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ABSTRACT

The class of locally stationary processes assumes that there is a time-
varying spectral representation, that is, the existence of finite second
moment. We propose the «-stable locally stationary process by mod-
ifying the innovations into stable distributions and the indirect infer-
ence to estimate this type of model. Due to the infinite variance, some
of interesting properties such as time-varying autocorrelation can-
not be defined. However, since the a-stable family of distributions
is closed under linear combination which includes the possibility
of handling asymmetry and thicker tails, the proposed model has
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the same tail behaviour throughout the time. In this paper, we pro-
pose this new model, present theoretical properties of the process
and carry out simulations related to the indirect inference in order
to estimate the parametric form of the model. Finally, an empirical
application is illustrated.

62M10; 62F86

1. Introduction

The class of locally stationary processes describes processes that are approximately sta-
tionary in a neighbourhood of each time point but its structure, such as covariances and
parameters, gradually changes throughout the time period [1,2]. This type of processes has
been proved to achieve meaningful asymptotic theory by applying infill asymptotics. The
idea of this approach is that the time-varying parameters are rescaled to the unit interval,
and thus, more available observations imply obtaining more contribution for each local
structure. Consequently, statistical asymptotic results such as consistency, asymptotic nor-
mality, efficiency, locally asymptotically normal expansions, etc. are obtained. Dahlhaus [3]
provided a review of this type of process.

Most results of locally stationary processes assume innovations with finite second
moment. However, different areas have observed phenomena with heavy tail distributions
or infinite variance. In this work, we consider that the innovations of the locally stationary
process follow o-stable distributions. The advantage of assuming «-stable distributions is
its flexibility for asymmetry and thick tails. Also, it is closed under linear combinations
and includes the Gaussian distribution as a special case. However, its estimation is difficult
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since the density function does not have a closed-form. Consequently, the usual estimation
methods such as maximum likelihood and method of moments do not work.

Alternative estimation approaches such as methods based on quantiles [4] or on the
empirical characteristic function [5] are proposed. However, those methods are only useful
for the estimation of the «-stable distributions parameters and, therefore, they are difficult
to apply for more complex models.

The strategy to estimate this kind of process is the indirect inference proposed by
Gourieroux et al. [6] and Gallant and Tauchen [7]. Since a-stable distributions can be easily
simulated, the indirect approach, which is an intensive computationally simulation-based
method, can be a solution to overcome the estimation problem.

Models involving stable distribution were successfully implemented in indirect infer-
ence for independent samples from the «-stable distributions and «-stable ARMA pro-
cesses [8]. Moreover, some time series models involving stable distributions are also
successfully implemented using indirect inference [9-12].

Our contribution in this work is twofold. First, we propose the locally stationary pro-
cesses with stable innovations and present the theoretical properties of this model. We
also justify the reason why we call them «-stable locally stationary processes. Second, we
propose the indirect inference in order to estimate the models with linear time-varying
coeflicient.

The paper is organized as follows. In Section 2, we review the basic background on
locally stationary processes, o-stable distribution and indirect inference. Then, properties
of the o -stable locally stationary processes are presented in Section 3. Section 4 describes
the indirect inference for this kind of processes. Simulations are performed to study the
indirect inference approach in Section 5. A wind data application is illustrated in Section 6.
Finally, conclusions are presented in Section 7.

2. Background
2.1. Locally stationary processes

Locally stationary processes were introduced by using a time-varying spectral representa-
tion [2]. However, we use the time-domain version as in [13] since stable distributions do
not have finite second moment.

Definition 2.1: The sequence of stochastic processes X;r (t = 1,..., T) is alinear locally
stationary processes if X; 1 has a representation

oo
Xpr= Y ar(ej (1)
j=—00
where the following conditions are satisfied:
(i)

K
sup }at,T(j)| < %, with K independent of T; (2)
t
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(ii) Let V(g) be the total variation of a function g on [0, 1]; then, there exist functions
a(-j) : (0,1] - R with

sup |a(u, )| < . 3)
9 £3j)
T t
S‘;PZ art(j) —a (?’]) <K, (4)
t=1
V(a()) < (5)
)]

(iii) {e¢} arei.i.d. with E[e;] = 0, E[es, &¢] = 0 for s # ¢ and E[sf] =1.

Note that the condition (iii) in the Definition 2.1 assumes that the innovations {&;} has
zero mean and unit variance. In this case, there exists a spectral representation of the pro-
cess X; and time-varying spectral density. Note that classical stationary processes arise as
a special case when all parameter curves are constant.

2.2. «o-stable distribution

Stable distributions, as an extension of Gaussian distributions, can be defined by its
characteristic function:

exp {—a“|9|°‘(1 B (signd) tan ) + i,w}, ifa#£1,
E{eX) = 2 2 ©6)
exp {—O’|9|(1 + i —(sign0) log |0]) + i,uﬁ} , fa=1,

T

where o € (0,2] is the index of stability (tail heaviness), ¢ > 0 is the scale parameter,
—1 < B <1 the asymmetry parameter and p € R the location parameter. It is denoted
by Sy (o, 8, ). Important properties can be found in detail in [14].

This class of distribution generalizes some important known distributions: normal
distribution for o = 2, Cauchy distribution (¢ = 1, B = 0) and Lévy distribution (o =
1/2, B = £1). However, it does not have a closed-form density function in general. More-
over, the non-existence of moments greater than o makes it difficult to estimate parameters.
Different estimation approaches have been proposed, such as methods based on quantiles
[4] and methods based on the empirical characteristic function [5]. Nevertheless, they are
only useful for independent samples from stable distributions and difficult to perform for
more complex models.

When a random variable has the density function and distribution function, its sim-
ulation is an easy task. In stable distribution case, Weron and Weron [15] proposed
an algorithm to generate «-stable distribution. To simulate a random variable X ~

Sa (1, 8,0):

(1) generate a random variable U uniformly distributed on (—m/2,7/2), and a indepen-
dent exponential random variable W with mean 1, then
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(2) let

arctan(f tan %
Bup = M and Sy p = [1 + B tan
o

>

By na]l/(Za)

and compute

sin (a(U 4 Bg,p)) [cos(U — a(U + By p)) ] ~07 ifa 1
o, (cos U)1/e w ’ ’
X = ) . %Wcos U . (7)
— (——l—,BU)tanU—,Blog = , ifa =1.
/4 2 D) +BU

Next, Y ~ Sy (o, B, ) is obtained by means of the standardization formula:

oX + u, ifa #1,

(8)

2
oX+ —Bologo +u, ifa=1.
T

Since stable distributions can be easily simulated, the indirect approaches proposed by
Gourieroux et al. [6] and Gallant and Tauchen [7] could be the solution to more complex
models involving stable distributions.

2.3. Indirect inference

The indirect inference proposed by Gourieroux et al. [6] is based on a very simple idea and
it is suitable for situations where the direct estimation of the model is difficult. Let y be a
sample of T observations from a model of interest (IM) and 6 be the maximum likelihood
estimator (MLE) of 6 € ® in IM which is unavailable. Then, consider the auxiliary model
(AM) depending on a parameter vector A € A whose likelihood function is easier to han-
dle, but its MLE A is not necessarily consistent. The indirect inference is carried out by the
following steps:

Step 1 Compute A based on y.

Step 2 Simulate a set of S vectors of size T from the IM on the basis of an arbitrary
parameter vector 6(© _Let us denote each of those vectors as ¥ (é Oy s=1,...,S.

Step 3 Then, estimate parameters of the AM using simulated values from the IM,

S T
As(@@) = argmax Z Z Inl [k;ys(é(o))] . 9)
reZ 1 =1
Step 4 Numerically update the initial guess §*) in order to minimize the distance
[ -3 @3- 4], (10)
where 2 is a symmetric non-negative matrix defining the metric.

For choosing €2, Gourieroux et al. [6] proved that when the parameter vectors of both
AM and IM have the same dimension and T is sufficiently large, the estimator does not
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depend on the matrix 2. In this paper, we consider 2 as identity matrix. Finally, the esti-
mation step is performed with a numerical algorithm, such as Newton-Raphson. Then, for
a given estimate 6P, the procedure yields § ?+1 and the process will be repeated until the
series of ) converges. The estimator is then given by

6 = lim 9©, (11)

p—>00

3. tvARMA with stable innovations

An important example of the locally stationary process is the time-varying ARMA model,
briefly tyARMA. In this section, we will consider this model with stable innovations.

Definition 3.1 (tvARMA with stable innovations): Consider the system of difference
equations

4 t 1 t t—k
Zolj ? Xt—j,T = Z IBk ? y T Et_k> (12)
j=0 k=0

where ¢; areii.d.and g; ~ Sa(l/\/i,ﬁ,o) witha € (0,2). Assume og(u) = Bo(u) = 1and
aj(u) = aj(0), Br(u) = Br(0) for u <0. Suppose also that all «;(-) and Bi(-), as well as
¥2(-), are of bounded variation.

The reason that the scale parameter of the innovations is set to be 0 =1/ /2 is when
a = 2, the standardized Gaussian innovation is obtained. It is possible to define Equation
(12) as:

@ 7(B) X, 7 = O r(B)z1,T) (13)

where z;7 = y(t/T)es; @17(B) =1+ a1 (t/T)B+--- 4+ ap(t/T)B? and Oy 1(B) =1+
B1(t/T)B + - - - + B4(t/T)B1 are the autoregressive (AR) and moving average (MA) oper-
ators, respectively.

There are several works related to stable linear processes. For instance, chapter 7 in
[16] and Chapter 13 in [17] give a general review of stable linear processes. Kokoszka
and Taqqu [18] study the infinite variance stable ARMA procseses and Kokoszka and
Taqqu [19] study fractional ARIMA with stable innovations. Mikosch et al. [20] proposed
a Whittle-type estimator to estimate the coefficients of the ARMA model. In the stable
innovation and time-varying coefficient context, Shelton Peiris and Thavaneswaran [21,22]
considered the univariate and multivariate case of the system (13) with symmetric stable
innovations and assume y (-) = 1. However, they considered time-dependent coefficient
without the local stationarity condition.

3.1. Existence and uniqueness of a solution

Before we study the local stationarity conditions on the time-varying coefficients, we
present a set of regularity conditions of existence and uniqueness of solution of the system
based on the concepts defined by Shelton Peiris and Thavaneswaran [21,22].
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Definition 3.2: (1) The process (13) is AR regular (or causal) if there exist a;7(j) such
that

[e.0]
Xir = ayr()er. (14)
j=0
satisfying Z;'):OO la,7(j)|° < oo forall t and § = min{1,a}.
(2) The process (13) is MA regular (or invertible) if there exist b, 1(j) such that

g0 =Y bir(DXejr. (15)

j:O
satisfying Zjo:oo 1be1(j)|° < oo for all t and § = min{1, ).

The random series in (14) converges a.s. if and only if Zfio larT()|* < oo, and
by applying the Proposition 13.3.1 in [17], it converges absolutely if and only if
Z;io la,7(j)|° < 0o with § = min{1, «}. Similar arguments are applied to the MA rep-
resentation in (15).

To continue, we omit the subscript T from above notation. Consider the homogeneous
difference equation

(Dt(B)Mt =0. (16)

Ifap(t/T) # 0 for any ¢, there exist p linearly independent solution ¥y ¢, ¥2,r . . ., ¥p,r such
that

Vi cee Y
() = Y1i-1 i Wp,t—l (17)
Vit—pt1 0 0 Ypt—ptl

is invertible for any ¢ [23]. Therefore, we can define
G(t,5) =W () [¥(s)], (18)

the one-sided Green’s function matrix associated with the AR operator ®;(B). It can be
showed that G(t,s) is unique and invariant under different solutions W (#) obtained from
the homogeneous difference equation (16). Furthermore, the one-sided Green’s function
associated with the AR operator ®(B) is defined as the upper left-hand element in the
matrix (18),

g(t,s) = [G(t,9)]11» (19)

which is also unique and invariant. Now, we are ready to establish the conditions for AR
regularity and MA regularity.

Theorem 3.3: Let {Xt,T} be a sequence of stochastic process that satisfies (13). Suppose that
ap(t/T) # 0 for all t, and g(t,s), the one-sided Green’s functions associated with ®(B), is
such that 3! o~ 1g(t,5)]° < oo, for all t. Assume also that ZZ:_O I,Bj(-)l2 < oo for all t,
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and ®4(z) (P¢(2) # 0 for |z| < 1) and ©(z) have no common roots. Then, there is a valid
solution, given by

o
Xir=Y_ar(ec, (20)

j=0

to (13) with coefficients uniquely determined by

0, j <0,
o
V( T])’ =0
a N — t_j £ t_j+k . . (21)
£7() = 1y e E Bk —r gtt—j+k, 0<j=<q
j=0
. q .
t—j t—j+k ) )
- J -t Lt—j+ k), .
V<T)j§zoﬁk( n )g( jtk, j>q

Proof: By setting z; T = y (t/T)e;, along with the absolute convergence conditions above,
the proof is similar to [22]. [

Theorem 3.4: Let {Xt,T} be a sequence of stochastic process that satisfies (13). Suppose that
Bq(t/T) # 0 for all t, and h(t,s), the one-sided Greens function associated with ®(B), is
such that "' |h(t,9)|° < oo, for all t. Assume also that 3°_ loj(-)|* < oo for all t,
and ®(z) and ©(z) (O4(z) # 0 for |z| < 1) have no common roots. Then, the process (13)
is invertible and its explicit inversion is given by

& = Z be,r (N Xi—j 1. (22)

j=0

where Xy T denotes an arbitrary solution and the coefficients are uniquely determined by

0, j<o,
1 .
N j=0,
/(%)
T
k .
. 1 t—j+k . .
brr(j) = . Zak( ]T )h(t,t—JJrk), 0=<j=p, (23)
e
T
q
1 t—j+k , )
Zak< ; )h(t,t—]—l—k), j>p.

<
RS
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Theorem 3.5: Let {X; 1} be a sequence of stochastic process that satisfies (12) that is AR
regular. The solution X, T of the form (14) is strictly stable and X, ~ S (0™, B*,0), with

Ja

1
. 1 ) — e . Y2 sign [a ()] |anT ()|
of=(—= |ar ()| , and B*=p
(ﬁ ; t

Z]Qio \at,T(]')rx

Proof: The explicit form of the solution is straightforward since the linear combination
of stable distributions is also stable. Moreover, the Property 1.2.6 from [14] implies that
for each t, the solution X, 1 is strictly stable since each of them has location parameter
equals 0. |

3.2. Local stationarity

Similar to the Proposition 2.4 in [13], we can present the corresponding version for stable
innovations. Since it is not a second-order process, the time-varying spectral density does
not exist.

Theorem 3.6: Consider the system of difference equations in (12) satisfying the AR regular
conditions stated above. Suppose that all a;(-) and B (-), as well as y2(-) are of bounded
variation. Then, there exists a solution of the form

o
Xer = Z at,T(j)et—j>

j=0
which fullfills (3), (4) and (5).
Proof: We give the proof for tvAR(p) process (i.e. ¢ = 0) and then the extension to

tvARMA (p,q) is straightforward. Since the process (12) is AR regular, there exists a solution
of the form

x
Xt,T = Z at,T(j)etfja

=0

that is well defined and the coefficients are given by

wro=[fie(5] A7)

t=0 11
with
—o1(u) —ap(u) - - —Olp(u)
1 0 cee e 0

o(u) = 0
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[for more detail see 23]. Then, the proof of the existence of the functions «(:,j) satisfy-
ing (3), (4) and (5) follows the same proof to that of finite innovation case (see Appendix
in [13]). |

Remark 3.1: (1) Note that since a;1(j) ~ a(t/T,j), X;, T can be approximated by

0o

~ t

Xt,T = E a (?,]> Et—j» (24)
j=0

which converges a.s. if and only if Zj’iola(t/T, 7% < o0o.Moreover, X;1 ~

S« (™, BT, 0), with
t
a )
T ]

> i=osign[a (1:7)] |a (7.4)|" }
;20|“(%aﬂ}a

(2) X rin(14) can be expressed as a linear combination of «-stable random variables and
X, 1 is strictly stable with the same index of stability «.

(3) Observe that X; 1 is not strictly stationary, but it can be approximated by X, 7 which
is locally (strictly) stationary and strictly stable with the same index of stability.

(4) Weak stationarity does not make sense since the second moment does not exist.
Consequently, the time-varying spectral representation does not exist.

(5) Let Xi,7,..., X171 be the sequence of solutions defined in (14) and Xl,T, .. ,XT,T
be the sequence of the stochastic process defined in (24). Both processes are strictly
a-stable, since all linear combinations are strictly stable with the same index of stabil-
ity. This means that the weak stationarity is lost but it is substituted by the same tail
behaviour throughout the time. This is the reason we call this process «-stable locally
(strictly) stationary process.

1/a
o

, and

s

ﬂ+=ﬂ{

If we consider the symmetric a-stable (SaS) innovations, i.e. 8 = 0, the simplest form
is obtained.

Corollary 3.7 (tvARMA with symmetric stable innovations): Let X; T be a sequence of
stochastic process that satisfies (12) with i.i.d. SaS innovations, that is, &, ~ So(1/ V2,0,0)
with o € (0,2). Then, there exists a solution of the form (14). This solution Xy T is symmetric,
a-stable and Xy ~ S4(0*,0,0), with

X o 1/«
o*=— 12 lar([*
V2 |5

Similarly to the general case, X, 1 can be approximated by )N(t,T ~ S,(ct,0,0) as in (24),

with
t
a T’]

1/a
a

(o.¢]
ot =13
j=0
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In the symmetric case, in addition to the properties in Remark 3.1, note that the
processes X; T and X, 1 are symmetric o-stable.

3.3. Some examples

Example 3.8: The tvMA(q) model with stable innovations:
q
t t—k
Xir=Y_ b (;) y (T) Etk- (25)
k=0
Example 3.9: Consider the tvAR(p) model with stable innovations
Z Q; L =y (L e (26)
' 'j T t—i,T =V T t
j=0
Underregularity conditions, Xyt does not have a solution of the form
> t
Xy = ;ak (;) Et—ko

but only of the form (14) with

j—1 _
ar() = | [ (%)

y (%) (27)

£=0 11
and
—ay(u) —ax(w) - - —ap(u)
1 0 e e 0
o(u) = 0
0 0 1 0

where a(u) = a(0) for u <0 [13]. Moreover, a;1(j) can be approximated by a(u,j) =
(oe(u)Y) 11y (1) which satisfies (3), (4) and (5).

Figure 1 presents simulated tvAR(1) process of T = 1000 observations with dif-
ferent innovation distribution (Gaussian, t3y and symmetric stable innovations, o =
1.7,1.4,0.9,0.6) and a linear coeflicient o1 (1) = —0.2 4+ 0.6u and y (1) = 1. We observe
that for smaller «, the process seems to have more outliers.

3.4. Prediction

Recalling that «-stable tvARMA has infinite variance, prediction results based on stable
ARMA processes with dependent coeflicients are presented by Shelton Peiris and Tha-
vaneswaran [21,22]. Then, it is possible to predict future values along with the approach
applied by Van Bellegem and von Sachs [24], which considers the observed values
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(a) (b)

17
3 2 4 0 1 2 3
v

T T T T T T T T T T T T
o 200 a0 600 800 1000 0 200 400 800 800 1000

(e (d)

12
s o0 s
v
60 40 20 0 20 40

) 200 400 600 800 1000 ) 200 400 800 800 1000

1000 500 0 50 1000
b
0 5000
b

v,
10000 50

o 200 400 600 800 1000 o 200 400 600 800 1000

Figure 1. Simulated tvAR(1) assuming time-varying coefficient o1 (u) = —0.2 4+ 0.6u and y (u) =1,
with (a) Gaussian, (b) t3y innovations, and symmetric stable innovations with (c) « = 1.7, (d) @ = 1.4,
(e)a =0.9and (f)a = 0.6.

Xo,T> - - -»XT—h—1,7 and rescaling the time interval to [0, 1 — ((h + 1)/T)], where h is the
forecasting horizon and the ratio 4/T tends to zero as T tends to infinity. Here, we consider
that the innovations are SaS random variables.

Suppose that we have the system of difference equation (12) that satisfies above regular
conditions, and Xor,...,Xp 7 with T = T — h — 1 are observed. We are interested in
predictions with horizon h, i.e. Xr_p 1,. .., XT T

Since X 1 is AR regular, it can be expressed as

Xer = Zat,T(j)Et—j~ (28)

j=0

Let X7+ (I) be the best linear predictor of Xy for I =1,..., h, namely

Xp() =Y AT, T - jer_j, (29)
j=0

where A(T', T" — j) are some functions. Since the prediction error e/ (I) = )A(Turh)T -
Xp/(I) is also SaS random variable, it is possible to define its dispersion as d = o with
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o its scale parameter. The idea is to minimize the dispersion d. Note that
er(l) = Xpqr — Xp (D)

o0 o0
- Z ar 41T (DT +1-j — Z AT, T = jer—

=0 j=0
-1 00 00
= appr(ersi—i+ Y arar(erii—— Y AT, T — e
j=0 j=l j=0
-1 00
= Z ar+1,r(NeT+1-j + Z (arqirG+D — AT, T =) er—j. (30)
j=0 j=0

Then, assuming &; ~ S,(1/+/2,0,0) and using properties of SaS random variables, its
dispersion is

o -1
1
disp [err (D] = (75) E lag ()
=0

1\*
+ <ﬁ> Z|(QT/+I,TU+Z)_A(T/) T’—j)) 1. (31)

j=0

Minimizing the expression (31), we obtain the following theorem.

Theorem 3.10: The minimum dispersion predictor is given by

o0
XpM) =) apprG+Derj. (32)
j=0

Proof: From (31), it is straightforward to obtain

o -1
1

mindisp [er ()] = (E) lar 41,7 (DI

=0

withaprG+1) =AT,T —j) forj=0,1,.... [ ]

4. Indirect inference for a-stable tvARMA processes

The IM is the ttARMA with innovation &; ~ S, (1/ V2, B,0). We study the parameter esti-
mation when the innovation parameters o and B are known. Then, we study the case
assuming unknown o.

Suppose that the parameter curves of model of interest can be parametrized by a finite-
dimensional parameter 6. The estimation strategy is to consider an auxiliary model with
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the same parametric time varying coefficient structure with Student’s t innovations. The
conditional likelihood estimates, defined in the equation (30) in [3], is,

T
A 1 t
A =argmin— » {7 <8A (—)) , (33)

where £, 7(0) = —log fo (X¢,1|X¢—1,T> . - ., X1,1). In practice, we will use t distribution with
v = 3 degrees of freedom for the case of known parameters since its tail is heavier than the
Gaussian one. For unknown « case, we let v to be estimated in the AM.

5. Simulation study

This section presents a Monte Carlo (MC) simulation in order to investigate the properties
of the indirect inference estimators. All the simulation programs and routines were imple-
mented in R language. We present one scenario for each of the following models but still
different values of o were selected. Some other scenarios were performed for each case and
similar results were obtained and they are available upon request from the authors. For
each scenario, simulations were done for T = 500, 1000 and 1500 observations based on
R = 1000 independent replications. The indirect inference was carried out using S = 100.
For o known, we also performed the blocked Whittle estimation (BWE), proposed by
Dahlhaus [2], to compare the estimation of time structure of the model with indirect infer-
ence. The suggestion of block size N = | T%8 ] and shifting each block by § = [0.2N] time
units from [25] is used.

5.1. Known o case

5.1.1. «a-stable tvAR(1)
Consider tvAR(p) in (26) withp = 1and y (t/T) = y:

t
Xer + oy (?) Xt 1,1 =Vén (34)

where &; ~ Sy (1/+/2, 8,0) with & and 8 known.

We illustrate how the indirect inference can be employed to the tvAR(1) with the linear
parametric form of the time varying coeflicient «; (1) = 6p + 6;u, and we consider that
&1 ~ So(1/+/2, B,0) for a known. Therefore, the parameters of the IM is 0 = (6,61, ).

The simulation was performed by assuming known parameters « = 1.9 and § = 0.9
and unknown (6, 61, y) = (—0.3,0.8,1). It is important to report that since « is close to
2, all replications for the BWE converged. This outcome is expected since the innovation
distributions approximate to the Gaussian distribution for « close to 2.

Table 1 reports the MC mean and standard error of both estimation methods. Notice
that the MC mean from the indirect estimates seems to be consistent, that is, they approx-
imate the real parameters and present lower standard errors as T increases. On the other
hand, the MC mean of the BWE are different from the real parameters and present higher
standard errors compared to our estimation approach.

Table 2 presents the kurtosis and skewness of all estimates from both methods. In gen-
eral, all indirect estimates present lower kurtosis and the skewness close to 0. Notice that
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Table 1. MC means and standard errors for different sample size T, using indirect estima-
tors and BWE assuming « and S8 known, from «-stable tvAR(1) with (&, 8,60,61,y) =
(1.9,0.9,-0.3,0.8, 1), based on R = 1000 replications.

Indirect estimates BWE
T b 2 y 6" o y
500 —0.2952 0.7897 0.9966 —0.2880 0.7825 1.2086
(0.0881) (0.1523) (0.0366) (0.1172) (0.2216) (0.6352)
1000 —0.2975 0.7926 0.9996 —0.2917 0.7845 1.2197
(0.0585) (0.1028) (0.0260) (0.0811) (0.1545) (0.4734)
1500 —0.2974 0.7958 0.9997 —0.2940 0.7926 1.2709
(0.0494) (0.0793) (0.0209) (0.0639) (0.1162) (0.8738)

Table 2. Kurtosis and skewness of indirect estimates and BWE for different sample size T, assuming o
and B known, from «-stable tvAR(1) with (e, 8, 6,61, ¥) = (1.9,0.9,—0.3,0.8, 1), based on R = 1000
replications.

Indirect estimates BWE
T b 2 y 65" o y®
500 Kur 3.0330 2.8565 3.1076 3.3783 3.0944 375.8563
Skw 0.1388 —0.1354 0.1241 —0.0129 —0.0875 16.6778
1000 Kur 3.1678 3.2835 2.7390 2.8722 2.9543 95.2261
Skw 0.0341 —0.0260 0.0437 0.0057 —0.1047 8.4487
1500 Kur 3.1024 3.0645 2.9329 3.7487 6.1799 187.9560
Skw —0.0299 0.0248 0.0026 0.1707 —0.5935 12.4661

since the second moment of the process does not exist, the parameter y estimates from the
BWE present highly positive asymmetry and they subestimate the true parameter.

Figure 2 shows the density estimates of each parameter. They show that the standard
error become smaller as T increases. Along with the results from Tables 1 and 2, we can con-
clude that indirect estimates behave better than the BWE in terms of mean, standard error,
skewness and kurtosis. Therefore, the simulation results show that the indirect inference
performs well.

o = o
B = T=500 — T=500 B — T=500
— T=1000 — T=1000
o ] - = T=1500 - = T=1500
© ] o ]
2 o 2 =
= = A =
w w [%2]
= e < LIy e O]
o o o\ 8
[S I o / =
~ o ]
]
.
7 N\
o o o e N o
T T T T T T T T T T T T T T T T
06 04 02 00 02 04 06 08 10 12 14 085 090 095 100 105 110 115
0o 64 ¥

Figure 2. Density estimates of 6y, 61 and y for different sample sizes, based on R = 1000 replications
from «-stable tvAR(1) with («, B8, 60,61, ) = (1.9,0.9,—0.3,0.8, 1), using indirect inference.
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5.1.2. a-stable tvMA(1)
In this section, we carried out simulations for a tvMA(q) in (25) with ¢ =1 and

y(/T) =y:
Xir=vy {8t + A1 (%) St—l},

where &; ~ Sy (1/+/2, 8,0) with & and 8 known.

The indirect inference is employed for the linear parametric form of the time varying
coefficient B (1) = 6y + 61u, and we consider that &; ~ Sy (1/+/2, 8,0) for known « and
B. Hence, the vector of parameters of the model of interest is 0 = (6, 61, y).

This scenario assumes known « = 1.1 and 8 = —0.2 and unknown (6y,61,y) =
(0.35,—0.6,1.2). For the BWE case, we consider only R = 939, 978 and 978 replications
with converged estimates for T' = 500, 1000, and 1500, respectively. This result is expected
because BWE assumes finite second moment. The MC mean, standard error, kurtosis and
skewness of estimates from the simulation are reported in the Tables 3 and 4 and the density
estimates in Figure 3.

Similarly to the previous case, the indirect estimates seem to be consistent and the stan-
dard error become smaller as T increases. For this case, since « is smaller, the distribution
of indirect estimates has heavier tails, and they have similar kurtosis and skewness than the

(35)

Table 3. MC mean and standard error for different sample size T, using indi-
rect estimators and BWE assuming « and 8 known, from «-stable tvMA(1) with
(a, B,60,61,7) = (1.1,—0.2,0.35, —0.6, 1.2), based on R = 1000 replications.

Indirect estimates BWE?
T b 2 y 65" o\ y®
500 0.3561 —0.5888 1.1989 0.3424 —0.5427 18.7932
(0.0298) (0.0577) (0.0600) (0.1418) (0.3084) (38.4343)
1000 0.3545 —0.5953 1.1986 0.3386 —0.5532 47.5752
(0.0186) (0.0352) (0.0412) (0.0870) (0.1955) (232.0620)
1500 0.3536 —0.5982 1.1986 0.3357 —0.5555 49.4572
(0.0131) (0.0244) (0.0331) (0.0747) (0.1690) (178.3984)

@ In tvMA(1) simulations, the BWE did not converge in some cases. Therefore, excluding those

cases, R = 939, 978 and 978 replications are included for T = 500, 1000, and 1500, respec-

tively.

Table 4. Kurtosis and skewness of indirect estimates and BWE for different sam-
ple size T assuming known « and B from «-stable tvMA(1) with («, 8,60,01,y) =
(1.1,-0.2,0.35, —0.6, 1.2) based on R = 1000 replications.

Indirect estimates BWE®
; w e I .
500 Kur 7.9023 6.3460 2.9050 6.9952 7.3434 233.1652
Skw 1.2950 0.0800 0.2117 0.1961 1.1869 13.5324
1000 Kur 9.8633 10.4926 2.8616 11.7454 8.6755 385.9194
Skw 1.6510 0.7121 0.0841 0.8633 1.5096 17.6374
1500 Kur 8.1466 20.6873 2.8140 9.7011 10.5014 156.1843
Skw 1.5194 1.4762 0.1493 —0.1837 1.9926 11.4943

@ In tvMA(1) simulations, the BWE did not converge in some cases. Therefore, excluding those cases, R = 939,

978 and 978 replications are included for T = 500, 1000, and 1500, respectively.
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Figure 3. Density estimates of 6y, 61 and y for different sample sizes based on R = 1000 replications
from a-stable tvMA(1) with («, 8, 69, 61, v) = (1.1, —0.2,0.35, —0.6, 1.2) using indirect inference.

BWE estimates, except for the parameter y, when the indirect estimation behaves better.
In addition, in term of standard error and MC mean, they still behave better than the BWE.
We conclude that the indirect inference has a good performance.

5.1.3. a-stable tvARMA(1,1)
The third simulation was carried out with the case of tvARMA(p,q) withp = 1,9 = 1 and

y/T) =y:
Xir + oy (%) Xir=v {8t + B1 (%) 8t—1} ,

where &; ~ Sa(l/\/i, B,0) with o and 8 known.

We suppose a linear parametric form of the time varying coefficients o(u) =
Oa0 + 011 and By (u) = Opg + Oy u. Therefore, the parameters of the IM is 6 =
(0205 a1, 0o, Op1, ¥ )-

The simulation was done by assuming o = 1.8, B = 0.3 and (00,61, %0, %1, ¥) =
(—0.4,0.1,0.1,0.3,1.1). For BWE, R = 989, 996 and 994 replications with converged
estimates are included for T = 500, 1000, and 1500, respectively.

The MC mean, standard error, kurtosis and skewness of estimates from the
tvARMA(1,1) simulation are reported in the Tables 5 and 6 and the density estimates in
Figure 4. In general, the distribution of indirect estimates has heavier tails, and the kurtosis
and skewness are similar to the BWE (except for the parameter y, indirect estimates behave

(36)

Table 5. MC mean and standard error for different sample sizes T, using indirect estimators
and BWE assuming « and 8 known, from «-stable tvARMA(1,1) with (&, 8,640, 641,60, b1, ) =
(1.8,0.3,—0.4,0.1,0.1,0.3, 1), based on R = 1000 replications.

Indirect estimates BWE?
T a0 O Opo Op1 y 9,%'/ ) 95?1”) 9%’ ) 9¢§|1/V ) y®
500 —0.4000 0.1061 0.0987 0.3097 0.9976 —0.3917 0.1021 0.1078 0.3049 1.4151
(0.1360)  (0.2222)  (0.1501)  (0.2395) (0.0386) (0.1952) (0.3522) (0.2130) (0.3810) (0.7603)
1000 —0.3921 0.0881 0.1064 0.2905 0.9982 —0.3850 0.0815 0.1105 0.2880 1.4919
(0.1001)  (0.1617)  (0.1053) (0.1652)  (0.0290) (0.1409) (0.2535) (0.1470) (0.2599) (0.5806)
1500 —0.3992 0.1021 0.0988 0.3060 0.9982 —0.3939 0.0926 0.1055 0.2964 1.5538
(0.0754)  (0.1269)  (0.0793) (0.1285) (0.0232) (0.1085) (0.1955) (0.1155) (0.2040) (0.8009)

2 In tvARMA(1,1) simulations, the BWE did not converge in some cases. Therefore, excluding those cases, R = 989, 996 and
994 replications are included for T = 500, 1000, and 1500, respectively.
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Table 6. Kurtosis and skewness of indirect estimates and BWE for different sample size
T, assuming known « and B from «-stable tvARMA(1,1) with («, B, 640,641, 060,01, V) =
(1.8,0.3,—0.4,0.1,0.1,0.3, 1), based on R = 1000 replications.

Indirect estimates BWE?

() w) w) w
Oa1 Opo O y®

T a0 O b0 Op1 Y 6%

500 Kur 33650 3.1791 33657 34297 29935 29112 3.0692 32168 3.2822  203.2823
Skw  0.2754 —0.2426 —0.0746 —0.1274 0.1839  0.1699 —0.1329 —0.2024 —0.0422 12.0737
1500  Kur  3.3964 35054 3.4470 34690 3.0327 34242 32166 3.2601  3.0064 41.6803
Skw 02002 —0.1558 0.0100 —0.1184 0.2460 03149 —0.2253  0.0267 —0.1713 4.9608
1500  Kur  3.5817 3.1935 37052 33930 29790 29176  2.8801 33685 3.3091 96.2273
Skw  0.2895 —0.1097 0.0137 —0.0730 0.0718 0.0809  0.0268 —0.1083  0.0372 7.7396

@ In tvARMA(1,1) simulations, the BWE did not converge in some cases. Therefore, excluding those cases, R = 989, 996 and
994 replications are included for T = 500, 1000, and 1500, respectively.
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Figure 4. Density estimates of 640, 041, 640, 051 and y for different sample sizes based on R = 1000
replications from «-stable tvARMA(1,1) with («, B8, 640, 041, 00, 0a1, v) = (1.8,0.3,—0.4,0.1,0.1,0.3,1)
using indirect inference.

better). However, in terms of standard error and MC mean, they behave much better than
the BWE. Therefore, the indirect inference works well for ttARMA(1,1).

5.2. Unknown o case

5.2.1. a-stable tvAR(1)
Consider the tvAR(1) model

t t
Xir + o (?) Xiyr=v (;) &t (37)
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Table 7. MC mean and standard error for different sample size T using indirect estimators assum-
ing (a, B, 60,61, v0, 1) = (1.4,0,0.35,—0.6,0.5,0.1) with known B from «-stable tvAR(1) based on
R = 1000 replications.

Indirect estimates

Model of interest Auxiliary model

A A A A
T o 2 o % " o) o v w o

500 0.3482 —0.5980 1.4083 0.4922 0.1111 0.3482 —0.5980 1.8853 0.3994 0.0897
(0.0406)  (0.0715)  (0.0737)  (0.0527) (0.0960) (0.0407) (0.0716) (0.2351)  (0.0446) (0.0778)
1000 0.3492 —0.5986 1.4037 0.4974 0.1033 0.3492 —0.5986 1.8622 0.4033 0.0834
(0.0244)  (0.0430) (0.0520) (0.0370) (0.0661) (0.0244)  (0.0429) (0.1570) (0.0311)  (0.0533)
1500 0.3498 —0.5988 1.4000 0.4976 0.1011 0.3499 —0.5988 1.8478 0.4030 0.0818
(0.0187)  (0.0323)  (0.0417)  (0.0305) (0.0546) (0.0187) (0.0323) (0.1244) (0.0255) (0.0441)

Table 8. Kurtosis and skewness of indirect estimates and BWE for different sample size T assum-
ing (&, B, 600,61, v0, 1) =(1.4,0,0.35, —0.6, 0.5, 0.1) with known 8 from «-stable tvAR(1) based
on R = 1000 replications.

Indirect estimates

T o 0 o 70 14
500 kur 3.7767 3.6800 3.1078 2.8924 3.0343
skw —0.1369 0.1213 0.2730 0.1583 0.0156
1000 kur 4.7209 3.8513 2.7680 3.1397 3.0710
skw —0.1548 0.1008 0.0889 0.0672 —0.0654
1500 kur 4.2029 3.8664 2.7385 3.0881 3.0266
skw 0.1274 —0.0192 0.0967 0.0973 0.0108

where g; ~ Sy (1/ V2, B,0) with known B. Here, the indirect inference is employed to the
tvAR(1) in (34) with the linear parametric form of the time varying coeflicient o1 (1) =
0o + 61u, and y (u) = yy + y1u. The parameters of IM is 6 = (6p, 01, @, yo, 1) For AM,
the same parametric form with the t-distribution assuming unknown v is used, that is,
A= (GéA), GI(A), v, yO(A), yl(A)).

The simulation was performed by assuming («, 8, 6o, 61, 0, 1) = (1.4,0,0.35, —0.6,
0.5,0.1). Table 7 reports the MC mean and standard error of the estimates. Notice that
the MC mean from the indirect estimates seems to be consistent. Table 8 presents the kur-
tosis and skewness of indirect estimates. All indirect estimates do not present kurtosis close
to 3 and the skewness close to 0. Indeed, they are similar to the case when « is known.

Finally, Figure 5 shows the density estimates of each parameter. The density esti-
mates show that the standard error become smaller as T increases. We conclude that the
distribution of indirect estimates seem to be consistent for these sample path length.

5.2.2. o-stable tvMA(1)
The indirect inference for the model (35) with unknown « is illustrated. The parame-
ter of IM is 6 = (6p,01,, y) and the parameter of AM is A = (OéA),GI(A), v, y(A)). The
simulation was performed by assuming («, 8,6p,61,y) = (1.75,0.2, —0.35,0.4,0.7).

The MC mean and standard error of the estimates from both model (IM and AM) are
reported in Table 9, and kurtosis and skewness are presented in Table 10. Along with the
density estimates showed in Figure 6, the indirect estimates seem to be consistent with
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Figure 5. Density estimates of 6y, 61, «, Yo and y; for different sample sizes based on R = 1000
replications from «-stable tvAR(1) with («, B, 6o, 61, Y0, 1) = (1.4, 0, 0.35, —0.6, 0.5, 0.1) using indirect
inference.

Table 9. MC mean and standard error for different sample size T using indirect estimators assuming
(e, B,60,61,v) = (1.75,0.2,—0.35,0.4,0.7) with known g from «-stable tvMA(1) based on R = 1000
replications.

Indirect estimates

Model of interest Auxiliary model
T 6o 04 o y GéA) 01(A) v Yy *)
500 —0.3518 0.4016 1.7566 0.7008 —0.3518 0.4016 3.9795 0.3810
(0.0699) (0.1245) (0.0739) (0.0296) (0.0694) (0.1237) (1.0183) (0.0390)
1000 —0.3487 0.3987 1.7527 0.6999 —0.3486 0.3987 3.8307 0.3776
(0.0446) (0.0787) (0.0559) (0.0229) (0.0445) (0.0788) (0.6414) (0.0299)
1500 —0.3504 0.4009 1.7525 0.7003 —0.3502 0.4007 3.7874 0.3785

(0.0375) (0.0663) (0.0457) (0.0187) (0.0373) (0.0661) (0.4852) (0.0242)

these sample path length. One interesting result is that while @ < 2 implies the IM has
infinite variance, the AM was estimated with v > 2, i.e. finite variance.

5.2.3. a-stable tvARMA(1,1)

Finally, the simulation was done for the case of tvARMA(1,1) in (36), but « is
assumed to be unknown. The time varying coefficients are assumed to be linear,
ie. () =040+ 0au and B1(u) = Oy + Op1u, and & ~ Su(1/+/2, B,0) for known
B. Therefore, the parameters of IM is 6 = (6,0, 641,60, 01, ¢, ), while AM has the
parameter A = (G;OA), 0;’14), 015’3), 9;’14) D, y(A)). The simulation was performed by assuming
(o, 856040, 041, Opo, Op1, ¢, ) = (1.3,0,—0.2,—0.4,0.2,0.3,1.1).
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Table 10. Kurtosis and skewness of indirect estimates and
BWE for different sample size T assuming («, 8,60,61,y) =
(1.75,0.2, —0.35,0.4,0.7) with known 8 from «-stable tvMA(1)
based on R = 1000 replications.

Indirect estimates

T 6o 6 o Yo
500 kur 3.8667 3.2718 2.8731 3.3445
skw —0.0413 —0.0030 —0.1140 0.0003
1000 kur 3.7260 3.4565 2.8049 29412
skw 0.0436 0.0582 —0.0081 0.1446
1500 kur 3.6876 3421 3.0489 3.0002
skw —0.0043 0.0187 —0.2133 0.0557
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Figure 6. Density estimates of 6y, 01, « and y for different sample sizes based on R = 1000 replications
from «-stable tvMA(1) with («, B, 6o, 61, v) = (1.75,0.2, —0.35, 0.4, 0.7) using indirect inference.

The MC mean and standard error of the estimates from both IM and AM are reported
in Table 11, and kurtosis and skewness are presented in Table 12. The density estimates are
showed in Figure 7. Again, the indirect estimates seem to be consistent. Moreover, if we
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Table 11. MC mean and standard error for different sample size T using indirect estimators assum-
ing (&, B,640,0a1,6p0,0p1, ¢, v) = (1.3,0,—0.2,—0.4,0.2,0.3,1.1) with known B from «-stable
tvARMA(1,1) based on R = 1000 replications.

T a0 Om Obo Ob1 o 14
Model of interest 500 —0.2036 —0.3932 0.1971 0.3064 1.3018 1.0923
(0.0585) (0.0869) (0.0587) (0.0891) (0.0698) (0.0587)
1000 —0.2005 —0.3986 0.2003 0.3004 1.3045 1.0976
(0.0319) (0.0489) (0.0329) (0.0504) (0.0471) (0.0433)
1500 —0.1998 —0.3999 0.2012 0.2983 1.2998 1.0953
(0.0233) (0.0359) (0.0250) (0.0374) (0.0390) (0.0347)
A
Auxiliary model 500 —0.2036 —0.3936 0.1971 0.3062 1.5904 0.7465
(0.0584) (0.0864) (0.0586) (0.0889) (0.1731) (0.0940)
1000 —0.2006 —0.3986 0.2003 0.3006 1.5917 0.7542
(0.0319) (0.0483) (0.0329) (0.0505) (0.1160) (0.0668)
1500 —0.1998 —0.4009 0.2012 0.2983 1.5772 0.7487

(0.0232) (0.0344) (0.0250) (0.0374) (0.0947) (0.0540)

Table 12. Kurtosis and skewness of indirect estimates and BWE for different
sample sizes (T = 500, 1000, 1500) assuming (o, B,640,0a1,6p0,0p1, ¢, Y) =
(1.3,0,—0.2,—0.4,0.2,0.3,1.1) with known B from «a-stable tvARMA(1,1) based
on R = 1000 replications.

Indirect estimates

T a0 Oan 0o Op1 o 4
500 kur 5.2893 4.5345 6.0807 5.5860 3.0705 3.3815
skw 0.2593 —0.1945 —0.1951 0.1297 0.1406 0.2709
1000 kur 4.6288 41073 4.5984 41306 3.4796 29077
skw —0.1406 0.1144 0.0360 —0.0328 0.1167 —0.0713
1500 kur 49301 4.0790 5.1471 45091 3.1301 3.0701
skw 0.0236 —0.1964 0.0964 —0.2378 0.1004 0.0833

compare with simulation results from the known «, they present similar standard error,
kurtosis and asymmetry.

6. Application

In this section, we illustrate an application for wind power generated in German offshore
wind farms from 16/06/2015 at 00:00 to 27/07/2015 at 24:00 (T = 1008 h), obtained from
the EMHIRES (European Meteorological High resolution RES time series) datasets [26].
For daily data, the Gaussian innovation assumption seems to be appropriate, but the hourly
time series present heavy tails and Gaussian assumption is inadequate. Figure 8(a) shows
the original time series (y;) and its difference (Ay;), while Figure 8(b) shows the stan-
dardized histogram of the differenced time series, which shows heavy-tailed behaviour.
We select just a small segment of the data because the whole time series has more complex
structure, such as seasonality, thus a non-parametric approach could be more appropriate.

Figure 9 shows sample autocorrelation function (global), and partial autocorrelation
function. Traditional models, like ARMA(1,1) and AR(4) seem to be appropriate, but the
blocked smooth periodogram shows its slowly changed structure over the time.
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Figure 8. Hourly wind power from 16/06/2015 at 00:00 to 27/07/2015 at 24:00. (a) Hourly wind power
(y¢) and its difference (Ay;). (b) Standardized histogram of Ay:;.

To explore its local structure, we estimate ARMA(1,1) and AR(4) for 9 time blocks.
Figures 10 and 11 present the smoothed estimated coeflicients over time for both models.
Both cases show that coeflicients are approximately linear over time. Consequently, two

models are proposed:
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Figure 10. (Smoothed) « (u), B(u) and y (u) estimates of stationary ARMA(1,1) model for 9 block of size
N = 200 with u = t/T centre point of each block.

o tvARMA(1,1) model with linear coefficients, a;(u) = 6,9 + 641 (1), B1(1) = Opo +
Op1(w) and y (u) = yo + y1(u).

o tvAR(4) model with linear coeflicients, a1 (1) = 6,9 + 041 (1), o2(1t) = Opo + Op1 (1),
a3(u) = 0 + 01 (u), ag(u) = Ogo + O41(u) and y (1) = yo + y1(w).

After estimating both models, the residuals of tyARMA(1,1) are correlated, and we focus
only on the tvAR(4). The parameter estimates are reported in Table 13. Figure 12 presents
the residual analysis and the QQ-plot, box-plot and the histogram show that the distribu-
tion of error has heavy tail and the residuals are approximately white noise. Additionally,
we estimated the skewness (0.35) and kurtosis (13.84) and carried out Shapiro-Wilk and
Jarque-Bera tests, which rejected the null hypothesis of normality. Moreover, Figure 13
presents the variogram of the first difference of the wind data and the residuals from the
tvAR(4) model. It is clear to observe that both of the variograms diverge.

Since the residuals present heavy tail, we propose a more flexible model, «-stable
tvAR(4). We performed indirect estimation assuming known and unknown «. In the first



24 (&) S.W.CHOU-CHEN AND P. A. MORETTIN

30 00 10 4
25 o .
05 1 -
20 - e
_ = 06 P
B ] e R 3 o
\\\\\ -]
04 T
10 - e
15 4 - 7
05
00 - 20 - 00 -
: T T T T ) r T T T T ! i T T T T .
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
u u u
107 0.05
004 |
05 -
" 0,03 |
2 00 e—._, €)
3 S 2
i, 0.02 e
05 e
001 | 5
1.0 4 0.00 -
" T T T T ) T T T T T !
00 02 04 06 08 10 00 02 04 06 08 10

Figure 11. (Smoothed) a1 (u), a2 (u), a3(u), aa(u) and y (u) estimates of stationary AR(4) model for 9
block of size N = 200 with u = t/T centre point of each block.

Table 13. BWE of tvAR(4) from wind power time series.

BWE
Parameter Estimate s.e. z-value p-value
Ba0 —1.5985 0.0768 —20.8171 0.0000
O 0.3305 0.1406 2.3508 0.0187
Obo 0.9135 0.1373 6.6536 0.0000
Op 0.0207 0.2447 0.0847 0.9325
Bco —0.0585 0.1372 —0.4266 0.6697
01 —0.7153 0.2445 —2.9254 0.0034
Odo —0.1316 0.0767 —1.7158 0.0862
01 0.5454 0.1405 3.8831 0.0001
Y0 0.0077 0.0003 24.5452 0.0000
)% 0.0152 0.0007 21.6400 0.0000

case, we assume o = 1.34 and 8 = 0, which are obtained by MLE from the residuals of the
BWE. Since estimation results are similar to the estimated model by assuming unknown
o, we present only results of the second model here.

The vector of parameters of IM is (640,041, 040> Op1, 00> Oc1> 8o Bd1, &> Yo, 1) and the
indirect inference was done by assuming symmetric o-stable innovations. Table 14 reports
indirect estimates assuming § = 0 with their MC standard error with R = 1000 replica-
tions.

To evaluate the residual distribution with the stable distribution, Nolan [27] suggested
using the stabilized probability plot (stabilized p-p plot), proposed by Michael [28], instead
of the QQ-plot because the last one is not suitable to evaluate heavy-tailed distribution.
In QQ-plot, large fluctuation for the extreme values in case of the heavy-tailed distribu-
tion produce large standard errors in the tails. Let y; < --- < y, be an ordered random
sample of size n from the distribution F. The stabilized p-p plot is defined as the plot of



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 25

® - 7570

4740

residual

norm quantiles Lag

(a) QQ-plot (b) Autocorreltion function

| — stable
= = normal

06 08
I

Density
04

residual

(¢) Box-plot (d) Histogram with estimated stable curve
(¢ = 1.34, B = 0) and Gaussian curve.

Figure 12. Residual analysis using the BWE (standadized residual). (a) QQ-plot. (b) Autocorreltion
function. (c) Box-plot. (d) Histogram with estimated stable curve (@ = 1.34, 8 = 0) and Gaussian curve.

si= (2/m) arcsin(Fl/z(yi)) versus r; = (2/7) arcsin([(i — %)/rz]l/z). In this way, the his-
togram and the stabilized p-p plot in Figure 14 show that the stable distribution fits well
the residuals.

Finally, we compare the Mean square error (MSE), Root mean square error (RMSE)
and Mean absolute error (MAE) of tvARMA(1,1) and tvAR(4) using BWE and indirect
estimates. Note that MSE and RMSE do not make sense theoretically if we assume «-stable
tvAR(4). In Table 15, we observe that using BWE (assuming finite variance), MSE and
RMSE are slightly lower, while using the indirect inference presents lower MAE.

Since the residual analysis indicates heavy-tails, a-stable tvAR(4) is a better model to
describe the data. In this case, by assuming o = 1.34, which is far from 2, the simulation
done in the previous section shows that the BWE is not appropriate. Even though MSE and
RMSE are lower for BWE, they are not appropriate for o-stable process since they cannot
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Table 14. Indirect estimates of a-stable tvAR(4)

with § = 40 from wind data.

1000

Parameter Indirect estimate Standard error
Ba0 —1.5434 0.0251
O —0.0316 0.0426
Obo 0.9036 0.0442
Op1 0.1083 0.0764
Bco —0.2818 0.0437
01 —0.2235 0.0752
Odo 0.0639 0.0246
01 0.1496 0.0412
o 1.3875 0.0528
Y0 0.0065 0.0005
2 0.0033 0.0010
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Figure 14. Residual analysis from the «-stable tvAR(4) model assuming that the innovation distribution
is stable with @ = 1.34and 8 = 0. (a) Histogram with the stable curve. (b) Stabilized p—p plot.
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Table 15. Goodness of fit of different models for the wind

data.

Model MSE RMSE MAE
tvARMA(1,1) 0.000248 0.015739 0.009675
a-stable tvARMA(1,1) 0.000257 0.016028 0.009469
tvAR(4) 0.000242 0.015542 0.009468
«-stable tvAR(4) 0.000256 0.015993 0.009094

be theoretically handled. Based on MAE, the indirect inference performs slightly better.
Moreover, the interpretation of estimated coefficients of the model also changed, i.e. o1 (1)
and o (1) are constant, while o3 (1), a4 (u) and y (1) vary linearly.

7. Conclusion

In this paper, we studied o -stable locally stationary ARMA processes and presented their
properties. In contrast to the locally stationary processes with finite variance, this process
involves the infinite variance observed in different fields. We also proposed an indirect
inference method for the process with parametric time-varying coefficients. We performed
simulations for basic models with linear parametric coefficients for known and unknown
«. The results show that indirect inference appropriate. An application is also illustrated.

There are some limitations that still need to be solved in the future. Firstly, since the
time-varying spectral representation does not exist, identifying the local structure using
traditional methods (autocorrelation and partial autocorrelation) are an informal way
to identify the time-varying structure. One possibility is the local version of the depen-
dence measure called autocovariation [18]. Secondly, simulations should be done for more
complex models and also consider the possibility of non-parametric models. Thirdly, the
indirect inference is time-consuming but they are appropriate when heavy-tailed innova-
tions are present. Simulations suggest that when « is close to 2, Gaussian innovations can
be assumed. Model selection is still an open question. Also, there is few work related to
prediction.

Finally, we are involved in research about the locally stationary process with tempered
stable innovations, which are similar to stable distribution in its centre but their tails are
lighter and moments of all orders are finite.
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