Proposition 19 it follows that the M-subset
[m;X~!,m;] is a nondeterministic complexity. As M CRec A" is closed under
the minimum operation, we have that X € M CRec A*. |

In Proposition 8 we saw that every simple M-subset X of A* satisfies,
for each w € A*, either wX = oo or wX < |w|. Then, by Lemma 20
we conclude that every limited and simple M-subset is a nondeterministic
complexity. Thus, we just prove the following corollary, where Hy denotes
the family of the recognizable and limited M-subsets.

Corollary 21 M SRec A* N Hy = M CRec A* N Hy. ]

8 The Simon hierarchy for M Rec A* and its
relation to M SRec A* and M CRec A*

There exists a proper hierarchy for M Rec A* that was obtained by I. Simon
[21] through the families #, (p > 0) of recognizable M-subsets of A* defined
by

Hy, ={X € MRec A" :sh(X,m) € O(m?)} ,
where sh(X,m) = min{ |w| : w € A",m < wX < oco0}; that is, sh(X,m) is
the minimum length that a word needs to have so that its multiplicity be at
least m.

Theorem 22 (I. Simon [21])

For an alphabet A with at least two letters, M Rec A* = U,>oH, and, for
every p > 1, there is a nondeterministic complezity function in H, — H,—;.
If the alphabet A has only one letter, M Rec A* = Ho U H,;.

We also studied in [12] the relations among the families H, (p > 0) and
the families M CRec A* and M SRec A*, and showed the following result
which uses a convenient extension of the Simon’s nondeterministic complexity
functions [21] and Lemma 11. It is easy to verify that a similar result holds

for the families H, (p > 0) restricted to the recognizable M-subsets that are
not simple.

Theorem 23 For each p > 1, (M CRec A* N H,) & (MSRecA*NH,) &
H,, where A is an alphabet with at least two letters. ]
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Let us represent in a diagram (Figure 1) the known relations for the
families M Rec A*, M SRec A*, M CRec A* and H, (p > 0), considering
the alphabet A with at least two letters. These relations are described in
Corollaries 9 and 21, Theorems 14 and 23, and Theorem 22 (Simon).

| MSRecA* .~ M CRec A*
@ R N
L/

4 11 ik
MRecA™ | ... |x, |... E )
\ AN

\_ — e Y,

Figure 1: Relating the families M Rec A*, M SRec A*, M CRec A* and #,
(p =2 0), where |A| > 2.

9 Closure properties under other operations

In this section, let us only show the results with respect to the closure prop-
erties of the families M Rec A*, M SRec A* and M CRec A* under the max-
imum, remainder and minusp operations. These properties are summarized
in Table 2. The results and the corresponding proofs about the closure of the
families M Rec A* and M SRec A* under the div d operation can be found in
(12, 13].

At first, consider the mazimum operation (denoted by max) over the
semiring M. This operation can be extended to the M-subsets of A" as
follows. Let X and Y be M-subsets of A*. The M-subset max(X,Y) is
defined by

Yw € A®, w(max(X,Y)) = max(wX,wY) .

A property that can be easily verified is the distributivity of the maximum

with respect to the minimum. Let X, ¥}, ..., Y, be M-subsets of A*. Then

max(X, Zin, Yo 11_1(_1'_151}‘(ma,x(X,Y})) :
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| Operation MRec | MSRec | M CRec ||
max(X,Y) 1o no no |
max(X,Y), Y is limited yes yes yes
Ymodd,d>1 no no no
Y modd,d >0,V islimited | yes ves yes
X - Y, - is the minusp no no no
X »Y,Y islimited yes yes yes

L Ydivd,d>0 yes yes ?

Table 2: Closure properties of M Rec, M SRec and M CRec under other

operations.

Proposition 24 M Rec A* is not closed under the mazimum operation.

Proof. Let A= {a,b} and consider the M-subsets X and Y of A+ defined
by
Vwe A, wX =|w|, and wY =|uw|, .

Then X, Y € M Rec A* and the M-subset max(X,Y) is given by
Yw e AY, w(max(X,Y)) = max(wX,wY) = max(|w|, [w|s) .

Hence, by the proof of Lemma 5 it results that max(X,Y) ¢ M Rec A*.
Thus, M Rec A* is not closed under maximum. [

Now, let us see when the maximum of two recognizable M-subsets is a
recognizable M-subset.

Proposition 25 Let X € M Rec A*, m € M and R be a recognizable subset
of A*. Then max(X,[R,m]) € MRec A"

Proof. Consider X € M Rec A*. Let m € M and R be a recognizable subset
of A*. Then,

oo HfwégR
Vwe A%, w(max(X,[R,m]}))={ m iHweRandwX <m
wX ifweRadm<uwX.
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Now, we define some recognizable M-subsets from which we can obtain
the M-subset max(X, [ R, m]), using only operations under which M Rec A*
is closed.

Consider the subsets

Rl=UiX'1ﬂR={w€A':wGRandeSm}
=0

and Ry=(A"—|JiX")NR={weA :weRandm<wX} .

=0

By Proposition 4, the subsets R; and R; are recognizable. From these
subsets, we define the M-subsets

Xl = [Rl,m] and Xg =X + [RQ,O] .

Then, from Propositions 16 and 18, it results that X; and X; € M Rec A™.

But, as Ry N R; = 0, we can verify that max(X, [R,m]) = min(X}, X3).
Thus, as M Rec A* is closed under minimum, we have that max (X, [ R, m])

€ M Rec A*. ]

Proposition 26 Let R be a recognizable subset of A* and m € M such
that [R,m] € MSRecA". If X € MSRecA* (resp. M CRecA*), then
max(X, [R,m]) € MSRec A* (resp. M CRec A*).

Proof. Consider X € M SRec A*. Let R be a recognizable subset of A*
and m € M such that [R,m] € MSRecA*. If R = 0 or m = oo, then
[R,m]) = 0. And, in this case, max(X,[R,m]) = @ € M CRec A*. Then
we can assume that R # 0 and m < oo. As [R,m] is simple, we have that
m < min{ |w|:w € R}.

Thus, the proof that max(X, [R,m]) is simple results from the proof of
Proposition 25 and from the following remarks:

1. Since R, C R, we conclude that for every w € Ry, |w| > m. Then, by
Proposition 19, X; = [R;,m] € M CRec A*.

2. By Proposition 18, if X € MSRecA*, then X; = X + [R;,0] €
M SRec A*.
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3. M SRec A* is closed under the minimum operation.

The proof is similar if X € M CRec A*. [ |

By using Proposition 25 and one of the characterizations of limited M-
subsets, we can extend the subfamily of recognizable M-subsets that is closed
under the maximum operation.

Lemma 27 Let X, Y € MRecA". IfY is limited, then max(X,Y) €
M Rec A*.

Proof. Let X, Y € MRec A" and assume that Y is limited. Consider n =
|A*Y| and denote the elements of A*Y by my, ..., m,. Then, by Lemma 17
(and its proof), there are n recognizable subsets m; Y1, ..., m,Y ! such
that

— -1 .
Y—xrél.'lsnn(m’y ymi] .

Hence,

max(X,Y) = max(X, lr_élijsgu [miY 1 ,m;]) = lrsn‘.isxh(ma.x()(, [mY~',m])) .

By Proposition 25, for each i, 1 < i < n, max(X, [m;Y "}, m;]) is a recog-
nizable M-subset. As M Rec A” is closed under the minimum operation, we
have that max(X,Y) € M Rec A*. n

Lemma 28 Let X, Y € MSRecA" (resp. MCRecA"). IfY is limited,
then max(X,Y) € M SRec A* (resp. M CRec A*).

Proof. If X, Y € MSRecA® and Y is limited, the result follows from
Lemma 27, by considering the following remarks:

1. By the proof of Lemma 20, for each i, 1 < i < n, [m;Y~!,m;]isa
nondeterministic complexity.

2. By Proposition 26, for each i, 1 < i < n, max(X, [m;Y ™!, m;]) €
M SRec A*,

3. M SRec A* is closed under the minimum operation.
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The proof is similar if X € M CRec A*. n

Now, let us consider the remainder of the integer division of m € M by
a positive integer d, denoted by m mod d. For m € N, m mod d is given by
the usual definition and oo mod d = co. This operation can be extended to
the M-subsets of A* as follows.

Let X be an M-subset of A* and let d be a positive integer. We define
the M-subset X mod d by

VYwe A*, w(X modd) =wX modd .

The following proposition states that the mod d operation is distributive
with respect to the addition (resp. minimum) of M-subsets of the type | R, m|

(resp. [R,m]).

Proposition 29 Let R, ..., Ri be recognizable subsets of A* such that B;N
R; =0, for every i, j, 1 <i, j <k, and i # j. Let my,..., mi be
elements of M and d a positive integer. Then

(zmip, [Ri;mi]) mod d = min ([R;, m:] mod d)

k k
and (Z | Ri,m;|) mod d = Z([R‘-,m;] mod d) .

=1 i=1

Proposition 30 Let d be an integer, d > 1. M Rec A* is not closed under
the mod d operation.

Proof. Let A = {a,b} and consider the M-subset X of A* defined by
Vw € A", wX = min{2|w|s,2}w|s +1} .

It is clear that X € M Rec A*.
However, 1{X mod 2)™! = {w € A* : |w|; < |w|.} is not a recognizable
subset of A*. Then, from Proposition 4, it follows that X mod 2 ¢ M Rec A*.
Thus, M Rec A* is not closed under mod d, d > 1. [

The following lemma presents a subfamily of recognizable M-subsets
which is closed under mod d, d > 0.
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Lemma 31 Let d be a positive integer. If X € MRec A™ and is limited,
then X mod d € M Rec A*. Moreover, if X € M SRec A, then X mod d €
M CRec A*.

Proof. Let X be a recognizable and limited M-subset. If d = 1, then
X mod 1 = [support(X),0] is a recognizable M-subset.

Consider d > 1 and let n = |A*X|. We denote the elements of A*X by
My, ..., Mn. Then, by Lemma 17 (and its proof), there are n recognizable
subsets m; X1, ..., m, X! such that

X = min [m; X ',m,] .
1<ikn
Hence, as m; X' Nm;X~! = @, for every i, j, 1 <1, j <n, and i # j,
by Proposition 29 it results that

— N 3 _1 . — M . —1 .
X modd= (1132‘ [m; X~ m;]) mod d = 1‘31513,(["")( ,m;| mod d) .

However, for each 1,1 <: < n,
[m: X', m;] mod d = [rm; X%, m,; mod d] ,

which is a recognizable M-subset by Proposition 16.
Thus,
X modd = lzg_i? [m: X!, m; mod d]

and, as M Rec A* is closed under minimum, X mod d € M Rec A*.

Moreover, if X € M SRec A*, from Lemma 20 (and its proof) it follows
that, for each i, 1 < i < n, [m; X!, m; mod d] € M CRecA*. And, as
M CRec A* is closed under minimum, we have that X mod d € M CRec A*.

[ ]

Now, we define over M a binary operation which is similar to the subtrac-
tion over the integer numbers. This operation is also extended to the family
of M-subsets.

Consider the minusp operation, -_: M? — M, defined by

m-n fm>n

VYm,n € W, m;n:{o fmen |
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o0w.on=00, m-o-oo=0 and oco-oc0o=o00.
For the M-subsets X and Y of A*, we define the M-subset X - Y by
Vwe A", w(X -Y)=wX -wY .

The following proposition states a property relating the minusp and the
addition of M-subsets.

Proposition 32 Let X, Y1, ..., Yi be M-subsets of A*. Then

X2 Yi=(((X=Y) V) o) o Yi .

=1

Proof. It is enough to use induction on . ]

Proposition 33 M Rec A* is not closed under the minusp operation.

Proof. Consider A = {a,b}.
Let X and Y be the M-subsets of A* defined by

Vwe AY, wX =|w| and wY = min{|wl, |w|s} .

Then X and Y are recognizable M-subsets and the M-subset X - Y is given
by ’

Vw e A, w(X -Y) = |w| — min{ |w]s, |w|s } = max{|wls, [w]} .
Then, from the proof of Lemma 5, it follows that X - Y ¢ M Rec A*. =

The following theorem states when the minusp of two recognizable M-
subsets is a recognizable M-subset.

Theorem 34 Let X, Y € MRecA*. IfY is limited, then X - Y €
M Rec A*.

Before to prove this theorem, we study the particular case in which the

M-subset Y is of the form |R,m|, for some m € M and some recognizable
subset R.
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Proposition 35 Let X be a recognizable M-~subset of A*. Then X - |A*,1]
is a recognizable M-subset of A*. Moreover, if X € M SRec A*, then X -
|A*, 1) € M SRec A*.

Proof. Let X be a recognizable M-subset of A*. Then there is a normalized
M-A-automaton A = (Q, I, T) such that ||A]| = X.
The M-subset X - | A* 1] satisfies

0 if wX = o0
Ywe A, w(X - |A%1])=¢ 0 fwX=0
wX -1 fl<wX<oo .

From A, let us construct an M-A-automaton B = (Qsg, Is, Ts) such that
1Bl = X ~ [A*,1], as follows:

Qs={q g€ Q}U{q"|g€Q},
Ig is the M-subset of () defined by

VgeQ, ¢lg=ql and ¢'Is=o0
and Ty is the M-subset of Qg defined by
YeeQ, ¢Ts=q"Tsg=qT .

The useful edges of B are defined as follows. For each useful edge (p, a, q)
of A,

o if (p,a,q)E4 = 0, then (p',a,q¢) and (p”, a,q") are useful edges of B
and their multiplicities are equal to 0;

o if (p,a,q)E4 > 0, then (¢,q,q") and (p”,a,q") are useful edges of B
and their multiplicities are given by

(P’, a, q”)EB = (P,G,Q)EA -1 and (p”,a,q")Eg = (p,a,q)Ex .
Thus, one can easily verify that ||B]| = X - |A*1]. Hence, X -
|A*,1} € MRecA”.

If X € M SRec A*, by Proposition 1 it follows that the AM-A-automaton
A can be simple. Then, by the construction of B, @gls and @sTs C { 0,00}
and the multiplicities of the useful edges of B are 0 or 1. Hence, B is simple
and we conclude that X - |A",1] € M SRec A*. »
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Proposition 36 If X € M CRec A*, then X - [A*,1| € M CRec A”.

Proof. If X is a nondeterministic complexity, the construction of the M-A-
automaton B given in the proof of the previous proposition does not guarantee
that X - |A*,1] is a nondeterministic complexity. Thus, we present a dif-
ferent construction.

Consider a type nc M-A-automaton A = (Q, I, T) such that ||Al| = X.

Let us construct an M-A-automaton B such that ||B]| = X ~ |A*,1].

At first, we consider the M-A-automaton C = (Qc, Ic, T¢), which is the

~ O-accessible part of A; that is,

Qc ={¢ : ¢ € Q and q is accessible in A through a path P, with ||P||=0}.

Note that if q is an initial state of A, then ¢ € Qe
Ie: Q¢ - M, defined by ¢'Ic = ql
and T¢: Qc — M, defined by ¢'T¢ = qT.

For every ¢, ¢’ € Q¢ and for every a € A, if (p’,a,q’) is a useful edge of
C, then (p,a,q)E4 = 0. Moreover, (p',a,q)Ec = 0. It is clear that, for every
w € A*, w||A|| =0 if and only if w||C}| = 0.

Consider the following subset

R = {useful edges o = (p,a,q) of A, with |le|]|=1and p’ € Q¢ } .

Let k = |R| and consider an arbitrary enumeration of its elements, say
from 1 to k. .

The M-A-automaton B will be constructed from k ‘copies’ of the M-A-
automata A and C. That is,

Qs =(Qc x [1,k]) U (Q x [1,k]);
Ig: @8 — M, defined by

Vg € Qc, Vi € [1,k], (¢,4)Is = qI and Vg€ Q, Vi € [1,k], (g,i)Is = oo ;
Tg: Qs — M, defined by

Vg € Qc, Vi € [1,k], (¢,1)Tg =g¢T and Vg€ @, Vi € [1,k], (q,i)Ts = qT .

As A is of type nc, we have that Qzlg and QsTs C {0,00}.

The useful edges of B are defined as follows:

32



o for each useful edge (p, a,q) of A, ((p,7),4,(q,1)) is 2 useful edge of B,
for every i, 1 <1<k, and ((P, i),a, (qu))EB = (p,a,q)EA;

e for each useful edge (v, qa,¢) of C, ((¢',9),q,(d, z)) is a useful edge of
B, for every i,1 <i <k, and ((py3),0,(qs3 i))Eg =

o for each i, 1 <i <k, if o; = (p, @, q) is the edge of number 7 in R, then
((¥',4),a,(g,1)) is a useful edge of B and ((¢/,1),a,(q,1))Es = 0.

Thus, one can verify that B is of type nc and ||B|| = || 4] — | A%, 1]. Therefore,
X - |A% 1] € M CRecA". [

Proposition 37 Let X be a recognizable M-subset of A* and m € M.
Then X - |A*,m] is a recognizable M-subset of A*. Moreover, if X €
M SRec A*, then X - |A*,m]| € M SRec A*.

Proof. Let X be a recognizable M-subset of At and m € M.
Hm=0,then X - [A*0] =
Ifm = o0, then X - | A* 00| = [support(X),0]. Thus, by Propositions 2
and 16 it results that X - | A*, 00| is a recognizable M-subset.
Now, consider 0 < m < co. One can verify that

X - I_A",mJ =&X = I_A',l_') - [A.,IJ) - ) = I_A‘, 1J‘ .

g
m times

Thus, by Proposition 35, we have that X - |A*, m|, with 0 < m < oo, is
a recognizable M-subset.

The proof is similar if X € M SRec A*. (]

Proposition 38 Let X € MCRecA* and m € M. Then X - |A*,m|
€ M CRec A*.

Proof. It follows from Propositions 37 and 36, observing that X - |A*, 00|
= [support(X),0] € M CRec A*. -

Proposition 39 Let X be a recognizable M-subset of A*. Let m € M and
let R be a recognizable subset of A>. Then X - |R,m| is a recognizable M-
subset of A*. Moreover, if X € M SRec A*, then X - |R,m] € M SRec A™.
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Proof. Let X be a recognizable M-subset of A*. Let m € M and let Rbea
recognizable subset of A*. If R = A*, the result follows from Proposition 37.
Then assume that R # A*.

If m = 0, then X - [R,0] = X, and there is nothing to prove.

Let us consider 0 < m < co. Then

00 ifwX =00
. 0 fwX <mandweR
Vwe A*, w(X - |Rm|)=9 fwX <coandwg R

wX -m if(m<wX <ocandwée R) .

Now, we define some recognizable M-subsets, from which it is possible to
obtain X - | R,m], using only operations under which M Rec A is closed.
Counsider the subsets
m-1
Bi=|J)iX'nR={weA :wX<mandwe R},

=0
Ry=(A"—ccXH)N(A"-R)={we A" :wX <owand w¢g R} and

m-1
R3 = (A"—(U iX Moo X MHNR={weA :mSwX <ccandw€ R} .
=0 .
By Proposition 4 it follows that the subsets R;, R; and Rj are recognizable.
Define the M-subsets X;, X; and X3 as follows:

Xy =[R,0], X2=X+[Ry0] and Xs=(X - |A",m])+[Rs0] .

Hence, from Propositions 16, 18 and 37, it results that X,, X, and X3 €
M Rec A*.
Moreover, one can verify that X - | R, m| = min(X;, X5, X3).
Therefore, for 0 < m < 00, X -~ |R,m] € M Rec A*, since M Rec A* is
closed under the minimum operation.

We can observe that X; € M CRec A%, and if X € M SRec A*, then,
by Table 1 and Proposition 37, it results that X, and X3 are also simple.
And, as M SRec A* is closed under the minimum operation, X - |R,m]| €
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M SRec A~ for 0 < m < o0.

Now, let us consider m = oo. Then X - |R,00| = min(X;, X;). Thus,
X = |R,00] € MRec A*.

In a similar way, one can prove that if X € MSRecA*, then X -
[R,00] € M SRec A*. [

Proposition 40 Let X € MCRecA® and m € M. Then X - |R,m|
€ M CRec A*.

Proof. The statement follows from Propositions 39 and 38. |

Now, we can prove that if X and Y € M Rec A* and Y is limited, then
X =Y € MRecA*.

Proof of Theorem 84. Let X € M Rec A*. Consider X’ = X + A+. By
Table 1, it follows that X’ € M Rec A*.

Let Y be a recognizable and limited M-subset of A*. Consider n = |4*Y]
and denote the elements of A*Y by m,, ..., m,. Then, by Lemma 17 (and
its proof), there are n recognizable subsets m;Y !, ..., m,Y ! such that

Y= i[mgy—l,md .
=1

Thus, from Proposition 32, it follows that
X' oY = (X' = [mY ™, mi]) = [meY ™ maf) = -) = [maY ™ my ]
Let us denote X = X’ and, for eachi,1 <i<n,
Xi = (X' =[mY\my|) =) = [mY ™', my) .

By Proposition 39, for each i, 1 < i < n, X;_; = |m;Y™!,m;] is a recog-
nizable M-subset of A*. Therefore, X' - Y € MRecA* and 1(X’' - Y) =

1X! 1Y =00 = 1Y = oo.
However, X - Y = min(X' - Y,(1X = 1Y)+ 1). And, as M RecA* is
closed under scalar addition and minimum, we have that X - Y € M Rec A*.
a
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Theorem 41 Let X, Y € M SRecA* (resp. M CRecA*). IfY is limited,
then X - Y € MSRec A" (resp. M CRec A*).

Proof. If X, Y € MSRecA* and Y is limited, then the result follows from
Theorem 34 and Table 1, observing that 1X - 1Y € {0,000 }.

If X, Y € MCRecA* and Y is limited, then the result follows from
Theorem 34, Proposition 40 and Table 1, considering the above observation.
‘ |

10 Some undecidable problems for M CRec A*

We start this section by describing four problems studied by Krob [14].
Let K be a totally ordered semiring. Let us consider the following prob-
lems for every X and Y in the family of recognizable K-subsets of A™:

o equality problem: X =Y?
¢ inequality problem: X < Y7
o local equality problem: there exists w in A* such that wX = wY?

e local inequality problem: there exists w in A* such that wX < wY¥?

Krob [14] showed that if A is an alphabet with at least two letters, the
four problems above are undecidable for the families Z Rec A*, M Rec A*,
M SRec A* and H; (i > 1). In his paper, Krob also showed that these prob-
lems are decidable when A has only one letter.

By the other hand, it is easy to prove that the equality problem for H,,
the family of recognizable and limited M-subsets of A”, is decidable. Hence,
with respect to the diagram in the Section 8, we only need to verify if the
problems mentioned above are decidable to M CRec A*.

Let A be an alphabet and let n be a positive integer. Consider the sub-
stitution o,: A* — A* defined by ao, = a”, for every a € A.
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Proposition 42 Let A be a normalized M-A-automaton such that the mul-
tiplicities of its edges are positive. Let m be the mazimum value of the mul-
tiplicities of its useful edges. Then, for every n > m, there is a type nc
M-A-automaton A, such that

ul|All  if w = uo,, with u € A*

Ywe A%, w||A | = { 0o ifwd A%o, .

Proof. Let A= (Q,I,T) be a normalized M- A-automaton such that for each
useful edge a of A, ||a|| > 0. Let m = max{||a|| : « is a useful edge of A}
and consider an integer n > m.

We construct an M-A-automaton A, = (@', I’,T’) from A as follows:

@' = Q U R, where R is the set of new states;

the M-subset I’ of Q' is given by

’ ' _ gl ifqeqQ
Veeq, "I‘{oo ifgeR

and the M-subset 7" of @)’ is given by

’ ' _ qT' ifqe @
VeeQ, qT_{oo ifge R .

For each useful edge (p, @, q) of A, let us consider n edges in A,:

(P,a,"'l), (rlaa’r.i)’ TN (rn-ha’rn-—l) and (rn—l,as Q) ,

where ry, ..., ra_1 € R are new states and the multiplicities of these edges
are defined as follows:

l(p,a,r)ll =1,

(risa,riv)l = 1, if i € [1, k- 1],
fl(riya,ris1)]| =0, if ¢ € [k,n — 2] and
l(rn-1,8,9)ll =0,

where k is the multiplicity of (p, a,q) in A.
It is easy to verify that .4, is a simple M-A-automaton. Moreover, we can
observe that if (p,a,q) is an edge in A, with ||(p,a,q)]| =0, then p € R and
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there is no other edge in A, with origin p. Hence, A, can be easily extended
to a type nc M-A-automaton.
By construction, it is also clear that A, satisfies

. u||A|l if w = uo,, with u € A*
vare s, “"“A"”={oc|,| ” fwd Ao, .

Theorem 43 The equality problem, the inequality problem, the local equality
problem or the local inequality problem for M Rec A* is decidable if and only
if the same problem is decidable for M CRec A*.

Proof. Let us only show the equivalence between the decidability of the
equality problems for M Rec A* and M CRec A*. The proofs of the other
equivalences are similar.

It is clear that it is enough to prove that the decidability of the equivalence
problem for M CRec A* implies the decidability of the same problem for
M Rec A*.

Let X andY € M Rec A such that 1X = 1Y. Let A and B be normalized
M- A-automata such that [JA|| = X + A* and ||B|| =Y + A*.

Let k be a positive integer and consider the M-A-automata A’ and B’
obtained from A and B, respectively, by adding k in the multiplicity of each
one of their useful edges. It is easy to see that, for every w € A*, w|A'|| =
w|| Al + k|w| and w]||B’]| = w||B]| + k|w|. Therefore, || Al = ||B]| if and only
if A0 = 8.

However, by Proposition 42, from the M-A-automata A’ and B’, there are
M-A-automata A" and B” which are of type nc and satisfy |A'|| = ||B|| if
and only if [|A"]| = ||B”|l.

Thus, the decidability of the equality problem for the M-subsets which are
nondeterministic complexities implies the decidability of the same problem for
the recognizable M-subsets. ]

By the undecidability of the four problems showed by Krob [14] and from
the statement in the previous theorem, we conclude the following result.

Corollary 44 Let A be an alphabet with at least two letters. The equal-
ity problem, the inequality problem, the local equality problem and the local
inequality problem are undecidable for M CRec A*. ]
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