


Introduction

In [7] S. Kobmyashi proved that the only compact homo-
geneous hypersurfaces of an Euclidean space are the spheres.

This result was extended by T, Nagano and T. Takahashi
{7g9i) who proved that if a homogeneous Riemanniaﬁ manifold has
an isomefric immersion.in an Euclidean space of one diemnsion
greater and such that'therraﬁk Of,tﬁéiéécond fundamental forn
12 distinct from two aé some pointhufhén_if is_isomeﬁric to
+he Riemannian product of a sphere by an Euclidean space.

The original purpose of this paper was to show that this
“net remains true without the restriction on the second -

‘undamental form,

In both [7] and [9], the concept of rigidity has an im-
sortant role. In fact if M° 15 assumed rigid (see prelim-
aries), the theorem 1s an immediate consequence of results
E. Cartan [3] and K. Nomizu and B, Smith [10l.
For a homogeneous hygersurface of an Euclidean space,

avinz non-zero constant scalar curvature, there are only two

[t

possibilities a priori; 1t 1s elther rigid or contains no

Ln
\_.l"

rigid open submanifold (see Corollary (1-8)).
The main result of this paper (Theorem 3-1) is that a
hypersurface of an Euclidean space, having non-zero constant

sealar curvature and containing no open rigid submanifold, is




isometric to the product of a two dimensional sphere and an
Euclidean space, This result with the remarks made above

gives a proof of Nagano and Takahashi's theorem in the most

general case,

The proofs contalned in this paper fely heavily on methods

developed by E, Cartan [2] and S, Dolbeaut Lemoine [5].

Finaily using very similar arguments, the following

roved,
R =n+1
If M is a hypersurface of a space form W™ (K}, n > -4
/ing constant scalar curvature and an isometric immersion

n type number greater than one at all points, then M 45

igid,




1. Preliminaries

All manifolds and ﬁaps considered in this work will be
assumed of class e,

Let M" be an n-dimensional Riemannian manifold., Its
tangent space at a point p will be denoted by TpMn Iand the
alar product given by the Riemannian structure by < BB

Following [8], V will be the covariant derivation of

o

I

An r-dimensional Coo distribution f{ is sald to be
allel at a point p € M? if for any vector field X be-

.n
nging to ?t and any ftangent vector Yp € Tp& s 1% helds

(v, X) e f] .
Ypl p l!-p.

If this holds at all points p then L 1s sald to be

allel on u."‘!n &

!
On the other hand -there is the notion of parallel transla-
tion of a vector along a path (see [8]).

The followlng proposition relates these two concepts,

An r-dimensional distribution {3 1

1-1. Proposition.

S ——

parallel on M7 1if and only if parallel translate of a vector

Yp €4l =2long any path still belongs mjﬂp'
bl _

For details see [1] and [8].




By means of the operator V , the curvature tensor of
MP can be expressed as
R(X,Y)Z = V. (¥.2) - N.(9.2) -~V 7
X ¥ Y it
5 = [X,Y]

where X,Y,Z are vector fields on Mn.

The sectional curvature of the subspace w of TpMn,

spanned by the vectors X,Y is

_ CROLYIY B

S(m -
LRI D)X, TR

A Riemannian manifold M" has constant curvature K, if

nnd only if | o
R(X,Y)2 = K(KY,2>X - <X,22Y),

» all vectors X,Y,Z, and at all polnts of M

If X400, %, is an orthonormal basis of Tpl‘-in then the

lar curvature of MP at p 1s given by (see [8])

scal(t”) = iij S(nij) 5

where T denotes the plane in 'TpMn spanned by Xi’ XJ.

1]

1-2. Proposition. Let § be.an n-r dimensional o

o e

involutive distribution on Mn,- such that each leaf has constant




curvature witb respect to the Riemannian metric induced by

M.

Then for each point p € M? it is possible to f£ind a

coordinate system, xl,...,xn on M", defined around p ig

such a way that the vectors B/ij, J > 1 form 2 basis for

@, aﬂd furthermore

2
o 3 5 N ( K # 2)
(1) - S = 1+ z (z™) § i > r,
axt : ij//' e T <k>r ) i =
Indication of the Proof': Around p, there are coordinates

r+l

,a,yn such that the vector fields 23/3y i B/Gyn form

asls of B at each point. It may be assumed that yl(p)
v"(p) = O,
These coordinates giveﬁa diffeomoronism of a neighborhood
p in MP, onto an open subset of RP containing the
lgin, If the firét neighborhood is conveniently small it

Un"r'

be assumed that the second is of the form UT 4

w

here  UY  and U™ T " are :open neighborhoods of the origin in
and R™7T pespectively,
Consider the functions
3

! 1 r v+l on =<: 9 NG goe
(l) gij(y gai.’y ,}' ’tcilgy ) ayi 5 j/’ ,j [ ]

For each point (yl,...,y¥) of UY, they define a

Riemannian metric on UP™Y, and-it follows from the assumption

made on the leaves of © that this metric has constant curva-

ture K.




On the other hand the metric given by

i,J > r,

13

>r

2\2
2] By = (v NG IE

has the =same constant curvature.

The functions defining this diffoemorphism are solutions

-

of a system of first order differential equations whose co-
effieients involve the gij and their derivatives, Hence
ttls solution depends differentiably on the yl...yT.
With this in mind, the coordinates yr+1,...,yn can
repléced by new functions xr+1,...,xn, such that (1) holds,

QIE'DO

Remark. Let E;, be the vector fields,

kit A

o . 2
K P d
E, = I T (x™) ) —_— i>r
i ( 4 k>r Bxi ¢

and assume that the leaves of R are totally geodesic sub-

M, then the vectors E;, form an orthonormal

The next fact 1s the local part of a De Rham's theorem

and can be found in [8].
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1-3. Proposition, Let {{ be a non-trivial parallel

distribution on MP  and ﬂ[l its orthogonal compnlement., Then

any point p of M  has an open neighborhood V x Vi, where

V and V' are oven submanifolds of the leaves of {J and -H'

et A e R

respectively, and the Riemannian metric on V x V' 1is the

direct product of the metries of V and V',

Let MM and &n+r be Riemannlan manifolds of dimensions

and n + r respectively. A differentiable map

£eM0 - NPT

an isométric immersidn if for each D E;Mn, the differential
of f 1s a scalar product preserving lsomorphism between
Tuﬁn and a.subspace of Tf(p)ﬁn¥r.
Considérltwo vector fields X,Y_ defined in some nelgh-
rhood of a point p e MO, Since f 1is locally a diffeo-
morphism, 1t 1is possible Eo consider the vector fields
fyX,f.Y on some submanifold of MR

Lf ?95 denote the covariant derivations of M% and MIEE

respe ctive ly P then

where a(X,Y) belongs to the orthogonal complement of £y (THD)

in “HT  (see [11,[81).




When ¢ vanishes at a ﬁoint Ip, the immersion f 1is
sald to be totally geodesic at this point, If this holds for
all points, f 1s called totally geodesic,

In case r =1, M® is usuﬁlly called a hypersurface of
ﬁ“+1, Denote by £ a local unit normal field to MP in

ﬁn+13 then

a(X,¥) = {AX,Y)E,
where A 1s the symmetric operator of TM® given by,

AX = —lecﬁf o
i

From now on the operator A will be called the second
idamental form of f with respect to E.
The rank of A at a point p 1s called the type number

f at this point and 1is comménly denoted by t(p).

1-4, Proposition. If the type number of f 1is
¢

reater than one at a point p, then the kernel of A is

kep A ® [Xe T MR | R(X,Y) = R(X,Y), for all Y ¢ T WA},

R and R denoting the curvature tensors of M and yntl

. —E L —_— p——— —a— i ——

respectively. For a proof of this fact see 2.

The following equations are basic in the study of hyper-

surfaces:




R(X,Y)Z = projTMP(ﬁ(x,Y)z)+ /AY,Z)AX = { AX,Z)AY

where R, R denote the curvature tensors of _Mn and ﬁn+l
respectively, £ being a local unit normal field and A the
second fundamental form of f with respect to &,

These relations are known as Gauss and Codazzi equations
respectively.

IT ﬁn+l has constant curvature, the Codazzi equation

becomes
VK(AY) "'VY(AX) = A[X,Y],

For detalls, see [1], [7], E16],

1-5. Eipposigégg. et f-be an isometrlic immersion

M®  in antl such that its type number 1is constant and

.reater tnan one.

1 MMl has constant curvature then the nullity distri-
bution of £ A8 integrablé and its leaves are totally
geodesic both in MM and MR,

Proof., The integrability of N follows from Proposition

Next it will be shown that the restriction of f to each

leaf of N 1is a totally geodesic immersion,
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Let k bevthe dimension of fN' and consider an ortho-

normal frame fileld,

El""’gn—k’gn-lﬁl

in such a way that the first n-k vectors are orthogonal to

a glven leaf, J, in MP and

p? is orthogonal to

En-?k+l
Mn  in mntl,

The bilinear form a(X,Y) defined by the Immersion

o M+l

can be written,

n-k+l '
a(X,¥) = I CHy (X),YD &y,
i=1

o

)

i

4 - 1 3 3

Hi(X) f* (prOJTM Vf £

D *::
* an) b T -
# P

From the way the normal frame was chosen 1t follows that

- 55y
Hi(x) = - prOJTMb(VXEi) I <1 < n-k

-~

v
£ (TNb)f"xgn-k+1)
* =

" B -1
Hn-—k-{—l()() i f* Lemcd

-~

-] i
i “pPOJTxb(‘* (pPOJf*(TMn;}ﬂX))

= projmy A(X) = 0.
b
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On the other hand, the vector fields

AEyyan i RE o

form a basls for (T$51 (in M),
Let Y e TVp (<=> AY = 0), then from the Codazzi

equation 1t follows
Ve hg, YD = <ALX,E3],Y> = 0,
which glves

=_ )
projTNbvxﬂgi 0 I < 1 2 n=k

and from this it follows that
projmxﬁvxgi = 0. ) - =

These relatlons prove that all the H1 vanish, or in

ther words, that f restricted to .N;_ is totally geodesic.
Q.E.D.
Rigidity. A Riemannian manifold M 1s called homo-
geneous 1f for any palr of points p,g there is an isometry
& of M such that ¢(p) = q.
A simply connected Riemannian manifold of constant curva-
ture K 1is called a space form and will be denoted by M(K).

It is well known that the space forms are homcgeneous.
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=n+1
Let M""(K) denote an n+l dimensional space form., A

Riemannian manifold M" 1s saild to be rigid in H*1(k) 1ir

for any palr of 1sometric immersions £, f of M" 1into

Mn+1(K), there is an isometry ¢ of ﬁn+l(K) such that

?‘td)of

The following result is basic:

1-6, Proposition, If the type number of an isometric

tmmersion f of M" in M™(K)(n2>3) s >3 atall

points then MR is rigid,

A simple proof is given in [12].

1-7. Proposition, Let f be an isometric immersion
. rr n+1 x 1 s
f MM in M T(X) such that H" contains no open subset

Let U, be open submanifolds which are rigid and form

sovering of MM,  Then.M" is rigid.

Proof. Consider another isometric immersion £ of MP

In M7 ~(X) and denote by fes §a the restrictions of £,

I Lo Ua respectively.

Since Ua is assumed to be rigid there is an isometry

4, of M0l k)  such that
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thus if a,8 are such that Ua(\ U, 1s non-void then

B

o @ Ty = Ygietis
at all péints of Uurﬂ.UB. This means that f(Uar\ UB} is
kept pointwise fixed by the isometry ¢;1 e ¢B. ‘

Now it 1s 'easy to show.that 1f ¢a # ¢B then f(Uara UB)
1s contained in a totally geodesic submanifold of HP*l, which
is a contradiction. '

By the connectedness of MI' 1t follows that all ¢a

must colincide with an isometry ¢, which glves

thus proving the proposition.

=y = R.E.D,

1-8. Corollary, If M" 1is a homogeneous hypersurface

n“+1(x), with scalar curvature distinet from n(n-1)K,

hen it is either rizid or contains no rigid oven submanifold,

W

Proof. The assumption on the scalar curvature excludes

the existence of volnts at which the given Iimmersion is totally

Q.E.D.
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Complexification

The complex tangent space T/#l of a manifold M 4s the

complexification of the tangent space TXM. A complex vector

field (resp. complex differential form) is defined by

assigning to each point x of M an element of T;M
#
(resp. TCKM),

Any complex vector field 2 can be written uniquely as
zZ = 2" + 12" where Z' and Z" are realvector fields. By
duality it follows that a complex differential form w ecan
be expressed uniquely as- W =hw‘ + iw", w! and w" being

real differential forms.

1-9, Proposition. Let ii_ Rg a n-2 dimensional

integrable distribution on an n-dimensional manifold P,

1 2 3. et 2Z,W be two linearly independent comnlex vector

1). Z,W and H° span Tgmp at each peint x.

[
b

(2, K1C ()P HC; [W, HEIC (NP KE

fhen there are locally defined, non-zero comoplex valued

T .

functions p,q such that:

[pZ, 1T .JEEC and [qu, HLC)1C #°,

The proof is straightforward and will be amitted.
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f M is a Riemannian manifold then the scalar product
4 > and the Riemannian connection can be extended to
complex vector fields by linearity. The same notations will
be used for these extensions.
Let Px denote a two-dimensional suﬁspace of Tan

and Z%2,W be a basis for P;. The sectional curvature of Px

is given bys

CR(ZW) W2 >
£ 2,250, W) - {2, W)*

S(Px)

as it can be easily verified.

For an isometric immersion f of M in ﬁp+l’ with
second fundamental form A, the Gauss and Codazzi equations
are valid for complex vector fields, provided A is extended

prilatl
A .|\J

by linearity.
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An n-dimensional Riemannian manifold MP, isometrically

immersed in the n+l dimensional space form MP*1(K) 1s called

P ST S P

If each point X e M0 has a deformable neighborhood then IMB

1s sald to be locally deformable in ﬁn+l(K).

It should be noticed that deformability implies local
deformanility but the converse 1s not true in general,
The following fact 1s basic and will be used without

further mention.
If M is locally deformable in MPYL(K) with n > 3

and if the scalar curvature of M!' 1s distinct from n(n-1(K)

8]
1]

|

at each point then the type nunber of any isometric lmmersion

ik in ﬁn+1(K) equals-two at all polnts,
In fact since IMn contains no rigid submanifold, in view
* provosition 1-6 the type number of any isometric immersion
MB  in ﬁn+1(K) is at: most two at all points. Let
. 3An denote the elgenvalues (not necessarily distinct)

of the second fundamental form of a given isometric immersion.

From the Gauss equation and the definition of the scalar

curvature it follows that

scal(M?) = K n(n-1) + I Ailj
1#3

which shows that the type number has to be exactly 2,
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The main objective in this section 1is to prove the

following results.

~2=1. "Theorenm, Let ‘M0 be an nfdfemnsional Riemannian

—— i —

manifold with n > 3,

havling non-zero constant scalar curvature

and being deformable in tne Euclidean space gntl, et ' f

be an isometric immersion of MD in the Egplidean space En+1.

e mwrmes

Tnen the relative gullity distreibution: ¥ of T i35

parallel on MU,
2-2, Theoremn, Let MPB be an n=-dimensionazl Riemannizan

manifold with -.n > 4 and f an isometric immersion of i

in the space forn ﬁ”+l(K), K # 0, Assume further that the

——r

g oL
scalar curvature of M is ‘constant and distinct from
n{n~1)K.
= sn+l,, : S
Then 1" 1s not deformable in M° Likl. (Eeean N

Wy

ontains an open rigid submanvfold

The proofs of these theoremo 1111 depend on several lemmas

definition is useful,

Throughout thils section i1t will be assumed that n > 3.

2-3, Let M2 be a Riemannian manifold. A loc2l 1sometric

immersion of MM in ﬁn+l(K) i8.a triple . (h,H,U) where U

e e T

is an oven orientable submanifold, n an isometric immersion of
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U in MPY1(K) and H 1is the second fundamental form

operator of h,

2-4, ‘Lemma, Let M' be an n-dimensional orientable

Riemannian manifold and f an isometric immersion of MY dn

the spnace form ﬁn+l(K)

s vt — ae——— 3

with second fundamental form A"

and nullity distribution o,

— e e D

Assume that there is an orthonormal frame

¥ %y Boisneslins

et e e o — ——

defined on M' 1in such a way that the Ei""’i > 3, form

s for ! and that for any locel isometric immersion

. —— —— —— ————

(h*, H', U) of M' in H"*1(K) (see Definition 2-3) the

equation

1) {a(x@),xp=0

o

t all points of U,

——

g

Assume further that M' 1is deformable 1n &n+l(

At e i | i i s it B Y

K).

Then the following eouations hold on M3

e o —— e —C——— | Sr—_—— ———

5y L. X,¥0'= 0, for all 4 % 3.

By

Yy = 0, for all 4y 3.

3)  AViEss

L) <vxx,\:>= @, foriall 4 > 3,




Proof, The proofs of (2), (3), (4) follow the same
pattern. They consist in showing that if some of these
equations are not verified at a pointlof ii'* then this
point is contained in an open rigid submanifold. This
contradicts the deformability of N,

Assume (?Eix,f> non-zero at a point p of M', for
some index 1, Thus it will be non-zero at all points of
an open orientable submanifold U'.-

Let h!' be an isometric immersion of U' 1in antlx)

and denote by H' its second fundamental form. Then

(B, Xy e ¥ KHYEXD -V BT XD .

i

Since (H'X,X> and H'E; are zero at all points, the

above relation can be written as
5) <H'Y,‘?Eix> = VEi<H'Y,K>- (LE;,Y1,Y> CY LY

A similar.relation holds for the restriction of A' to

From the Gauss equatlion it follows that,
; | ' 2
CHUK, XS CHIL, T - CHIX, TP = CAMK, XD CATE, YD - CA'X, YD

this together with (1) gives

6) CHUKY) = e<R'k,Y> y
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where e 1s a constant, either +1 or -1,

From (5) and (6):

((H' - eA‘)Y,VEiX> =50
or
C(H' - eA")Y,¥)> <Y,V X2 =0,
By
or

7) <CH'Y,YD = e{A'Y,¥),

Now (1), (6) and (7) show that H' = eA' and therefore
U' 1s rigid. Since M' 1is assumed to be deformadble, this

contradiction. Thus (2) 1s proved.

jav]

By (1) it results that

0 = ?E'<A'X,X> = <vE AT XD + (A‘X,inK>.

i i
Using (1), (2) and noting that A'E; vanishes, this

1tlion becomes

) = (A'[E;,X1,XD = C[E;,X1,A'KD

= ¥, X, ¥ DCY,AK) - (VB , YD ,AMKD

L

Using (2) again it follows that
<vxﬁi,y><a*x,y> = Oi s for all a3 3,

By assumption " is an n-2 dimensional distribution

which means that <A'X,Y> is never zero. Thus,
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<UXE1,Y> = 0, forfaliNissis

and (3) is proved,
The relation (4) is proved in a way similar to the proof

of (2), replacing Ei by ZX. It is sufficient to start with:

(A'Y,?Xx> = vx<nfz,x> e IR

to show that
(H' - eA')Y,¥><9,X,Y> = 0.

If the term (?xx,Y> does not vanish, U' must be rigid

which again is a contradiction. Q.E.D,

The relation (2), (3) and (1) of Lemma 2-4 have a geo-

metrical interpretation which willl be stated next.

2-5. Corollary, Let M' and f' be as in Lemma 2-4.

dimensional distribution NJE)K is integrable,

Then the n-1

f' 1into totally geodesic submanifolds of

The relations (2) and (3) of Lemma 2-4 show that

C[Ey»X],¥2 =0 1= 1,.00,D

on M', which means that [Ei,Kj belongs to of' @ X. Since
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[Ei’Ej] belorngs to ' it also belongs to &' ®X, thus showing the

Integrability.

Next consider a leaj?i§o. It will be shown that the inclusion map:

s

i:EED >M',

considered as an isometric immersion is totally geodesic. The vector
field Y may be viewed as a unit normal field to F_ in M'. Thus it

suffices to show that the covariant derivatives of Y with respect to
o A . (e
3 are orthogonal to 3o

In fact, <V%Y,Ei> and '(in,K> vanish by (3) and (%) respectively.

tangsnt vectors to

On the other hand, <$E-Y’Ei> vanishes because JJ' 1is totally geodesic
J

(see proposition 1-5) and <§7E Y,X> is zero by (2).
J
t has to be proved that the product of the

To show the last part

|

2

isometric inmersions ' anéd 1 is totally geode*ic.
let g be a unit normal field to M' with respsct to the immersion
After suitable identifications, Y and § may be viewed as normal
rs to f?of with respect to the immersion f' © i. With this in mind,
the fact that ' o i is totally gecdesic 1s equivalent to the fact that

svariant derivatives of Y and E with respect to the tangent wvactors

G

to ¥ , are orthogonal to 3 in MYL(K).
o] b o
In fact

<§'xs g) e <A‘XJX> : Os

by using (1) of Lemra (2-4).
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On the other hand
CVRELE( D = = CAYXL,ED = = (AVES XD = 0,

because A'E; = 0, : :

Furthermore
v, ¥,X> = (W, ¥,X) =0,

by (4) of Lemma 2-4,

From (3) of Lemma 2-4 it follows that
(va,Ei> = {yY,E> = 0.

Since ' 1is totally geodesic (see Proposition 1-5)

<ij5,51> = —(&'EJ,Ei'} = 0 |
V. £ X)= -(A'EJ,L}O =0

(E’EJY,Ei) = <ij¥,51> Pl <Y,ijEi> = 0.

Finally, by (2) of Lemma 2-14

('\:’FEJY,K> = <VEJY,X> = 0,

and the proof of Corollary 2-5 1s complete.
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2-6. gbrollary. Let M' and ' verify the conditions

of Lemma 2-4, for K =0 (i.e., M' is assumed to be deform-

—— -

able in the n+l dimensional Euclidean soace). -

Then the scalar curvature of M' 1is not constant.

— i —

Proof. Since the dimension of ' 1s assumed to be
n-2, the scalar curvature of M' has to be nonzero at each
point, It will be shown that the assumption of constancy of

the scalar curvature contradicts this fact,

By (1) of Lemma 2-U4 it follows that:
wil 1 2
secal M = =2<A'X,Y>°,

mich shows that i1f scal MP 1is constant so is <A'X,YD.

Hence:

i = ¥ Y. Xy = (V. B'Y X + CAYESN )9

4y 0. E1< 3 > Ei ’ 3 i ’
(2) of Lemma 2-4:

.5 (A'Y,VE X>'= (A'Y;Y><VE X,Y> = 0.
i i

the other hand:

1l

(?E_A'Y,K) (VY(A'Ei) + A[Ei,Y],K>

1

([Ei,Y],A'X> = <[E1,Y],Y>'<A'X,Y> :

since <(A'X,X)> vanishes bty (l)_of Lemma 2-4.

Therefore:




(3) <VE1A‘Y,X) = - CVE; Y OCAIKY ) .

The relations (1)', (2), (3) give
(4) (VB XY = O 1383, ausll,
since (A'X,Y) is constant, it follows that
(5) 0 = V(AT XD = (TLA'Y,XD + CATY, VXD .

Making use of (4) of Lemma (2-4) one obtains:

(A'Y,V. XD = CAYY, YD <Y,V X>= 0,
hence (5) gilves
(6) CVyA'Y,XD = 0.
On the other hand

(VXA'Y,X> = (U A'X+A? [X,¥],X> =

;_ CUGATK,X > + < [X, YT, AT KD

n

ORI, XD = (T, ATXD + (VXY,A'X> ,

Since <A'X,X> vanishes, the relation above can be

written as
(7) Ay, XD = 20X, AXD + Ty Y, AMXD
= =2V X, YXATX,Y ) .

The equations (6) and (7) give

(8) (VyX,¥) = 0 .
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The parallelism of the distribution/®X is a consequence
of Temma (2-4) and the relations (4) and (8) proved above,

Now, it follows from Proposition (1-3) and Corollary
(2-5) that M' 1is locally flat, hence its scalar curvature

is zero, which is the desired contradlction. This ends the

proof of Corollary (2-6). Q.E.D.

Remark. The proof of this Corollary shows also that

hold whether K 1s zero or not,

the relation (4) and (8)

thus the following 1s trus:

verify the conditions

2-7. Corollary. Let M', f!
of Lemma (2-4) for K # 0. In addition, assume the scalar

curvature of M' Dbeing constant.

)
Then the distribution X ®X 1is

parallel o MY,

e

Proof'. See Remark above. Q.E.D.

5-8. Corollarv. Let M', f' verify the assumptions

of Lemma 2-% for K £ 0 and assume further that the relations:

(1) (O,E;,%) = {UFE,Y>  1=3,..0m

hold at all points of M'.

Then the scalar curvature of M' 1s not constant.

- A . C
e — e et et e e

Proof. Assume the scalar curvature of M' constant.

Using Corollary (2-T7) one obtains

<Vﬁ%ﬁ>=0,

and by (1), it follows,

1 = 3,.000

| (2) <\"/XEi,X>= 0,




The Gauss equation gives:

(R(X,Ei)Ei,x) =K + <A'E1,Ei) X - (A'X,EHE,
and since A'Ei vanishes, this ylelds:
(3) <R(X,E1)E1,X> = K.

On the other hand:

(4) (ROGELIE X ) = <vvaiEi,x>- (T TyBy,X)

" CVix,Ey PBoX )

The distributions N' and X' @X _are totally geodesic
(see Proposition 1-5 and Corollary 2-5, respectively). This

ct together with (2) and (%) gives,
{R(KJE'iJE:L:x ) = OJ

by (3) implies K = 0. This 1s a contradiction since
-8 assumed non-zero and therefore the scalar curvature of
i

is not constant. Q.E.D.

9. Lemma. Let M'" Dbe an n-dimensional orientable

no

o5,

s r
|3

iemannian manifold and f£" an isometric immersion of MU

the space form ﬁn+1(x), with second fundamental form

|

o=

and relative nullity distribution X'".

Assume that Eq,...,E) is an orthonormal frame defined on

. N
M" such that the vector fields Ej,...,E, form = basis for (-
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Suppose that there are two complex vector fields Z and

W, Dbelonging to the complexification of tre vector space

spanned by ElsE such that for anv local isometric immersion

~n+l :
(h",H",U) of M" in M""(X) (see 2-3), the eouation

(1) CH"Z,u) = 0,

holds at all points of U",

Finally assume M" deformable in ﬁn+1(K).

Then the complex vector fields Vg Z’VZEi (respectively
i

have no _W-component (respectively Z-component )

i vwEi)

Proof. Denote by (VzE;)(yy ((VE4)(z)) the W-component
~-component) of Vin (resp. ?wEi).

Let p be a point of M", and assume:

(9. Fi)(W) # 0, for some 1 2 3,

noints of an open orientable manifold M"(p) contalning p.

onsider a local isometric immersion (h",H",M"(p)) of

- n
#0+l(gy  (see Definition 2-3). Since H'(E;) vanish

for all i > 3, it follows that

(%> =0 1= 3o

By covariant derivation with respect to Z, this relation

yvields:

(2) <V E; H“W) + £E;,Y H"W?> = O.




29

In view of (1) the first term of the left-hand side of

(2) can be written as
v n = I
(3) | 4 ELHWD) = (Vin)(w)<‘.-I,H"1~I>,
while for the second term

$Ey,VHMD = (E,,vH"Z + 8"[2,u])

i

ey 1
& (Ei,va Z

= <VWE1,H"Z > :

Agzin by (1) this equation becomes
(4)  <E;VHWD = ~(%Ey ) (2)<2.H"2).
The equations (2), (3), and (%) give
(5) (VZEi)(w)G‘I:Hui"j!>‘ == (vwEi)(—z)<Z:H“Z} .

On the other hand, the extension of the Gauss equation

to complex vector fields gives

CH"Z, 25", WS - (2, H"W)C

2
= (A"Z,2){A"W,WY = (Z,A")7,

&nd using (1) this gives

(6) "2, ZYHM, W) = {A"Z,2Y (AN, W) .
From (5)
' \2 g e
(7) (7,8, ) () ST = (VE; ) (i) 2, K2, )

2 o g oams,
(VZEi)(I.I)G-!,A"I'-!')" = (szi)(w){z,A ZN W, A"




which together with (6) yields

@) (VB gy L HWY — Gt amns?) <

Si
nce (?ZEi)(W) 1s assumed non-zero, it follows from (8) that

<W,H"w}2 o <W,A”w>2 =0
at all points of M"(p), which means that
(9) (HW,W) = eda"w,u),

where e 1s a constant either +1 or -1.

From (6) and (9)
(10) CH"Z,Z2) = e@"Z,2).

Finally from (1), (9) a:nd (10) it follows that
(11) ‘_ HY = plE, :

Since (11) holds for any local immersion, it follows that M'(p) is

id in ?TTLﬂH(K), which contradicts the deformability of M". Thus

(VB jy vanishes at p. Since the above proof is symmetric in Z,W
ds BT kT'e‘-. T

VE i S - vanishes on M".
results that (VWE_]'_)(Z) atse

he W-component
Next, denote by (VEiZ)(w) (Resp. (VEiW)(Z)) the mponent

4.

let p be a point of M and suppose:



for some 1 > 3 and at al}l points of an open oi’ientable submanifold

M"(p) containing p.

Consider a local isometric immersion (h",H" M (p)) .

By covariant derivation with respect to E;, of both sides of the
relation (1),

(12) <LV z2,HW) +42,v H'W) = 0'
By By

In view of (1), the first term of the left-hand side of (12) becomes
(13) g 2= (5 2) A

By (1) and the fact that H"(E;) is zero, the second term has the

form

(14) (z,inH"w>'= {z,H"[E;{,W]) 7

1"z, [E, W) = <H'"z,z)'((inm(z) - (NED (z))>

ince (V. E.) vanishes, as it was shown above, the relation (14)
SRR AR

simplifies to
(15) <z,inH"w)= (inw)(Z)@"z,z)

The relations (12}, (13), and (15) give

n W) <H”Z,Z>: 0
(16) (VEiZ)(w)‘(H W,W )+ WEi (2)

and of course

TG T 7. W) (AI'Z:Z>$O
(17) (inz)(w)@ w2t (g (z)
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By the same argument used before, it can be concluded from (17)
that M'(p) 1s rigid, which contradicts the deformability of If*
Hence the proof of Lemma 2-9 is complete,
- QELD;

2-10. Corollary. Assume the manifold M", the immersion " and

the vector fields Z, W satisfy the conditions of Lemma 2-9.

Then the following conclusions hold:

a) for X#0 and n> Y, the scalar curvature of M" camnot

be constant.

b) for K=0 and M" with constant scalar curvature, the relative

nullity distribution J'" of " is parallel on W".

b

Proof. From Lemma 2-9 it follows that

(1) [Z,Ei](w) = [w,Ei](Z) = q 1=3,...,0
Consider a point p e M". From (1) and Proposition (1-9) there

s ined in a neigh-
are two non-vanishing complex valued functions a,B defined in a g

: i . 1 Tt
borticod of p, in such a way that the new complex vector fields Z',W
LOPNOoa o py '

defined by

(2) 7' = ag, W' = B,

have the propristy

K
1 = I as

(3) (2" 5,1 = L, 15k

' = b, ?

IW,E ) L EEK
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e K
Ty By ap :
where 38j, Oj @&re complex valued functions defined in a neighborhood

of P-

Furthermore, by Propositiong (1-5) and (1-9) ‘e Frams El i
may be assumed as verifying n
i k=3 J J Eki

noJ

where the functions :{k are part of a suitable coordinate system of M"
at p. Finally, it is possible to assume the existence of an open orient-
able submanifold M"(p), containing p and such that (3) and (%) hold
at all of its points. |

It follows from (2) that M'(p) and the vector field Z',W' verify

the assumption of Lemma (2-9). Hence
=4 = 1 = 0
(5) (vZ’Ei)(W') (inZ )_(W') : 2

- (%'Ei)éZ') ;(inwl)(Z') = 0.

; 2 ojone to X" and (Z',E,Y> vanish
On the other hand, since VEj_Ej bejong to A" an < ! :

1t follows that

1]

(6) % 2! (VE:-LZH)(Z')Z' >
i

W
in

1t

( inw ) (w )T:J‘ ;

at each point of M"(p). e
ental form O £
Recalling that A" denotes the second pundamental

&y be written:
. : 1 b CANZE Y, Z') ’
oy Gz ST
3t
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for all 1 > 3, on M"(p),
- Next.- 18- will be shown tnatisic: pieepuis NS right
hand side of (7) vanishes, I

In fact

v 7y ] = ™
< EiA A <E BTe i A"(E;,2'],2> = 0,

as a consequence of (3).

For the second term, the relations (6) yield

(8) <£AnZY V., 2') = (Ve 2") (A"Z',Z")

Ei 3 (Z')

Combining (7) and (8) it follows that

(9) CAMZY, B = AV Z') (g1)CA"E! 212,

v
Ey B,

and a similar relation holds for W'

(10) v, <A™, WD = (g W )<A"w',1-:'>_.

i i

are also a consequence

Furthermore the relations below

of (6)
' A
(11) v <z',2% = 207 8')(g0)SEs 25
Ey N
' We,wy o,
v <wt’1|.‘n> = 2(?E W )(W')<
Ei 3 ?
| : o WO L OSBRSS,
vE (Z‘,N') = ((inz )(Zu) Ei (')
i ;
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for 211 1 2 3 and all points of M" (p).,

The scalar curvature of MM(p) at each point i% given by

(12 scal(M"(p)) = n(T‘-l)K + 2( Zr LD { Aty 11)
¢A Z')(W' W') (Z‘ wr)? P

Since scal(i"(p)) 1s constant, it follows from (12)

(13) (£2° .Z'><w',‘»'!'>-<Z'-,w'>2) ﬁE ((A"Z',Z‘) <p."wf,w'>)
; : _1 ? ¥

= ¥ (CZY 2D U WD =C2 W D2) (AT, 2% CAMHY 1D,
"

From (9), (10),; (11), (13)

' T zl'Zi><w|’1,.“)_(21’:‘\“)2) .
LI8) G 2 )(z,)+(inw )cw'))K :

i

P CANZY 2 A YD = 2((v & (z-)+WE wt)(w')) '

1 i

LS D = (2 HORIATET LD KA HED

1 =40
(15) VA EOE (0, L) s x
'«"5} ch )(Z ) Ei (1!'1' )

(8]

the Gauss equation glves

(16) R(Z',Ei)Ei
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By the definition of curvature

R(Z',E =

i

Using (4) it may be written

(18) v E = £ AE
E, 1 1A

and by covariant differentiation of (18) with respect to 2°',

. : Y= 5 (V.E + 2030
(19) %, (7, B) = FEEE S

= ¢ o7 zv) & WIZNLE T ¥ z'(AJ)EJ).
j#i EJ J

From (3), (6) and (19) it follows that
(20) [v 'WE E ):] = E AJ(vE z')(Z') s
‘ 1 L J
énd also

J W)
= ¥ X (VE !
(21) [v"“(inEi)](w') 71 3 (W)

The 2 -conponent Of Ve {vz‘bi

i 2
. ') 3
Lie v 2h) ) ((vs ; z'))
(22) [(vE WZ'Ei)](zu) = Ei [( (zt)] 1 (
i




g

In fact,

@) VR Vg2 g,

py covariant differentiation of (23) and by (3) it follows

(24) -__VE (V. By )>(z') -(vEnglz ))@') ;

by (6), the right-hand side of (2U) may be written,

2 v.(v. 2 = v (o),
hE £ 52 @) El( By =S )(z')

5 y > 2
= ( ' Ve

which proves (22). _
: W -comonoms

using (17), (20) and (22) 1

Tne same felation holds for the
Taking the 2'-corponents In (16) and

follows that

e

- - 2 (Vg Z) ((v (Z‘) =
{?D) N lj(? 71) ; )

j#1 Ej (z')
, and using (15), we obtain

-II '
\dding (26) to its analog for W
= —21{,

Lyt 2
(21) chizwfz.) + g W)

and again by (15),

(28) (v Z')(Z) (V wf)(ut

-
Lo - o sow s —pUEERER IS S LU RSl T At
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From (26) and (28) it follows

Jtw o
(29) 2 A(% 200 m0 SR

and from (4),(18) and (28) we get respectively
j X
(30) M =Fx (Vg 2" )2y = VR, ja3
J .
The relations (29), (30) and (31) show that if n >4, then

K = 0, hence proving the statement (a) by contradiction.

In the case K = 0, (3) and (28) prove (b).
Q.E.D.

2-11, Prcof of Theorem 2-1. Iet Py be a given point in i and

consider an open neighborhocd Uo of p, on which there is an ortho-

El’EQ’ i i ’En’
In such a way that F......E_ 1s a basis for N and
W '—'33 » 3 Pl
(1) Vg By = 0, 1. 2 -
i

e - _5) and the
tis is possible in view of Propositions (220 2

i ce
immersed in the Euclidean spa

fc = 1 . i 5 > ]
2ct that M™ ig isometrically

En+l
8 o 1dS

of Uy it BO
For any 1ocal isometric immersion (h'H'UO) :

= i = Jgeeerts
(2) iz, 8,050, = G
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on Uy This relation and the Codazgs equatiOns
yield

3] <V, E, EY<HE,,E
F. ™53 » > [<V E

-<% Ei,E1>/‘{El,E > 0,

for 811 % % '8 a£ all points of‘ U{'J.

The equation (2) will be used to define locally vector fields
satisfying either the conditions of Lemma 2-4 or 2-9. Since this in-
volves several discussions, it is cox;lvenient to consider the folior.-mwg

subset of U_,
0

P: Set of the points q of Uo such that

(Y E;1Ep) = E;,Ep)
o 1 a 2 q
L&

rfv ]:I E > <'V El’E2> 3 Ol = 3,..-,]3&

This set has the following propelety:

. : Ay s1lel at any point
(5) The relative nullity distriputioncl 1s parallel 20

| O
1=,

f the interdor of P. |
I i sible to
In fact, consider a point Q € IntP, leccally it is pos
t
X,Y, such tha

replace Eq,E,

by unit vector fields
(6) <X,Y> = D’ <szy> = O’
~zero €l
°L & neighborhood of 4y provided the non-=2z€r
- Are distinct. A direct computation_giv

j genvalues of Iq

ess e



(1) <VyE{s¥D = <VyE XY= 0
{948, Xy = VB, ¥

for all 1> 3 and at all points of a neighborhood of 9

From and the constancy of the scalar curvature

3

(8) ‘in[@x,X}{EY,Y)J =@ disig e

or

[in< X, O KEY, ¥ +<Kx,x)-[vEfIY,Y)] = 0.

On the other hand

(9) in( B, X) =4 inKx,xy +{ Kx,inx> =

ALE; ,X1,X) +{ X, XD e
! i '

n

CLE, X1, XK, X = ~4yE; IXEGE)

in( AY,Y) = -{VYEi,YX}i._Y,Y> .

(9), and (10) B1V®

relations (8),

=
=
W

T ;’-‘Y v =0
1) KYE, X + {VyE; 1] (R OLRYLY = 5

- Wideh by (7) gives

= Al A2 3%
(12) {v,E, ,X) = {VyB;70 = 0 2

T
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Next assume that the non-zero ef
genvalues of % .
Oincide,

1f they coincide in a neighborhoog of g,

it is possihle to

sind vector fields X,Y satisfying (6) ang therefere pogsin]
e

Finally assume that the non~-zero elgenvalues coincide at

g, but each neighborhood of q contains a point at which they

are distinct. A simple continuity argument shows that
— 7
this case/l is also parallel at g,

in

On the other hand

(13) The dis‘tribution&f_i_s parallel at any point of U -P.

To show this, consider a point qeU - P, this means that

for some index i0 23 the numbers

4 Vv . V.. B, E.) "'<V E, 3E> ’<VE Ei'El) ’
(14) < ElElo,Ez)q,< 5, BB Ve el

are not simaltaneously 2zero.

i i U,e
For any i a3, let a1 genote the function on

.. : v E v E /Ep
(15) __{.\l___[(vE E B > <VE Ei’E§ + 4( Ei’ Q o
3>

ted in the
— can be indica
The distinct casesto be discussed

t0llowi ng way:

i
0
a °(g)#0 100, on & sbhd. of &

alV¥. m, 2% 40
El 10’ 2>fl

i Any
A o ).""-0 int a
(or <VE2E10,E]> q?(o (a a po
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! ,
Aq'? =0
[ The functions
p) €9 oED o VB, E
By 220 &8 ‘Ei’Q)’(vEJE>:
L 9 1 19 £ L :
- 10 .-
<.VE2E 4 ,El‘)q =0 | A FO 1 both vanish on a neighborhood of g,
0 :
: 4] Any neighborhcod of q contains a
point at which either one of
4.5 E) o B EG
E:1 : gk E2 i, 1:
| is non-zero ab this pciint.

==

1

The proof of (13) consists in showing the parallelism of o/ in

each of the cases above.

i
o}
a) Assume <VE Ei ,E? s A non-zero at all oo
i e -

borhood Vq of 4.

In view of the assumption

ints of a neizn-

e o i uation
made 2bove, the quadrat_c eql

. By G S e S =
2 B - LY E-:E>]x 4E 3y 2l
(16) {VE Ei ,E2 x - [<VE1EiOJ > _ E2 lO 2 2“0
1 "o )
L such that
defines two complex valued g - PUACEIOR 2P+
: 26 }
(17) GR= = (?"‘E"JTEZ)
e
and E.D )
LA By st }
(18 o + = E. ’E
) + B = <\?El i 2)

efined ©
1d__Z: W on Vq g 2 .}’

. fie
Consider the comoleX vector



43

aEl + E2

BEl + E

Z

I

w .

i}

2

they are 1linearly independent at each point, since o and B8

are distinc¢t (at each point).
Let

(h,H,U) be any local isometric immersion of V
n+l ' '

in E s then

{HZ,W ) = aB<HE, B D + (a4p }XHE,,E,> + <HE,,E)

Sa 1 % 5 -
o}

3]

]

a <V1;12E10,E2>] <HE]_1E2> = <VE2EiO'El) <HE11E1>]
which 1s zero in view of (3). Thus 2,W satisfy the con-

ditlons of Lemma (2-9) and therefore by part b) of Corollary

(2-10), the distribution X it parallel on the neighborhood

The next case to be analyzed is that of

(19) :\7.? E. ,E >4‘ 0,
L9 lO 2
1o
in a neighborhood V of q and A vanishing at all

a
Points or v

In this case the functions «,B coincide at each point
And the vector field
aB, + E
AL 2
X= 9
N

maaicr e a2 i .
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satisfies the conditions of Lemma (2-4), therefore Corollary

(2-6) shows that this case cannot occur.

The parallelsim. of N 1ip the last subcase of a) is

Proved by using the reasoning of the proof of the first sub-

case and a simple continuity argument,

b) The first subcase cannot occur, for otherwise all

TR TP L ST Tl -

functions listed in (14) would vanish at q. : .;

Hence to study the next case 1t may be assumed that on
a nelghborhood Vq of q, the functions (VE Ey ,Eéh
l o
V. E LED vanish, while A °® 15 neven zero, Using again
Eg 10’ 1 : ‘

(3), 1t follows

[(vE E, E) - <VE E, .Ezf>] CHE|,E,D =0,
1 o &le =

wihich shows that the vector fields El’E satisfy the con-

2
ditions of Lemma (é—9), and again, by Corollary (2-10), the
parallelsim of < 1is established in Vq'
Finally, the last case of b) can be related to the first
L J s :

case of a) and as before, a continulty argument proves the

Parallelsim of X at q, 1in this case;_

: - 11
From (5) and (13) it follows that <X 1s parallel at a

. Since this point can
Points of Uo’ and particularly at PO

7, llel every-
be arbitrarily chosen, it follows that <X is para

WhEPe -

: o is pI“OVEd.
Thus Theoren (2-1) Q.E.D.
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2-12, Proof QgﬁTheo;em-gzg. This proof presents a

great analoéy with the one given in (2-11), As before, let

P, be an arbitrarily chosen point of MM ang U, be a neigh-

borhood of it on which there are

(1) A coordinate system, x',...,%®
(2)  An orthonormal frame Ei’EQ"°”En’ such that the

vectors E3,...,En form a basis of the relative nullity dis-

—rr—

tribution o, and satisfying
(aizk =5 =)E_,
] e

Agaln; Propoéition (1-2) a;iows to make these assumptions,.

Sincelthe space ﬁn+l(K) has constant curvature, the_
uation (3) of (2-10) holds in the preéent situation,

Furthe}, the set P 1is defined exactly the same way,

but i1ts proprTeties are drastically different in face of the

mption K # 0,

o

In this case the following holds

(4) The set P has no interior points.

e meem
[

! I t used -
First it should be noted that by the same argument us
irst

- =

°n the other hand:

-

(5) <R(K,Ei)zi§i>- X,

e ¢ vect field. ortnogonal to the E,.
Yhere ¥ 15 an unit vector .




On the other hang, the paralleleinion SN Lnq ot E
ac

that 1ts leaves are totally geodesic implies that
) e a

(6)  {R(X,EDE XY= o,

The relatlons (5) and (6) are contradicfofy, therefore

(4) is proved,

Next 1t will be shown that;

£7) Uo ~ P has no interior voints. This can be proved
by a.-s.eries of discussions that follow the sa.;ue pattern of
a) and b) of (2-11), and using the first part of the conclusions
of Corollary (2-10).

Iin order to eliminate the case,

(8) <vE E, JEp) £ 0,
1 o q

i | n | e further informz-
A ° =0, on aneighborhood of g, som

L. SR ry
ilon 1s needed,.

there is an orthonormal frame XX

As in (19) of (2-11),

;| : which is orthogonal to
Gefined 1n a neighborﬂood Vq of a,

the distribution N and satisfies

(9) <HK,Xx>=0, E
T e

h,H,U)
for.any local isometric ymmerslon (h,H, a

From,
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v E ¢ ‘ !
: 10,Y? HY,Y)-+£<?XEio,x>-(vYEi Y] (HX, YD
. (o}

- <VYE10,X>(HX,X) =0,

and (9) 1t follows

(10) <vy2, vue, vy + [T By 200 GyEy 10 Gk, 1= 0

If 4(?in +Y¥) is non-zero at all pointé of some open
0
subset V" (C Vq, the relations (9) and (10), with the Gauss
equation imply the rigidity of V"; which is. a contradiction.

Thus

A1) - e Yy =0,

at all points of Vq. ;
In order to complete the discussion, Corollary (2-8)

will be applied, but it requires that
1 =0
(12) CVyE3 XY =L VB, 1D

' o Vo,
for all indices 1 > 3, -and for all points :

The last relations are a consequence of

|
=
i
o
-

(13) =<V E,12= 0

for all 1 >3; on Vq'
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Proof of (13). Con-taorier: linear system ;

14 -
(14) <VXE1,Y) Bl o [<vin_,x>-<vYEi,Y>Ja2 =0

For any local isometric immersion (h,H,U0), H¢ 1s known

that

8y ={HY, Y5 a, =C(HX,Y ),

is a solution of (14) (see (30-(2-11), )
If at some point of Vq the matrix of (14) had rank
greater than one, this system'together with (9) and the Gauss

equation would imply the existence of an open rigid submanifold

v therefore contradicting the deformability of i?

q’
Thus the rank is less than 2 at every point.

ot ———— e —— T——

Now (13) follows from this fact and from (8), (11).
Therefore Corollary (2-8) leads to another contradiction,

showlng that;this case cannot occur, and (7) is proved.
The conclusions (4) and (7) are obviously ‘ncenEatib e

= wntleq

This proves that 11 is not deformable 1in M (K).

QchDo
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3.

Theorem (2-1) in spite of being local, has an interesting
global consequence,

3-1. Theoren.

Let Mn, n > 3% be a complete Riemannian

manitold, with non-zero constant scalar curvature and bein

g9

o

)

;oeg&l& deformable in En+1.

Then un 15 isometric to the Riemannian product

82 X En-—2

——

f a two-dimensional sphere by a. n-2 dimensicnal

Fuclidean space.

e

Proof: Let f be an isoﬁetric immersion of MY d4n

"1 Brom the local deformability of M and from the

fact that the scalar curvatufe 1é non-zero it follows that

the type number of f 1s two everywnere.

Let d{ube the relative nullity distribution of :

‘ ! £ o

By Theorem (2-1) it follows that N is parallel on i
(since 1t is parallel on 2 nelghborhood of each point). Thus.

~

: an ks s the decomposition
the universal covering M~ of " ha _

(1) MR =

by de Rham's theorem.

. M - duc—b—. .
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Under these circumstances, it fol1o

: : WS from a result of
S. Alexander [1] that un

‘itself Is isometric to a
Riemannian product

(2) ~ m" = y2 Ene.

amd £  immerses M2 isometrically in a 3-dimensional
Buiclidean space,

It follows from (2) that the curvature of M2 equals the

8eaiar curvature of Mn and 1s therefore censtant,

It follows from (2) that 42 1is complete, By a well-
kriown theorem of Hilbert, the curvature of M2 is positive,

and therefore isometric to a sphere (see [7]).

- Q.E.D.

- r ]
3-2. Theorem. Let MU be a homogeneous Riemannian

manifold, having an lgometrig imnersion f in the Euclidean

e e e e e, i

rn*l  sueh that its type number is two everywhere.

&= ? ——— ———

Riemannian product of a
Then M7 is isometric to the Riema : of a

N e #8

M s A

2-sphere by a n-2 plane.

" compact and the proof for
Proof. For n =2, M 18

this case is given in [7].

¥ ‘ 3
n> 3. Since M is homogeneous, by

Next assume .
follows that the only possibilities to
(o) !

Proposition (1-7) it

be discussed are
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1 Tl
(1) M= 45 locally deformable

(2) Mn 15' rigid,

From Theorer = : . -
ren (3-1) 1t follows that in case (1) M 4

isometric to 82 x En—E‘

S

Tc prove (2) the following result of K. Nomlzu and B.

Smyth {10} is used:

"Let M be a complete Riemannian manifold of dimension

n with non-negative sectional curvature.

' ¥
Let ¢:M » ER 1 be an isometric Immersion with constant
mean curvature.

If the trace of A2 1s constant, then M' 1s isometric

to S2 X Enﬂg"
Next i1t will be shown that M and f satisfy the con-

ditions of thils theoremn.

Let U be an open, orlentable submanifold of M" and

denote by A a second fundamental form of £ on U.

Tt 1s well-known (s€e [12]) that there are n continuous

functions on U:
Al?_ }L22’ ,-.-v-.J?_ ’\n.l

‘vvsd (p) are the
such that at each point P e U, ll(po)’ 2 n(‘ -

eigenvalues of AD'

ik sunctions are constant. By a
Since MP 1s rig

id, theot.
t most two of them can be distinct
at r :

theorem of E. Cartan (31,



at each point, op the other

hand, these are two non-zero

elgenvalues 2A_ .2 ;
1?%5s and n-2 2 1, whieh vanish, Thus 2

1
5 must colncide at €ach point,

and A

This means that

1

tra?: = 215 = constant,

I
1t

tra 211 constant,

and 1t 1s also clear that all sectional curvatures are non-

Thus the above mentioned result gives the‘proof in

case (2). Q E D

Regarding hypersurfaces of spaces on constant curvature,

Theorem (2-2) gives

~n+l
3-~3. Theorem., A hypersurface of M

e

(K), K # 0,

scalar curvaturé distinet from n(n-1)X, is

having constant

B T .

rigid, or that n 2 H.

n a hypersurface and consider
Proof, Let M7? be such y

el s d fundamental
t\‘.’o iSOTlE:t"‘W'C im_mersions f’ f’ With Se‘COI'l T

some orientable open submanifold of
d on €

forms A, K define

H

M7
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the assumption on the scalar curvature implies that A

and A have rank a0 everywhere,

Let U be the subset of consisting of those points

which are contained in some rigid open neighborhood (this
neighborhood may depend on the point ).,

It follows from Theorem (2-2) that M- U has no in-
terior points, i.e., that U is dense in M2, Since U
is covered by open rigid submanifolds, it follows that
each connected component of U is rigid., Let p be a2 point of
M2 and V an orientable neighborhood of p. It will be shown
that there is a function e(q) defined on V, assuming only

the values +1 or -1, and such that

1 E =e(qg) A, forall qgeV.
q

In fact, if q¢eU, this follows from the rigidity of
ench component. On the other hend, if q$U, it can be
approximated by points on which (1) holds, and by continuity
4 follows that (1) holds at q. Again the continuity of A

% o . Since V is assumed
and A give the continuity of e

connected, e mst be constant. But this means that V is
at M* cam be covered by rigid

y of M*  itself.
Q.E.D.

vigid, This argument shows th

. 1 ipplies the rigidit
neighborhoods, which implies
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