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Introduction ------..----

In [7] s . Kobayashi proved that the onl y compact homo­

geneous hypersurfaces of an Euclidean space are the spheres . 

This result was extended by T. Nagano and T. Takahashi 

([ 9] ) who proved that if a homogeneous Riemannian manifold has 

ctn l sometric immersion . in a_n Euclidean space of one diemnsion 
. .. .. ..... . . 

gr•(:"!:1.te r and such that' the· rank, o.f .tne . second fundamental forr.1 
• . • • .. ·! · ' t •.;, ;, . 

J ~ distinct frol71 two a~ s ~m~· ~-o~nt\/ t'hen it is isometric to 

the Riemannian product of a spriere by an Euclidean space. 

Th~ or iginal purpose of this paper was to show that this 

-•::i.c t remains true without the restriction on the second 
--

i",mdamen tal form. --
In both [7] and [ 9 J. the concept of rigidity has an im-

port a nt role. In fact if Mn i s assumed rigi d (see prelim­

inaries ), the theorem is a·n irrunedia te consequence of results 

or E. Cartan [ 3 J and K. Nomi zu and B. Smith [10I. 
,• 

For a homogeneous hypersurface of an Euclidean space , 

having non-zero constant scalar curvature , there are onl y two 

possibilities a priori; it is either rigid or contains no 

rigid open submanifold (see Corollary (l-8)) . 

The main result of this paper (Theorem 3- 1) is that a 

hypersurface of an Euclidean space , havin~ non- zero constant 

scalar curvature and c9ntaining no open rigid s ubmanifold , i s 
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isometric to the product of a two dimensional sphere and an 

Euclidean space. This result with the remarks made above 

gives a proof of Nagano and Takahashi's theorem in the most 

general case o 

·The proofs contained in this paper rely heavily on methods 

.o.e ve}oped b y Eo Cartan [2] ands. Dolbeaut Lemoine [5]. 

Fin a. l ly 5 using very similar argunents, the following 

'l. s ::, . o v ed . 

If Mn is a hypersurface of a space form ~n+l(K), n > ~. 

ha· i ng cons t a nt scalar curvature and an isometric immersion 

wJ ~h type number greater than one at all points, then Mn is 

· 1 g i d , 



1. Preliminaries 

All manifolds and maps considered in this wor k will be 

assumed of class c~ . 
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Let be an n- dimensional Riemannian manifold . 

t angent space at a point p wi l l be denoted by· T Mn p 

Its 

a nd t he 

scaldr product given by . the Riemannian structure by < J > • 

F'o l lowing [8], V wi l l be the covariant derivation of 

An r-dimensional C~ distribution 1-{ is said to be 

pc ea lle i at a point p e: ~1n if for any vector field X be-

and any tangent vector yp e: T I-1n it hol ds 
p ' -

1·,ng i ng to i{ 

·--
( Vy X) 

p p 
e: ~ • p 

If thi s holds at a l l points p then ft is said to be 

paral lel on Mn. 
I 

On t he other hand -there is the notion of parallel t ransla-

cion of a ve ctor along a path (see [8]) . 

The f ollowing proposition relates these two concepts . 

1-1. Prooosition. An r-qime.,n_sional distribution -fl is 

if and onl y if oarallel translate of a vector - - __ .., __ - ..__ _ _...,__.___ - - -
Yp e: -JR.p alo~g_ at]1. ~~l.1.. ~till belon9.;s to it,p. 

For details see [ l] and [83 . 



By means of t~e operator 

M.11. can be expressed as 

V, the curvature tensor of 

V Z. 
[X,YJ 

where X~Y,Z are vector fields on Mn. 

The sectional curvature of the subspace 

s panned by t he vectors X,Y is 

S (TT) 
(R(X,Y)Y , X) 

= ------"-·=·---
(X ,X)<Y, Y)-{J{, Y>2 

A Riem~nnian manifold Mn has constant 

i•nd only if 

R(X,Y)Z = K (<Y ' z>x_ - <X ' z>Y) ' 

1·or all vectors X,Y,Z, and at all points of 

I f x1 ? ... . , xn is an orthonormal basis of 

scalar curva ture of Mn at p is given by 

s cal(Vin) = i S(TT ) ) 
ifj ij 

n of 

curvature 

"'ln • • 

T Mn 
p then 

(see [8]) 
~ 

where TI denotes the plane in T Mn p· spanned by xi, 
ij 

K, 

the 

xJ . 

1-2. ~ ~ £!_.an ~ dimensional 

if 

1nvol~,1 ve distribution on Mn , ·· ~ that each leaf !!_~ constant 

' • . , i . 
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curvature with respect to the Riernannian metric induced by 

rfl. 

Then f::?.E. each poi!!,~ p £ Mn it is possibl~ to find a 

coordinate system, ----. 
1 n 

X ,, •• ,x n 
~ M • defined around p in 

such a way that the vectors -----------· ~/axj, j > r, form a basis for 

and f urthermore 

{ i), 
2 

. (
1 + K ( i: ( x ~-) 2 )' 

'If k>r I 

Indication of the Proof: Around 

o ij, i ,j > r. 

y1; ~•• ,~n such that the vector fields 

p, there are coordinates 

a;ayr+l, a;ayn form 

1.:- r:i a s is of ~ at each poi~t. It may be assumed that y1 (p) 

These coordinates give a diffeo~orphism of a neighborhood 

or p in onto an open subset of containing the 

orlgin. If the f irst neighborh ood is conveniently small it 

d i f th f Ur x un-r, may be a ss ~~ed that the secon so e orm 

whe re ur and un-r ·are =open neighborhoods of the origin in 

Rr and Rn-r respectively . 

Cons ider the functions 

(i) g (y l Yr vr+l ·yn) -(2- 2-.,. i j > r. 
ij , •.. , ,~ , ••. , - ayi, ay~/, , 

For each point of they define a 

Riemannian metric on un-r, and ·it follows from the assumption 

made on the leaves of ~ that thi-s metric has constant curva-

ture K. 
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On the other hand the metric given by 

(2) i,j > r, 

has the same constant curvature . 

The functions defining this diffoernorphism are solutions 

of a system of first order differential equations whose co­

efftcie nt s involve the gi j . and their derivatives. Hence 

ttis solution depends differentiably on the y 1 ••• yr . 

With this in mind, the coordinates r+l n 
y , • • • ,Y can 

t,e replaced by new function-s r+l n 
X ,• • • 1 X , such that (i) holds. 

- Q.E. D. 
-

-·· - · -

Remark. Let Ei be the vector fields, --· 

(1 . )2 a 
Ei = + K t (xk) 2 , 1 > r 

!j k>r ax1 

and ass ume that the leaves of ~ are totally geodesic sub-

manifolds of 

basis and 

= K t 
2 k>r 

then the vectors form an orthonor~al 

i , j > r . 

The next fact is the· local part of a De Rham's theorem 

and can be found in [8]. 
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1-3. Proposition. Let ft be 2:, non-trivial parallel 

distribution on M0 and R 1 its orthogonal £2~~e~. Then 

~ point p of Mn h~ ~!!. 2pen· neir;hborhood V x V.t • where 

V and v·1 ~ ~ submanifolds of the leaves of -/1.~ ·f(} 

respectively, and the Riemannian metric on V x V' is the 
_... __ ... _ ... _ _ ~·- - - -- - - -

dire c t oroduct of the metrics of V and V' • 
.:.:---., •-> --- -- -----

Isometri c Immersions 

Let and ;;n+r 
•'l be Riemannian manifolds of dimensions 

n a nd n + r respe~tively. A differentiable map 

L., a n isometric inunersion if for each p £ _Mn, the differential 

f is a scalar product preserving isomorphisn between 

and a subspace of 

Consider two vector fields X,Y defined in some neigh-

borhood o f a point p £ Mn . Since f is locally a diffeo-

morphi sm , it is possible to consider the vector fields 

f* X
3

f *Y on some submanifold of Mn+r. 

If v, ij denote the covariant derivations of Mn and in+r 

resp ective ly, then 

,_. 
vf~X(f*Y) = f*(VXY) + a(X,Y), 

h (X Y) b 1 t th ~h 1 1 t ~ f*(T.~in) were a , e ongs o e or~ ogona comp ernen O! 

in ·TMn+r (see [l],[8]) . 
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When a vanishes at a point p , t he i mmersion f i s 

said to be t otally geodes ic at this point . If this holds for 

all points, f is called total l y geodesic . 

I n case r = 1 , Mn is usually called a hypersurf ace of 

M""n+l 
l o Denet~ by t a local unit normal field to Mn i n 

;n+l then 
. 'I !) 

a(X,Y) = (AX,Y) ~, . 

where A i s the s ymmetric operator of Tr1n given by 1 

From now on the operator A will be called the second 

j tndamental form of f with respect to t . 

The rank of A at a point p i s call ed the type number 

of f at th is point and is com.rnonly denoted by t (p) . 

If the ~ number of f is 

then the kernel of 

~ R(X , Y) :{(X , Y) , for all 

A 
p 

i s 

Y E: T Mn} p J 

-R and R denotincr the curva ture tensors of Mn and Mn+l 
-~ .. ~~-.. -Y- ___ ..,_,_...__ ----

resoec tive ly . For a proof of this fact see [12] . -.......__, ___ ____ 
The following equa tions are basic in the s t udy of hyper­

surfaces : 



R(X, Y)Z = pro jT~ (R(X, Y)Z)+ /_AY, Z)AX - ( AX, z)AY 

projTII\> (R(X, Y) t;) = 'vx(AY) - v'y(AX) - :A [x, Y], 
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· where R, R denote the curvature tensors of Hn and Mn+ l 

respectively, ~ being a local unit normal field and A the 

second fundamental form·or f with respect to ;. 

These r e lations are known as Gauss and Codaizi equations 

res_pe cti ve ly. 

If Mn+l has constant curvature , the Codazzi equation 

becomes 

For de t a ils, see [l], [7] , [10] , 

1-5. ~~opositi~~ • Let f _. bean isometric immersion 

in ;;1n+l . , such~ its t~ number is constant and 

f; r>e ater_: t~~..!2 ~. 

If Mn+l has constant curvature then the nullity distri-

but i on JI of f 

~d~_i c both i n 

is integrable and its leaves are totally -------
:'itn and Mn+ 1 • 

Proof . The integrability of d{ follows from Proposition 

(l-4) and [ 6 ] . 

Next it will be shown that the restriction of f to eac~ 

leaf of Jf is a totalJ.y ~eodesic i:n.'71ersion . 
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Let k be the dimension of 1.X and consider an ortho­

normal frame field, 

in such a way that the first n-k vectors are orthogonal to 

a given leaf, 

Mn in Mn+l. 
Jf. ' p 

The bilinear form 

can be written, 

f:W p 

n-k+l 
a(X,Y) = E 

whe re 

.1.or any X £ TJ/' • 
p 

i=l 

and is orthoeonal to 

a(X,Y) defined by the imCTersion 

From the way the normal frame was chosen it follo~s that 

1 < i < n-k 

Hn-k+l(X) = -r- 1 (proj V c: ) * f . (TX )f x~n-k+l 

= projT~ A(X) = O. 
p 

* p * 



On the other hand, the vector fields 

form a basis for (T/)1 (in Mn). 

Let Y £ ~V (<=> AY = O), then from the Codazzi 
p 

equation it fo1lows 

which gives 

proj ,r 'v AE;,i = 0 
~"ip X 

and from this it follows that 

l < 1 < n-k 
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These relations prove that all the H
1 

vanish, or in 

other v10rds, that f restricted to J('p . is totally geodesic. 

Q.E.D. 

A Riemannian manifold M is called homo­

gene ous if for any pair of points p,g there is an isometry 

~ of M such that ~(p) = q. 

A simply connected Riemannian manifold of constant curva-

ture K 1s called a space form and wilf be den~ted by i(K). 

It is well knoi•:n· that the space forms are homcgeneous. 
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Let Mn+l(K) denote an n+l dimensional space form. A 

Riemannian manifold Mn is sa_id to be rigid in Mn+l (K) if 

for any pair of isometric immersions f, f of Mn into 

Mn+l(K) , there is an isometry $ of Mn+l(K) such that 

~ 
f=4>of 

The following result is basic : 

1-6. Prooos i tion . 
~~s 

If the type number of~ isometric 

immersion f of Mn in Mn+l(K)(n > 3) is > 3 at all 

poi n~§. then Mn is rigid. 

A simple proof is given in [12] . 

1-7 . Proposition. --c.-•-·------- Let f be an isometric immersion 

such that · Mn contains no onen subset -- --- ---- - -·- - --
on whi ch 

Let U0 be 9E~ subP.tanifolds !•rhich are r!_gid 2nd form 

Proof. 
.. 

Consider another isometric immersion f of Mn --- -and denote by fa, fa the restrictions of f, 

-f to U 
0. 

respectively. 

Si nce Ua is assumed to be rigid there is an isometry 

$a of Mn+l(K) such that 
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thus if c,.,._6 are such that Ua ~ u
6 

is non-void then 

at a·ll points of This means that f(UaA u6 ) is 

kept pointwise fixed by the isometry ,,,-1 "' ,.,a • ,.,s. 
Now it is ·easy to show.that if 4>a 'I- <t> 6 then f(Ua 0 u6 ) 

is contained in a totally geodesic submanifold of ·Mn+l, which 

is a contradiction. 

By the connectedness of Mn 1 t follows that all· 4> a 

must coincide with an isometry t, which gives 

thus provi ns the proposition . 

Q.E.D. 

1- 8. ~E_ollfil-• If Mn is a homogeneous hypersurface 

£:t l'ln+ l(K ) , with scalar curvature distinc.t from n(n-l)K, 

~!1~!2 !!_ ~ either ri g id_ or contains ~ rigid open sub.;;1anifold. 

Pr oo f . The assumption on the scalar curvature excludes 

t he exis tence of points at which the given immersion is totally 

ge odesi c. 

Q.E.D. 



·comolexification 
~ .. -~-

The complex tangent spa~ of a manifold l.'·1 i s the 

complexification of the tangent space T~. A complex vector 

field (resp. complex differential form) is defined by 

assigning to each point x of r-'1 an element of 
lit 

(resp . Tc~). 

Any comp l ex vector field Z can be written uniquely as 

Z = zv + iZ" where Z' and Z" are realvector fields . By 

duality it follows that a complex differential form w can 

be expressed uniquely as w = w' + iw", w' and w" being 

rea l differential forms. 

. 
1-9. Proposition . Let j.t be a n-2 dimensional 

,,n 
.1•1 J 

n ::_ 3. Let Z,W be tw_£ linearly indeoendent co:-:19lex vector 

1 ). Z., W and --ftC qpan T~ at each point x. 

~ t h~~- are loca~ly ~incl, non- zero complex va~ued 

~SJ.l£!:-~- P, q ~Sh ~-: 

[ Z .vc] C .nc and [qi•!, +e_c] C .nc. p J ,..... f'\. I'-

The proof is straightforward and will be amitted. 
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If Nf1 is a Riemannian manifold then the scalar product 

,; , ) and the Riemannian connection can be extended to 

complex vector fields by linearity. The same notations will 

be used for these extensions. 

Let Px denote a two-dimensional subspace of Tx1fl-

and Z?W be a basis for P~. The sectional curvature of Px 

is given by: 

= <R(Z,W) w,z) 
< z, z)<w, w) - <Z, w) 2 

a s it can be easily verified. 
,..n ""n+l For an isome tric immersion f of ~r- in M , with 

se cond fundamental form A, the Gauss and Codazzi equations 

are valid for complex vector fields, provided A ·1s extended 

to TcMn by linearity. 
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2 . 

An n-dimensional Riemannian manifold r.xn ,'i , isometrically 

immersed in the n+l dimensional space form f.ln+.l (K) is called 

?ef~ma_~,.l~ in Mn+l(K) if it contains ··no open rigid submanifold. 

If each point x e: Mn has a deformable neighborhood then r,1n 

is said to be locally deformable in ;n+l (K) . 

It should be noticed that deformability implies local 

deformability but the converse is not true in general . 

The follo~ing fact is basic and wi l l be used without 

furthe r mention . 

If · Mn is Jo~ly deformable in Mn+l(K) with n ~ 3 

and if the scalar curvature of Mn is distinct from n(n- i(K) , . 

~ ~_§;__c~ po~nt_ t~::.E_ ~~~~~number of~ isometric i~~ersion 

of ~n in ~n+l(K) equals tNo at all points . 
-----... - - - - -- ~-

In fact since Mn contains no rigid submanifold , in view 

of proposit ion 1-6 the type number of any isometric i~.mersion 

of" Mn in 5tn+ 1 ( K) is at:. most two at all points . Let 

l 1 , •• • , An denote the eigenvalues (not n~cessarily distinct) 

of the second fundamental form of a given isometric Lmmersio~ . 

From the Gauss equation and the definition of the scalar 

curvature it fo llows that 

scal(Mn) = K n(n-1) + E ~iAj 
i;lj 

which shows that the type number has to be exact l y 2 . 



The ma i n objective in this section is to prove the 

following results. 

- . 
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· 2-1. "The orem. Let Mn be an n-dfe~nsional Riemann13n 

man~~d ~ith _n ~ 3, havin~ .non-zero constant scalar curvature 

and bein~ de f or8able in tne Euclidean space 
-- _ ___ .. _ ~ - -- - ~ - - - -- rw---, 

-n+l 
I:, • Let f 

be a n isometri c immersion of Mn · in the Euclidean soace En+l. 

Th e n !h!_ ~ ~ullity distribut i on 5f of f 1s 

para_l le l .Q..U :fin. 

2-2. '11heorem . 

mani fold '.vi t!"l • n > 4 

Let '1•1n b d. l 1 Ri -t e an n- 1mens ona _emann_an 
-n 

and f an isometric i~raers i on of ~ 

in t~e sna ce for~ 

s ca lar cur vature o f 

n( n~- 1) K . 

Mn+l(K), Kio. Assume fu r ther tha t t~e 

M° is · constant and distinct from 

'I'hen :·1n is not deformable in 5in+l(K) •. (i.e., :,i'rt . 

~ ~ rigid submanifold. 

Th e proofs of these theore r.1S will depend on several le:-:i .. :.as 

In order to simpli f y the state!Ilents of these lerrLi'Tlas t he follo·.dng 

defini t i on is useful. 

~uh!J,_~u t t h i s section it will be assumed that n > 3. 

2-3. Let ~n be a Rie rnannian manifold. A local iso~etric 

i mme rs i on of Mn in ~n+J(K) is a triple (h,H,U) where U 
---~ ~-,.--

is an open orientable submanifold, il an isometric irn-ri1ersion of 
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U in Mn+l(K) and H 1s the second fundamental form 

operator of h. 

2- 4. 'Lemma. Let M' be an n-di • e~sional orientable 

Rie mannian manifold and f ·an isoI'iletric i:!1..'Tlersion of M' in 

the snace form with sec6nd fundamental form A' 

Assume that there i~ an orth6normal frame 

_ X • Y , E 3 , • • • , En , 

defi ne d on M' in such a '!!E... that the E1 ,.,.,1 > 3, form ----- - _ , __ - -
a ba .::,is for <:-Y' and that for ?,nJ_ local isometric immersion ----- - -~-·- --
(h' ' H' U) of M' in Mn+l(K) ( see Definition 2-3) the 

' -
e~ll:!.P.· ti on 

1 ) <H' (X),X) = 0 

holds at a 1 noints of U. ---.... --- - __ __ ...__ ~ ""'----

rAI is deform.able in -.~n+l(K). Assume further that ~ ,,. ~ 

Then the f ollowin~ eauations hold on ~•: 
~ _._..~ .. _________ __,...___--.,, --::------ --

2) ('llE X,Y) = o, for all i 4 3. 
i 

3) ('ilXEi,Y) = o, for all i ~ 3. 

- '-I ) ( 'i/ XX, Y ) = ·O, for all i > 3. 
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Proof. The proofs of (2) , (3), (~) follow the same 

pattern. They consist in showing that if some of these 

equations are not verified at a point of M' then this 

point is contained in an _open rigid submanifold. Thi s 

contradicts the deform.ability of M'. 

Assune (VE X,Y) non- zero at a point 
i 

p of M' • for 

some index i. Thus it will be non-zero at all points of 

an open orientab le submanifold U'. 

Let h' be an 1sonetr1c i m.~ersion of U' in Mn+l(K) 

and denote by H' its second fundanental form. Then 

(H'Y 'i/ X) = , E . 1 

Since (H'X , X) and 

'vE (H'Y,X)- ('v H' Y,X) . 
i E1 

H' E. 
. l. 

are zero at all points , the 

above re lat i on can be written as 

5) (H 1 Y,VE X) = 
. i 

A similar -relation holds for the r estriction of A1 to 

(J ' 0 

From the Gauss equation it follows that, 

(H'X,X) (H'Y,Y) - (H 1 X, Y)2 
= (A'X,X) (A 'Y,Y ) - (A ' X, Y)

2
, 

this together with ( 1) gives 

6) (H 'X, Y) = e(A ' X, Y) , 



where e is a constant, either +l or -1. 

or 

or 

From (5) and (6): 

( {H ' - e A 1 ) Y , v' E X ) = 0 , 
i 

((H' .- eA 1 )Y,Y) (Y,v'E_x> = o, 
. 1 

7) (H'Y,Y) = e(A'Y,Y). 
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Now (1), (6) and (7) show that H' = eA' and therefore 

U' is rigid. Since . ~' is assumed to be deformable, this 

is a contradiction. Thus (2) is proved. 

By (1) i t results that 

0 = VE -(A'X,X) 
i 

= (VE A'X,X) + (A'X,VE X). 
i ' . i 

Using ~l ) , (2) and noting that A'Ei vanishes, this 

relat ion becomes 

0 = (A'[Ei , x],X) = (['Ei,x],A'X) 

= <v X~Y)(Y,A 'X) - (VXEi,Y)(Y,A'X) 
Ei . 

Using (2) a gain it follows that 

By assumption N' is an n-2 dimensional distribution 

which means that (A'X,Y) is never zero , Thus, 
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(VXEi , Y) = o, for all i > 3 

and (3) is proved . 

The relat ion ( 4) is proved in a way simi l ar to the proof 

of ( 2)' replacing Ei by x. It is su:f:fi ci ent to start with : 

(A'Y,vxx> = Vx(A ' Y, i) - (VxA ' X, Y) J 

to sho;•r that 

(( H' - e A' ) Y, Y) ( 'i/ XX , Y) = 0 . 

If the term ('i/xX , Y) does not vanish , U' must be rigid 

which again i s a contradiction . Q. E. D. 

-
The relation (2) , (3) and (4) of Le:-:1..~a 2- 4 have a geo-

metr ical interpretation which will be stated next . 

2-5. for0lla£1_ . Let M' and f ' be as in Le~ma 2- 4. - - ----
The n the n-1 dimensional distribution .,\f1-'±) X i_s inte-5rab le, 

•' 
~~- le~~~ a!"e totally geodesi c submanifolds of i'·! ' and . theY., 

~~ ~i:.oed. by f' 

r1n+l(K). 

into totally geodesic sub~anifolds of -~ ------ -·--- al -- -

Proof. The relat ions (2) and (3) of Lerr.ma 2- 4 show th2.t 

on :vi I 
,'I J which means that 

i=l , ... , n 

belongs to o'(' © X. Since 



[Ei ,Ej J belongs to c,\/1 it a l so ~elorigs to ~}fr © x, 
integrability . 
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thus showing the 

Next ~onsider a leaf ~.f 
O

• It will be shown that the inclusion map: 

i:~ ~M', 
0 

considered as an i sometric imnersion is totally geodesic. The vector 

f i eld Y ms.y be vi ewed as a U:.--Ut nom.al field to g in M'. Thus it 
0 

suffices to show t hat the covariant derivat'ives of Y with respect to 

tangent. vectors t o S are orthogonal to g'
0

• 
. 0 

I n fact, <\Y,E
1
) and ('iJXY,X) va."lish by (3) and (4) respecti vely . 

On t he other hand, ('iJE.Y,Ei) vanishes because JI' is totally geodesic 
J 

(see proposition 1-5) a11d ('iJ E.Y ,X) is zero by (2). 
J 

To shoH the last part it has to b~ proved that the product of the 
-

isometric in:r:;er.3ions f' and i is totally geodesic. 

Let t; be a unit norma l field to M' ·with r esp-ect to the i.rmnersion 

f'. After suitable ide:-itifications , Y and f may be viewed as norr.:2.l 

vectors t o ~ .·· with resoect to the immersion f' 0 i. With this in mind , 
0 • -

the fact that f' o i is totally geodesic is equivalent to the fact that 

the covari2.:!t der i vatives of Y and ; with respect to t he tangent vectors 

to \"v :::ro' ar".::' ortr.0gonal to 

In fact 

( V. , E;:) = - (A 'X,X) = 0, 
X . 

by using (1) of LP-rnrra (2-4). 
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On the other hand 

-<vx~ , Ei) - - (A'X,Ei) 

because A1 E1 = o. 

Furthermore 

by (4) of Lemma 2-4. 

From (3) of Le IT11na 2- !J it follows that 

Since c.,'{ 1 is totally geodesic ( see Proposition 1-5 ) 

( VE j ', E 1> -;-·_ ( A ' E.j I E 1> = 0 -= 

<V ~ X) = -(A' E X) = 0 
. Ej~' . j' · 

Finally, by (2) of Le'mrna 2-4 

and the proo f of Coro l lary 2-5 ls complete. 

Q.E.D. 
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Let M' and f' verl f t th~ condi t ions 

i s assumed t o be de f or m­

able in the n+l dimensional Eucl i dean snace) • . 

Then the scalar curvatur e of M' i s ~ cons t ant . 

Proof. Since the .dimension of jfr i s assumed t o be --
n- 2, the scalar curvature of M' has to be nonze r o at each 

point . It will be shown that the assumption of constancy of 

the sca lar curvature contradicts this fact . 

By (1) of Len~a 2- 4 it follows that : 

\·1hi ch s ho·:rs that if seal Mn is· constant so is (A ' X , Y) . 

Hence : 

(1 ) 0 = 'v.E <A I y J X > = < 'y E A I y ' X > + <A ' y J 'iJ E X) ' 
i i + 

By (2) of Lemma 2-4 : · 

(2) (A' Y, 'vE X) = (A ' Y t Y) ( 'iJ E X, Y) = 0 . 
i i 

On the othe r hand: 

(\\~_A'Y,X) = ('iJy(A ' E1 ) + A[E1 , Y] ,X ) . 
l. 

= ( [ E ,Y), A' X) = ( [ E1 ,YJ,Y ) (A' X, Y) , 
1 . 

since (A ' X, X) vanishes by (1) of Lem~a 2- 4. 

Therefore : 







The Gauss equation gives : 

(R(X, Ei. )Ei,X) = K + <A'E1,E1) X - ( ) A1X,E1 E1 
and since A'E i vanishes, this yields: 

On t he othe r hand : 
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The dis t ri but ions V'!'1 and <:;\( 1 (±) X are totally geodes ic 

(see Proposi t ion 1-5 and Corollary 2 -5 , respectively) . This 

fact toge the r with (2 ) and (4) gives , 

which by (3 ) implies K = O. This 1s a contrad i ction since 

K 1s as sumed non-zero and therefore the scalar curvature of 
I 

M' 1s not ·c ons tant. Q.E. D. 

~-
2 - 9. L emma . · Let M" be an n- dimensional orientable ---

Riema nn ta n mani fold and f " an iso!Tletric i mmersion of M" - -
_in the SPc!-_Q_g_ fo rm Mn+l(K), wi t h second funda r.iental for:n 

A" fill9. relative nullitv distribution J{". 

Assume that E1 , ••• ,En is~ orthonormal frame defined,£!! 
Af" ,1 

M11 ~ tha t the vector fields E3 ; •••, En form ~ basis for JV • 
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Su puose · t hat there~ two complex vector fields Z and 

W, belonging to i_he comolexification of t te vec tor space 

spanned .9.Y. El,E2, such that for any local isometric iITLuersion 

(h",H",U) of M" in Mn+l(K) (see 2-3), .the eauation 

(1) ( H"Z,W) := O, 

holds at all ooints of u" . 
Fina lly assume M11 de formable in Mn+l (K) . 

Then the comolex vector fields VE Z,V2E1 (respectively 
. 1 

have no W-component (resoectively Z- comnonent ) 

Proo f . Denote by (vzE1)(w) ( ( V WE i) ( Z ) ) the W- component 

(Z-component) of 'v zE1 (resp . -Vvf 1) . 

Le t p be a point of M", and assume : 

for s ome i L 3, 

at al l points of an open ori entable manifold M"(p) containing p. 
•' 

Consider a local isometric immersion (h
11

,H
11

, M
11
(p)) of 

M" i n ~lh+l (K) (see Definit ion 2-3) . 

for all · > 3 :i.·t follows that 
l. - J 

Since 

i = 3, ... ,n. 

By covariant derivation with respect to Z, 

yields : 

H11 (E . ) 
J. 

vanish 

this relation 
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In view of (1) the first term of the 
left-hand side of 

- (2) can be written as 

while for the second term 

(Ei, v'zH11w > = < E i , v' ~H" z + H II [ z, w J) 

= < Ei, v'WHIIZ ) == - (17. E H11Z) w i, ~ 

Again by (1) t his equation becomes 

The eq~ations (2), (3), and_ (4) give 

On the other hand, the extension of the Gauss equation 

to compl ex vector fields gives 

== 

<H"Z,Z')(H 11 W, W) - <z,H"W) 2 

(Attz,~)(A 11W,W) - (Z,A 11W)2 , 

~nd usi ng (1) t h is gives 

(6) (H"Z,z)<H11 W,W) = <A 11
Z,Z)(A

11W,W) • 

From (5) 

(7) (v'zE1)(w;<w,HIIW)2 = ('ilzEi)(\-I)<z,Htrz)(H,H"W) 

,? ( 0 E ) /z A11 z\lt,r A11·11l) 
(v'zEi)(i•l)(W,A

11
W ,- = vz i (W)' , "'1

' · ' 



which together with (6) yields 

Since 

(8) 

( ~ZEi) (W) is assumed non-zero' 1 t foll ows from ( 8) that 

<w,H"W)2 - (W,A"w>2 = o 

at all points 01"' :v111 (p), hi · w ch means that 

(9) ( H11W ,W) = e(A"W ,W) , 

where e is a constant either +l or -1. 

From (6) and (9) 

(10)_ ( H11 Z,Z) = e (A"Z,Z). 

Fina l ly from (1), (9) and (10) it follows that 

(11) Hn = eAi' • 
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. , 
Since (11) holds for any local irrmersi on, it follows that W' (p) is 

rigid in r?1+ 1 (K), which contradicts the defomability of M" ._ Th~s 

(V
2
E

1
) (W) vanishes at p. Since the above proof is syrrrnetric in Z,W 

it results that (v'wEi \z) also vanishes on M" . 

Next, denote by (v' Ei Z) (W) (Resp· Cv E/1\ z)) 

(resp . Z-component) of v'Ei Z (resp · . v'Ei W) ·. 

Let p be a point of M11 and SUPP0Se: 

the W-component 



for some i _> 3 and at all · t · 
poin 5 of an open orientable submanifold 

M"(p) containing p. 

Consider a local isometric immersion (h" ,H1' ,M1' (p)). 

By co var l ant derivation with respect to Ei, of both sides of the 

relat ion (1), 

(12) <vE. Z,H"W) + <z,vE_H"W) = O 
1 1 . 
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In view of ( 1), the first term of the left- hand side of (12) becomes 

By (1) and the fact that H"(E1) is zero, the second term has the 

f orm 

and slnce 

simplifies t o 

--

. h as i·t was shovm above , the relation (14) va.rus es, 

(15) (Z,v'E HnW)= (VEj_W)(z/H"Z,Z) 
i 

The relations (12), (13), and (lS) give 

(16) (
17 Z) /H"W w)+ (VE_W)(z)<H"Z,Z)= 0 
v.E, (W)'v ' 1 

.J. 

and of course 

(17) 
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By the same argu11ent used before it 
' can be concluded from (17) 

that M" (p) is rigid, which contradicts the deforrrabili ty of W'. 

Hence t he proof of Lemna. 2-9 is complete . 

Q.E.D. 

2-10 . Coroll ary. Assume the rn.anifol d N1' , the irrnnersion f" and 

the vector f ields Z, W satisfy the conditions of Lemna 2-9 . - - - - -
Then t he following conclusions hold: 

a) for K -/ 0 and n ~ 4, the · scalar curvature of M" cannot 

be const ant . 

b) for K = 0 and M" with consta11.t scalar cm'Vature, the relative ------ --- --
nullity distribution J('" of f 11 is parallel on M" . ---- ------ - - - ---- -

' 
Proof. From Lerrrna 2-9 it follows that 

(1 ) i = 3, ... ,n 

C ·a · t p. e: M" From (1) and Prooosition (1- 9) there ons1 er a poin . • • 

d fun t · ns a 8 defined in a neig.~-are ti.10 non-vanishing complex value c io , 

· - r· ld z' ,w' borhood of p , in such a way tnat the new complex vector ie s 

defined by 

(2) Z' = aZ, W' = SW, 

(3) [ Z' ,E1 ] = 
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where k b~ ai, J. are complex valued functi d 
ons efined in a neighborhood 

of P· 

Furt hermore, by Propositions (1 5) ( 
- and 1-9) the frame Ei,···,En 

may be assumed as verifying 

(4) 
K n- . k 

\ · E · = - E ( o~x 
i J 2 k=3 J 

where the functions 
k . 

~( are part of a suitable coordinate system of M" 

at p. Finally, it is possible to ass~11e the exi stence of an open orient-

able submarlifold M"(p) , containing p and such that (3) and (4) hold 

at all of its points. 

It follows from (2) that W'(p) and the vector field Z' ,H' verify 

the assumption_ of Lemna (2-9). Hence 

., 

On the other hand, since 
u.... E. bel}-.ong to .. '{'r! and ( Z' ,E~) vari.ish, 
·t,i J 

it follows that 

(6 ) %. Z' = C\_z1\z')Z' ' 
1 1 

\.W' C\_W')(W' / 1
'' 

i=3, , . . ,n, 
= 

1 1 

at each point of M" (p) • 

the second fundamental form of 
An denotes Recalling t hat 

nay be written: 

(7) 
) + ( A"Z I 'i/. z I > ' 

-- tnE·A"Z ' ,Z' ' E1 %: (A "Z t , z I) "v. l. 

i 

f"' it 

I 
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for all 1 > 3, on M"(p). 

. Next . it . will be shown t hat the 
first term of the rieht-

hand side of (7) vanishes . 

In fact 

as a consequence of (3). 

For the second term, the r e lations (6) yield 

( 8) <A"Z' 'iJ z1 ) , E 
i 

= ( V z' ) (A II z' z '> 
E1 ( Z' ) ' 

Combining (7) and (8) it follows that 

( 9) 'iJ (A"Z' Z') E , 
i 

= (VE Z')(Z')(A"Z' ,z 1
), 

- i 

and a simi lar relation holds for W' 

(10) 'iJ (A" W' ,W') = 
Ei 

(V W') (A"W',H'). 
Ei (W' ) 

b ~low are also a consequence 
Furthernore the relations 

or ( 6) 

( 11) 'iJ (Z' Z') 
E ' i 

V (W' ,W') 
E 

1 

= 2('v Z' )(Z' )(Z' ,Z') ' 
E1 . 

2( " \•I') (W',W')' 
= VE (\~') 

i 

('v W') )(Z',H'), 

V < z I w ') = 
E ' 

((VE_Z')(Z') + E (W') 
). 1 

1 

I 
• • 

ii 
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for all i ?.. 3 and all points of Mn (p). 

The scalar curvature of M"(p) ) · 
at each point if given by 

(12) scal(M 11 (p)):::: n(N-l)K + 25,.A"Z',Z') (A"W'~ • 

(Z' .z•)(~p ,W')-(Z' .w,)2 • 

Since sc9-lUl 11 (p)) is constant, it follows from . (12) 

( 13) ((Z' ,Z')(\'l' ,W')-(Z' ,W 1
)

2
) V ( (A"Z' ,Z') (A"W' ,W')) 

E . i ' 

VE ((Z' ,Z')(W' ,'.'l')-(Z' , ',•T1 )
2 )((A"Z' ,Z')(A"W'·,',I')). 

i 

From ( 9) , ( 10) , ( 11) , ( 13) 

(14 ) ( ( V . z ' ) + ( V w I ) ){ < z ' J Z') (W' , ~·I'> -(Z' • ~~I> 2) • 
E (Z') E (W') 

1 i 

• (Auz , Z')(A"W' , W') . , 

<z ' ,1.,J ')2)(A"Z' ,Z')(AII;•[' , W') J 
( (Z' j z '><HI ,'.I'> -

which g i ve s 

(1 5) ( ![ f ) = 0 , 
( o z I ) + V 1' ( ,., I ) 

VE (Z') Ei .~ 
i 

f or al l i > 3, at all points 

On the other hand , since 

the Gauss equation gives 

{16) R(Z' E )E , i 1 

of M"(p) . 

~ nE 
!\ i 

vanishes for all 

= KZ I • 

1 ?_ 3, 

~--



and 

and 

... . :: . 

By the definition of curvature 

(17) R(Z' , E1 ) E1 = Vz , (9E Ei) 

1 

Using (4) it may be written 

(18) V E = I: >. j E 
E i j ;ii j 

1 

by covariant differentiation of 

(19) V. t ( 'iJ E ) = E p)v , E 
Z E i j;!i z j 

1 . -

= i: p)(v z I ) + ))[Z ' E ] 
Jti E 

, j 
j 

, 
(18) with r espect 

+ z•o.J )E > 
j 

+ zrp})Ej). 

From (3). (6) and (19) it follo·.,,s that 

( 20) [vz, (VEE ) ] .,= E ))(V Z' ) , 
j#i 

E ( z I) 

1 i (Z ' ) j 

also 

( 2 1) [V ('iJ F, >] = 
E ))( VE W')(W ' ) 

j J• W' E i (H ') r:l j 
i 

, ( V ~ ) is g1 ven by 
The Z -conponent of VE Z'ti 

36 

to Z' J 

(22) 

i 

.. [< V Z' ) ) 
= Ei E (Z') 

2 

+ (c v z' > ) • 
E (Z') 

1 
i 



In fact, 

(23) 

by covariant differentiation of (23) and b ( . . Y 3) it follows 

(24) 

by (6), t he rig.ht-hand side of (24) may be written, 

(25 ) 

= 

which proves ( 22) . 
--

Tne sarr£ r elat ion hol ds for the W'-co~onents . 

'laking the Z'-co;:ponents in (16) and using (17), (20) and (22) it 

foll0\·1s th2.t 

(26 ) 

,, 

Adding ( 26 ) to its analog for W' ' and using ( 15) , we obtain 

(27 ) (VE. Z' )~Z') + (VE W' )~W') = - 2K, 
1 i 

and again by (15), 

(28) ( 
T,11 )2 ::: -K· 

= VE I'/ (W') ' 
i 

i=3, ·· · ,n• 

•• 

. I 
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From (26) and (28) it follows 

( 29) .;.Aj(vE_Z' )(z•)=O i,j ~ 3, 
J 1 J 

and from ( 4-), ( 18) and ( 28 ) we get re spe cti vely 

. K , 
(30) AJ = ~ XJ 

' (v-E_z, )(z•) = 1f=l, j ~ 3. 
J 

'I'he relations ( 29), ( 30) and _ ( 31) show that if n ~4, then 

K = 0, hence proving the statement (a.) by contradiction. 

In the case K = O, (3) and (28) prove (b). 

Q.E.D. 

2-11. Proof of Theorem 2-1. 
. . ~ d be a given point in 1•1 an 

consider an open neig.'tborhood U 
O 

of p 
O 

on which there is an orth0-

norrn.al frarr:e 

in such a v,ay• t ' t i:. E is a basis for ··X a.rid na ~3' ... ' n 

(1) VEE. = O, i ,j :::_ 3. 
i J 

) ( 1 5) and the 
mh ·t1·ons (1- 2 ' -~. is is possible in view of Proposi 

fact that in is isometrically immersed 
l ·a an space in the Euc 1 e 

En+l 
0 · t· holds 

) of U0 , 1 · . (b H,U 
For any local isometric immersion ' 0 

(2) i~3, ••• ,n, 

J 



on U • 0 

for all 

'lhls relation and the Codazzi . . 
equations yield 

- ~ ... $ -. • 

,_· > 3 
' 

at all points of u~. 
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The equation (2) will be used to define locally vector fields 

satisfying either the conditions of Lemma 2-4 or 2-9 . Since this in­

volves several discussi ons, it is convenient to consider the follm·Jiri.g 

subset of U
0

, 

P: Set of the points q of U
0 

such that 

( 4 ) 

,,..,, I In E E ) i = 3 ' ••• ' n • (._v E . E == \ vE · t 2 ' E1 1' 1 q 2 J. q 

'lhls se t has the following proprtity: 

(5 ) 
- is oarallel at §I1Y point 

Tne relative nullity distribution c.\f 

£f. t he i nterior of P. - -----
- • +-ln fact, consider a poinv qt: IntP, 

locally it is possible to 

r epla ce .. t fields E E by unit vec or 
1 9 2 

X, Y, such that 

(6) <x,Y) = o, (A:t.,Y) = O, 

on a neighborhood of q, provide 

eigenvalues of Aq 
d the non-zero 

· ves• a t computation gi • re distinct. A direc --- -- --



for all i ~ 3 and at all points of a neighborhood of 
qo. 

From and the constancy of the scalar curvature 

i = 3, ... ,n, 

or 

On the _other hand 
.. 

(9) v ( A.X,X) = <vE AA,X) +( AX,v'E x) = 
Ei i i. 

= <A[Ei_, XJ , X) +( P.X, 'vEi X) 

= ( [E . , X] , X)( .. !U,X; = -(1/XE~ ,r;(Ix,x) ' 
l . 

Sim11a.rly, 

(10) vE·< AY, Y) = -(VYEi,YXAY,Y) · 
. i 

) d (10) o-ive The relations (8), (9 , an ° 

AX X)( AY 'Y) = o' 
[( 'v ~ X" + ( v1E. ,Y)] <· ' x-'i' / J. 

(11) 

Which by (7) gives 

all i -~ 3 • 

40 
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Next a ssume tha t the non-zero 

. . . eigenvalues of A coincide• 
!f tbeY coin cide in a neighborhood of . q 

find vector f ields X, Y satisfying 

to show that Jr is pa rallel at q. 

q, it is possible to 

(6) and therefere possible 

Finally 

q, but each 

a ssume that the non-zero eigenv 1 . a ues coincide at 

neighborhood of q_ contains a point at which they 

are distinct o A simple continuity argument shows that in 

this case JV is also pa rallel a t q, 

On the other hand 

( 13) The dis t ri bu ti on i k parallel ~ any point .2!. U 
0
-P. 

To show this, con s ider a point q EU - P0 , this means that 

fo r some index· i ~ 3 the numbers 
0 

( 14 ) (v'E E. 'E2) '(v'E Ei ,E]! -<v1E2Ei ,E2) '(v1E2 Ei ,El) q ' 
1 1 o q 1 O q o q 

are not s imultaneously zero, 

For-

( 15) 

The dis ti net cases to be discussed 

following way·. 

i 
A o(q)/0 

i 
4 O(q):::0 

i nbhd, of q 
A O:::o, on a 

bhd, of q has 
AnY ~tat which a po1n 
i o is non-zero 

A 
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i 
b. 0 -q:· - 0 

The functions 

b) ( VE E. ,E2) 
1 io q = 0 

<vElEi ,E2) '(VE Ei ,El) 
O 2 o 

, 

i 

{ VE .Ei ,El') = 0 b..o t- 0 
2 0 q 

q 
both vanish on a ~eighborh~ of q. 

Pu,y_ neighborhood ·or q contains a 
point at which either one of 

< VE Ei ,E2) , (VE E. ,E1) , 
1 0 2 

1
o 

is non-zero at this point . 
,,.~. 

The proof of (13) consists in. shos'jng the parallelism of 'Ji · in _,,. 

each of the cases above . 
i 

a) Assume < VE E
1 

,E
2
) , I::. 

0 
non-zero at all points of a neish-

1 o · 

borhood V of q . q . 
In view of the assumption rrad~ abovi, the quadratic equation 

(1.6) 

Cl) • ' • a,$, such that 

defines t wo complex valued C .functions 

<VEE . . ,E1) 

and 

(17) 
2 .1o 

af3 = -(~t;} 
l O 

(18) a + f3 = < v'E Ei ,E2) 
l o 

. fi ld z w on Vq defined by 

Consider the complex vector e •. ' · · 



Z = cxE1 + E2 

W·= BE1 + E2 , 

they are linearly independent at each point, since 

are distinct (at each point). 

a and 

in 

Let 

En+l , 
(h,H 1 U) 

then 

be any local isometric immersion of 

<Hz, W) = a'3(~1,E1) + (a+p )<HE1,E~ + (HE2,E~ 

zt1 E~ E > K'v~ Ei ,E~~2,E2) + [('vE E. ·,El)~ 
El io' 2 =1 o 1 io 

V q 

•hi ch is zero in view of (3). Thus Z,W satisfy the con-
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diti ons of Ler.una (2-9) and therefore by part b) of Corollary 

(2-·1 0) , the distribution <){ is parallel on the neighborhood 

V • q 

The ne xt case to be analyzed i s that of 

i n a neighb orh ood 

Points of v • 
q 

V 
q 

of q and 

In this case the functions 

and the vector field 

X = 
a E1 + E2 

I la El + E2 I I 

10 
6 vanishing at all 

B coincide at each point a, 
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satisfies the conditions of Lemma (2-4), therefore Corollary 

(2-6) shows that this case cannot occur. 

The paral l elsim . of ~\( in the last subcase of a) is \ 

proved by using the reasoning of the proof of the first sub­

case and a simple continuity argumen~. 

b) The first subcase cannot occur, for otherwise all 

func t ions listed in (14) would vanish at q • 

. Hence to study the next case it ~ay be assuned that on 

the functions <v1E E
1 

,E}, a nei shborhood Vq of q, 

( vE E1 ,E1) vanish , while 
2 0 

1 1 o 
6 ° is never zero , Using again 

(3 ) » it follows 

[ (. 'v E E i , E 1) - ( 'v E .t!. i .t E 2 ) ] < HE 1' E 2) = 0 .t 

1 0 2 0 -

w 1. c s:10:·rs 1 i h · that the vector fields E
1

, E
2 

satisfy the con-

dit lons o em::ia , f L (2-9). and again, by Corollary (2-10), the 

parallelsim of c.\f is established in Vq, 

Can be related to the first Finallyt the last ca~e of b) 

case of a) a Continuity argument proves the and as before, 

. r X- at q, in this case. _pa:ra.11els1m o_ <.:...· 

· t . }( is paralle 1 at all F'rom ( 5) and ( 13) it follows tha v 

Points of U, 
0 

be arbitrar:!.ly 

Where. 

t Since this point can and particul arly a P
0
•_ 

chosen, t }f is paralle 1 every­·1t follows tha ~ 

Thus Theore• (2-1) is proved. 
Q.E.D, 
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2-i2. Proof of Theorem•2-2 ---..-..--'0---~----~-. . . This proof presents a 
great a·nal ogy with· the one given in (2-11). A 

s before , let 
be an arbitrarily chosen P?int of -r-•.,n du b · 

an 
O 

ea n~igh-
borhood of it on which there are 

(1) A coordina te systen , x' , ... ,r 
(2) . An ort~onormal frame 

such that the 

vectors E3 , ••• ,En form a basis of the relative nullity dis--
t ribution JC, and satisfying 

( 3) 'v E 
E j 

1 

Again, Proposition (1-2) allows to make these assuMptions . 

Since the space Mn+l(K) has consta~t curvature, the 

equa t i on (3) of (2-10) holds in the present situation . 

Fur ther, the ~et P is defined exac~ly the sane way , 
' . 

but i ts propr:r~ties are drastically different in face of the 

assu• p t ion K io . 

I n th i s ca se the following hol ds 

( ~) p has no interior~~• _.,_.._....:...., . . 

First i t should be noted t hat by t he same argument us ed -
it turns out that ~'{ is parallel' to prove (5) of (2-11), 

on the oth9r hand : 

~rfhoio~al t o the ·ti~ 
is an unit vector field, 



On the other hand., the - · 
parall_elsim of <:.J\[ and the fact 

that its leaves are totally 
geodesic implies that 

The re lat i ons (5) and (6) are 
contradictory., therefore 

(ll) :t s proved. 

Ne xt it will be shown that; 

.~ ·7 ) t f > U O - P h~ ~ ~ E_9ints. This can be proved 

by a s eri e s of discussions that follm,, the same pattern of 

a) a nd b) of (2-11) • .and usine; the first part of the conclusions 

of Cor ollary (2-10). 

I n order to eliminate the case • 

( 8 ) (VE E
1 

,E
2

) f O, 

1 0 q 

:l 
6 ° ::: 0 on a neighborhood of q , some further in~orm~-

. ., 

tion i s needed. 

) there is an orthonormal As in (19) of (2-11, 
frame 

defined in a neighborhood V 
q 

of q, which is orthogonal to 

t -rr and satisfies · he distribution <.,'{ 

( 9 ) < HX ., X ) = O , 

for_any local isometric i mraersion 

Fro:n, 

(h ,H,U) of V q 
in 



--

a nd (9) it follows 

If < 'v XEi , Y) is non- zero at all points of some open 
0 

s ubse t V" CV, the r e lations (9) and (10)
1 

with the Gauss q 
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e q u a t i on imply t he ri g idity of V" 1 which is·. a contradiction , 

Thus 

( 11) · 

a t all points of V • q 

I n orde r to comple t e the discussion , Corollary 

wi. 1 1 b e app l _ied , but it requires that 

(12) ( 'v E X) - /,_ 'v E , Y) ~ o 
X i ' . Y i 

f or a l l indi ces 1 ~ 3, and for all points of 

The last r e lat ions are a consequence of 

(13) 

for all i ~ 3, on V • 
q 

V • q 

(2- 8) 

• 
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t_ro o .L -9LJ.ill. Consider the linear system 

(14) 

For any local isometric immersion ( -h,H,U), it is known 
t.ha t 

a1 =<HY, Y) • a = ( RX y) " 2 J I 

l .:> a solution of (11+) (see (30-(2-11).) 

I f at some point of V 
q the matrix of (14) had rank 

grea ter than one, this system together with (9) and the Gauss 

e quation would imply the existence of an open rigid submanifold 

f V , q 
therefore contradictir.g the deformability of 

-
rlhus the rcnk is less than -- -- --- 2 at every point. -- -...- . - ·--

-;-tn ~· . 

Now (13) follows from this tact and from (8), (11). 

'here fore Corollary (2-8) leads to another contradiction, 

·hawing tha; this case cannot occur, and (7) is proved. 

Th e conclusions (4) and (7) are obviously incompatible. 

~_,1n is not defor~able in ;n+l(K). Th is proves that 
Q.E.D. 
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3. 

Theorem (2-1) in spite of beinrr ~ local, has an interestin~ 0 

global consequence. 

3-1. Theorem. ..,_,. _____ be a CoQnlete Riemannian -- - -~-- ----~--. _.,..;...~ 

~~-l:..;~, ~~ ~~-zero constant 
~ ---- " 

scala~ curvature and bein~ 

l ocal ly deformable i n En+l 
•-~-- ......,,..._.........__._L~ ~ • 

Then Mn 

.. 
Proof~ Let f be an iso~etric i~~ersion of Mn in 

Fror.i the local deformability of !~n and from the 
. . 

fact t hat the scalar curvature is non-zero ·1t follows that 

t he type number of f 1s two everywhere. 

L~t t\' be the relative nullity distributi on of 

By 'l1heorem (2-1) it follo~rs that ~J( is parallel on 

(since it is parallel on a neighborhood of each point). Thus 

the unive rsal covering ~n of Mn has the decoraposition 

(1) 
..... n-2 

X .D 

by de Rham's theorem. 

Since Mn is non-tlatt ~2 is necessari ly irreducible. 



Under these circumstances 
• it follows from a result of s. Alexander (1) 

Riemannian product 

(2 ) 

that 
itself is isoraetric to a 

and f immerses M
2 

isometrically in a 3-dimensional 

Ei.w1i dean space . 

It follows from (2) that the curvature of M2 equals the 

s calar curvature of Mn and is therefore constant. 

It follows from (2) that ~2 is complete. By a well­

known theorem of HilbertJ the curvature of M2 is positive, 

at id there fore isometric to a sphere (see [ 7)). 

Q.E.D. 

3-2. Theore~ . Let :·In £_~ ~ homo3.eneous ?.ienannian 

mani f old havini:; an isometric i m:.1ers ion f !!!, ~ Eucli~~ _______ , ---- - -
,..n+ 1 h t ' t its tyoe number is tvfo eYerywhere. snace .t. • . sue na __ _, __ . - - -- ---=--·-- , - __ .. 

t the Rie~annian oroduct of a Then Mn is tsor.ietric _ _...£ _ -~-- ---- -- -__..,. .,._.._._;",. . ---

Proof. For n = 2, Mn is c6mpact and the proof for 

t his case is given in [7]. 

Next assume n > 3. - Since is homogeneous, by 

b.... ) .;t follows 4 !"0pos i tion ( 1-7 .... that the only possibilities to 

be discussed are 
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(1) 

(2) 
is locally de~ormable 

1s rigid. 

From Theorer.i (3-1) it follows that in case (1) Mn 1s 

isometr i c to s2 x En-2. 

To proye (2) the following result of K. Nomizu and B. 

Smyth !10] is us ed : 

~Le t M be a complete Riemannian manifold of dimension 

n with non-negative sectional curvature. 

51 

Let <j>:M -+ En+l be an isometric imrnersion with constant 

me an curvature. 

If the trace of A2 is constant, then Mn is i~ometric 

t o s2 X En-2". 
-· 

Next it will be shm·m that ~.1n and f satisfy the con-

di t i ons of this theorem . 

Let u 

deno te by A 

Orientable sub• anifold of ~n be an open, 
-

a second f undamental form of f on u. 
and 

It is well-known 

fun c t ions on U: 

(sie [l2]) that ~here are n continuous 

' > ). > , .•. • "';> ~n' Al- 2- -

are the 
such that at each point 

eigenvalues of A • 
constant . By p 

functions are a 
rigid, these 

Si nce Mn is 
be distinct of them can 

[3], at most two 
theorem of E. Cartan 



at each point. 0 n the other hand 
eigenvalues A , · ' 

1 ' "2 , and n- 2 > 1 - ' and 

thes~ are tvro 

\•Thi ch vani sh . 
;\2 must coincide at each point. 
This means that 

constant • 
t rA = 2>-1 = constant , 

non-zero 

Thus 

and it is also clear t hat all_ sectional curvatur es are non-
negative . 

Thus the above mentioned result gives the proof in 

<;as e (2) . 

Regarding hypersurfaces of spaces on consrant w curvature 

Theorem (2- ?) gives 

3-3. 'I'heorem . __ , ..... --.-
A hypersurface of Mn+l(K) , _______ K ~ 0 , 

~~}n~ ££~~n~ ~s.§:}~ £~~ disttncE from n (n- l)K , is 

tl$1d , orovided that n > ~. 
- ~.._.-;- ·tr-- ---

Proof. Let M" be such a hypersurface and consider ~ ----~ ... 

two i some tri c immersions f , f , with second fundamental 

forms A, A defined on some orie·ntable open submanifold of 

Mn • 

52 
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The assumption on the scalar curvature implies that A 

and A have rank ~ everywhere. 

Let Ube the subset of Mn 
consisting of those ~oints 

which are contained in some rigid open neighborhood (this 

neighborhood may depend on the pbint). 

It follows from Theorem (2-2) that ~fl- u has no in-

terior points, i.e., that U is dense in M11. Since U 

i s covered by open rigid submanifolds; it follows that 

each connected component of U is rigid. Let p be a point of 

lVP a nd V an orientable neighborhood of p. It will be shown 

that there is a function e(q) defined on V, assuming only 

the values +l or -1, and such that 

( 1) for all q £ V. 

I f t · f q £ u, this follows from the rigidity of n a c , 1 : 

h th h"nd if q J U, it can be ench component. On t e o er <;.., , t 

Po1·nts on which (1) holds, and by continuity approximated by 

it follows that (1) bolds at q. Again the continuity of 

and A give the continuity of e. Since V is assumed 

Constant. But this means that connec ted, e must be 
V is 

A 

rigi d o Thj_ s argument 

neighborhoods, which 

shows that~ cam be covered by rigid 

implies the rigidity of ~ itself. 

Q.E.D. 
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