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Stochastic motion in phase space on a surface of constant energy
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We study closed systems of particles that are subject to stochastic forces in addition to the conservative forces.
The stochastic equations of motion are set up in such a way that the energy is strictly conserved at all times. To
ensure this conservation law, the evolution equation for the probability density is derived using an appropriate
interpretation of the stochastic equation of motion that is not the Itô nor the Stratonovic interpretation. The
trajectories in phase space are restricted to the surface of constant energy. Despite this restriction, the entropy is
shown to increase with time, expressing irreversible behavior and relaxation to equilibrium. This main result of
the present approach contrasts with that given by the Liouville equation, which also describes closed systems,
but does not show irreversibility.
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I. INTRODUCTION

One of the fundamental problems of nonequilibrium sta-
tistical mechanics is the explanation of the irreversible decay
to equilibrium of closed systems, which is expressed by the
increase of entropy. If we consider a closed system of particles
interacting through conservative forces, then we are natu-
rally led to a description of the system through the Liouville
equation [1–11]. However, a direct result of this equation is
the invariance of entropy with time and as a consequence the
equation is unable to describe the desired irreversible decay to
equilibrium.

The Liouville equation describes appropriately systems in
equilibrium. Any probability density ρ which depends on the
dynamic variables through the Hamiltonian H is a stationary
solution of this equation. This is the case of the microcanoni-
cal Gibbs distribution

ρe = 1

�
δ(E − H ), (1)

which describes a system in thermodynamic equilibrium with
a fixed energy E [1]. A relevant property of the Liouville
equation is the conservation of the energy. If the initial prob-
ability density is defined on a surface of a constant given
energy, then the density will remain forever defined on this
surface.

The Liouville equation predicts that the entropy remains
invariant in time, a result which is a direct consequence of the
constance of the probability density along a trajectory in phase
space. If we start with a probability density with an entropy
distinct from that of the Gibbs equilibrium distribution, we
conclude that this distribution will never be reached and that
the Liouville equation does not account for the irreversibil-
ity. This inconvenience may be circumvent by introducing
random forces that change the Hamiltonian trajectory while
keeping the conservation of energy and momentum.

The Boltzmann kinetc equation [12–16] is, in fact, a real-
ization of this proposal. It incorporates random forces and as
a consequence the entropy increases while the energy remains

strictly constant. Here we derive a stochastic equation that is
similar to the Boltzmann equation in the sense that the entropy
also increases at strictly constant energy. To this end we set
up a stochastic equation of motion, or Langevin equations,
that strictly conserves the energy, that is, the trajectories in
phase space lie on the surface of constant energy. From the
stochastic equation of motion one derives the associated evo-
lution equation for the probability density, which turns out to
be an equation of the Fokker-Planck type [17–20], and it is not
an integrodifferential equation as is the case of the Boltzmann
equation.

The time evolution equation for the probability density,
which incorporates stochastic forces, is a type of equation that
is used in approaches to stochastic thermodynamics [21–29],
which describe systems in contact with heat reservoirs, includ-
ing the exchange of heat and entropy as well as the production
of entropy. The main difference of these approaches from ours
is the strict conservation of energy observed in the present
approach. In this sense we may say that the present approach
provides a stochastic thermodynamics for closed systems.

To derive the evolution equation, it is necessary to give an
interpretation to the stochastic equation of motion because the
noise is multiplicative [17]. Usually, the interpretation is that
given by Stratonovich and not that given by Itô. However, we
find that the proper interpretation necessary to preserve energy
at all times is none of them.

The origin of stochastic trajectories may be attributed to
forces that are of the hyperbolic type such as those occurring
when two hard spheres collide with each other. Given the
initial positions and velocities of two hard spheres, then the
positions and velocities after the collision will be uniquely
determined by the Newton equations of motion. However,
if we consider two very similar initial conditions that differ
only slightly by the positions, the velocities being the same,
then the velocities after the collision will not differ slightly
but can be very different. Since the initial condition is almost
the same, this result looks as if more than one trajectory is
possible from a single initial condition.
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We will not pursue in more detail the problem of how
stochastic trajectories emerge from pure mechanics, that is,
from the Newton equations of motion applied to a system
acted by internal conservative forces. Here we adopt the point
of view that the stochastic trajectories, or rather the stochastic
forces, are an assumption of the present approach.

The stochastic equation of motion that we introduced can
be used as a numerical method to simulate a system of in-
teracting particles at constant energy, as is the case of the
method of molecular dynamics [30,31]. In equilibrium, the
static properties will be the same as those obtained from
the molecular dynamics because the stochastic equations of
motion lead to the Gibbs distribution. However, the two-time
correlations will be distinct due to the presence of stochastic
forces.

II. IMPULSIVE STOCHASTIC FORCE

A. Stochastic equation of motion

We consider two particles interacting through random
forces that act on a short period of time. We denote by p1 =
m1v1 and p2 = m2v2 the momenta of the particles, where
m1 and m2 are their masses and v1 and v2 their velocities.
The random force acting on particle 1 due to the particle 2
is denoted by ξ. The reaction on particle 2 is −ξ and the
equations of motion are

dp1

dt
= ξ,

dp2

dt
= −ξ. (2)

The total momentum P = p1 + p2 is conserved because from
the stochastic equation of motion it follows that dP/dt = 0.

We wish to determine the properties of the stochastic vector
variable ξ that makes the energy of the two particles constant.
As the forces are supposed to be impulsive, which means that
they act during a short period of time, the conservation of
energy means the conservation of the kinetic energy

K = p2
1

2m1
+ p2

2

2m2
. (3)

The derivative of the kinetic energy is

dK

dt
= (v1 − v2) · ξ, (4)

Defining the relative velocity v = v1 − v2, we see that the
condition

v · ξ = 0 (5)

makes the derivative of the kinetic energy to vanish. This con-
dition of orthogonality implies that ξ depend on the relative
velocity v.

To proceed further we use a more convenient procedure.
As p1 and p2 are connected by the conservation of the total
momentum, if suffices to use just one independent variable,
which we choose to be p = mv where m is the reduced mass.
The two equations of motion are then reduced to one

dp
dt

= ξ. (6)

In terms of the new variable p, the kinetic energy, apart from
a constant, is given by

K = p2

2m
. (7)

The stochastic variable ξ is understood as follows. If
we discretize the time in intervals equal to τ the stochas-
tic variable is proportional to 1/

√
τ . Thus in a discretized

formulation of the equation of motion (6), we replace ξ by
ξ/

√
τ with the understanding that ξ has a finite variance.

Equation (6) becomes

�p = √
τξ. (8)

A finite increment of the kinetic energy is

�K = v · �p + 1

2m
(�p)2. (9)

Replacing Eq. (8) in this equation, we find

�K = √
τv · ξ + τ

2m
ξ · ξ. (10)

Using the condition (5) on ξ established above, v · ξ = 0, we
see that �K vanishes up to order

√
τ , but not up to order τ .

To overcome this inconvenience, we observe that Eq. (8) is not
the only possible interpretation of the stochastic equation of
motion (6). We may add any random variable proportional
to 1/τ , which means to interpret the stochastic equation of
motion as

�p = √
τξ + τω, (11)

where ω is a random variable with a finite variance. Replacing
this expression in Eq. (9), then up to terms of order τ we find

�K = √
τv · ξ + τ

(
v · ω + 1

2m
ξ · ξ

)
. (12)

The first term vanishes due to the condition (5). If we wish
�K to vanish to order τ , the last term must vanish, which
gives the following relation:

ω · p + 1
2ξ · ξ = 0, (13)

between ω and ξ. To find ω in terms of ξ, we differentiate the
condition (5) with respect to p, and perform a dot product with
ξ to obtain

ξ ·
(

∂

∂p
ξ

)
· p + ξ · ξ = 0. (14)

Comparing the last two equations, we see that the expression

ω′ = 1

2
ξ · ∂

∂p
ξ, (15)

gives the desired solution. However, this is not the unique
solution because we may add to this expression any term
orthogonal to p such as ξ itself. At this point we postpone
the problem of determining ω in terms of ξ.

B. Evolution equation

To derive the Fokker-Planck equation associated to the
Langevin equation (11), which is the evolution equation for
the probability density ρ(p), we use a method that consists
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in determining the evolution of the characteristic function �,
which is the Fourier transform of ρ,

� =
∫

ei�ρ dp, (16)

where � = ik · p and k is a vector in the Fourier space. The
characteristic function is also the average

� = 〈ei�〉. (17)

Denoting by �� the difference of the characteristic func-
tions between times t + τ and t , then

�� = 〈ei�(eik·�p − 1)〉, (18)

where the average is to be calculated using the probability
of the variables p and ξ considered to be independent of
each other. Next we replace �p, given by Eq. (11) in this
expression and expand �� up to terms of order τ . Dividing
the result by τ , we find the time derivative of the characteristic
function in the form

∂�

∂t
= 〈ei�ik · ω〉 + 1

2
〈ei�ik · ξξ · ik〉. (19)

Taking into account that ik · ei� = ∂ei�/∂p, the first term on
the right-hand side of Eq. (19) is written as∫ (

∂ei�

∂p

)
· 〈ω〉 ρ dp = −

∫
ei� ∂

∂p
· 〈ω〉 ρ dp, (20)

where we performed an integration by parts, and now
the average is on ξ only. This expression is the Fourier
transform of

− ∂

∂p
· 〈ω〉ρ. (21)

In this and in other integration by parts, we are considering
that the integrated part disappears by the assumption of a rapid
vanishing of ρ at the boundary of integration.

Using the same procedure, the second term on the right-
hand side of Eq. (19) is written as

1

2

∫
ei� ∂

∂p
· ∂

∂p
· 〈ξξ〉ρ dp, (22)

where we performed two successive integrations by parts.
This expression is the Fourier transform of

1

2

∂

∂p
· ∂

∂p
· 〈ξξ〉ρ. (23)

To determine ∂ρ/∂t , we bear in mind that ∂�/∂t , given by
Eq. (19), is its Fourier transform. Therefore, the time deriva-
tive of ρ is obtained by adding up the expressions (21) and
(23). The result is

∂ρ

∂t
= 1

2

∂

∂p
·
(

∂

∂p
· 〈ξξ〉ρ − 2〈ω〉ρ

)
. (24)

It remains yet to determine ω in terms of ξ.

C. Lagrange multiplier

We saw that the discretized equation of motion (11) pre-
serves the kinetic energy up to time τ . It is not guaranteed
that the kinetic energy K will be preserved forever. To ensure

that this will happen for all times, we impose the vanishing of
the probability of a trajectory that does not lie on a surface
of constant kinetic energy. This amounts to saying that if
initially ρ is nonzero only on the surface of constant K ,
then this property should be preserved as ρ evolves in time.
Let us denote by ρ∗ a probability density that is zero outside
this surface. Then the variation of ρ∗ to a point outside the
surface vanishes, that is, dρ∗ = 0. If ρ is a generic solution of
Eq. (24), then ρ∗ can be found from ρ by using the method of
the Lagrange multipliers, which means

dρ∗ = dρ + λdK , (25)

where λ is a Lagrange multiplier. This equation is
equivalent to

ρ∗ = ρ + λK . (26)

Replacing this expression in the evolution equation (24), writ-
ten in the simplified form

∂ρ

∂t
= Fρ, (27)

where F is a linear differential operator, we find that ρ∗ is a
solution of the evolution equation as long as

FK = 0. (28)

The condition (28) becomes fulfilled if the expression be-
tween parentheses in Eq. (24) vanishes when ρ is replaced by
K = p2/2m, that is,

∂

∂p
· ξξp2 − 2ωp2 = 0. (29)

Solving for ω, we find

ω = 1

2p2

∂

∂p
· ξξp2, (30)

which, by the use of the relation p · ξ = 0, can be written in
the more simplified form

ω = 1

2

∂

∂p
· ξξ, (31)

which is the sought relation between ω and ξ.
Replacing Eq. (31) in Eq. (24) we obtain the evolution

equation in the simple form

∂ρ

∂t
= 1

2

∂

∂p
· 〈ξξ〉 · ∂

∂p
ρ. (32)

Using Eq. (31), the discretized stochastic equation of motion
(11) becomes

�p = √
τξ + τ

2

∂

∂p
· ξξ, (33)

which is the desired interpretation of the stochastic equation of
motion leading to the conservation of kinetic energy for all
times. It is worth mentioning that this equation does not cor-
respond to the Stratonovich interpretation of Eq. (6), which is

�p = √
τξ + τ

2
ξ · ∂

∂p
ξ, (34)
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and corresponds to use ω′, given by Eq. (15). Of course, it
does not correspond either to the Itô interpretation which is
simply that given by Eq. (8).

D. Expression of ξ

It remains now to determine the explicit expression for the
stochastic force ξ. The only restriction that has to be fulfilled
is the orthogonal condition (5), that is,

v · ξ = 0. (35)

To meet this condition, we choose two vectors a and b that are
orthogonal to v, and to each other,

v · a = 0, v · b = 0, a · b = 0, (36)

and write

ξ = aσ + bη, (37)

where σ and η are independent stochastic variables with zero
mean and variance equal to 2γ .

From these definitions we determine the average 〈ξξ〉 ap-
pearing in the evolution equation (32)

〈ξξ〉 = 2γ (aa + bb), (38)

which replaced in Eq. (24), gives

∂ρ

∂t
= γ

∂

∂p
· (aa + bb) · ∂

∂p
ρ. (39)

We write the Cartesian coordinates of the relative velocity
v using spherical coordinates as

v = (v sin θ cos ϕ, v sin θ sin ϕ, v cos θ ), (40)

where v is the absolute value of the velocity, θ is the polar
angle and ϕ is the azimuthal angle. The vectors a and b are
chosen to be unit vector with Cartesian coordinates given by

a = (cos θ cos ϕ, cos θ sin ϕ, − sin θ ), (41)

b = (− sin θ sin ϕ, sin θ cos ϕ, 0). (42)

It is easily seen that the conditions of Eq. (36) are satisfied.
Up to now we treated a system in three dimensions. To

treat a two-dimensional system, we have to consider that the
vector quantities have two Cartesian components. In this case,
instead of two vectors orthogonal to v, just one is possible.
Writing

v = (v cos φ, v sin φ), (43)

this vector is

b = (− sin φ, cos φ). (44)

In this case there is just one random variable η and

ξ = bη. (45)

If we wish to treat a system in one dimension, we see that
this is unattainable because it is not possible to meet the con-
dition of orthogonality (36). This reflects the following result
concerning the collision of two particles in one dimension.
Given the velocities of the particles before the collision, they
are uniquely determined after the collision if the energy and
momentum are conserved. Thus, in one dimension there is no

room for a stochastic motion that conserves both the energy
and momentum.

E. Entropy production

Although the energy is strictly conserved, this is not the
case of the entropy. The entropy is defined by

S = −k
∫

ρ ln ρ dp, (46)

and its time variation can be obtained from the evolution
equation (39). Deriving this expression with respect to time,
we obtain

dS

dt
= −k

∫
∂ρ

∂t
ln ρ dp. (47)

Replacing the derivative of ρ, given by the evolution
equation (39), and after an integration by parts, we reach the
result

dS

dt
= kγ

∫
1

ρ

∂ρ

∂p
· (aa + bb) · ∂ρ

∂p
dp, (48)

which can be written in the form

dS

dt
= kγ

∫
1

ρ
(A2 + B2)dp, (49)

where

A = a · ∂ρ

∂p
, B = b · ∂ρ

∂p
. (50)

As the integral is positive-definite, dS � 0, the entropy is a
monotonic increasing function of time. The right-hand side of
Eq. (49) is understood as the rate of entropy production. In the
stationary state ρe will be a function of K and ∂ρ/∂p will be
proportional to p which is orthogonal to a and b. Thus A and
B vanish, the entropy production vanishes, and the entropy
reaches is maximum value.

III. SYSTEM OF INTERACTING PARTICLES

A. Stochastic equations of motion

Our attention is now directed toward a system of several
interacting particles. The position and the momentum of par-
ticle i are denoted by xi and by pi, and the system is described
by the Hamiltonian function

H =
∑

i

p2
i

2mi
+ V , (51)

where p2
1 = p2

xi + p2
yi + p2

zi, mi is the mass of the particle
i, and V is a function of the coordinates and represent the
potential energy of the particles. The stochastic equations of
motion, or the Langevin equations, are

dxi

dt
= vi,

dpi

dt
= Fi + ζi, (52)

where vi and Fi are the velocity and the conservative force,
respectively, associated to the particle i, and are given by

vi = ∂H

∂pi
, Fi = −∂H

∂xi
. (53)
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We wish to describe a system by forces that strictly con-
serves the total momentum of the collection of particles,
given by

P =
∑

i

pi, (54)

and the total energy, given by Eq. (51). The particles are
subject only to internal forces, which means that, for each
force Fi, there is a reaction force with the opposite sign so
that the sum of the conservative forces vanish∑

i

Fi = 0. (55)

Deriving P with respect to time and using Eq. (55), we get

dP
dt

=
∑

i

ζi. (56)

Therefore, the conservation of momentum requires that the
sum of the stochastic forces vanishes.

Deriving the function H with respect to time, we find

dH

dt
=

∑
i

vi · ζi. (57)

There is no contribution coming from the conservative forces.
The right-hand side of this equation is the total power of the
stochastic force, which should vanish.

The stochastic forces are chosen so that the right-hand
sides of the Eqs. (56) and (57) vanish identically. To meet
the first requirement, we choose ζi as a sum of independent
stochastic vector variables ξi j ,

ζi =
∑

j

ξi j, (58)

with the properties

ξ ji = −ξi j, (59)

and ξii = 0. We see that the right-hand side of Eq. (56)
vanishes identically, and the total momentum is strictly con-
served. The vector ξi j is understood as the random force acting
on particle i due to particle j and ξ ji as the random force
on particle j due particle i. Since they were chosen to differ
only by their signs, they are interpreted as action and reaction,
leading to the conservation of the total momentum. We now
replace Eq. (58) in the right-hand side of Eq. (57) to find

dH

dt
= 1

2

∑
i j

(vi − v j ) · ξi j, (60)

where we used the property (59). Requiring that

vi j · ξi j = 0, (61)

for each pair i j, where vi j = vi − v j is the relative velocity of
particles i and j, we see that the right-hand side of Eq. (60)
vanishes identically and dH /dt = 0. The random force ξi j

acting on the particles i and j must be orthogonal to their
relative velocities vi j and, therefore, performs no work.

To meet the condition (61), we choose two unit vectors ai j

and bi j , to be orthogonal to vi j , and to each other

vi j · ai j = 0, vi j · bi j = 0, vi j · bi j = 0. (62)

We also introduce two new scalar random variables σi j and
ηi j , and write

ξi j = ai jσi j + bi jηi j . (63)

Due to the orthogonal property (62) of ai j and bi j , we see that
the condition (61) is fulfilled.

The vectors ai j and bi j are chose to be given by the expres-
sions (41) and (42). We remark that when we interchange i
and j, the vector ai j preserves its sign and bi j changes sign.
As ξi j must change sign then the stochastic variable σi j should
change its sign and ηi j should preserve its sign.

The random variables σi j and ηi j are chosen to have
zero mean and the same variance 2γi j , which represents the
strength of the random forces and might depend on the posi-
tions of the particles i and j. It is reasonable to assume that
γi j is nonzero only when the particles i and j are close to each
other.

The variance of ξi j is 〈ξi jξi j〉 = 2Ki j , where Ki j is a 3 × 3
symmetric matrix given by

Ki j = γi j (ai jai j + bi jbi j ), (64)

and Kii = 0. The covariances of the random vector ζi are
obtained from Eq. (58) and is related to this matrix by

〈ζiζ j〉 = −2Ki j, i �= j, (65)

〈ζiζi〉 = 2
∑

j

Ki j . (66)

B. Evolution equation

To derive the equation that gives the time evolution of the
probability density function ρ of the dynamic variables xi and
pi, we assume the following discretized equations of motion

�xi = τvi, (67)

�pi = τFi + √
τζi + τ

4

∂

∂pi
· ζiζi, (68)

where ζi is the sum of the independent stochastic variables ξi j ,
each one given by Eq. (63).

We derive the evolution equation by the method that
we used above. To this end we define the characteristic
function � by

� =
∫

ei�ρ dqd p, (69)

where the integration is over the phase space and

� =
∑

j

(k j · x j + q j · p j ), (70)

where ki and qi are vectors in the Fourier space. The charac-
teristic function is also the average over ρ,

� = 〈ei�〉. (71)

The finite variation � is given by

�� = 〈ei�(ei�� − 1)〉. (72)
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Expanding the right-hand side of this equation up to terms of
the order τ , we find the time derivative of � as

∂�

∂t
=

∑
j

〈ei�(ik j · v j + iq j · F j )〉

+ 1

2

∑
j

〈
ei�

(
∂

∂p j
· ζ jζ j + 1

2

∑
�

iq� · ζ�ζ j

)
· iq j

〉
.

(73)

To obtain the evolution equation, it suffices to take the
inverse Fourier transform of the Eq. (73). To this end we
observe that the first term of Eq. (73) is the Fourier transform
of the Poisson brackets

{H , ρ} =
∑

j

(
∂H

∂x j
· ∂ρ

∂p j
− ∂H

∂p j

∂ρ

∂x j

)
, (74)

a result which is reached by using the relations

ik je
i� = ∂ei�

∂x j
, iq je

i� = ∂ei�

∂p j
. (75)

Using Eqs. (65) and (66), the second term of Eq. (73) can
be written in the form

1

2

∑
j �=�

〈
ei�

(
∂

∂p j
· K j� + i

2
(q j − q�) · K j�

)
· iq j

〉
. (76)

Taking into account that K j� depends on p j through the dif-
ference p j − p�, we may write

1

2

∑
j �=�

〈ei�[D j� · K j� + i(q j − q�) · K j�] · iq j〉, (77)

where

D j� = ∂

∂p j
− ∂

∂p�

. (78)

This expression is equal to the integral

−1

2

∑
j �=�

∫
ei�iq j · K j� · D j�ρ dxd p, (79)

which was obtained by an integration by parts and using the
result

D j�ei� = i(q j − q�)ei�. (80)

Employing again the second equality of Eq. (75) and perform-
ing another integration by parts, we find a result which is the
Fourier transform of

1

2

∑
j �=�

∂

∂p j
· K j� · D j�ρ. (81)

The evolution equation is obtained by observing that
∂�/∂t is the Fourier transform of ∂ρ/∂t . Therefore, to reach
the equation it suffices to add up the results of Eqs. (74)
and (81),

∂ρ

∂t
= {H , ρ} + 1

2

∑
(i j)

Di j · Ki j · Di jρ. (82)

Replacing Ki j in this expression, the evolution equation ac-
quires the form

∂ρ

∂t
= {H , ρ} + 1

2

∑
(i j)

γi jDi j · (ai jAi j + bi jBi j ), (83)

where

Ai j = ai j · Di jρ, Bi j = bi j · Di jρ. (84)

We argued above in the analysis of the stochastic motion
of two particles that the kinetic energy is a stationary solu-
tion of the evolution equation. The reasoning based on the
Lagrange multipliers can be generalized leading to the rule
that a conserved quantity is a stationary solution of the evolu-
tion equation. This is indeed the case of H and P in relation
to the evolution Eq. (83), which can be verified by inspection.
The Poisson brackets vanish trivially when ρ is replaced by
H . When it is replaced by P it vanishes as well if we use the
condition (55). The quantities Ai j and Bi j given by Eq. (84)
vanish when ρ is replaced by H because Di jH equals vi j

which is orthogonal to ai j and bi j . The quantities Ai j and Bi j

also vanish when ρ is replaced by P because Di j · P = 0.
From the results just obtained, it follows that any function

of the conserved quantities will be a stationary solution of the
evolution equation. In particular, the microcanonical Gibbs
distribution (1) is a stationary solution of the evolution equa-
tion, and represents the state of thermodynamic equilibrium
of the system. If we start with a probability distribution ρ

defined on a surface of constant energy, then it will remain
on this surface. If the energy is equal to E , the probability
density will eventually reach the Gibbs distribution (1). In
other words, the system will relax to equilibrium. This result
can be demonstrated by showing that the entropy is a nonde-
creasing function of time and that its maximum value is the
one corresponding to the Gibbs distribution (1). This will be
shown in the following.

C. Entropy production

Let us determine the time evolution of the average U of
H . Multiplying Eq. (82) by H and integrating in the phase
space, we arrive at the equation

dU

dt
= −1

2

∑
(i j)

∫
vi j · Ki j · Di jρ dxd p, (85)

where we performed an integration by parts and used the re-
sult Di jH = vi j . Taking into account the orthogonality (62),
it follows that the right-hand side of Eq. (85) vanishes and
dU/dt = 0. That is, U remains constant in time, which is
expected because H is conserved by the evolution equation.

We determine now the time evolution of the entropy S,
defined by

S = −k
∫

ρ ln ρ dxd p. (86)

Multiplying the evolution Eq. (82) by − ln ρ and integrating
in the phase space, we find

dS

dt
= k

2

∑
(i j)

∫
1

ρ
(Di jρ) · Ki j · (Di jρ), (87)
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where we performed an integration by parts. Replacing Ki j

given by Eq. (64), we reach the following expression:

dS

dt
= k

2

∑
(i j)

∫
γi j

ρ

(
A2

i j + B2
i j

)
dxd p. (88)

We see that the right-hand side of Eq. (88), which we
denote by �, is positive-definite and should be interpreted
as the rate of entropy production since there is no exchange
of energy with the environment, in fact no exchange of heat
occurs since there is no external work involved. We remark
that � vanishes in equilibrium because each one of the terms
Ai j and Bi j vanish when ρ is replaced by the equilibrium
distribution ρe, given by Eq. (1). Since S is monotonically
increasing in time because dS/dt = � � 0, it reaches a
maximum when � = 0, that is, when the distribution is ρe.

IV. LIOUVILLE EQUATION

If we set γi j equal to zero in the Fokker-Planck Eq. (82),
which means that no stochastic forces are involved, it reduces
to the form

∂ρ

∂t
+ {ρ,H } = 0, (89)

which is the Liouville equation. Here we present the usual
derivation of the Liouville equation, which is carried out by
the use of the Liouville theorem. We also present some of
its properties to compare with those of the Fokker-Planck
Eq. (82). We consider a system described by a Hamiltonian
H , and the equations of motion are

dxi

dt
= ∂H

∂ pi
,

d pi

dt
= −∂H

∂xi
. (90)

If at time t we consider a region R in phase space which is
transformed, through the Hamiltonian motion, in a region R ′
at time t ′, then the Liouville theorem states that the volume of
these regions are equal, that is,∫

R
dxd p =

∫
R′

dx′d p′. (91)

We may also write this result as dxd p = dx′d p′, which means
that the Jacobian of the transformation (x, p) → (x′, p′)
equals the unity.

In the usual derivation, the Liouville equation is obtained
by postulating that the probability of the region R at time t is
equal to that of the region R ′ at time t ′, that is,∫

R
ρ(x, p, t )dxd p =

∫
R′

ρ(x′, p′, t ′)dx′d p′, (92)

or ρ(x, p, t )dxd p = ρ(x′, p′, t ′)dx′d p′. From this equa-
tion and the Liouville theorem, we find

ρ(x, p, t ) = ρ(x′, p′, t ′), (93)

and the probability density is invariant along a trajectory. This
is equivalent to say that the material time derivative of ρ

vanishes, that is,

∂ρ

∂t
+

∑
i

(
∂ρ

∂xi

∂xi

dt
+ ∂ρ

∂ pi

∂ pi

dt

)
= 0. (94)

Taking into account the Hamilton equations of motion, the
second term becomes the Poisson brackets {ρ,H } and we
arrive at the Liouville Eq. (89).

The most relevant property of the Liouville equation is that
the microcanonical Gibbs distribution (1) is a stationary dis-
tribution of the equation. However, not all initial distribution
will relax to this distribution. To discuss this point we use the
property coming from the Liouville equation that the entropy
is invariant in time.

The entropy S(t ) at time t is defined by Eq. (86). Using
the invariance of the probability density along a trajectory,
given by Eq. (93), we reach the result S(t ) = S(t ′), at distinct
instants of time. Alternatively, we may employ the proce-
dure used above in the stochastic approach. We multiply the
Liouville Eq. (89) by k ln ρ and integrate in the phase space.
After an integration by parts we find that dS/dt = 0, and the
entropy is invariant.

To proceed in our analysis it is convenient to define the
measure of a surface A of constant energy E in phase space.
We consider another surface A′ of constant energy E ′, with E ′
differing little from E . The measure of A, which we denote by
�A, is the volume between the two surfaces A′ and A divided
by E ′ − E . Thus � appearing in Eq. (1) is the measure of the
entire surface of constant energy E .

Let us consider a probability distribution, denoted by ρA,
which is nonzero only in a surface A which is a subset of the
whole surface of constant energy E . Within A it is given by

ρA = 1

�A
δ(E − H ), (95)

where �A is the measure of A. The corresponding entropy is
SA = k ln �A.

Suppose that the initial condition to the Liouville equa-
tion is ρA. As time evolves, the surface A changes to another
surface A′ and become intertwined with the complementary
surface to the whole surface. However, by the Liouville theo-
rem, the measure of A′ is the same as that of A, and the entropy
remains constant and equal to SA. Therefore, the Gibbs dis-
tribution will never be reached because the entropy of this
distribution is Se = k ln � which is larger than SA.

We present now an example where the initial distribution
is nonzero and given by

ρ = aρA + bρB, (96)

where a + b = 1, and the surfaces A and B are complementary
surfaces and make up the entire surface of constant energy E .
The corresponding entropy is

S = ka ln
�A

a
+ kb ln

�B

b
, (97)

and it differs from Se = k ln �, where � = �A + �B. In fact,
we can show that Se � S, the equality occurring when ρ is the
Gibbs distribution in which case a = �A/� and b = �B/�.
Therefore, if the initial distribution is of the type (96) but is
not the Gibbs distribution, this Gibbs distribution will never
be reached.
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V. CONCLUSION

We proposed a stochastic equation of motion that emerges
as a consequence of stochastic forces acting on each pair of
particles. The random forces acting on a pair of particles are
action and reaction leading to the conservation of momentum.
These forces are perpendicular to the relative velocity between
the particles, performing, therefore, zero work on the two
particles and thus preserving their kinetic energy.

These stochastic forces and the conservative forces leads
to the conservation of energy along a trajectory in phase
space. The trajectories in phase space are restricted to the
surface of constant energy and is thus similar in this aspect to
the Hamiltonian flow. From the stochastic motion, we derived
the evolution equation for the density which turns out to be a
Fokker-Planck equation, but distinct from the usual

Fokker-Planck equation that describes the contact of system
with a heat reservoir.

To derive the evolution equation we introduced an appro-
priate interpretation of the stochastic equation of motion that
does not correspond neither to the interpretation proposed
by Itô nor that proposed by Stratonovich. The interpretation
proposed here makes the energy be conserved at all times, a
result that was demonstrated by showing that the Hamiltonian
function is a stationary solution of the evolution equation.

In contrast to the Liouville equation, which also describes
a closed system and conserves the energy, the evolution equa-
tion that we set up predicts the increase of entropy and the
relaxation to equilibrium. In other terms, the equation de-
scribes an irreversible decay to equilibrium, but we cannot
ascertain whether the present approach could describe cor-
rectly the actual decay observed in real closed systems.
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