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Abstract
Wepropose and study the class of Box–Cox elliptical distributions. It provides alterna-
tive distributions for modeling multivariate positive, marginally skewed and possibly
heavy-tailed data. This new class of distributions has as a special case the class of log-
elliptical distributions, and reduces to the Box–Cox symmetric class of distributions
in the univariate setting. The parameters are interpretable in terms of quantiles and
relative dispersions of the marginal distributions and of associations between pairs of
variables. The relation between the scale parameters and quantiles makes the Box–
Cox elliptical distributions attractive for regression modeling purposes. Applications
to data on vitamin intake are presented and discussed.

Keywords Box–Cox symmetric distributions · Box–Cox transformation · Elliptical
distribution · Gibbs sampling · Truncated distribution

1 Introduction

Multivariate positive data are frequently found in empirical studies. The statistical
analysis of such data often relies on the multivariate normal distribution assumptions,
ignoring characteristics of the data, namely the positive support and possible skewness
and presence of outlying observations. Improvements for accomodating outliers may
be achieved by replacing the multivariate normal distribution by a heavy-tailed dis-
tribution in the elliptical class of distributions, such as the multivariate t distribution
(Lange et al. 1989). Further improvement may be achieved by the use of log-skew-
elliptical distributions (Marchenko and Genton 2010), which are multivariate distribu-
tions with support in Rp

+ and accommodate heavy-tailed distributions. An alternative
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methodology for modeling multivariate positive data uses a Box–Cox transformation
in each component of the vector of observations. In this approach one assumes that the
vector of transformed observations follows amultivariate normal or an elliptical distri-
bution (Quiroz et al. 1996). This assumption implies a theoretical shortcoming because
the support of the transformed vector of observations is not necessarilyRp. Moreover,
in this approach the model parameters are interpretable only in terms of characteristics
of the transformed observations (not the original variables of interest). In the univariate
case, Ferrari and Fumes (2017) overcome these shortcomings by proposing the class of
Box–Cox symmetric distributions. This class includes several alternative distributions,
such as the Box–Cox Cole–Green (Stasinopoulos et al. 2008), Box–Cox t (Rigby and
Stasinopoulos 2006), Box–Cox power exponential (Rigby and Stasinopoulos 2004;
Voudouris et al. 2012) distributions, and a new distribution, the Box–Cox slash distri-
bution, for modeling univariate positive, skewed, possibly heavy-tailed data.

In the present paper, we focus on the problem of constructing a class of multivariate
distributions with support in R

p
+ in such a way that the marginal distributions have

properties similar to those of the Box–Cox symmetric distributions, the parameters are
interpretable and association among variables is controlled by association parameters.
We name the proposed class of distributions the Box–Cox elliptical class of distri-
butions. It has the log-elliptical class of distributions (Fang et al. 1990) as a special
subclass and reduces to the Box–Cox symmetric class of distributions in the univariate
setting. The construction of the new class is performed through an extension of the
Box–Cox transformation and involves another new class of distributions defined in this
paper, the class of truncated elliptical distributions. The parameters of the Box–Cox
elliptical distributions are interpretable as characteristics of the original variables (not
the transformed variables). Some parameters are related to quantiles of the marginal
distributions, which makes the Box–Cox elliptical distributions attractive for regres-
sion modeling purposes. Several properties of the proposed distributions are derived.
In particular, some properties of the log-elliptical distributions that are not available in
the literature are direct consequences of properties of Box–Cox elliptical distributions
stated in this paper. The flexibility of the proposed distributions for modeling multi-
variate positive, asymmetric data with or without the presence of outlying observations
is illustrated through an analysis of real data on vitamin intake by older people.

The paper is organized as follows. In Sect. 2 we define the truncated elliptical dis-
tributions and present some properties. In Sect. 3 we define the family of the extended
Box–Cox transformations, we use it to define the class of Box–Cox elliptical distribu-
tions, and we state several properties. In Sect. 4 we give interpretation for the param-
eters and show the relation between some parameters and quantiles of the marginal
distributions. In Sect. 5 we focus on maximum likelihood estimation and present sim-
ulation studies. In Sect. 6 we present applications to real data. Finally, Sect. 7 closes
the paper with concluding remarks. Technical proofs are presented in the “Appendix”.

2 The class of the truncated elliptical distributions

In this section, we define the class of the truncated elliptical distributions. It is needed
for the definition and study of the class of the Box–Cox elliptical distributions, which
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is the focus of this paper. Previous works directly related to the truncated elliptical
class of distributions are e.g. Arellano-Valle et al. (2006) and Kim (2010).

We denote vectors and their components with lowercase Greek letters in bold and
normal fonts, respectively. For instance, if ξ ∈ R

p, then ξ = (ξ1, . . . , ξp)
′. Addition-

ally, ξ−k ∈ R
p−1, k = 1, . . . , p, is the sub-vector obtained from ξ by excluding its kth

component. Similar notations are used for random vectors, but we use capital Roman
letters. Matrices are denoted by capital Greek letters in boldface and their entries in
lowercase normal font Greek letters. For example, ifΔ(p×q) is a matrix with compo-
nents inR, then Δ = (δ jk)p×q . If Δ is a symmetric matrix, the notation Δ > 0 means
that Δ is positive definite. If Δ(p × p) > 0, then Δ−k,k ∈ R

p−1 is the sub-vector
obtained by deleting the kth component of the kth column of Δ; Δk,−k = Δ′−k,k ; and
Δ−k,−k > 0 is the sub-matrix obtained by excluding the kth row and the kth column
of Δ.

The elliptical distributions have been extensively studied in the statistical literature
and applied in different fields; see Fang et al. (1990), Gupta et al. (2013) and refer-
ences therein. From now on, whenever we say that a random vector has an elliptical
distribution we assume that its probability density function (PDF) exists.

Definition 1 The random vector X ∈ R
p has an elliptical distribution with location

vector μ ∈ R
p and dispersion matrix Σ(p × p) > 0, if its PDF is

fX (x) = cp det(Σ)−1/2g((x − μ)′Σ−1(x − μ)), x ∈ R
p. (1)

The function g, called density generating function (DGF), is such that g(u) ≥ 0, for
all u ≥ 0, and

∫ ∞
0 r p−1g(r2) dr < ∞. The normalizing constant cp is

cp = Γ (p/2)

2π p/2

(∫ ∞

0
r p−1g(r2) dr

)−1

.

We write X ∼ E�p(μ,Σ; g).

The univariate case of Definition 1 corresponds to a random variable X having a
symmetric distribution with location parameter μ ∈ R, scale parameter σ > 0 and
DGF g, andwewrite X ∼ E�1(μ, σ 2; g). Adetailed study about elliptical distributions
can be found in Fang et al. (1990).

Definition 2 Let B ⊆ R
p be a measurable set. The random vector W ∈ B has a

truncated elliptical distribution with support B and parameters μ ∈ R
p and Σ(p ×

p) > 0, DGF g, and we write W ∼ TE�p(μ,Σ; B; g), if its PDF is

fW (w) = g((w − μ)′Σ−1(w − μ))
∫
B g((w − μ)′Σ−1(w − μ)) dw

, w ∈ B, (2)

where g is such that g(u) ≥ 0, for all u ≥ 0, and
∫ ∞
0 t p−1g(t2) dt < ∞.
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If B = R
p in (2), we arrive at PDF (1).

The univariate case of Definition 2 corresponds to a random variable, sayW , with a
truncated symmetric distributionwith support B ⊆ R, parametersμ ∈ R and σ 2 > 0,
DGF g, and we write W ∼ TE�1(μ, σ 2; B; g).

Eachmember of the class of the truncated elliptical distributions is characterized by
the DGF g. Two notable special cases are the multivariate truncated normal and trun-
cated t distributions, which correspond to the DGF g(u) ∝ exp(−u/2) and g(u) ∝
(1 + u/τ)−(τ+p)/2, with τ > 0, respectively. Other special cases include the fol-
lowing multivariate distributions: truncated power exponential (g(u) ∝ exp(−uβ/2),
β > 0), truncated slash (g(u) ∝ ∫ 1

0 t p+q−1 exp(−ut2/2) dt , q > 0), and truncated
scale mixture of normal distributions (g(u) ∝ ∫ ∞

0 t p/2 exp(−ut/2) dH(t), u ≥ 0, H
being a cumulative distribution function (CDF) on (0,∞)). The DGF g may include
extra parameters in PDF (2). For instance, the multivariate truncated t distribution has
the degrees of freedom parameter τ , that controls the tail behaviour. The multivariate
truncated normal distribution is a limiting case of the multivariate truncated t distri-
bution when τ → ∞. Some studies on multivariate truncated normal distributions
are found in Birnbaum and Meyer (1953), Tallis (1961, 1963, 1965), Horrace (2005)
and Manjunath and Wilhelm (2012). The multivariate truncated t distribution with
rectangular support is considered in Ho et al. (2012).

Let W ∼ TE�1(μ, σ 2; (a, b); g). The CDF of W is given by

FW (w) = FZ
(

w−μ
σ

) − FZ
( a−μ

σ

)

FZ
( b−μ

σ

) − FZ
( a−μ

σ

) , w ∈ (a, b), (3)

where FZ is the CDF of a random variable Z having a standard symmetric distribution,
Z ∼ E�1(0, 1; g). Equation (3) is also valid when a → −∞ and/or b → ∞. In this
case, we have FZ ((a − μ)/σ) → 0 and/or FZ ((b − μ)/σ) → 1.

Let R = I1 × · · · × Ip be a rectangle in R
p, where I1, . . . , Ip are intervals in R

(finite or infinite). With no loss of generality, assume that Ik = (ak, bk), k = 1, . . . , p.

Theorem 1 IfW ∼ TE�p(μ,Σ; R; g), thenWk |W−k ∼ TE�1(μk.−k, σ
2
k.−k; (ak, bk);

gk.−k), k = 1, . . . , p, where μk.−k = μk + Σk,−kΣ
−1
−k,−k(w−k − μ−k), σ 2

k.−k =
σkk − Σk,−kΣ

−1
−k,−kΣ−k,k and gk.−k(u) = g(u + q(w−k)), with q(w−k) = (w−k −

μ−k)
′Σ−1

−k,−k(w−k − μ−k).

Proof See “Appendix A”. 
�
Theorem 1 states that if a random vector W has a truncated elliptical distribution

with its support being a rectangle in Rp, then the conditional distribution of Wk given
W−k is truncated symmetricwith the same support ofWk . This fact is useful for obtain-
ing the complete conditional distributions, from which random samples from (3) may
be obtained using the inverse transformation method. This allows us to propose Algo-
rithm 1 to generate random samples from the random vectorW ∼ TE�p(μ,Σ; R; g).
We construct a Markov chain by sampling from the complete conditional distributions
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ofWk |W−k , k = 1, . . . , p, given in Theorem 1. Let w( j) be a sample generated in the
j th iteration, j = 1, . . . , n.

Alogrithm 1

1. Choose a starting value w(0) of the Markov chain.
2. Generate a random variable u from a uniform distribution U(0, 1).
3. In each cycle j = 1, . . . , n, apply the inverse transformation method using (3) to

compute

w
( j)
k.−k = μ

( j)
k.−k + σ

( j)
k.−k F

−1
Zk

[

u

{

FZk

(
bk − μ

( j)
k.−k

σ
( j)
k.−k

)

− FZk

(
ak − μ

( j)
k.−k

σ
( j)
k.−k

)}

+FZk

(
ak − μ

( j)
k.−k

σ
( j)
k.−k

)]

,

where Zk ∼ E�1(0, 1; gk.−k), for k = 1, . . . , p. This is the sampled value from
the conditional distribution of

w
( j)
k | w( j)

1 , . . . , w
( j)
k−1, w

( j−1)
k+1 , . . . , w

( j−1)
p , k = 1, . . . , p.

3 The class of the Box–Cox elliptical distributions

In this section, we define the class of the Box–Cox elliptical distributions and state sev-
eral properties. First, we define the family of the extended Box–Cox transformations,
which is a generalization of multivariate Box–Cox transformations given in Quiroz et
al. (1996, Eq. 1.1, 1.2). Using this new family of transformations, we define the class of
the Box–Cox elliptical distributions. We then present various properties of these dis-
tributions regarding a characterization through truncated elliptical distributions with
rectangular support, marginal and conditional distributions, independence, and mixed
moments. Some of these properties will be needed for interpreting the parameters of
the Box–Cox elliptical distributions (see Sect. 4).

For each ξ ∈ R
p, let Dξ be a diagonal matrix with diagonal elements ξ , i.e.,

Dξ = diag{ξ1, . . . , ξp}. Let R(ξ) = I (ξ1) × · · · × I (ξp) be a rectangle in Rp, where

I (ξk) =

⎧
⎪⎨

⎪⎩

(−1/ξk,∞), ξk > 0,

(−∞,−1/ξk), ξk < 0,

(−∞,∞), ξk = 0,

(4)

for k = 1, . . . , p.

Definition 3 Let λ ∈ R
p and μ ∈ R

p
+. The extended Box–Cox transformation is

defined by Tλ,μ : R
p
+ → R(λ) for the random vector Y ∈ R

p
+ as Tλ,μ(Y) = W ,

where W is the p-dimensional vector with kth element given by
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Wk =
⎧
⎨

⎩

(Yk/μk)
λk − 1

λk
, λk �= 0,

log(Yk/μk), λk = 0,
(5)

for k = 1, . . . , p.

From Definition 3 we have that μk is a scale parameter for Yk , for k = 1, . . . , p.
If μ = 1 = (1, . . . , 1)′ in (5) we obtain the multivariate Box–Cox transforma-
tion (Quiroz et al. (1996, Eq. 1.1, 1.2)). Also, Tλ,μ(Y) → T0,μ(Y) when λ → 0
= (0, . . . , 0)′. Moreover, if α ∈ R

p
+, then Tλ,μ(DαY) = Tλ,D−1

α μ(Y). If β ∈ R(λ)

and γ = 1 + Dλβ, then D−1
γ (Tλ,μ(Y) − β) = Tλ,δ(Y), where δ = T−1

λ,μ(β). These
facts allow us to derive various properties of the Box–Cox elliptical distributions.

Definition 4 We say that the random vector Y ∈ R
p
+ has a Box–Cox elliptical

distribution with parameters μ ∈ R
p
+, λ ∈ R

p, Σ(p × p) > 0 and DGF g if
Tλ,μ(Y) ∼ TE�p(0,Σ; R(λ); g), and we write Y ∼ BCE�p(μ,λ,Σ; g).

Equivalently, W ∼ TE�p(0,Σ; R(λ); g) if T−1
λ,μ(W) ∼ BCE�p(μ,λ,Σ; g). If

λ = 0 in Definition 4, then Y follows a log-elliptical distribution with parameters μ ∈
R

p
+, Σ(p× p) > 0 and DGF g (Fang et al. 1990), and we write Y ∼ LE�p(μ,Σ; g).
From Definition 4 we have that the PDF of Y ∼ BCE�p(μ,λ,Σ; g) is given by

fY ( y) =
g(w′Σ−1w)

∏p
k=1

y
λk−1
k

μ
λk
k∫

R(λ)
g(w′Σ−1w) dw

, w = Tλ,μ( y), y ∈ R
p
+. (6)

The case p = 1 in (6) corresponds to the PDF of a positive random variable Y
with a Box–Cox symmetric distribution with parameters μ > 0, σ > 0, λ ∈ R and
DGF g (Ferrari and Fumes 2017), denoted by Y ∼ BCS(μ, σ, λ; g). From Definition
4, it is clear that each member of the class of the truncated elliptical distributions has
its corresponding member in the class of the Box–Cox elliptical distributions, which
is identified by its DGF g. Hence, by replacing g(u) ∝ exp(−u/2), u ≥ 0, in (6)
we obtain the PDF of a random vector Y ∈ R

p
+ with a multivariate Box–Cox normal

distribution with parameters μ ∈ R
p
+, λ ∈ R

p and Σ(p × p) > 0, denoted by
Y ∼ BCNp(μ,λ,Σ). When g(u) ∝ (1 + u/τ)−(τ+p)/2, τ > 0, u ≥ 0, in (6) we
have the PDF of a random vector Y ∈ R

p
+ with a multivariate Box–Cox t distribution

with parameters μ ∈ R
p
+, λ ∈ R

p, Σ(p × p) > 0 and τ > 0 degrees of freedom,
denoted by Y ∼ BCt p(μ,λ,Σ; τ). In these cases, when λ = 0, we get the PDF
of Y ∈ R

p
+ with multivariate log-normal and log-t distributions, denoted by Y ∼

LNp(μ,Σ) and Y ∼ Ltp(μ,Σ; τ), respectively. As expected, the multivariate Box–
Cox normal distribution is a limiting case of the multivariate Box–Cox t distribution
as τ → ∞. Other members of the class of the Box–Cox elliptical distributions include
the multivariate Box–Cox power exponential distribution, the multivariate Box–Cox
slash distribution, and the multivariate Box-Cox scale mixture of normal distributions.

Figure 1 shows plots of the PDF of Y ∼ BCt2(μ,λ,Σ; τ) for different parameter
values. The legend indicates the values of all the parameters considered in the first plot
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Fig. 1 Contour plots at levels 0.04, 0.02, 0.01, 0.005 and joint PDF of Y ∼ BCt2(μ, λ,Σ; τ), where
a μ1 = 5, μ2 = 4, λ1 = −1, λ2 = 1.5, σ11 = 0.5, σ22 = 0.3, σ12 = −0.2, τ = 3, b σ12 = 0, c
σ12 = 0.2, d μ1 = 3.5, e σ22 = 0.2, f λ2 = −1.5, g λ1 = λ2 = 1, h λ2 = 2, i τ = 10

and the value of the parameter that is changed from a plot to the next (in alphabetical
order). Note that the parameter σ12 impacts the association between the marginal
distributions of Y1 and Y2 (Fig. 1a–c), ranging from negative association (σ12 < 0)
to positive association (σ12 > 0).The parameter μ1 affects the scale of the marginal
distribution of Y1 (Fig. 1c, d). The parameter σ22 influences the dispersion of the
marginal distribution of Y2 (Fig. 1d, e). The parameters λ1 and λ2 control the skewness
of the respective marginal distribution of Y1 and Y2 (Fig. 1e–h). In Fig. 1g, for which
λ1 = λ2 = 1, it is clear that the contour lines are (truncated) ellipses; this fact is stated
in item 3 of Theorem 3. Additionally, as the degrees of freedom parameter grows,
the contour lines corresponding to the bivariate Box–Cox t distributions tend to the
contour lines of bivariate Box–Cox normal distributions. Moreover, the tails of the
Box–Cox t distributions seem to be heavier for smaller values of τ (Fig. 1h, i).

Definition 4 characterizes the Box–Cox elliptical distributions from truncated ellip-
tical distributionswith support in R(λ) and parameterμ = 0. In Theorem2,we present
a characterization of Box–Cox elliptical distributions from truncated elliptical distri-
butions with support in R(λ) and parameter μ = ξ .

Theorem 2 Let μ ∈ R
p
+, λ ∈ R

p, ξ ∈ R(λ), α = 1+ Dλξ and Σ(p× p) > 0. Then,
Tλ,μ(Y) ∼ TE�p(ξ ,Σ; R(λ); g) if and only if Y ∼ BCE�p(δ,λ, D−1

α ΣD−1
α ; g),

where δ = T−1
λ,μ(ξ).

Proof See “Appendix B”. 
�
In Theorem 3 we state various distributional results concerning the Box–Cox ellip-

tical distributions. Items 1 and 2 consider some transformations of Box–Cox elliptical
random vectors, and item 3 states that the class of the truncated elliptical distributions
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with support in Rp
+ and parameter μ ∈ R

p
+ is obtained from the class of the Box–Cox

elliptical distributions.

Theorem 3 Let μ ∈ R
p
+, λ ∈ R

p, Σ(p × p) > 0 and Y ∼ BCE�p(μ,λ,Σ; g).
1. If α ∈ R

p
+, then DαY ∼ BCE�p(Dαμ,λ,Σ; g).

2. If β ∈ R
p \0 andU ∈ R

p
+ is the random vector with componentsUk = (Yk/μk)

βk ,
k = 1, . . . , p, then U ∼ BCE�p

(
1, D−1

β λ, DβΣDβ; g).
3. If λ = 1, then Y ∼ TE�p(μ, DμΣDμ;Rp

+; g).
Proof See “Appendix C”. 
�

In order to state results on marginal and conditional distributions let us consider
the partitions of Y ∈ R

p
+, μ ∈ R

p
+, λ ∈ R

p and Σ(p × p) > 0 as

Y = (Y ′
1,Y

′
2)

′, μ = (μ′
1,μ

′
2)

′, λ = (λ′
1,λ

′
2)

′, Σ =
[
Σ11 Σ12
Σ21 Σ22

]

, (7)

withY1 ∈ R
r+,Y2 ∈ R

p−r
+ ,μ1 ∈ R

r+,μ2 ∈ R
p−r
+ ,λ1 ∈ R

r ,λ2 ∈ R
p−r ,Σ11(r×r) >

0,Σ22((p−r)×(p−r)) > 0 and Σ12(r×(p−r)) such thatΣ21 = Σ ′
12. The rectangle

R(λ) can be written as R(λ) = R(λ1)× R(λ2), where R(λ1) = I (λ1)×· · ·× I (λr ) ∈
R
r and R(λ2) = I (λr+1) × · · · × I (λp) ∈ R

p−r .
Let Y ∈ R

p
+, μ ∈ R

p
+, λ ∈ R

p, Σ(p × p) > 0 partitioned as in (7) and such that
Y ∼ BCE�p(μ,λ,Σ; g). The marginal PDF of Y1 is given by

fY1( y1) =
{ ∫

R(λ2)
g(w′Σ−1w) dw2

}∏r
k=1

y
λk−1
k

μ
λk
k∫

R(λ)
g(w′Σ−1w) dw

, y1 ∈ R
r+, (8)

where w = (w′
1,w

′
2)

′, with w1 = Tλ1,μ1( y1) and w2 = Tλ2,μ2( y2). Clearly, the
marginal PDF (8) is not necessarily of the form (6). This form is possible when
Σ12 = 0, i.e., when the matrix Σ(p × p) > 0 is block-diagonal. In Theorem 4 this
fact is stated.

Theorem 4 Let Y ∈ R
p
+, μ ∈ R

p
+, λ ∈ R

p, Σ(p × p) > 0 partitioned as in (7) and
such that Y ∼ BCE�p(μ,λ,Σ; g). If Σ12 = 0, then Y1 ∼ BCE�r (μ1,λ1,Σ11; g1),
where

g1(u) =
∫

T (R(λ2))

g(u + s′s) ds, u ≥ 0,

with T : Rp−r → R
p−r being the transformation T (x) = Σ

−1/2
22 x.

Proof See “Appendix D”. 
�
When the matrix Σ(p× p) > 0 is a diagonal matrix, all the marginal distributions

are Box–Cox symmetric distributions. This fact is stated in Corollary 1.
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Corollary 1 Let μ ∈ R
p
+, λ ∈ R

p, Σ = diag{σ11, . . . , σpp} > 0 and Y ∼
BCE�p(μ,λ,Σ; g). Then, Yk ∼ BCS(μk,

√
σkk, λk; gk), k = 1, . . . , p, where

gk(u) =
∫

R(Σ
1/2
−k,−kλ−k )

g(u + s′s) ds, u ≥ 0.

Proof Simply let Y1 = Yk , Y2 = Y−k , μ1 = μk , μ2 = μ−k , λ1 = λk , λ2 = λ−k ,
Σ11 = σkk and Σ22 = Σ−k,−k , k = 1, . . . , p, in Theorem 4. 
�

In Theorem 4 we stated that if Y = (Y ′
1,Y

′
2)

′ ∼ BCE�p(μ,λ,Σ; g), then the
sub-vector Y1 has a Box–Cox elliptical distribution if Σ12 = 0. Note that Y1 has a
distribution in the Box–Cox elliptical class but not necessarily with the same parent
distribution as Y (e.g. normal, t , power exponential). The condition in Theorem 4,
although sufficient, is not necessary for the subclass of the log-elliptical distributions.
Indeed, ifY = (Y ′

1,Y
′
2)

′ ∼ LE�p(μ,Σ; g), then the sub-vectorY 1 has a log–elliptical
distribution for any Σ(p × p) > 0 (Fang et al. 1990, Sec. 2.8). Moreover, the distri-
bution of Y1 is log-elliptical with the same parent distribution as Y if the DGF g is
that of multivariate scale mixture of normal distributions, as we establish in Theorem
5.

Theorem 5 Let Y ∈ R
p
+, μ ∈ R

p
+, Σ(p × p) > 0 partitioned as in (7) and such

that Y ∼ LE�p(μ,Σ; g), with g(u) ∝ ∫ ∞
0 t p/2 exp(−ut/2) dH(t), u ≥ 0, H being

a CDF on (0,∞). Then, Y1 ∼ LE�r (μ1,Σ11; g).
Proof See “Appendix E”. 
�

The following log-elliptical distributions have DGF as multivariate scale mixture
of normal distributions and therefore satisfy the conditions in Theorem 5: multivariate
log–normal distribution (H is the CDF of a degenerate distribution at t = 1), the
multivariate log–t distribution (H is the CDF of a gamma distribution with shape
parameter τ/2 and scale parameter 2/τ , τ > 0), themultivariate log–slash distribution
(H is the CDF of T = U 2/q , q > 0, with U ∼ U(0, 1)), and the multivariate log–
power exponential distribution for 0 < β ≤ 1 (H is the CDF with PDF h(t) =
1
2 t

−3/2hβ(t−1/2), 0 < β < 1, with hβ given in Gómez-Sánchez-Manzano et al. (2008,
Eq. 3). If β = 1, H is as in the multivariate log–normal distribution case). However,
Theorem 5 does not apply to the multivariate log–power exponential distribution for
β > 1.

In Theorem 6 we state that, if Y = (Y ′
1,Y

′
2)

′ has a Box–Cox elliptical distribution,
then the conditional distribution of Y1|Y2 is Box–Cox elliptical.

Theorem 6 Let Y ∈ R
p
+, μ ∈ R

p
+, λ ∈ R

p, Σ(p × p) > 0 partitioned as in
(7) and such that Y ∼ BCE�p(μ,λ,Σ; g). Let μ1(w2) = Σ12Σ

−1
22 w2 ∈ R(λ1)

and α(w2) = 1 + Dλ1μ1(w2), with w2 = Tλ2,μ2( y2), then Y1|Y2 = y2 ∼
BCE�r (δ1,λ1, D

−1
α(w2)

Σ11·2D−1
α(w2)

; gq(w2)), where δ1 = T−1
λ1,μ1

(μ1(w2)), Σ11·2 =
Σ11−Σ12Σ

−1
22 Σ21 and gq(w2)(u) = g(u+q(w2)), u ≥ 0, with q(w2) = w′

2Σ
−1
22 w2.

Proof See “Appendix F”. 
�
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If Σ12 = 0 in Theorem 6, then Y1|Y2 = y2 ∼ BCE�r
(
μ1,λ1,Σ11; gq(w2)

)
. By

comparing this conditional distribution with the marginal distribution of Y1 given in
Theorem 4, we have that, if Σ12 = 0, Y1|Y2 and Y1 have the same distribution if the
DGFs gq(w2) and g1 coincide. This characterizes the independence of the sub-vectors
Y1 and Y2, as we state in Theorem 7.

Theorem 7 Let Y ∈ R
p
+, μ ∈ R

p
+, λ ∈ R

p, Σ(p × p) > 0 partitioned as in (7) and
such that Y ∼ BCE�p(μ,λ,Σ; g). Then, Y1 and Y2 are independent if and only if
Y ∼ BCNp(μ,λ,Σ) and Σ12 = 0.

Proof See “Appendix G”. 
�
In Theorem 8 we give an expression for mixed moments of Box–Cox elliptical

random vectors.

Theorem 8 Let h ∈ R
p, μ ∈ R

p
+, λ ∈ R

p, Σ(p × p) > 0, Y ∼ BCE�p(μ,λ,Σ; g)
and U ∼ BCE�p(1,λ,Σ; g). If E(

∏p
k=1U

hk
k ) < ∞, then

E

( p∏

k=1

Y hk
k

)

=
( p∏

k=1

μ
hk
k

)

E

( p∏

k=1

Uhk
k

)

.

Proof See “Appendix H”. 
�
The computation of mixed moments of a random vector Y ∼ BCE�p(μ,λ,Σ; g)

frommixedmoments ofU ∼ BCE�p(1,λ,Σ; g) as indicated in Theorem8 is possible
using Monte Carlo integration. By using Algorithm 1, one may generate a random
sample of size n of the random vector W = Tλ,1(U) ∼ TE�p(0,Σ; R(λ); g), say
w1, . . . ,wn , where wi = (wi1, . . . , wi p)

′, i = 1, . . . , n. If n is large,

E

( p∏

k=1

Y hk
k

)

≈ 1

n

n∑

i=1

p∏

k=1

(
μkuk(wik)

)hk ,

with uk(wik) = T−1
λk ,1

(wik), i = 1, . . . , n; k = 1, . . . , p.
Let λ = 0 (i.e., Y ∼ LE�p(μ,Σ; g)) in Theorem 8. We have that

E

( p∏

k=1

Y hk
k

)

=
( p∏

k=1

μ
hk
k

)

MX (h),

whenever MX , the moment generating function of X ∼ E�p(0,Σ; g), exists (Fang et
al. 1990, Sec. 2.8). Another consequence of Theorem 8 is that the covariance matrices
of Y ∼ BCE�p(μ,λ,Σ; g) and U ∼ BCE�p(1,λ,Σ; g), denoted by ΣY and ΣU ,
respectively, are such that ΣY = DμΣU Dμ. Moreover, the correlation matrices of Y
and U are equal.
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4 Parameter interpretation

From Definition 4 we have that the distribution of a random vector Y ∼
BCE�p(μ,λ,Σ; g) is characterized by a random vector W = Tλ,μ(Y) ∼
TE�p(0,Σ; R(λ); g). In such a characterization, the parameter vectors μ ∈ R

p
+ and

λ ∈ R
p are introduced through an extended Box–Cox transformation (Definition 3),

in such a way that μk and λk , k = 1, . . . , p, are parameters involved in the trans-
formation of Yk only; hence these parameters are characteristics of the distribution of
Yk . Also, the marginal distributions of the components of W are associated through
Σ(p × p) > 0, which implies that the marginal distributions of the components of
Y are associated through this matrix as well. Hence, μk and λk , k = 1, . . . , p, are,
respectively the scale parameter and skewness parameter (power transformation for
marginal symmetry) of the distribution of Yk ; σ jk , j �= k, is the association parameter
between Y j and Yk .

The parameters μk and σkk , k = 1, . . . , p, are related with quantiles of Yk . In order
to establish these relations, let the marginal PDF of Yk be written as

fYk (yk) =
gΥ k (sk)

y
λk−1
k√
σkkμ

λk
k∫

I (λk
√

σkk )
gΥ k (sk) dsk

, sk = σ
−1/2
kk Tλk ,μk (yk), yk > 0, (9)

with I (λk
√

σkk) defined in (4) and

gΥ k (uk) =
∫

R(Δ−k,−kλ−k )

g((1 + Υ kΥ
′
k)u

2
k − 2Υ kΩkukw + w′Ω ′

kΩkw) dw, (10)

where uk ∈ I (λk
√

σkk), Δ = diag{√σ11, . . . ,
√

σpp}, Ωk = (Σ−k,−k

− σ−1
kk Σ−k,kΣk,−k)

−1/2Δ−k,−k and Υ k = σ
−1/2
kk Σk,−kΩkΔ

−1
−k,−k .

PDF (9) can be built from a random variable Uk defined in R with CDF

FUk (uk) = ck

∫ uk

−∞
gΥ k (t) dt, (11)

where c−1
k = ∫ ∞

−∞ gΥ k (t) dt (see details in “Appendix I”). An interesting case occurs
when the integral that involves gΥ k has integration region R(Δ−k,−kλ−k) = R

p−1,
i.e., when Δ−k,−kλ−k = 0. In this case, Uk ∼ E�1(0, 1; g̃), with

g̃(u) =
∫

Rp−1
g(u + w′w) dw, u ≥ 0. (12)

In Theorem 9 we show that all the quantiles of the univariate marginal distributions
of Box–Cox elliptical random vectors are proportional to the respective component of
μ.
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Theorem 9 Let μ ∈ R
p
+, λ ∈ R

p, Σ(p × p) > 0 and Y ∼ BCE�p(μ,λ,Σ; g). The
α-quantile yk,α of Yk, α ∈ (0, 1), k = 1, . . . , p, satisfies

yk,α =
{

μk(1 + λk
√

σkksk,α)1/λk , λk �= 0,

μk exp(
√

σkksk,α), λk = 0,
(13)

with

sk,α =

⎧
⎪⎨

⎪⎩

F−1
Uk

(α + (1 − α)FUk (−1/λk
√

σkk)), λk > 0,

F−1
Uk

((1 + α)FUk (−1/λk
√

σkk) − 1), λk < 0,

F−1
Uk

(α), λk = 0,

(14)

where FUk is the CDF given in (11).

Proof See “Appendix J”. 
�
In Theorem 9 we stated that, if Y ∼ BCE�p(μ,λ,Σ; g), all the quantiles of Yk ,

k = 1, . . . , p, particularly the median, are proportional to μk . This feature of the
class of Box–Cox elliptical distributions makes it attractive for regression modeling
purposes. For instance, assume that, for fixed k, logμk = ∑q

j=1 x jβ j , where the
betas are unknown regression parameters and the xs are fixed covariates. In this case,
exp(β j ) is the multiplicative effect of a one unit increase in x j on the quantiles of Yk .

In Corollary 2 we establish conditions under which the quantiles of Yk can be
calculated from quantiles of standard symmetric distributions.

Corollary 2 Let μ ∈ R
p
+, λ ∈ R

p, Σ(p × p) > 0 and Y ∼ BCE�p(μ,λ,Σ; g). If
λ = 0 (i.e. Y ∼ LE�p(μ,Σ; g)) or λ j

√
σ j j → 0, j = 1, . . . , p, then the α-quantile

yk,α of Yk, α ∈ (0, 1), k = 1, . . . , p, is given by yk,α = μk exp(
√

σkkqα), where qα is
the α-quantile of a standard symmetric distribution with DGF given by (12).

Proof Let λ = 0 or λ j
√

σ j j → 0, j = 1, . . . , p in Theorem 9. From (13) and (14) it

follows that yk,α = μk exp(
√

σkkqα), where qα = F−1
U (α), with U ∼ E�1(0, 1; g̃),

with g̃ being a DGF given by (12). This fact follows because R(Δ−k,−kλ−k) = R
p−1

when λ = 0, or R(Δ−k,−kλ−k) → R
p−1 when λ j

√
σ j j → 0, j = 1, . . . , p. 
�

Let Y ∼ BCE�p(μ,λ,Σ; g). A coefficient of variation based on quantiles for Yk ,
k = 1, . . . , p, is defined as (Rigby and Stasinopoulos 2006)

CVYk = 3

4

(yk,3/4 − yk,1/4)

yk,1/2
.

Corollary 2 allows interpretation of the parametersμk and σkk from their relationswith
quantiles of Yk , k = 1, . . . , p. In fact, if λ = 0 (i.e. Y ∼ LE�(μ,Σ; g)), then μk =
yk,1/2 and CVYk = 1.5 sinh(

√
σkkq3/4), where q3/4 is the third quartile of a standard

symmetric distribution with DGF given in (12). Also, if λ ≈ 0 or λ j
√

σ j j ≈ 0, j =
1, . . . , p, then μk ≈ yk,1/2 and CVYk ≈ 1.5 sinh(

√
σkkq3/4). Hence, in these cases,

μk is equal or approximately equal to the median of Yk . Moreover, CVYk depends on
σkk through the hyperbolic sine function,which is amonotonically increasing function.
Therefore, σkk can be seen as a relative dispersion parameter of the distribution of Yk .
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5 Parameter estimation

Let y1, . . . , yn be the observed values of a random sample Y1, . . . ,Yn of Y ∼
BCE�p(μ,λ,Σ; g), with Y i = (Yi1, . . . ,Yip)′, i = 1, . . . , n. Let η = (η1, . . . , ηq)

′
be the vector of extra parameters induced by the DGF g. The maximum likelihood
estimators of μ, λ, Σ and η, denoted by μ̂, ̂λ, ̂Σ and η̂, respectively, will be such
that maximize the log-likelihood function � = ∑n

i=1 �i , with

�i = − log

{∫

R(λ)

g(w′Σ−1w) dw

}

+ log{g(w′
iΣ

−1wi )}

+
p∑

k=1

(λk − 1) log yik −
p∑

k=1

λk logμk, (15)

wherewi = Tλ,μ( yi ). There is no closed form for the maximum likelihood estimators
μ̂, λ̂, Σ̂ and η̂, but they can be computed using numerical optimization algorithms
implemented in computer packages. The number of parameters to be estimated is
p(p + 5)/2 + q.

Let μ(0), λ(0), Σ (0) and η(0) be the initial values for the estimation of μ, λ, Σ and
η, respectively. For the choice of μ

(0)
k , λ

(0)
k and σ

(0)
kk , k = 1, . . . , p, we suggest the

estimates obtained by fitting a Box–Cox symmetric distribution to the kth component
ofY , i.e. the estimated parameters of Yk ∼ BCS(μk,

√
σkk, λk; g). As initial values for

σ jk , we suggest σ
(0)
jk = 0, j �= k. Initial values for the extra parameters (if any), η(0)

j ,
j = 1, . . . , q, will depend on the family of distributions considered. For instance, for
the multivariate Box–Cox t distribution we propose as initial value for the degrees of
freedom parameter, τ (0), the corresponding estimate obtained by fitting a multivariate
t distribution to the vector X = Tλ(0),μ(0) (Y).

The main difficulty in implementing an optimization scheme is due to the need of
an efficient computation of the integral

∫
R(λ)

g(w′Σ−1w) dw, that appears in (15).
This integral depends on the complexity and structure of the DGF g and is computed
over R(λ). Hence, the vector of the extra parameters η, the matrix Σ and the vector λ

are involved in the estimation procedure through this integral. Genz and Bretz (2009)
propose algorithms to efficiently compute this type of integral over rectangles when g
is the DGF of the multivariate normal and t families. In the class of the log-elliptical
distributions (λ = 0) the integral disappears making the estimation process much
easier. In this case, the logarithm of the likelihood function is given by � = ∑n

i=1 �i ,
where �i , i = 1, . . . , n, is

�i = −1

2
log(det(Σ)) + log{g(w′

iΣ
−1wi )} −

p∑

k=1

log yik,

with wi = T0,μ( yi ). Here, the unknown quantities to be estimated are μ, Σ and η,
i.e. p(p + 3)/2 + q parameters.

To evaluate the proposed estimation procedure we conducted simulations with
bivariate log-normal, log-t , Box–Cox normal and Box–Cox t distributions, different
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sample sizes, namely n = 125, 250, 500, and N = 5000 Monte Carlo replicates. The
random samples of Y ∼ BCE�p(μ,λ,Σ; g) were generated using Algorithm 2.

Alogrithm 2

1. Generate a randomsample of size n, sayw1, . . . ,wn, ofW ∼ TE�p(0,Σ; R(λ); g)
using Algorithm 1.

2. Compute y1 = T−1
λ,μ(w1), . . . , yn = T−1

λ,μ(wn). From Definition 4, y1, . . . , yn is
a random sample of Y ∼ BCE�p(μ,λ,Σ; g).
In each simulation experimentwe used theBroyden, Fletcher,Goldfarb, andShanno

(BFGS) optimization algorithm tomaximize the log-likelihood functionwith the initial
values proposed above. The integral in (15) was efficiently evaluated using algorithms
proposed by Genz and Bretz (2009). All the computations were conducted in the R
software (R Core Team 2016).

Let θ̂1, . . . , θ̂N be the ordered estimated values of a scalar parameter, say θ , in N
Monte Carlo simulated samples. Let M(θ̂) be the median of {θ̂1, . . . , θ̂N }. The median
bias, denoted by MB(θ̂), is given by MB(θ̂) = M(θ̂) − θ . The median absolute
deviation, denoted by MAD(θ̂), is defined as the median of {|θ̂1 − M(θ̂)|, . . . , |θ̂N −
M(θ̂)|}. Also, let IQR(θ̂) be the interquartile range of {θ̂1, . . . , θ̂N }. These summaries
of the estimates were computed for each simulation experiment and reported in Table
1. The figures in this table suggest a suitable behavior of the estimation procedure,
because the median biases are close to zero and the median absolute deviations and
interquartile ranges get smaller as n grows.

6 Application

The dataset refers to observations of vitamins B2 (in mg), B3 (in mg), B12 (in mcg)
and D (in mcg) intakes based on the first 24-h dietary recall interview for n = 136
older men. The bagplots (Rousseeuw et al. 1999) shown in Fig. 2 indicate that the
vitamin intakes are positively correlated, their bivariate distributions are skewed, and
that outliers are present.

For each pair of variables, we fitted bivariate log-normal, log-t , Box–Cox normal
and Box–Cox t distributions, and the respective marginal independent distributions;
we denote these distributions by LN2, Lt2, BCN2, BCt2, Ind-LN1, Ind-Lt1, Ind-BCN1
and Ind-BCt1, respectively. Table 2 shows the Akaike information criterion (AIC) for
each fit. The smallest AIC is marked in bold and indicates the distribution that best fits
the data. The figures in this table indicate that the bivariate distributions provide better
fit when compared with the respective marginal independent distributions. This is not
surprising since there is evidence of association among the variables. Additionally,
Table 2 indicates that the bivariate Box–Cox t distribution gives the best fit for the pairs
of variables: vitamins B2–D, B3–D and B12–D. Also, the bivariate log-t distribution
provides the best fit for the pairs: vitamins B2–B3, B2–B12 and B3–B12. Hence, the
bivariate distributions based on the t distribution provide better fit than those based on
the normal distribution. This fact is due to the presence of extreme outliers (Fig. 2).

123



Box–Cox elliptical distributions with application
Ta
bl
e
1

M
ed
ia
n
bi
as

(M
B
),
m
ed
ia
n
ab
so
lu
te
de
vi
at
io
n
(M

A
D
)
an
d
in
te
rq
ua
rt
ile

ra
ng
e
(I
Q
R
)
of

th
e
pa
ra
m
et
er

es
tim

at
or
s

n
B
iv
ar
ia
te
lo
g-
no

rm
al

B
iv
ar
ia
te
B
ox

–C
ox

t

μ
1

μ
2

σ
11

σ
12

σ
22

μ
1

μ
2

λ
1

λ
2

σ
11

σ
12

σ
22

τ

8
8

0.
8

−
0.
5

1
20

15
0.
4

0.
3

0.
4

0.
1

0.
3

6

12
5 M
B

−
0.
02

0.
00

−
0.
02

0.
02

−
0.
03

0.
08

−
0.
01

−
0.
04

−
0.
01

0.
06

0.
06

0.
05

2.
89

M
A
D

0.
59

0.
66

0.
07

0.
07

0.
09

0.
72

0.
42

0.
25

0.
13

0.
31

0.
16

0.
16

4.
62

IQ
R

1.
19

1.
33

0.
15

0.
14

0.
18

2.
96

0.
84

0.
51

0.
27

2.
80

0.
61

0.
36

18
.4
2

25
0 M
B

−
0.
01

0.
00

−
0.
01

0.
01

−
0.
01

0.
05

0.
00

−
0.
02

−
0.
01

0.
04

0.
03

0.
02

1.
48

M
A
D

0.
42

0.
47

0.
05

0.
05

0.
07

0.
50

0.
29

0.
19

0.
10

0.
24

0.
10

0.
11

2.
70

IQ
R

0.
85

0.
93

0.
10

0.
10

0.
13

1.
46

0.
58

0.
38

0.
20

0.
96

0.
28

0.
24

6.
60

50
0 M
B

0.
00

0.
00

0.
00

0.
00

0.
00

0.
07

0.
01

−
0.
02

−
0.
01

0.
05

0.
02

0.
02

1.
07

M
A
D

0.
30

0.
33

0.
04

0.
04

0.
05

0.
40

0.
20

0.
13

0.
07

0.
20

0.
07

0.
08

1.
67

IQ
R

0.
60

0.
66

0.
08

0.
07

0.
09

0.
94

0.
40

0.
27

0.
15

0.
56

0.
17

0.
16

3.
74

n
B
iv
ar
ia
te
lo
g-
t

B
iv
ar
ia
te
B
ox

–C
ox

no
rm

al

μ
1

μ
2

σ
11

σ
12

σ
22

τ
μ
1

μ
2

λ
1

λ
2

σ
11

σ
12

σ
22

7
10

1.
2

0.
6

1.
4

5
5

4
−1

0.
5

0.
6

0.
2

0.
8

12
5 M
B

0.
01

0.
02

0.
00

−
0.
01

−
0.
01

0.
25

−
0.
17

−
0.
06

0.
01

0.
00

0.
00

0.
00

−
0.
01

M
A
D

0.
97

1.
45

0.
22

0.
17

0.
26

1.
76

0.
91

0.
58

0.
08

0.
09

0.
04

0.
02

0.
03

IQ
R

1.
31

1.
98

0.
30

0.
22

0.
35

2.
63

1.
80

1.
15

0.
15

0.
17

0.
08

0.
05

0.
05

25
0 M
B

−
0.
01

−
0.
01

0.
00

0.
00

0.
00

0.
15

−
0.
07

−
0.
04

0.
00

0.
00

0.
00

0.
00

0.
00

M
A
D

0.
69

1.
05

0.
16

0.
12

0.
19

1.
18

0.
63

0.
41

0.
05

0.
06

0.
03

0.
02

0.
02

IQ
R

0.
93

1.
43

0.
22

0.
16

0.
25

1.
66

1.
26

0.
82

0.
10

0.
12

0.
05

0.
03

0.
04

50
0 M
B

0.
00

0.
00

0.
00

0.
00

0.
00

0.
07

−
0.
02

−
0 .
01

0.
00

0.
00

0.
00

0.
00

0.
00

M
A
D

0.
46

0.
72

0.
12

0.
08

0.
13

0.
82

0.
45

0.
29

0.
04

0.
04

0.
02

0.
01

0.
01

IQ
R

0.
62

0.
97

0.
16

0.
11

0.
18

1.
13

0.
90

0.
58

0.
07

0.
09

0.
04

0.
02

0.
03

123



R. A. Morán-Vásquez, S. L. P. Ferrari

V
ita

m
in

 B
2

Vitamin B2 Vitamin B3 Vitamin B12 Vitamin D

1
3

5

V
ita

m
in

 B
3

0
40

80

V
ita

m
in

 B
12

0
20

40

V
ita

m
in

 D

1 3 5 0 40 80 0 20 40 5 15 25
5

15
25

Fig. 2 Bagplot matrix; nutritional data

Table 3 gives the estimates (and standard errors) of the parameters of the best
fittingmodel as indicated in Table 2. The standard errors were obtained asymptotically
through the observed information matrix, which is calculated numerically based on
the finite difference method (Nocedal andWright 2006, Sect. 8.1) implemented within
the mle function of R (R Core Team 2016) for maximum likelihood estimation. It
is noteworthy that the estimated degrees of freedom parameter varies from 4 to 8,
indicating that heavier-than-normal distributions are better suited for fitting the data.

For the bivariate log-t distribution fitted to the pair of vitamins B2–B3 the estimates
ofμ1 andμ2 are μ̂1 = 1.45 and μ̂2 = 19.91 and correspond to estimates of themedian
intake of vitamins B2 and B3 in the population. These estimates are close to the corre-
sponding sample medians (1.49 and 19.99, respectively). The estimates of the relative
dispersion parameters are σ̂11 = 0.16 and σ̂22 = 0.23; hence the relative dispersion
of vitamin B2 is estimated to be smaller than that of vitamin B3. For the intake of
vitamins B12–D the best fit is achieved by the bivariate Box–Cox t distribution. Note
that the estimated parameters satisfy λ̂1

√
σ̂11 = −0.13 and λ̂2

√
σ̂22 = 0.10, that are
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Fig. 3 Scatter plots overlaid with contour plots and joint PDF of the best fitting distributions; nutritional
data

close to zero. Hence, μ̂1 = 3.10 and μ̂2 = 3.42 are expected to be close to the sample
median of vitamins B12 and D intakes respectively, and this is in fact the case (the
sample medians are 3.24 and 3.80, respectively). Since σ̂11 = 0.45 and σ̂11 = 0.47,
we have that the relative dispersions of vitamins B12 and D intakes are similar.

Figure 3 shows contour plots of the fitted distributions superimposed to the scatter
plots of the data, and the corresponding PDFs. The plots suggest a reasonable fit for
all the pairs of variables.

7 Final remarks

In this paper we presented a new class of multivariate distributions, the class of
Box–Cox elliptical distributions, that is suitable for modeling multivariate positive,
marginally asymmetric, possibly heavy-tailed data. The construction of the Box–Cox
distributions uses an extended multivariate Box–Cox transformation and the class of
truncated elliptical distributions, both defined in this paper. We show that the class of
Box–Cox elliptical distributions has as special cases the classes of the log-elliptical
and Box–Cox symmetric distributions. The Box–Cox elliptical distributions allow
easy parameter interpretation, a desirable feature for modeling purposes.

Starting from a study of the class of truncated elliptical distributions, we defined and
studied the Box–Cox elliptical distributions. Specifically, we stated useful properties
and discussed maximum likelihood estimation issues, generation of random samples,
interpretation of parameters, and applications.

There are someopen problems thatwill be addressed in future papers. The efficiency
of the implementation of maximum likelihood estimation depends on the efficient
computation of the integral involved in (15). The methods proposed by Genz and
Bretz (2009) to efficiently compute the integral when g is the DGF of the multivariate
normal and t distributions allowed us to implement maximum likelihood estimation
for the parameters of the multivariate Box–Cox normal and Box–Cox t distributions.
Computational aspects of these distributions depend on computations related to the
multivariate truncated normal and truncated t distributions, for which recent works
have been developed (e.g. Ho et al. 2012; Kan and Robotti 2017). The efficient com-
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putation of the integral for other DGFs will provide the implementation of maximum
likelihood estimation for other distributions in the Box–Cox elliptical class, such as
the multivariate Box–Cox power exponential and Box–Cox slash distributions. The
relation of the scale parameters to quantiles of the marginal distributions permits the
construction of Box–Cox elliptical regression models that are able to model the rela-
tionship between covariates and quantiles of the response variables. The study of
regression models based on Box–Cox elliptical distributions, including measurement
error models, spatial models, mixed models, etc., is perfectly feasible and of interest
but it is beyond the scope of the present paper.
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Appendix A: Proof of the Theorem 1

The conditional PDF of Wk |W−k , k = 1, . . . , p, is given by

fWk |W−k (wk) = g((w − μ)′Σ−1(w − μ))
∫ bk
ak

g((w − μ)′Σ−1(w − μ)) dwk

, wk ∈ (ak, bk).

From the identity (w − μ)′Σ−1(w − μ) = [(wk − μk.−k)/σk.−k]2 + q(w−k), we get
the result.

Appendix B: Proof of the Theorem 2

If W = Tλ,μ(Y) ∼ TEl p(ξ ,Σ; R(λ); g), then its PDF is given by

fW (w) = g((w − ξ)′Σ−1(w − ξ))
∫
R(λ)

g((w − ξ)′Σ−1(w − ξ)) dw
, w ∈ R(λ). (16)

Let V : R(λ) → R(λ) be the transformation defined as V (w) = D−1
α (w − ξ), and let

U = V (W), with Jacobian J (w → u) = ∏p
k=1(1 + λkξk). The PDF of U is

fU (u) = g(u′(D−1
α ΣD−1

α )−1u)
∫
R(λ)

g(u′(D−1
α ΣD−1

α )−1u) du
, u ∈ R(λ).

Hence, U ∼ TEl p(0, D−1
α ΣD−1

α ; R(λ); g). Because U = V (Tλ,μ(Y)) =
Tλ,δ(Y), where δ = T−1

λ,μ(ξ), then from Definition 4 we have Y = T−1
λ,δ (U) ∼

BCE�p(δ,λ, D−1
α ΣD−1

α ; g).
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On the other hand, if Y ∼ BCE�p(δ,λ, D−1
α ΣD−1

α ; g), then its PDF is

fY ( y) =
g(w′(D−1

α ΣD−1
α )−1w)

∏p
k=1

y
λk−1
k
δk

λk
∫
R(λ)

g(w′(D−1
α ΣD−1

α )−1w) dw
, w = Tλ,δ( y), y ∈ R

p
+. (17)

Now, from the transformation W = Tλ,μ(Y), with Jacobian J ( y → w)

= ∏p
k=1 μk(1 + λkwk)

1/λk−1, in the PDF (17) we arrive at PDF (16).

Appendix C: Proof of Theorem 3

1. From T = DαY , with Jacobian J ( y → t) = ∏p
k=1 α−1

k , in (6), we get the PDF
of T as

fT (t) =
g(w′Σ−1w)

∏p
k=1

t
λk−1
k

(αkμk )
λk

∫
R(λ)

g(w′Σ−1w) dw
, t ∈ R

p
+,

where w=Tλ,μ(D−1
α t)=Tλ,Dαμ(t). Hence, T = DαY ∼ BCE�p(Dαμ,λ,Σ; g).

2. Note that the PDF of Y , given in (6), can be expressed as

fY ( y) =
g(v′(DβΣDβ)−1v)

∏p
k=1

|βk |yλk−1
k

μ
λk
k∫

R(D−1
β

λ)
g(v′(DβΣDβ)−1v) dv

, y ∈ R
p
+,

where v = DβTλ,μ( y) has its kth component given by

vk =
⎧
⎨

⎩

[(yk/μk)
βk ]λk/βk − 1

λk/βk
, λk �= 0,

log(yk/μk)
βk , λk = 0,

for k = 1, . . . , p. From Uk = (Yk/μk)
βk , k = 1, . . . , p, with Jacobian J ( y →

u) = ∏p
k=1 μkβ

−1
k u1/βk−1

k , we arrive at the desired result.
3. Plugging λ = 1 in (6) we have that the PDF of Y is

fY ( y) = g(( y − μ)′(DμΣDμ)−1( y − μ))
∏p

k=1
1
μk∫

R(1) g(w
′Σ−1w) dw

, y ∈ R
p
+.

From the change of variables w = D−1
μ ( y − μ) we arrive at the desired result.
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Appendix D: Proof of Theorem 4

Plugging Σ12 = 0 in (8), and then making the change of variables s = T (w2) =
Σ

−1/2
22 w2, the marginal PDF of Y1 is

fY1( y1) =
{ ∫

R(λ2)
g(w′

1Σ
−1
11 w1 + w′

2Σ
−1
22 w2) dw2

}∏r
k=1

y
λk−1
k

μ
λk
k∫

R(λ1)

{∫
R(λ2)

g(w′
1Σ

−1
11 w1 + w′

2Σ
−1
22 w2) dw2

}
dw1

=
g1(w′

1Σ
−1
11 w1)

∏r
k=1

y
λk−1
k

μ
λk
k∫

R(λ1)
g1(w′

1Σ
−1
11 w1) dw1

, w1 = Tλ1,μ1( y1), y1 ∈ R
r+.

Note that g1(u) = ∫
T (R(λ2))

g(u+s′s) ds ≤ ∫
Rp−r g(u+s′s) ds = h1(u),u ≥ 0,where

h1 is such that
∫ ∞
0 tr−1h1(t2) dt < ∞ (Fang et al. 1990, Sec. 2.2). This completes the

proof.

Appendix E: Proof of Theorem 5

Because Y ∼ LE�p(μ,Σ; g), with g(u) ∝ ∫ ∞
0 t p/2 exp(−ut/2) dH(t), u ≥ 0, then

X = T0,μ(Y) ∼ E�p(0,Σ; g). Thus, X1 = T0,μ1(Y1) ∼ E�p(0,Σ11; g) (Kano
1994). Hence, Y1 ∼ LE�r (μ1,Σ11; g).

Appendix F: Proof of Theorem 6

The conditional PDF of Y1|Y2 is given by

fY1|Y2( y1) =
g(w′Σ−1w)

∏r
k=1

y
λk−1
k

μ
λk
k∫

R(λ1)
g(w′Σ−1w) dw1

, w1 = Tλ1,μ1( y1), y1 ∈ R
r+. (18)

Because w′Σ−1w = u′
1

(
D−1

α(w2)
Σ11·2D−1

α(w2)

)−1u1 + q(w2), where u1 = D−1
α(w2)

(w1 − μ1(w2)) = Tλ1,δ1( y1), (18) can be expressed as

fY1|Y2 ( y1) =
gq(w2)

(
u′
1

(
D−1

α(w2)
Σ11·2D−1

α(w2)

)−1u1
) ∏r

k=1
y
λk−1
k

μ
λk
k (1+λkμ1k (w2))

∫
R(λ1)

gq(w2)

(
u′
1

(
D−1

α(w2)
Σ11·2D−1

α(w2)

)−1u1
)
du1

, y1 ∈ R
p
+,

where u1 = Tλ1,δ1( y1). Since
∏r

k=1 μ
λk
k (1 + λkμ1k(w2)) = ∏r

k=1 δk
λk the proof is

complete.
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Appendix G: Proof of Theorem 7

Y1 and Y2 are independent if, and only if, the PDF of Y ∼ BCE�p(μ,λ,Σ; g) given
in (6) is such that fY ( y) = fY1( y1) fY2( y2). This condition is satisfied if, and only
if, Σ12 = 0 and the DGF g satisfies the functional equation g(u + v) = g(u)g(v),
with u ≥ 0 and v ≥ 0, for which g(u) = exp(−ku), for some k ≥ 0, is a solution
(Gupta et al. 2013, Sec. 1.3). From

∫ ∞
0 t p−1 exp(−kt2) dt = 2p/2−1Γ (p/2), we find

that k = 1/2. Hence, Y1 and Y2 are independent if, and only if, Σ12 = 0 and
Y ∼ BCNp(μ,λ,Σ).

Appendix H: Proof of Theorem 8

From (6) we have

E

( p∏

k=1

Y hk
k

)

=
∫
R

p
+ g(w′Σ−1w)

∏p
k=1

y
λk+hk−1
k

μ
λk
k

d y
∫
R(λ)

g(w′Σ−1w) dw
,

where w = Tλ,μ( y). By making the change of variables u = D−1
μ y we arrive at the

desired result.

Appendix I: Marginal PDF of Yk

The function gΥ k given in (10) can be defined in R. Hence, we can define a random
variable Uk ∈ R from the PDF

fUk (uk) = ckgΥ k (uk), uk ∈ R,

where c−1
k = ∫ ∞

−∞ gΥ k (t) dt . The CDF of Uk is given by (11). We now define Sk ∈
I (λk

√
σkk) as a random variable Uk truncated on I (λk

√
σkk). The PDF of Sk is given

by

fSk (sk) = gΥ k (sk)∫
I (λk

√
σkk )

gΥ k (sk) dsk
, sk ∈ I (λk

√
σkk). (19)

From the transformation Sk = σ
−1/2
kk Tλk ,μk (Yk), with Jacobian J (sk → yk)

= σ
−1/2
kk μ

−λk
k yλk−1

k , we arrive at the PDF of Yk given in (9).
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Appendix J: Proof of Theorem 9

BecauseY ∼ BCE�p(μ,λ,Σ; g), the PDF of Yk , k = 1, . . . , p, is given by (9), where

Sk = σ
−1/2
kk Tλk ,μk (Yk) has PDF given in (19). The CDF of Sk is

FSk (sk) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

FUk (sk) − FUk (−1/λk
√

σkk)

1 − FUk (−1/λk
√

σkk)
, λk > 0,

1 − FUk (−1/λk
√

σkk) + FUk (sk)

FUk (−1/λk
√

σkk)
, λk < 0,

FUk (sk), λk = 0,

(20)

from which we have that the α-quantile yk,α of Yk , α ∈ (0, 1), is such that P(Yk ≤
yk,α) = α, or equivalently P[Sk ≤ σ

−1/2
kk Tλk ,μk (yk,α)] = α. Hence,

yk,α =
{

μk(1 + λk
√

σkksk,α)1/λk , λk �= 0,

μk exp(
√

σkksk,α), λk = 0,

where sk,α is such that FSk (sk,α) = α, with FSk given in (20). Therefore, sk,α is given
by

sk,α =

⎧
⎪⎨

⎪⎩

F−1
Uk

(α + (1 − α)FUk (−1/λk
√

σkk)), λk > 0,

F−1
Uk

((1 + α)FUk (−1/λk
√

σkk) − 1), λk < 0,

F−1
Uk

(α), λk = 0,

where FUk is the CDF given in (11).
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