Metrika
https://doi.org/10.1007/s00184-018-0682-z

@ CrossMark

Box-Cox elliptical distributions with application

Raul Alejandro Moran-Vasquez' - Silvia L. P. Ferrari?

Received: 21 May 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract

We propose and study the class of Box—Cox elliptical distributions. It provides alterna-
tive distributions for modeling multivariate positive, marginally skewed and possibly
heavy-tailed data. This new class of distributions has as a special case the class of log-
elliptical distributions, and reduces to the Box—Cox symmetric class of distributions
in the univariate setting. The parameters are interpretable in terms of quantiles and
relative dispersions of the marginal distributions and of associations between pairs of
variables. The relation between the scale parameters and quantiles makes the Box—
Cox elliptical distributions attractive for regression modeling purposes. Applications
to data on vitamin intake are presented and discussed.

Keywords Box—Cox symmetric distributions - Box—Cox transformation - Elliptical
distribution - Gibbs sampling - Truncated distribution

1 Introduction

Multivariate positive data are frequently found in empirical studies. The statistical
analysis of such data often relies on the multivariate normal distribution assumptions,
ignoring characteristics of the data, namely the positive support and possible skewness
and presence of outlying observations. Improvements for accomodating outliers may
be achieved by replacing the multivariate normal distribution by a heavy-tailed dis-
tribution in the elliptical class of distributions, such as the multivariate ¢ distribution
(Lange et al. 1989). Further improvement may be achieved by the use of log-skew-
elliptical distributions (Marchenko and Genton 2010), which are multivariate distribu-
tions with support in Ri and accommodate heavy-tailed distributions. An alternative
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methodology for modeling multivariate positive data uses a Box—Cox transformation
in each component of the vector of observations. In this approach one assumes that the
vector of transformed observations follows a multivariate normal or an elliptical distri-
bution (Quiroz et al. 1996). This assumption implies a theoretical shortcoming because
the support of the transformed vector of observations is not necessarily R”. Moreover,
in this approach the model parameters are interpretable only in terms of characteristics
of the transformed observations (not the original variables of interest). In the univariate
case, Ferrari and Fumes (2017) overcome these shortcomings by proposing the class of
Box—Cox symmetric distributions. This class includes several alternative distributions,
such as the Box—Cox Cole—Green (Stasinopoulos et al. 2008), Box—Cox ¢ (Rigby and
Stasinopoulos 2006), Box—Cox power exponential (Rigby and Stasinopoulos 2004;
Voudouris et al. 2012) distributions, and a new distribution, the Box—Cox slash distri-
bution, for modeling univariate positive, skewed, possibly heavy-tailed data.

In the present paper, we focus on the problem of constructing a class of multivariate
distributions with support in Rf_ in such a way that the marginal distributions have
properties similar to those of the Box—Cox symmetric distributions, the parameters are
interpretable and association among variables is controlled by association parameters.
We name the proposed class of distributions the Box—Cox elliptical class of distri-
butions. It has the log-elliptical class of distributions (Fang et al. 1990) as a special
subclass and reduces to the Box—Cox symmetric class of distributions in the univariate
setting. The construction of the new class is performed through an extension of the
Box—Cox transformation and involves another new class of distributions defined in this
paper, the class of truncated elliptical distributions. The parameters of the Box—Cox
elliptical distributions are interpretable as characteristics of the original variables (not
the transformed variables). Some parameters are related to quantiles of the marginal
distributions, which makes the Box—Cox elliptical distributions attractive for regres-
sion modeling purposes. Several properties of the proposed distributions are derived.
In particular, some properties of the log-elliptical distributions that are not available in
the literature are direct consequences of properties of Box—Cox elliptical distributions
stated in this paper. The flexibility of the proposed distributions for modeling multi-
variate positive, asymmetric data with or without the presence of outlying observations
is illustrated through an analysis of real data on vitamin intake by older people.

The paper is organized as follows. In Sect. 2 we define the truncated elliptical dis-
tributions and present some properties. In Sect. 3 we define the family of the extended
Box—Cox transformations, we use it to define the class of Box—Cox elliptical distribu-
tions, and we state several properties. In Sect. 4 we give interpretation for the param-
eters and show the relation between some parameters and quantiles of the marginal
distributions. In Sect. 5 we focus on maximum likelihood estimation and present sim-
ulation studies. In Sect. 6 we present applications to real data. Finally, Sect. 7 closes
the paper with concluding remarks. Technical proofs are presented in the “Appendix”.

2 The class of the truncated elliptical distributions

In this section, we define the class of the truncated elliptical distributions. It is needed
for the definition and study of the class of the Box—Cox elliptical distributions, which
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is the focus of this paper. Previous works directly related to the truncated elliptical
class of distributions are e.g. Arellano-Valle et al. (2006) and Kim (2010).

We denote vectors and their components with lowercase Greek letters in bold and
normal fonts, respectively. For instance, if & € R”, then & = (&, ..., & p)’. Addition-
ally,&_; e R? 1k=1,..., p, is the sub-vector obtained from & by excluding its kth
component. Similar notations are used for random vectors, but we use capital Roman
letters. Matrices are denoted by capital Greek letters in boldface and their entries in
lowercase normal font Greek letters. For example, if A(p x ¢) is a matrix with compo-
nents in R, then A = (8¢) pxq. If A is a symmetric matrix, the notation A > 0 means
that A is positive definite. If A(p x p) > 0, then A_;; € R”~! is the sub-vector
obtained by deleting the kth component of the kth column of A; Ay = A’ kx> and
A_i —¢ > 01is the sub-matrix obtained by excluding the kth row and the kth column
of A.

The elliptical distributions have been extensively studied in the statistical literature
and applied in different fields; see Fang et al. (1990), Gupta et al. (2013) and refer-
ences therein. From now on, whenever we say that a random vector has an elliptical
distribution we assume that its probability density function (PDF) exists.

Definition 1 The random vector X € R? has an elliptical distribution with location
vector u € R? and dispersion matrix X (p x p) > 0, if its PDF is

fx(x) =cpdet(Z) 2g((x — w)' T (x — p), x eRP. (1

The function g, called density generating function (DGF), is such that g(u#) > 0, for
allu > 0, and fooo rf’_lg(rz) dr < oo. The normalizing constant ¢, is

rp/2) ([~ ,_ !
v = 2 </0 rP lg(rz)dr> .

We write X ~ EC,(n, X; g).

The univariate case of Definition 1 corresponds to a random variable X having a
symmetric distribution with location parameter 1 € R, scale parameter o > 0 and
DGF g, and we write X ~ E{; (i, 0'%; g). A detailed study about elliptical distributions
can be found in Fang et al. (1990).

Definition2 Let B C R” be a measurable set. The random vector W € B has a
truncated elliptical distribution with support B and parameters g € R” and X (p x
p) > 0, DGF g, and we write W ~ TE{,(u, X'; B; g), if its PDF is

g(w—p)/'EZ Yw—p)

Tw(w) = Jp8(w—pyE" (w—p)dw’

w e B, 2)

where g is such that g(u) > 0, for all ¥ > 0, and fooo t"’_lg(tz) dr < o0.
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If B = R? in (2), we arrive at PDF (1).

The univariate case of Definition 2 corresponds to a random variable, say W, with a
truncated symmetric distribution with support B C R, parameters # € R ando? > 0,
DGF g, and we write W ~ TE{; (1, 0%; B; g).

Each member of the class of the truncated elliptical distributions is characterized by
the DGF g. Two notable special cases are the multivariate truncated normal and trun-
cated ¢ distributions, which correspond to the DGF g(u) o exp(—u/2) and g(u)
(1 4+ u/t)~T*+P/2 with v > 0, respectively. Other special cases include the fol-
lowing multivariate distributions: truncated power exponential (g (u) oc exp(—u® /2),
B > 0), truncated slash (g(u) fol 1PtV exp(—ut?/2)dt, ¢ > 0), and truncated
scale mixture of normal distributions (g (u) o fooo P2 exp(—ut/2)dH(t),u >0, H
being a cumulative distribution function (CDF) on (0, 00)). The DGF g may include
extra parameters in PDF (2). For instance, the multivariate truncated ¢ distribution has
the degrees of freedom parameter t, that controls the tail behaviour. The multivariate
truncated normal distribution is a limiting case of the multivariate truncated ¢ distri-
bution when 7 — o0. Some studies on multivariate truncated normal distributions
are found in Birnbaum and Meyer (1953), Tallis (1961, 1963, 1965), Horrace (2005)
and Manjunath and Wilhelm (2012). The multivariate truncated ¢ distribution with
rectangular support is considered in Ho et al. (2012).

Let W ~ TE; (i, 02; (a, b); g). The CDF of W is given by

Fo(5%) = Fo(%5)

Fo(58) — Fy(20)

Fy(w) = , we(a,b), 3)

Q

where Fz is the CDF of a random variable Z having a standard symmetric distribution,
Z ~ E{1(0, 1; g). Equation (3) is also valid when a — —oo and/or b — oo. In this
case, we have Fz((a — u)/o) — 0 and/or Fz((b — n)/o) — 1.

Let R = I} x --- x I, be arectangle in R”, where Iy, ..., I, are intervals in R
(finite or infinite). With no loss of generality, assume that Iy = (ax, by), k=1, ..., p.

Theorem 1 IfW ~ TEC,(n, X R; g), then Wi|W _ ~ TEC (jix.—x, sz.ik; (ag, by);
8k—k), k = 1,..., p, where g = pr + Zk,—kz:}(’,k(w—k — ) 0, =
Okk — Ek,—kzii’,kz—k,k and gr.—x(u) = g(u +q(w—y)), withg(w—y) = (w— —
ﬂ—k)/zili,,k(w—k — R_p).

Proof See “Appendix A”. O

Theorem 1 states that if a random vector W has a truncated elliptical distribution
with its support being a rectangle in R”, then the conditional distribution of Wy given
W _ is truncated symmetric with the same support of Wj. This fact is useful for obtain-
ing the complete conditional distributions, from which random samples from (3) may
be obtained using the inverse transformation method. This allows us to propose Algo-
rithm 1 to generate random samples from the random vector W ~ TE{,(u, X5 R; g).
We construct a Markov chain by sampling from the complete conditional distributions
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of Wi |W_j, k=1, ..., p, givenin Theorem 1. Let w"/) be a sample generated in the
jthiteration, j = 1,...,n.
Alogrithm 1

1. Choose a starting value w® of the Markov chain.

2. Generate a random variable u from a uniform distribution U(0, 1).

3. Ineach cycle j = 1,...,n, apply the inverse transformation method using (3) to
compute

() )
. . . b — 1 ap — WU
-1 k—k k.—k
w = ud o P ul Fp (=5 ) = Py —
k ) )
Ok —k Ok —k
()
ag — KUy, _
+Fz, (—(j)k' k)]
Ok —k

where Zy ~ EC1(0, 1; gr.—r), for k = 1, ..., p. This is the sampled value from
the conditional distribution of

() ) ) i—1) j—1)
wa |w1],...,wk£1,w,£]+1 ,...,wg,j , k=1,...,p.

3 The class of the Box—Cox elliptical distributions

In this section, we define the class of the Box—Cox elliptical distributions and state sev-
eral properties. First, we define the family of the extended Box—Cox transformations,
which is a generalization of multivariate Box—Cox transformations given in Quiroz et
al. (1996, Eq. 1.1, 1.2). Using this new family of transformations, we define the class of
the Box—Cox elliptical distributions. We then present various properties of these dis-
tributions regarding a characterization through truncated elliptical distributions with
rectangular support, marginal and conditional distributions, independence, and mixed
moments. Some of these properties will be needed for interpreting the parameters of
the Box—Cox elliptical distributions (see Sect. 4).

For each § € R”, let D¢ be a diagonal matrix with diagonal elements &, i.e.,
D¢ = diag{é, ..., &p}. Let R(§) = I(&1) x --- x I(§p) be arectangle in R”, where

(—1/&, 00), & >0,
1) = { (=00, —=1/&), & <O, 4
(—OO, OO), %-k = 01

fork=1,...,p.

Definition3 Let A € R?” and u € Ri. The extended Box—Cox transformation is
defined by Ty , : Ri — R()) for the random vector Y € Ri as T, (Y) =W,
where W is the p-dimensional vector with kth element given by
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Y/ )™ — 1

b A‘ 0’
Wy = » e # 5)
log(Y/ ), A =0,
fork=1,...,p.
From Definition 3 we have that uy is a scale parameter for Yy, fork = 1, ..., p.
Ifpg =1= (1,...,1) in (5) we obtain the multivariate Box—Cox transforma-

tion (Quiroz et al. (1996, Eq. 1.1, 1.2)). Also, Ty x(Y) — Tp ,(Y) when L — 0
= (0,...,0). Moreover, if & € Ri, then Ty x(DyY) = T)‘,D‘;IIL(Y). IfB € R(A)

and y = 1+ D, B, then D;I(T;“,L(Y) —B) =T 5(Y), where § = Tx_;i(ﬁ)- These
facts allow us to derive various properties of the Box—Cox elliptical distributions.

Definition 4 We say that the random vector ¥ € Ri has a Box—Cox elliptical
distribution with parameters u € R:, A, € R?, ¥(p x p) > 0 and DGF g if
T),u(Y) ~TEL,(0, X; R(X); g), and we write Y ~ BCEZ,(u, A, X; g).

Equivalently, W ~ TE(,(0, X; R(L); g) if T;;(W) ~ BCE{,(p, A, X5 g). If
A = 0in Definition 4, then Y follows a log-elliptical distribution with parameters p €
Rfr, X (p x p) > 0and DGF g (Fang et al. 1990), and we write Y ~ LE{,(n, X; g).

From Definition 4 we have that the PDF of Y ~ BCE(, (i, A, X'; g) is given by

Ap—1
-1 Py
gw' X w) [],_, e

e ey FTes e w=T(), e ©)

The case p = 1 in (6) corresponds to the PDF of a positive random variable Y
with a Box—Cox symmetric distribution with parameters @ > 0, ¢ > 0, A € R and
DGF g (Ferrari and Fumes 2017), denoted by ¥ ~ BCS(u, o, A; g). From Definition
4, it is clear that each member of the class of the truncated elliptical distributions has
its corresponding member in the class of the Box—Cox elliptical distributions, which
is identified by its DGF g. Hence, by replacing g(u) o exp(—u/2), u > 0, in (6)
we obtain the PDF of a random vector Y € Ri with a multivariate Box—Cox normal
distribution with parameters 4 € R”, A € R? and X(p x p) > 0, denoted by
Y ~ BCN,(u, A, ¥). When g(u) o< (1 +u/7)""FP/2 ¢ > 0,u > 0, in (6) we
have the PDF of a random vector Y € Rf_ with a multivariate Box—Cox ¢ distribution
with parameters u € R, A e R, X (p x p) > 0 and 7 > 0 degrees of freedom,
denoted by ¥ ~ BCt,(p, A, X; 7). In these cases, when A = 0, we get the PDF
of Y € ]R_‘D1r with multivariate log-normal and log-¢ distributions, denoted by ¥ ~
LN,(m, X)and Y ~ Lt,(p, X; 7), respectively. As expected, the multivariate Box—
Cox normal distribution is a limiting case of the multivariate Box—Cox ¢ distribution
as T — oo. Other members of the class of the Box—Cox elliptical distributions include
the multivariate Box—Cox power exponential distribution, the multivariate Box—Cox
slash distribution, and the multivariate Box-Cox scale mixture of normal distributions.

Figure 1 shows plots of the PDF of Y ~ BCt (i, A, X'; t) for different parameter
values. The legend indicates the values of all the parameters considered in the first plot
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Fig. 1 Contour plots at levels 0.04, 0.02, 0.01, 0.005 and joint PDF of Y ~ BCty(u, A, X; ), where
apulr =5 u =412 = —1, 1 =150 =05, 000 =03,01p =02, 7 =3,bojp =0,¢
o12=02,du; =35,e0900 =02, fry=—-15gr =2 =1hAa=2,it=10

and the value of the parameter that is changed from a plot to the next (in alphabetical
order). Note that the parameter o1y impacts the association between the marginal
distributions of Y; and Y, (Fig. la—c), ranging from negative association (o12 < 0)
to positive association (012 > 0).The parameter p; affects the scale of the marginal
distribution of Y; (Fig. 1c, d). The parameter oo, influences the dispersion of the
marginal distribution of Y5 (Fig. 1d, ). The parameters A and A; control the skewness
of the respective marginal distribution of Y| and Y> (Fig. le-h). In Fig. 1g, for which
A1 = Ay = 1, itis clear that the contour lines are (truncated) ellipses; this fact is stated
in item 3 of Theorem 3. Additionally, as the degrees of freedom parameter grows,
the contour lines corresponding to the bivariate Box—Cox ¢ distributions tend to the
contour lines of bivariate Box—Cox normal distributions. Moreover, the tails of the
Box—Cox ¢ distributions seem to be heavier for smaller values of T (Fig. 1h, i).

Definition 4 characterizes the Box—Cox elliptical distributions from truncated ellip-
tical distributions with supportin R(X) and parameter 4 = 0. In Theorem 2, we present
a characterization of Box—Cox elliptical distributions from truncated elliptical distri-
butions with support in R(A) and parameter u = &.

Theorem2 Letp € RE, L e R?, E € R(A), . = 1+ Dy & and X(p x p) > 0. Then,
Th.u(Y) ~ TEC,(&, X; R(A); g) if and only if Y ~ BCEC,(8,x, D' ED,'; g),
where § = T[;(&).

Proof See “Appendix B”. O

In Theorem 3 we state various distributional results concerning the Box—Cox ellip-
tical distributions. Items 1 and 2 consider some transformations of Box—Cox elliptical
random vectors, and item 3 states that the class of the truncated elliptical distributions
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with support in Ri and parameter u € Rﬁ: is obtained from the class of the Box—Cox
elliptical distributions.

Theorem3 Letp e RE, A eRP, X(px p)>0and Y ~ BCEC,(pn, X, X; g).

1. Ifa € RY, then Do Y ~ BCE(,(Dyp, A, X; 8).

2. If B e RP\O0andU € Ri is the random vector with components Uy, = (Y /)P,
k=1,...,p thenU ~ BCEL,(1, Dg'\, Dg X Dg; g).

3. IfA=1thenY ~TEL,(n, Dy X Dy; Ri; g).

Proof See “Appendix C”. O

In order to state results on marginal and conditional distributions let us consider
the partitions of ¥ € R}, u e R?, L € R? and X (p x p) > 0 as

DATID AT
Y = Y/,Y/ /’ — /’ //, XZX/,)J /7 3 — ’ 7
( 2) n (Ih ILz) ( 2) |:221 222] @)

withY | € R:_,Yz € R{:_r,/tl S Rq_,[l,z € R{;_r,kl eR" A e RPFT", X1 1(rxr) >
0, Xn((p—r)x(p—r)) > 0and X 2(rx(p—r))suchthat ¥ = X',. Therectangle
R(A) can be written as R(A) = R(A1) X R(A2), where R(A1) = I (A1) x---xI(A;) €
R" and R(A2) =1 (Apy1) X --- x I (Xp) e RPT",

LetY € Rf_, peRP L eRP, X(p x p) > 0 partitioned as in (7) and such that
Y ~ BCE{,(p, A, X; g). The marginal PDF of Y is given by

Ap—1

2k
{ [raw) gw' = w) dwa } [Ty 2

M r
= , eR., 8
Sri () fR(l)g(w/Z_lw)dw i + (8)

where w = (w}, w5)’, with w; = T, 4, (y;) and wy = Ti, u,(y,). Clearly, the
marginal PDF (8) is not necessarily of the form (6). This form is possible when
X115 = 0, i.e., when the matrix X' (p x p) > 0 is block-diagonal. In Theorem 4 this
fact is stated.

Theorem4 LetY € Rf_, IS R? A € R?, Y (p x p) > 0 partitioned as in (7) and
such that Y ~ BCEC,(u, A, X;8). If X120 =0, then Y| ~ BCEC, (ju1, A1, X'11; g1),
where

g1(u) = / g +s's)ds, u=>0,
T(R(X2))

with T : RP~" — RP~" being the transformation T (x) = 22—21/2x.

Proof See “Appendix D”. O

When the matrix ¥ (p x p) > 0 is a diagonal matrix, all the marginal distributions
are Box—Cox symmetric distributions. This fact is stated in Corollary 1.
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Corollary1 Let p € RY, A € RP, ¥ = diag{oi1,...,0pp} > 0 and Y ~
BCEL,(p, A, X5 ). Then, Yy ~ BCS(iu, \/Okk> Mi; gk)» k =1, ..., p, where

gk (u) =/
R(EYZ A

—k,—k Mk

g +s's)ds, u=>0.
)

Proof Simply let Y| = Yy, Yo =Y _j, 1 = Wk, by = Mg, A1 = dg, A2 = Ay,
Y=ok and Xy =X _4 4, k=1,..., p,in Theorem 4. O

In Theorem 4 we stated that if ¥ = (Y, Y})" ~ BCE{,(n, A, X; g), then the
sub-vector Y| has a Box—Cox elliptical distribution if X1 = 0. Note that Y| has a
distribution in the Box—Cox elliptical class but not necessarily with the same parent
distribution as Y (e.g. normal, #, power exponential). The condition in Theorem 4,
although sufficient, is not necessary for the subclass of the log-elliptical distributions.
Indeed, if Y = (Y, Y})' ~ LE{,(p, X; g), then the sub-vector Y | has alog—elliptical
distribution for any ¥ (p x p) > 0 (Fang et al. 1990, Sec. 2.8). Moreover, the distri-
bution of Y is log-elliptical with the same parent distribution as Y if the DGF g is
that of multivariate scale mixture of normal distributions, as we establish in Theorem
5.

Theorem5 Let Y € Rf_, JIARS Rf_, Y (p x p) > 0 partitioned as in (7) and such
that Y ~ LEC,(p, X g), with g(u) o< [~ tP/> exp(—ut/2) dH(t), u > 0, H being
a CDF on (0, 00). Then, Y| ~ LEC, (1, X11; 8).

Proof See “Appendix E”. O

The following log-elliptical distributions have DGF as multivariate scale mixture
of normal distributions and therefore satisfy the conditions in Theorem 5: multivariate
log—normal distribution (H is the CDF of a degenerate distribution at t = 1), the
multivariate log—¢ distribution (H is the CDF of a gamma distribution with shape
parameter 7/2 and scale parameter 2/7, T > 0), the multivariate log—slash distribution
(H is the CDF of T = U4, g > 0, with U ~ U(0, 1)), and the multivariate log—
power exponential distribution for 0 < g < 1 (H is the CDF with PDF h(z) =
%t_3/2h,3(t_1/2),0 < B < 1, with hg given in Gémez-Sdnchez-Manzano et al. (2008,
Eq. 3). If B = 1, H is as in the multivariate log—normal distribution case). However,
Theorem 5 does not apply to the multivariate log—power exponential distribution for
B> 1

In Theorem 6 we state that, if ¥ = (Y|, Y%)’ has a Box—Cox elliptical distribution,
then the conditional distribution of Y 1|Y 7 is Box—Cox elliptical.

Theorem6 Let Y < Ri, e RP A e RP XY (p x p) > 0 partitioned as in
(7) and such that Y ~ BCEL,(u, A, X g). Let py(w2) = 21222_21w2 € R(A1)
and a(wz) = 1+ Dy py(w2), with wy = To, 4, (yy), then Y1|Y2 = y, ~
BCE(, (81, Ay, D;(lwz)zn.zD;(]wz); 8q(w,)), where &1 = T)v_lvllll(ﬂl(wZ))’ X2 =
20X Za and gy, ) = gu+qw2), u = 0, withq(wz) = w)H X, w).

Proof See “Appendix F”. O
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If X1 = 0 in Theorem 6, then ¥ {|Y2 = y, ~ BCEC, (i1, A1, X11; ggwy))- By
comparing this conditional distribution with the marginal distribution of Y| given in
Theorem 4, we have that, if ¥, = 0, Y{|Y, and Y| have the same distribution if the
DGFs g4 (w,) and g1 coincide. This characterizes the independence of the sub-vectors
Y and Y, as we state in Theorem 7.

Theorem7 Let Y € Rf_, IS Rf_, A e R?, ¥(p x p) > 0 partitioned as in (7) and
such that Y ~ BCEC,(n, A, X; g). Then, Y| and Y are independent if and only if
Y ~BCN,(p, A, X) and X2 =0.

Proof See “Appendix G”. O

In Theorem 8 we give an expression for mixed moments of Box—Cox elliptical
random vectors.

Theorem8 Leth € R?, u € R?, A € RP, X(pxp)>0,Y ~BCEl,(u,\, X; g)
and U ~ BCEC,(1,, ; g). IFE((T/_, U*) < o, then

f(TT) = (Tt Je(11 %)

Proof See “Appendix H”. O

The computation of mixed moments of a random vector ¥ ~ BCE{, (i, A, X; g)
from mixed moments of U ~ BCE{,,(1, A, X'; g) as indicated in Theorem 8 is possible
using Monte Carlo integration. By using Algorithm 1, one may generate a random
sample of size n of the random vector W = Ty 1(U) ~ TE(,(0, X¥; R(X); g), say
wi, ..., w,, where w; = (w;1,...,w;p), i =1,...,n. Ifnislarge,

P L
E(H Y,f) ~ o2 T sk (wig))"
k=1 i=1 k=1

with ug(wig) = Tx_k,ll(wik)’i =1,....m;k=1,...,p
LetA =0(.e., Y ~LE{,(u, ¥; g)) in Theorem 8. We have that

P P
E<1‘[ Ykhk) = (]‘[ /LZ")MX(h),
k=1 k=1

whenever My, the moment generating function of X ~ E£,(0, X'; g), exists (Fang et
al. 1990, Sec. 2.8). Another consequence of Theorem 8 is that the covariance matrices
of Y ~ BCE{,(m, A, X; g) and U ~ BCE(,(1, A, X; g), denoted by X'y and Xy,
respectively, are such that Xy = D, ¥y D,,. Moreover, the correlation matrices of Y
and U are equal.
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4 Parameter interpretation

From Definition 4 we have that the distribution of a random vector ¥ ~
BCE{,(m, A, X; g) is characterized by a random vector W = T () ~
TE£,(0, X; R(A); g). In such a characterization, the parameter vectors g € ]Rﬂ’_ and
A € R? are introduced through an extended Box—Cox transformation (Definition 3),
in such a way that u; and Ag, k = 1, ..., p, are parameters involved in the trans-
formation of Y} only; hence these parameters are characteristics of the distribution of
Yi. Also, the marginal distributions of the components of W are associated through
XY (p x p) > 0, which implies that the marginal distributions of the components of
Y are associated through this matrix as well. Hence, pu; and Ax, k = 1, ..., p, are,
respectively the scale parameter and skewness parameter (power transformation for
marginal symmetry) of the distribution of Yy; ok, j # k, is the association parameter
between Y; and Y.

The parameters wx and oxx, k = 1, ..., p, are related with quantiles of Y. In order
to establish these relations, let the marginal PDF of Y; be written as

S
g1 (Sk) ——=
Okk L

—-1/2
fro (k) = k s Sk =0y / Doy k), yi >0, 9)
fl(kk@ 8 (sk) dsg

with I (A ./orr) defined in (4) and

8, (up) = / g((1+ TkT;)uf —2Y 1 Rruirw + w’SZ}c.ka) dw, (10)
R(A_g,—kA—k)

where ur € I(Ap/Okk), = diag{\/o11, ..., /(Ipp} 2y = (T_k-k
— o Tk Tk )T P A, kandi—Gkk/ X,k RkAZ, 4

PDF (9) can be built from a random variable Uy defined in R ‘with CDF
ug
Fy, (ug) = Ck/ gr, (1) dt, (11)
—0Q

where ck_1 = ffooo 81, (1) dt (see details in “Appendix I”’). An interesting case occurs

when the integral that involves gy, has integration region R(A_y _xA_;) = R? -1
i.e., when A_; _xA_x = 0. In this case, Uy ~ E£1(0, 1; g), with

gu) = / g+ ww)dw, u>0. (12)
R

In Theorem 9 we show that all the quantiles of the univariate marginal distributions
of Box—Cox elliptical random vectors are proportional to the respective component of

.
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Theorem9 Letp e RE, A e R?, X(p x p) > 0and Y ~ BCEL,(p, A, X5 g). The
a-quantile yi o of Yi, « € (0, 1), k = 1,..., p, satisfies

(U + MSorkska) L A £ 0,

ko = (13)
“ Mk €XP(/OkkSk,a) s Ak =0,
with
Fyl @+ (1 =) Fy (= 1/24/or0)), M >0,
sk = Fg (1 + @) Fy (=1/2 /o) = D, 2 <0, (14)
Fl (@), =0,
where Fy, is the CDF given in (11).
Proof See “Appendix J”. O
In Theorem 9 we stated that, if ¥ ~ BCE{,(u, A, X; g), all the quantiles of Yy,
k = 1,..., p, particularly the median, are proportional to wg. This feature of the

class of Box—Cox elliptical distributions makes it attractive for regression modeling
purposes. For instance, assume that, for fixed k, log uxy = 23:1 x;Bj, where the
betas are unknown regression parameters and the xs are fixed covariates. In this case,
exp(;) is the multiplicative effect of a one unit increase in x; on the quantiles of Y.

In Corollary 2 we establish conditions under which the quantiles of Y; can be
calculated from quantiles of standard symmetric distributions.

Corollary2 Let p € R, L e R?, E(p x p) > 0and Y ~ BCEL,(p, A, X5 ). If
A=0(ieY ~LEl,(n, X; g)) or rjJojji = 0, j=1,..., p, then the a-quantile
Vea Of Yioa € (0, 1),k =1,..., p, is given by yr.o = ik eXp(\/Okkqa), where qq is
the a-quantile of a standard symmetric distribution with DGF given by (12).

Proof Let A =0 or rjJTjj = 0,j=1,..., pin Theorem 9. From (13) and (14) it
follows that yi o = ik exp(y/0kkqa), Where g, = FJl(a), with U ~ E£(0, 1; 2),
with g being a DGF given by (12). This fact follows because R(A_x _xA_x) = RP-1
when A =0, 0or R(A_ _xA_g) — R”~1 when i o) = 0,j=1,...,p. 0

LetY ~ BCE(,(n, A, X; g). A coefficient of variation based on quantiles for Yy,
k=1,..., p,isdefined as (Rigby and Stasinopoulos 2006)

(Vk,3/4 — Yk,1/4)

3
CVy, = -
Ty Vk,1/2

Corollary 2 allows interpretation of the parameters j; and oy from their relations with
quantiles of Yy, k = 1,..., p. In fact,if A = 0 (i.e. Y ~ LEZ(p, X'; g)), then uy =
Vk,172 and CVy, = 1.5sinh(,/0xkq3/4), where g3/4 is the third quartile of a standard
symmetric distribution with DGF given in (12). Also, if A & 0 or A;,/5;; = 0, j =
1,..., p,then uy ~ yi 1,2 and CVy, ~ 1.5sinh(,/okcq3/4). Hence, in these cases,
Mk is equal or approximately equal to the median of Y. Moreover, CVy, depends on
okk through the hyperbolic sine function, which is a monotonically increasing function.
Therefore, oy can be seen as a relative dispersion parameter of the distribution of Y.
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5 Parameter estimation

Let y;,...,y, be the observed values of a random sample Yy,..., Y, of ¥ ~
BCE(,(p, A, X;8), withY; = (Yi1,....Y;p) i =1,...,n.Letn = (n1,...,ng)
be the vector of extra parameters induced by the DGF g. The maximum likelihood
estimators of g, A, ¥ and 7, denoted by I, 2. % and 7, respectively, will be such
that maximize the log-likelihood function £ = )", ¢;, with

0 = —log{/ g(w' X 'w) dw} + log{g(w} X w;)}
R

P P

+Y O — Dlogyix — Y i log ju, (15)

k=1 k=1

where w; = Tj_, (y;). There is no closed form for the maximum likelihood estimators
%, A, 2 and 7, but they can be computed using numerical optimization algorithms
implemented in computer packages. The number of parameters to be estimated is
p(p+5/2+4.

Let [L(O), A0 ¥ O and ;7(0) be the initial values for the estimation of u, A, ¥ and
n, respectively. For the choice of u,(co), A,((O) and ak(,?), k=1,..., p, we suggest the
estimates obtained by fitting a Box—Cox symmetric distribution to the kth component
of Y, i.e. the estimated parameters of Yy ~ BCS(uk, /0kk, Ax; g). As initial values for
Ojk, We suggest 0;2) =0, j # k. Initial values for the extra parameters (if any), n;.O),
j=1,...,q, will depend on the family of distributions considered. For instance, for
the multivariate Box—Cox ¢ distribution we propose as initial value for the degrees of
freedom parameter, 79, the corresponding estimate obtained by fitting a multivariate
¢ distribution to the vector X = T) o), n© Y).

The main difficulty in implementing an optimization scheme is due to the need of
an efficient computation of the integral | RO g(w’ X~ 'w) dw, that appears in (15).
This integral depends on the complexity and structure of the DGF g and is computed
over R(A). Hence, the vector of the extra parameters », the matrix ¥ and the vector A
are involved in the estimation procedure through this integral. Genz and Bretz (2009)
propose algorithms to efficiently compute this type of integral over rectangles when g
is the DGF of the multivariate normal and ¢ families. In the class of the log-elliptical
distributions (A = 0) the integral disappears making the estimation process much
easier. In this case, the logarithm of the likelihood function is given by £ = Y1, ¢;,
where ¢;,i = 1,...,n,is

1 o P
ti = —5 log(det(%)) + log{g(w; ¥ 'w)} = > log it
k=1

with w; = Tp,,(y;). Here, the unknown quantities to be estimated are ., X and 7,
ie. p(p 4+ 3)/2 + g parameters.

To evaluate the proposed estimation procedure we conducted simulations with
bivariate log-normal, log-7, Box—Cox normal and Box—Cox ¢ distributions, different
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sample sizes, namely n = 125, 250, 500, and N = 5000 Monte Carlo replicates. The
random samples of ¥ ~ BCE{, (i, A, X'; g) were generated using Algorithm 2.

Alogrithm 2

1. Generate arandom sample of sizen, saywy, ..., wy, of W ~ TEL,(0, X; R(A); g)
using Algorithm 1.

2. Compute y| = T):‘i(wl), ey, = T):‘i(wn). From Definition 4, y, ..., y, is
a random sample of Y ~ BCEL,(j, X, X; g).

In each simulation experiment we used the Broyden, Fletcher, Goldfarb, and Shanno
(BFGS) optimization algorithm to maximize the log-likelihood function with the initial
values proposed above. The integral in (15) was efficiently evaluated using algorithms
proposed by Genz and Bretz (2009). All the computations were conducted in the R
software (R Core Team 2016).

Let é\l el §N be the ordered estimated values of a scalar parameter, say 6, in N
Monte Carlo simulated samples. Let M(/@\) be the median of {9\1 s ’Q\N}. The median
bias, denoted by MB(/Q\) is glven by MB(’Q\) M(@) — 6. The median absolute
dev1at10n denoted by MAD(@) is defined as the medlan of {|01 M(§)|, e, |§N —
M(9)|} Also, let IQR(@) be the interquartile range of {91, .. BN}. These summaries
of the estimates were computed for each simulation expenment and reported in Table
1. The figures in this table suggest a suitable behavior of the estimation procedure,
because the median biases are close to zero and the median absolute deviations and
interquartile ranges get smaller as n grows.

6 Application

The dataset refers to observations of vitamins B2 (in mg), B3 (in mg), B12 (in mcg)
and D (in mcg) intakes based on the first 24-h dietary recall interview for n = 136
older men. The bagplots (Rousseeuw et al. 1999) shown in Fig. 2 indicate that the
vitamin intakes are positively correlated, their bivariate distributions are skewed, and
that outliers are present.

For each pair of variables, we fitted bivariate log-normal, log-#, Box—Cox normal
and Box—Cox ¢ distributions, and the respective marginal independent distributions;
we denote these distributions by LNy, L, BCN3, BCt;, Ind-LN1, Ind-L#;, Ind-BCN;
and Ind-BCry, respectively. Table 2 shows the Akaike information criterion (AIC) for
each fit. The smallest AIC is marked in bold and indicates the distribution that best fits
the data. The figures in this table indicate that the bivariate distributions provide better
fit when compared with the respective marginal independent distributions. This is not
surprising since there is evidence of association among the variables. Additionally,
Table 2 indicates that the bivariate Box—Cox ¢ distribution gives the best fit for the pairs
of variables: vitamins B2-D, B3-D and B12-D. Also, the bivariate log-¢ distribution
provides the best fit for the pairs: vitamins B2-B3, B2-B12 and B3-B12. Hence, the
bivariate distributions based on the ¢ distribution provide better fit than those based on
the normal distribution. This fact is due to the presence of extreme outliers (Fig. 2).
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Fig.2 Bagplot matrix; nutritional data

Table 3 gives the estimates (and standard errors) of the parameters of the best
fitting model as indicated in Table 2. The standard errors were obtained asymptotically
through the observed information matrix, which is calculated numerically based on
the finite difference method (Nocedal and Wright 2006, Sect. 8.1) implemented within
the m1e function of R (R Core Team 2016) for maximum likelihood estimation. It
is noteworthy that the estimated degrees of freedom parameter varies from 4 to 8,
indicating that heavier-than-normal distributions are better suited for fitting the data.

For the bivariate log-# distribution fitted to the pair of vitamins B2-B3 the estimates
of w1 and up are 1 = 1.45and o = 19.91 and correspond to estimates of the median
intake of vitamins B2 and B3 in the population. These estimates are close to the corre-
sponding sample medians (1.49 and 19.99, respectively). The estimates of the relative
dispersion parameters are 11 = 0.16 and 625 = 0.23; hence the relative dispersion
of vitamin B2 is estimated to be smaller than that of vitamin B3. For the intake of
vitamins B12-D the best fit is achieved by the bivariate Box—Cox ¢ distribution. Note
that the estimated parameters satisfy A;/@1; = —0.13 and A2+/2 = 0.10, that are
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Fig. 3 Scatter plots overlaid with contour plots and joint PDF of the best fitting distributions; nutritional
data

close to zero. Hence, 1] = 3.10 and i, = 3.42 are expected to be close to the sample
median of vitamins B12 and D intakes respectively, and this is in fact the case (the
sample medians are 3.24 and 3.80, respectively). Since 611 = 0.45 and 61, = 0.47,
we have that the relative dispersions of vitamins B12 and D intakes are similar.

Figure 3 shows contour plots of the fitted distributions superimposed to the scatter
plots of the data, and the corresponding PDFs. The plots suggest a reasonable fit for
all the pairs of variables.

7 Final remarks

In this paper we presented a new class of multivariate distributions, the class of
Box—Cox elliptical distributions, that is suitable for modeling multivariate positive,
marginally asymmetric, possibly heavy-tailed data. The construction of the Box—Cox
distributions uses an extended multivariate Box—Cox transformation and the class of
truncated elliptical distributions, both defined in this paper. We show that the class of
Box—Cox elliptical distributions has as special cases the classes of the log-elliptical
and Box—Cox symmetric distributions. The Box—Cox elliptical distributions allow
easy parameter interpretation, a desirable feature for modeling purposes.

Starting from a study of the class of truncated elliptical distributions, we defined and
studied the Box—Cox elliptical distributions. Specifically, we stated useful properties
and discussed maximum likelihood estimation issues, generation of random samples,
interpretation of parameters, and applications.

There are some open problems that will be addressed in future papers. The efficiency
of the implementation of maximum likelihood estimation depends on the efficient
computation of the integral involved in (15). The methods proposed by Genz and
Bretz (2009) to efficiently compute the integral when g is the DGF of the multivariate
normal and ¢ distributions allowed us to implement maximum likelihood estimation
for the parameters of the multivariate Box—Cox normal and Box—Cox ¢ distributions.
Computational aspects of these distributions depend on computations related to the
multivariate truncated normal and truncated ¢ distributions, for which recent works
have been developed (e.g. Ho et al. 2012; Kan and Robotti 2017). The efficient com-
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putation of the integral for other DGFs will provide the implementation of maximum
likelihood estimation for other distributions in the Box—Cox elliptical class, such as
the multivariate Box—Cox power exponential and Box—Cox slash distributions. The
relation of the scale parameters to quantiles of the marginal distributions permits the
construction of Box—Cox elliptical regression models that are able to model the rela-
tionship between covariates and quantiles of the response variables. The study of
regression models based on Box—Cox elliptical distributions, including measurement
error models, spatial models, mixed models, etc., is perfectly feasible and of interest
but it is beyond the scope of the present paper.
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Appendix A: Proof of the Theorem 1

The conditional PDF of Wi |W_;,k =1, ..., p,is given by

g((w—p)Z ' (w—p)

., Wk € (ak, by).
S g((w — py E~ w — p)) dug

Swaw_, (i) =

From the identity (w — )’ X~ (w — p) = [(wi — pr.—1) /011> + q(w_¢), we get
the result.

Appendix B: Proof of the Theorem 2

If W =Ty ,(Y) ~ TEL, (€, X; R(A); g), then its PDF is given by

g((w—§'X '(w—§))
Jroy &(w = &= (w — £) dw’

Jw(w) = we RA). (16)

Let V : R(A) — R(X) be the transformation defined as V (w) = D;' (w— &), and let
U = V(W), with Jacobian J(w — u) = ]_[,1::] (1 4+ Ar&x). The PDF of U is

g (D' ED Y u)

ueRQ).

Hence, U ~ TEl,(0,D;'ED,'; R(A); g). Because U = V(T ,(Y)) =
Ty 5(Y), where § = T;,_,i(’;’)’ then from Definition 4 we have ¥ = Tx_al ) ~
BCE(, (8,1, D;'ED;"; ¢).
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On the other hand, if Y ~ BCE(,(8, A, D' XD '; g), then its PDF is

A—1
g (D' EDH T w 1], % . &
= , w= , e RY.
Ty (y) Jea 8 (DL ZD, D Tw) duw vy, yeRL (A7)
Now, from the transformation W = T, ,(Y), with Jacobian J(y — w)

[17_; i1 + Agwi) /4= in the PDF (17) we arrive at PDF (16).

Appendix C: Proof of Theorem 3

1.

3

From T = D,Y, with Jacobian J(y — ¢) = ]_[',’(’:1 ak_l, in (6), we get the PDF
of T as

a1
/271 14 tk
g(w w) Hk:l (ok puic )™

me gw' X 'w)dw

p
, teRy,

fr@®) =

where w:Tx,,L(D‘;lt)sz,Du,L(t). Hence, T = DyY ~ BCE{,(Dgp, A, X; g).
Note that the PDF of Y, given in (6), can be expressed as

1)\1(71
s/ (DD~ I, P2

fr(n = t—, yeRf,
fze(D,?lx) §(v'(DpZDp)~'v) dv
where v = DgT) ,(y) has its kth component given by
[(yk/ ) Pr)e/ P — 1 A £ 0
Vg = A/ Br ' ’
log(yi /)P, A =0,

fork =1,..., p. From U, = (Yk/uk)ﬁk, k=1,...,p, with Jacobian J(y —
u)=T[["_, ;,Lkﬂk_lu}c/ﬂ"_l, we arrive at the desired result.
. Plugging A = 1 in (6) we have that the PDF of Y is

gy =W DuED) vy =TTy 7
Jray &' 27 w) dw

p
, yeRL.

fr(y) =

From the change of variables w = D;l (y — ) we arrive at the desired result.
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Appendix D: Proof of Theorem 4

Plugging ¥, = 0 in (8), and then making the change of variables s = T (wj) =
22—21/21”2’ the marginal PDF of Y is

-1

y
{fR(xz)g(w T w +wh ) w2) dwa J[ Ty kxk

le(yl) -

fR(xl){fR(xz) g X wi + w) X5 w)) dws } dw
y)»kfl

g1 Zyw) [Tiey 2

— i
]R(ll) 81 (wllzl_llwl)dwl

w] :Tll,[l,l(yl)s yl ERTF

Note that g; (u) = fT(R(xz)) gu+s's)ds < [, g(u+s's)ds = hy(u),u > 0, where
h1 is such that fooo ) dr < 0o (Fang et al. 1990, Sec. 2.2). This completes the

proof.

Appendix E: Proof of Theorem 5

Because ¥ ~ LEC, (g, X; g), with g(u) o [~ 1P/> exp(—ut/2) dH (1), u > 0, then
X = Tou(Y) ~ E£,(0,%;g). Thus, X1 = Tou, (Y1) ~ E€,(0, Xy1; ¢g) (Kano
1994). Hence, Y1 ~ LE{, (i, X115 8)-

Appendix F: Proof of Theorem 6

The conditional PDF of Y ||Y is given by

=1

' w) [Tiey P

friv, () = wy =Ty u (y), ¥R (18)

k
fR(M) gw X 'w)dwy

Because w'Y¥ lw = u’l(Da(wz)anDa(wz))f uy + g(wy), where u; = D
(wy — py(w2)) = Th,.s,(y1), (18) can be expressed as

a(m)

-]
u Xi1-D - D/ S
; o 8 (wy) (] (D, oc(wz) 112 oc(wz)) up) [Tz ]ltkk(lJr)»kltlk(wz)) o
Yy, (¥1) = = s Y1 T
fR(xl)é’q(wz)(” (D (x(wz)El]zDa(wz)) ”l)dul

where u; = Ty, 5, (y1). Since [ [;_, uz"(l + M1k (w2)) = [Ti—y 8™ the proof is
complete.
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Appendix G: Proof of Theorem 7

Y and Y, are independent if, and only if, the PDF of Y ~ BCE{,(u, A, X'; g) given
in (6) is such that fy(y) = fy,(y) fr,(¥,). This condition is satisfied if, and only
if, ¥ 1o = 0 and the DGF g satisfies the functional equation g(u + v) = g(u)g(v),
with u > 0 and v > 0, for which g(u) = exp(—ku), for some k > 0, is a solution
(Gupta et al. 2013, Sec. 1.3). From [~ 1P~ exp(—kt?) dt = 2P/~ (p/2), we find
that k = 1/2. Hence, Y| and Y, are independent if, and only if, ¥, = 0 and
Y ~BCN,(u, A, X).

Appendix H: Proof of Theorem 8

From (6) we have

At+hp—1

fRi g(w/zilw) H/f:l - gy dy
_ H

p
E( Yh")_
1_[ k fR(x)g(w/Z_lw)dw

k=1

where w = Ty ,(y). By making the change of variables u = D;ly we arrive at the
desired result.
Appendix I: Marginal PDF of Y

The function gy, given in (10) can be defined in R. Hence, we can define a random
variable U; € R from the PDF

So i) = cegr, (i), up € R,

where ck_l = ffooo g, (t)dt. The CDF of Uy is given by (11). We now define Sy €
I (A /okk) as arandom variable Uy, truncated on I (Ag./okk). The PDF of Sy is given
by

8ri (sk)
S (sx) = . o k€ T (A /oki)- (19)
f[(xk\/@ 8, (s) dsg
From the transformation S; = ak_kl/ 2T,\,(,Mk(Yk), with Jacobian J(sy — k)

= o*,:kl/ zu,:)"‘ y,ﬁk*l, we arrive at the PDF of Y} given in (9).
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Appendix J: Proof of Theorem 9

Because Y ~ BCE(,(n, A, X'; g),the PDFof Y,k =1, ..., p,is given by (9), where
St = 0,,"/* T, i (Vi) has PDF given in (19). The CDF of Sy is

Fy,(sx) — Fu, (=1/ g /okk)

IR myen | 70

Fs, (sp) = { 1 = Fu (=1/M/orx) + Fu, (si) <0 (20)
Fy, (=1/ Ak /okk) ' '
Fy, (sk), A =0,

from which we have that the a-quantile yi o of Y, o € (0, 1), is such that P(¥; <
Yk.a) = o, or equivalently P[Sx < ak_kl/szk’Mk (Vk.a)] = «. Hence,

k(14 M SorkSka) V™, dp #0,
i exp(/OkkSk,a) A =0,

ko —

where si « 18 such that F, (sx o) = o, with Fg, given in (20). Therefore, sy ¢ is given
by
Fil@+ (1 = ) Fy (= 1/A/or0), i > 0,
sk = Fo (L + @) Fu (= 1/ /o) = 1), he <0,
Fyl (@), M =0,

where Fy, is the CDF given in (11).
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