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Ionic liquids are nowadays investigated with respect to their
use as electrolytes for high-performance energy storage materi-
als. In this study, we provide a tutorial on how to calculate
dynamic properties such as self-diffusion coefficients, ionic
conductivities, transference numbers, as well as ion pair and ion
cage dynamics, that all play a role in judging the applicability of
ionic liquids as electrolytes. For the case of the ionic liquid
½C2C1Im�½NTf2�, we investigate the performance of different
force fields. Amongst them are non-polarizable models employ-
ing unity charges, a charge-scaled version of a non-polarizable

model, a polarizable model and another non-polarizable model
with refined Lennard-Jones parameters. We also study the
influence of the system size on the dynamic properties. While
all studied force field models capture qualitatively correct
trends, only the polarizable force field and the non-polarizable
force field with refined Lennard-Jones parameters provide
quantitative agreement to reference data, making the latter
model very attractive for the reason of lower computational
costs.

Introduction

Ionic liquids (ILs) are a versatile class of materials with
applications ranging from extraction processes[1,2] to
electrolytes[3,4] and lubricants. This is due to their characteristic
physicochemical properties[5,6] of ILs, such as low vapor
pressure,[7] relatively low toxicity,[8] wide electrochemical win-
dow and high thermal stability,[9,10] and reasonable ionic
conductivity.[11]

While in the beginning of the ionic liquids era, static
properties have been the focus of scientific investigations first,
the study of their dynamic properties followed shortly after and
is well established today.[6,12–17] In this context, molecular
dynamics (MD) simulations based on force fields (FFs) have
been widely used because of their ability to elucidate the
structure and dynamics of the ions from an atomistic point of
view.[18–20] For example, MD simulations give access to several
transport properties, such as viscosity, ionic conductivity, and
diffusivity. However, the high viscosity and slow dynamics of
the ILs pose challenges in the calculations of these properties,

sometimes leading to large deviations with respect to the
experimental data.

The atomic charges used in nonpolarizable force fields are
mostly obtained from ab initio calculations for isolated ions,
often overestimating the charge magnitude and the strength of
electrostatic interactions in MD simulations, and consequently
reducing ion dynamics. Moreover, the lack of description of
charge transfer and polarizability in non-polarizable force fields
also contributes to the overestimation of viscosity.[21] Some
approaches have been developed to overcome these chal-
lenges, such as (i) scaling the atomic charges by empirical
factors, generally between 0.70 and 0.80,[22–29] (ii) atomic charges
obtained from bulk phase calculations,[30,31] and (iii) polarizable
force fields.[21,32–35]

The scaling of atomic charges by empirical factors reduces
Coulomb interactions between the ions, and consequently,
speeds up the dynamics and improves the correlation between
the MD and the experimental data.[36] However, this approach
can also lead to a poor description of the system density and
may impact the local structure of the ions adversely, especially
when mixtures are considered.[37] Applying scaling factors in the
range of 0.70 and 0.80 is based on the determination of atomic
charges using ionic pairs i. e., a cation and anion together, in
gas-phase calculations using Density Functional Theory
(DFT).[38–41] Leontyev and Stuchebrukhov,[42] justify scaling the
charges, based on the dielectric constant. For most ILs, the total
charge for the ions is found to be in the range of �0:70 to
�0:80. At the same time, these scaling factors provide a good
balance between improving the transport properties and
compromising the density and structure of the system. A more
detailed discussion on force fields with scaled charges was
recently provided by Jorge.[43]

Recently, a new approach has been introduced to obtain
the atomic charges for ILs and similar systems.[44,45] Therein, the
charges are calculated employing a self-consistent MD/DFT
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scheme.[46] FF-based MD simulations are used to provide the
equilibrated bulk structure for an IL and subsequently, a
periodic DFT calculation is performed on an MD snapshot,
during which the atomic charges are determined. From that
point on, new MD simulations are carried out and, after
equilibration, the bulk phase atomic charges are again
determined by means of a DFT calculation. This routine is
repeated until the atomic charges converge within a tolerance
criterion. As noted, in general, the total charges for ions using
this approach are within �0.70 to �0.80, which impacts the
transport properties similarly to the aforementioned charge-
scaling approach. However, since the charges are obtained in
the bulk phase, the final (electronic and geometric) structure
can provide important insights regarding charge transfer and
polarizability effects in the condensed phase.

In the last decade, polarizable force fields have become
widely used in MD simulations of IL-based systems, mainly due
to increased computational power and the development of
new force field models, such as CL&Pol,[32,47] APPLEP,[48,49]

CHARMM polarizable,[50] a combination of CL&P with the polar-
izable ion model,[51,52] AMOEBA-IL,[53,54] a GAFF-based model by
Wang and Maginn[35] and others. These force fields can properly
describe electronic polarization and charge effects using differ-
ent methodologies, such as fluctuating charges,[55] Drude
oscillators,[56] or induced point dipoles.[57] Generally, polarizable
force fields yield better correlations between the transport
properties obtained from MD simulations and those measured
experimentally.[35] Unlike scaling of atomic charges, the addition
of explicit polarization in the force fields does not negatively
affect system densities or local ion structures.[37] However, this
improvement comes with notably increased computational
costs, which makes the production of many replicas or long
simulations less feasible and thus indirectly leads to reduced
statistical sampling.

Beyond the approaches highlighted above, it is also possible
to improve the description of the transport properties in
classical force fields by adjusting/refining the Lennard-Jones
parameters to match experimental data or ab initio
calculations.[27,58–61] For example, Köddermann et al.[58] empiri-
cally adjusted the s and e parameters of ½NTf2�

� taken from the
CL&P force field[62] to match the experimental data for density,
self-diffusion coefficients, and rotational relaxation times. By
doing that, they obtained very good agreement to experimen-
tal transport properties without scaling the atomic charges and
sacrificing densities and other structural properties. Later, this
force field was updated and became the NGOLP force field,[59]

which is discussed in more detail below. Recently, Chaumount
et al.[27] followed a similar approach and adapted the LJ
parameters for some deep eutectic solvents. Moreover, Balasu-
bramanian and coworkers combined the refinement of Len-
nard-Jones parameters and atomic charges obtained by the
self-consistent MD/DFT scheme for certain ILs.[60,61] All the above
examples show that the refinement of Lennard-Jones parame-
ters can also be used to improve the ILs transport properties in
MD simulations without changing the description of atomic
charges in the system.

We see a demand to systematically assess the impact of the
use of different non-polarizable and polarizable force fields in
the calculation of IL transport properties and how to improve
their reliability. Therefore, we provide a tutorial on how to
improve the reliability of calculating dynamics properties of ILs,
and to decrease the user bias in the search for linear regimes of
the mean square displacements and in the fitting procedure of
nonlinear properties. In this context, we acknowledge the
excellent article by Maginn et al.[63] that “discusses the best
practices that should be followed to ensure that the simulation
output is reliable” in view of the calculation of transport
properties.

In the following, a comprehensive overview of the method-
ology employed in this study is provided, including relevant
computational details and a tutorial, followed by a presentation
and discussion of the results.

Theoretical Approach and Computational
Details

In order to develop our workflows for calculating the transport
properties of ionic liquids, we applied three different charge
models to describe the IL 1-ethyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide, ½C2C1Im�½NTf2�, shown in Fig-
ure 1. In particular, we will explore the following charge models:
(i) total integer charges for the ions, i. e., �1.0, (ii) total integer
charges scaled by a factor of 0.80, and (iii) the addition of
explicit polarizabilities using Drude particles. We selected the
most common transport properties, namely self-diffusion coef-
ficients, ionic conductivity, ideal transference numbers, ion-pair/
cage lifetimes and rotational dynamics.

To ensure the robustness of the calculated data, we also
propose a refined method to calculate self-diffusion coefficients
and ionic conductivity from Einstein-based methods by reduc-

Figure 1. Ball-and-stick representation of the 1-ethyl-3-methylimidazolium
cation, ½C2C1Im�

þ , and the bis(trifluoromethylsulfonyl)imide anion, ½NTf2�
� ,

with labeled atoms that are referenced within this work. The color code is
orange: carbon, blue: nitrogen, light gray: hydrogen, red: oxygen, gold:
sulfur, green: fluorine.
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ing the user bias and other error sources. Simulation box size
effects were taken into account in the calculation of dynamic
properties. In the following, we provide all technical details
regarding the force field models and the computational details
for the simulations and strategies used in the transport proper-
ties calculations.

Force Field Models

We used the CL&P force field for some of the classical MD
calculations, developed by Pádua and Canongia Lopes,[62,64–68]

which is based on the OPLS force field,[69] but specifically
parameterized for common ionic liquids. Furthermore, we
considered the NGOLP force field from Neumann et al.[59] in
which the original Lennard-Jones and dihedral parameters of
½NTf2�

� from CL&P were refined to better describe experimental
densities, self-diffusion coefficients, and rotational dynamics.[59]

For CL&P we considered three datasets; (i) total integer
charges for ions, �1.0, obtained directly from the CL&P
database,[70] (ii) scaled charges, in which the default force field
charges were scaled by 0.80 and (iii) CL&Pol,[32,47] which is the
polarizable version of the CL&P force field using Drude
particles[56] attached to non-hydrogen atoms. The NGOLP force
field was used as its default version, that is, �1.0 total integer
charges for the ions. A detailed overview of the charges used in
the force fields is provided in Section 1 of the Supporting
Information, and exemplary input files of the simulations can be
found in a data repository.

Molecular Dynamics Simulation Details

The initial configurations for the MD simulations were created
using the molecular structures provided in the CL&P database
as well as the fftool[70] and PACKMOL software packages,[71]

where the ion pairs were randomly packed in a cubic box
following the compositions shown in Table 1. Beyond the effect
of the force field parameters, we also investigated size effects
regarding the calculations of the transport properties. There-
fore, for the integer charge CL&P simulations, three different
system sizes were investigated, namely 256, 512 and 1024 ion
pairs (labeled MD256, MD512 and MD1024). For CL&Pol only 256
and 512 ion pairs were used (polMD256 and polMD512). For the

CL&P force field with charges scaled by 0.8 and the NGOLP
force field, we considered only a system size of 512 ion pairs,
which were labeled as MD512� 08 and NGOLP512, respectively. An
overview of the systems and their corresponding labels can be
found in Table 1.

All nonpolarizable simulations were performed using a six-
step approach:
1. Energy minimization using the conjugated-gradient method

to remove energy hot spots.
2. NVE ensemble equilibration for 100 ps.
3. NpT ensemble equilibration at 1.0 atm and 340 K for 5 ns.
4. Compression of the box to the average volume of the last

2 ns of the previous NpT equilibration within 0.5 ns in the
NVT ensemble.

5. NVT ensemble equilibration of 2 ns at 340 K.
6. NVT production run of 30 ns with a dumping frequency of

1 ps.
For the polarizable MD simulations, we used a simplified

approach for the simulations, which is justified by the higher
computational costs of the polarizable force field. Therefore, for
all the polarizable MD simulations, we applied the following
approach:
1. Energy minimization, as in nonpolarizable simulation.
2. NVT ensemble equilibration for 2 ns at 340 K.
3. NpT ensemble equilibration at 1.0 atm and 340 K for 5 ns.
4. NVT production run of 30 ns with a dumping frequency of

1 ps.
To improve statistical sampling in this study, we performed

four additional NVT production runs of 31 ns for all systems
using the initial configurations of the first production runs with
changed initial velocity seeds, where only the last 30 ns were
used for analysis. Therefore, the data presented below are the
means of five independent trajectories, as recommended, for
example, by Coveney and coworkers[72] or Zuckerman and
coworkers[73] (see further discussion in the Tutorial Part). The
aforementioned procedure was validated by calculating the
resulting bulk phase density after equilibration. These were
found to be in excellent agreement with the experimentally
derived reference (jD1refj < 1:5%), except for the charge-scaled
system MD512� 08, showing a (negative) deviation of 4.41%. The
latter can be expected as a result of the modification of the
force field by scaling the charges and is deemed acceptable.
Further details are provided in Section 2 of the Supporting
Information.

To integrate the equations of motion, we used the Velocity
Verlet algorithm as implemented in LAMMPS version
20Jun2020[74] with a time step of 1 fs. For the Coulombic
equations, we used the particle-particle particle-mesh solver[75]

with an accuracy of e-5 and a cut-off of 1.2 nm, while for the
short-range interactions only the cutoff was considered. In
nonpolarizable simulations, we controlled temperature and
pressure using the Nosé� Hoover methods[76–78] with coupling
times of 0.1 and 1 ps respectively. As stated in the seminal
CL&Pol force field work,[32,47] to properly handle temperature
fluctuations in polarizable simulations, it is necessary to use a
dual thermostat, which treats the atoms and Drude particles
with two distinct thermostats. Therefore, in the polarizable force

Table 1. Overview of the studied systems: system labels, number of ion
pairs N, and employed force fields.

Label N Ref.

MD256 256 CL&P

MD512 512 CL&P

MD1024 1024 CL&P

MD512� 08 512 CL&P

NGOLP512 512 NGOLP

polMD256 256 CL&Pol

polMD512 512 CL&Pol
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field, we applied the Temperature-Grouped Dual-Nosé� Hoover
method[79] with the same coupling times for the non-Drude
particles and 0.2 ps for the Drude particles, which were
maintained at 1 K.

All trajectories were analyzed using the TRAVIS package.[80,81]

However, the routine used to calculate the ionic conductivities
by means of the Einstein method (implemented in TRAVIS) will
be available to the public in the near future. The Python code
msdiff, to calculate self-diffusion coefficients and conductivities,
based on the TRAVIS output, is publicly available on GitHub at
https://github.com/kirchners-manta/msdiff. Lifetimes were cal-
culated by post-processing outputs from TRAVIS and perform-
ing exponential fits using the lmfit library.[82] Furthermore, to
ensure the reproducibility of this work, all data and input files
relevant to the MD simulations are available on GitHub at
https://github.com/kirchners-manta/il-benchmar. All figures pre-
sented in this work were created using PyMOL[83] (Figure 1),
LaTeX/tikz (Figure 2) or matplotlib[84] (Figures 3 to 6).

Tutorial Part: Computational Strategies to
Enhance the Reliability of Dynamic Properties
Although it is a commonly employed task, the calculation of
transport properties using MD simulations can be a challenge,

especially in highly viscous materials, such as ionic liquids.[63,85,86] As
widely known by the scientific community, transport properties
from MD simulations suffer from large statistical uncertainties that
can be related to the limited sampling.[63,86] Furthermore, the last
step in the calculation of the transport properties may, depending
on the quantity of interest, involve linear or nonlinear fitting.
However, this can impose limitations on the reproducibility and
accuracy of the calculated properties, for example, when determin-
ing the linear (diffusive) regime of the mean squared displacement.
These challenges have been debated multiple times in the
literature in recent years.[63,86,87]

To overcome the challenges of reproducibility and accuracy that
are inherent in the calculation of transport properties of ILs using
MD simulations, we developed computational strategies to obtain
reliable quantities and statistical uncertainties. In this work, we
address self-diffusion coefficients, ionic conductivities, and local
dynamics (rotational dynamics, and ion pair/ion cage lifetimes).

Self-Diffusion Coefficients

In MD simulations, the diffusion coefficient D can be calculated
from the mean square displacement (MSD) of the particles,

MSDðtÞ ¼ h riðt þ tÞ � riðtÞj j2it;i; (1)

Figure 2. Flowchart representation of the proposed workflow to obtain
reliable self-diffusion and ionic conductivities (left) and illustration of
partitioning the MSD / collective MSD data into slices (right). Of the
workflow, all steps in steps colored in red are performed within msdiff, our
python routine, while the blue step done using TRAVIS (or other software).

Figure 3. Illustration of the procedure to determine linear regimes in mean
squared displacement (MSD) data. Three arbitrary MSD data sets are
presented (black, red, and blue lines). Top panel: Linear representation of the
MSD as a function of the correlation time t. Bottom panel: logarithmic
representation of MSD (t). The identified linear regimes are colored, while
the non-linear regimes are shaded. Vertical dashed lines indicate the start
and end of the linear regimes.
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DL ¼ lim
t!∞

1
2nt

MSDðtÞ; (2)

where t represents the correlation depth, i. e. the time lag used to
calculate the shift in a particle’s position, n corresponds to the
dimensionality of the system (in our case, n ¼ 3) and ri is the time-
dependent position of the center of mass (or any other chosen
reference point) of particle i. The parameter L denotes the edge
length of the finite-sized cubic simulation box and indicates that DL

is the finite-size diffusion coefficient. It is worth noting that, while
Eq. 2 follows from the Einstein� Smoluchowski equation, the self-
diffusion coefficients are equally accessible through the
Green� Kubo relation.[88–90]

Conventionally, D is obtained by linear regression of MSD vs. t in
the diffusive regime. However, since plots of MSD against t

commonly feature three main diffusion regimes (ballistic, sub-
diffusive, and diffusive), identifying the diffusive regime may not be
a straightforward task. Moreover, at very large correlation depths,
MSDðtÞ can become noisy due to insufficient sampling. These
observations highlight the need for a well-defined and unbiased
criterion to select a suitable diffusive regime to calculate the self-
diffusion coefficients from MSDðtÞ. In TRAVIS, this is circumvented
since, by default, a maximal correlation depth tmax of only 30% of
the total simulation time is used. As seen in Eq. 1, this does not
mean that only 30% of the trajectory is used, but that only
displacements in this time regime are used for the calculation of DL.
This is mathematically equivalent to calculating MSDðtÞ for all
possible t and then discarding the last 70% of the MSD for the
linear fit, thus, no information is lost for the investigated range of t

values.

The evaluation of the b(t) parameter is a well established
approach[91,92] to identify the diffusive regime region in the
logarithmic representation of MSD versus t. Therefore, we can
define b(t) as

bðtÞ ¼
@ lnMSDðtÞ

@ ln t
: (3)

In the above expression, the diffusive regime is indicated by b(t)
’1. We follow the recommendations of Humbert et al.[93] to
systematically scan the MSDðtÞ data set and identify its diffusive
regime based on the b(t) value. To do that, we implemented a
Python routine, msdiff, available at https://github.com/kirchners-
manta/msdiff, that processes the MSD as a function of t, as
obtained from the TRAVIS output. We recommend following the
TRAVIS default, using a maximal correlation depth tmax of 30% of
the simulation time (as also used in this work), leading to the MSD
featuring only very little noise. Our routine, visualized in Figure 2
(left), starts from the output of an MSD calculation performed by
TRAVIS (or any other software that calculates MSD (t) from a
trajectory). Second, the data are initially divided into x slices of
equal size. Third, x � 1 extra slices are added, each of which is
centered at the boundary between two neighboring slices from the
initial partition. This process creates a total of x0 ¼ 2x � 1 slices Sy
with y 2 f1; . . . ; x0g, where adjacent slices overlap, and all slices
have the same width (see Figure 2, right). Then, for every slice
(starting with Sx0 , i. e., at the largest correlation depths), the slope of
the MSD in the doubly logarithmic plot of the respective slice is
determined. If bðtÞ’1 within a tolerance d, the slice is gradually
expanded towards smaller correlation depths by adding more data
points until b ðtÞ=2 1 � d; 1þ d½ � is fulfilled. Otherwise, the slice is
discarded and not considered further. After iterating over all slices,
the linear regression is performed on the largest coherently linear
interval of the MSD.

It is important to note that the identification of the linear regime is,
besides the sampling of the MSD, mainly influenced by the
aforementioned technical parameters. Empirically, we found
x ¼ 10! x0 ¼ 19, d ¼ 0:1 and the incremental addition of 1% of
the entire MSD data during the slice expansion to work well. By
adhering to this systematic procedure, we could effectively identify
distinct linear regimes for each data set. Given a sufficiently
sampled trajectory, this routine ensures a reliable and robust
calculation of the self-diffusion coefficients, since it accounts for the
behavior of the MSD and adapts the linear regression analysis
accordingly. Beyond that, the small influence of the user bias
ensures better reproducibility.

In Figure 3, we illustrate three arbitrary MSD data sets in a linear
representation (top panel). Noise in data sets 1 and 2 (black and
red lines, respectively) was created artificially to illustrate the effects
of too large correlation depths during the MSD calculation. A
sufficiently well-sampled trajectory in conjunction with a maximal
correlation depth tmax of around 30% of the length of the
production run would usually yield a relatively linear MSD data set
3 (blue). The bottom panel of Figure 3 features logarithmic
representations of the three data sets along with their correspond-
ing linear regimes that were identified by the procedure described
above.

As is well known, the calculation of self-diffusion coefficients from
MD simulations can suffer from size effects.[94,95,96] To avoid this
issue, we incorporate the additive correction term K proposed by
Yeh and Hummer[97] into our post-processing routine. This
correction term is derived from the Stokes� Einstein equation, and
defined as

K ¼
kBTx

6phL ; (4)

using the box edge length L, Boltzmann constant kB, temperature
T , dynamic viscosity h and a dimensionless parameter
x ¼ 2:837298. The infinite box size diffusion coefficient D∞ is then
calculated from the finite-size diffusion coefficient DL as

D∞ ¼ DL þ K ¼
1
6
@MSDðtÞ

@t
þ
kBTx

6phL : (5)

The present work investigates diffusion in ionic liquids and,
therefore, the self-diffusion coefficients of anions and cations are
denoted by D� and Dþ , respectively.

Ionic Conductivity

Similarly to the self-diffusion coefficients, the ionic conductivity, s,
can be calculated on the basis of MD simulations using two distinct
approaches: the Green� Kubo method, which relies on the collective
current of the particles, and the Einstein� Helfand method, based
on the collective mean square displacement (MSDcol) of the
particles.[98] However, unlike diffusivity, the ionic conductivity is a
collective property, thus imposing even more difficulties in its
calculation based on MD simulations and requiring better
sampling.[87,98]

In this work, we focus on the Einstein� Helfand approach and use a
similar notation as Schröder et al.[98] Therein, sEH, denoting the
Einstein� Helfand (EH) conductivity, obeys the following expression:
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sEH ¼
e2

6VkBT
lim
t!∞

@

@t
h
XN

i;j

qiqjDriðt; tÞDrjðt; tÞit; (6)

using the elementary charge e, the simulation box volume V, the
Boltzmann constant kB, and temperature T . In addition, N denotes
the number of particles (ions), and qi; qj are the charges of the
particles i and j, respectively. Finally, we define

Driðt; tÞ ¼ riðt þ tÞ � riðtÞ; (7)

where, as for the MSD, ri is the time-dependent position vector of
the center of mass (or any other chosen reference point) of ion i.

Since ionic conductivity is a collective property, it can be
partitioned into its partial contributions from specific ionic inter-
actions in the systems, i. e., cation-cation, anion-anion and cation-
anion interactions.[99] These can be further decomposed into self-
contributions sself

z and cross-contributions scross
zz and scross

þ�
, where z

refers to the sign of the charge of the involved species, that is, þ or
� . The interested reader is kindly referred to Section 3 of the
Supporting Information for a comprehensive overview of the
equations of all contributions to sEH. Eq. 6 be written as

sEH ¼ sself
þ þ sself

� þ scross
þþ þ scross

� � þ scross
þ� : (8)

In systems with only two types of ions, the self terms sself
z can also

directly be accessed from the self diffusion coefficients via:

sself
z ¼

e2

VkBT
� Nzq2zDz: (9)

Consequently, the self ionic conductivity (also known as
Nernst� Einstein ionic conductivity) sNE is straightforwardly acces-
sible through the calculation of the self diffusion coefficients and is
defined as[100]

sNE ¼ sself
þ þ sself

� : (10)

Despite the fact that cross-correlations are neglected in Eq. 10, this
quantity provides valuable information on charge transport in the
system under investigation. In particular, sEH simplifies to sNE in the
limit of infinite dilution, and hence can be understood as “ideal
ionic conductivity”. However, in highly concentrated ionic systems,
such as ionic liquids, cross-correlation terms cannot be neglected
without significantly influencing the result.[86]

Although sNE has several limitations, it is still a very useful approach
to investigate how the ionic interactions affect the charge transport
or to evaluate the ionicity in the system, which can be done using
the inverse Haven ratio H� 1R approach, defined as[101]

H� 1R ¼
sEH

sNE
; (11)

However, we would like to highlight that the validity and
applicability of H� 1R for ionic liquids and molten salt systems has
debated in the last years.[102]

Furthermore, insights on the contribution of each ionic species to
the overall charge transport can be gained from the transport
numbers, or transference numbers, tz. It is important to distinguish
between the ideal transference numbers tidz and real transference
numbers trz, defined as

tidz ¼
sself
z

sNE
; (12)

trz ¼
sself
z þ scross

zz þ
1
2 scross
þ�

sEH
: (13)

In the limit of infinite dilution, Eq. 13 will simplify to Eq. 12. As
already pointed out by Shao et al.[103] and Harris et al.,[104] trz depends
highly on the choice of the reference frame in binary systems and
thus will not be discussed here. However, other dynamic properties,
namely Dz and sEH (and consequently, sNE and t

id
z ) are independent

of the chosen reference frame.

Similarly to the self-diffusion coefficients, the conductivities sEH and
their contributions are also obtained from the linear regression of
the collective MSD. We apply the same post-processing routine as
for the calculation of self-diffusion coefficients (see Figure 2) and
identify the linear regime by gðtÞ’1, where

gðtÞ ¼
@ lnMSDcolðtÞ

@ ln t
: (14)

Unlike the non-collective MSD, that usually exhibits the linear
regime from medium to long correlation depths, there is often no
such clear tendency found in the collective MSD, due to insufficient
sampling.[98] For a given trajectory, the collective MSD is often
much more noisy than the non-collective MSD, making the search
for its linear region more difficult. As can be seen in Figure 4 and
observed in other studies,[86,87,98] the cross terms can show nonlinear
behavior (violet and yellow curves), highlighting the demand for a
sophisticated approach to obtain reliable conductivities, especially
if the cross and self contributions are of interest. To ensure the
comparability of the different contributions to the conductivity
obtained from a specific trajectory, we choose to perform the linear
regressions for all individual self and cross terms in the same linear
regime region, determined from the collective MSD (including all
self and cross terms). For ½C2C1Im�½NTf2� this procedure seems
suitable, however, it may not be suitable for ionic liquids or other
systems in which the cation and anion present very different
mobilities.

Figure 4. Individual components of the collective MSD (multiplied by the
constants shown in Eq. 6) obtained from an arbitrary trajectory. Note that
some components, especially the cross-terms (shown in yellow and violet)
are often nonlinear.
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Local Dynamics

The calculation of an arbitrary life time T is based on a
corresponding correlation function CðtÞ, with t again being the
correlation depth. In the case of rotational (or reorientation)
dynamics, C is the autocorrelation of a vector along which the
reorientation is measured. For the calculation of the ion pair and
ion cage lifetimes, geometric criteria are used to define an ion pair
or ion cage, and the autocorrelation of an auxiliary quantity
indicating whether these criteria are met is computed.

We define an ion pair as an ion and its next-neighbor counterion,
whereas ion cages are formed by a central ion and all its
counterions within the first solvation shell obtained from the
location of the first minimum of the corresponding radial distribu-
tion function, gðrÞ. It should be noted that ion pair/cage lifetimes
can be calculated in an intermittent (i. e., breaking and reforming of
pair/cage condition is allowed) or in a continuous fashion (i. e.,
breaking and reforming of aggregates is not allowed). For a more
comprehensive overview of this matter, we refer the reader to our
previous works.[105,80]

In general, T is obtained straightforwardly from the integral of the
autocorrelation, multiplied by a constant a:

T ¼ a
Z ∞

0
CðtÞdt: (15)

Note that a ¼ 1 for the reorientation time and a ¼ 2 for the ion
pair/ion cage time. Due to the slow dynamics of the IL systems, it is
common that C does not fully converge to zero within the
simulation time. Thus, it is common practice to fit an exponential
function of the form

fðtÞ ¼
X

i

ci expð�
t

bi
Þ (16)

to the autocorrelation. In this expression, i is the number of terms
in the above sum, and ci; bi are the fitting parameters of the
respective term. The integral can be solved analytically
8ci � 0 ^ bi > 0 and by inserting the result into Eq. 15, the life time
is computed as,

T ¼ a
X

i

cibi: (17)

Fitting an autocorrelation becomes more involved, the more terms
are included in the expansion (Eq. 16), because the number of fit
parameters increases. Therefore, constraints on the parameter
space are often invaluable in solving this problem. In addition to
the requirements mentioned above for bi and ci, the sum of all ci
can be required to be 1 if Cðt ¼ 0Þ ¼ 1.

It is worth noting that throughout this work, an exponential fit
function with two terms was empirically found to represent the
data well and thus, Eq. 16 can be explicitly written as

f2ðtÞ ¼ c1 expð�
t

b1
Þ þ c2 expð�

t

b2
Þ: (18)

The corresponding lifetime is obtained as

T ¼ aðc1b1 þ c2b2Þ: (19)

Uncertainty Quantification

Building on the established methodology to obtain self-diffusion
coefficients, ionic conductivities, and lifetimes, our focus is on
estimating their uncertainties. As mentioned above, accurate
dynamic properties from MD simulations heavily rely on sufficient
sampling. To this end, conducting independent replica simulations
is beneficial and, in most cases, allows for efficient parallelization
(compared to conducting a single, very long simulation). With
several replica trajectories at hand, there are two popular
approaches: In the first approach, observables (i. e., MSD, collective
MSD, autocorrelation) are calculated and fits are performed
individually for every trajectory. Then, overall properties (D; s; T )
are obtained as the arithmetic mean of the individual properties
obtained from the replica trajectories, while the standard deviation
can be interpreted as the uncertainty of the set of individual
trajectories. It should be noted that the individual fits also carry
uncertainties, but these are usually much smaller than the
uncertainties from the trajectories and hence, neglected here.

In the second approach, observables are calculated for every
trajectory individually and then averaged. Subsequently, the overall
properties are obtained from fitting the averaged observables.
Then, the inverse of the variance of each data point in the
observable can be used as weight of the respective data point in an
error weighted fit. The uncertainty of this approach is the
uncertainty of the weighted fit, not comparable to and usually
much smaller than the uncertainty calculated in the first approach.
An example of both approaches and the resulting uncertainties of
the diffusion coefficient is discussed in the Results section.
Furthermore, in Section 4 of the Supporting Information, we
provide an estimate of the maximum possible error introduced on
the conductivities by averaging the observables before fitting.

The second approach is more robust than the first one, meaning
that increasing the sampling by averaging the observables
decreases noise in the data. Considering the present example of
identifying a linear regime in the MSD, averaging facilitates larger
linear regimes. We found that to be particularly important in view
of the ionic conductivities, where for some individual trajectories
(approach 1), no linear regime in the collective MSD could be
identified. As a consequence, we use approach 2 for all dynamic
properties in this work, that is, self-diffusion coefficients, ionic
conductivities, and lifetimes.

To further propagate uncertainties, we employ the well-established
Gaussian error propagation. The uncertainty Df of a quantity
fðx1; x2; . . . ; xnÞ is dependent on a set of variables xi and is defined
as

Df ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

i

@f
@xi

Dxi

� �2
s

(20)

with the individual uncertainties Dxi. Applying this to the
Yeh� Hummer correction for finite size simulation boxes (Eq. 5)
yields

DD∞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DDLð Þ2þ DKð Þ2
q

(21)

and

DK ¼
kBTx

6ph2LDh: (22)
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The expression for K from Eq. 4 was initially derived for application
to MD simulations, considering the simulation temperature and the
box size as the “true” values. However, the viscosity is taken from
experiments (or other calculations) and thus carries an uncertainty
itself. The Gaussian error propagation is similarly employed to
estimate the uncertainties of the transference numbers (Eq. 12)

Dtidz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dsself
z

sNE

� �2

þ
sself
z DsNE

s2
NE

� �2
s

(23)

and lifetimes (Eq. 19)

DT ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b1Dc1ð Þ2þ c1Db1ð Þ2þ b2Dc2ð Þ2þ c2Db2ð Þ2
q

: (24)

Reference self-diffusion coefficients Dref are derived from experi-
ments by Tokuda et al.[106] In their manuscript, the authors provide a
Vogel� Fulcher� Tamman equation to calculate the diffusion coef-
ficients of several ILs at desired temperatures. The reference values
are determined according to

Dref ¼ D0 exp �
B

T � T0

� �

(25)

with the parameters D0; B; T0 and their uncertainties provided in the
paper, and T ¼ 350 k (the simulation temperature). The uncertainty
of Dref was calculated according to Eq. 20. Similarly, the reference
viscosity and its uncertainty (required for Eqs. 4 and 22) were
calculated from a Vogel� Fulcher� Tamman equation provided by
Tokuda et al..[106]

Results and Discussion

In the following, we examine the self-diffusion coefficients, ionic
conductivity, and local dynamics obtained from classical MD
simulations using different force fields.

Self-Diffusion Coefficients

Figure 5 shows the (finite box size corrected) self-diffusion
coefficients obtained from the MD simulations of the anion
½NTf2�

� , D�∞, in the bottom panel (red bars) and those of the
cation ½C2C1Im�

þ, Dþ∞, (blue bars) in the center panel. The
calculated self-diffusion coefficients are compared to reference
data from Ref. [106], specifically Dref

þ ¼ ð197:5� 46:5Þ
�10� 12m2s� 1 and Dref

� ¼ ð132:1� 25:8Þ�10� 12m2s� 1.
It is observed that the cations exhibit faster diffusion than

the anions. The self-diffusion coefficients from the simulations
using force fields with unity charges, i. e., MD256, MD512, and MD
1024, are predicted as approximately 35 � 10� 12m2s� 1 and
21 � 10� 12m2s� 1 for cations and anions, respectively, and thus
are systematically too small by a factor of around six.
Furthermore, the self-diffusion coefficients obtained from the
polarizable force field simulations (polMD256), as well as the
simulations with scaled charges (MD512� 0:8) and refined LJ
parameters (NGOLP512) meet the reference within its uncer-

tainty. Although polMD512 slightly overestimates the self-
diffusion coefficient of the anion, the prediction is still in the
correct order of magnitude.

It is well-known that integer charges result in slow dynamics
in purely ionic systems, due to the strong, long-ranged
Coulomb interactions, and neglect important charge transfer
phenomena and electronic polarization. Down-scaling the
charges or adding explicit polarization are popular approaches
to accelerate the dynamics of ILs. Consequently, the aforemen-
tioned findings agree with previous studies.[32] It is noteworthy
that the NGOLP512 simulations, using refined LJ parameters for
the anion, capture the reference data equally well as the
polarizable and charge-scaled MD simulations but without the
increased computational cost of the former and the structural
deficiencies of the latter.[59]

However, the purpose of this manuscript is not to bench-
mark existing methods and force fields against reference data,
but rather to provide a perspective on the reliable calculation
of IL transport properties and their uncertainties. Therefore, the

Figure 5. Infinite box size diffusion coefficients from Table 2. Bottom panel:
Anion coefficients D∞

�
(blue bars). Center panel: Cation coefficients D∞

þ
(red

bars). Top panel: Ratio of cation vs. anion coefficients D∞
þ
=D∞
�
(orange bars).

Reference values and their uncertainties, taken from Ref. [106], are shown as
black dashed lines and gray shaded horizontal bars, respectively.
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top panel of Figure 5 displays the ratio of the calculated
diffusion coefficients of cations and anions D

∞
þ

D∞�
. It is evident that

the ratios obtained from all systems are very close to the
references and well-captured within the reference uncertainty.
That result is intriguing, showing that, despite the simulations
with unity charges consistently feature too slow dynamics, their
qualitative behavior (i. e., the relative diffusion of cations and
anions with respect to each other) is displayed correctly. If this
observation proved true for other dynamic properties as well,
that could have a notable impact on future studies where
quantitative agreement to experiments might not be necessary,
but qualitative agreement is sufficient.

To comprehensively discuss the uncertainties in the calcu-
lated self-diffusion coefficients, the values shown in Table 2 are
examined. It should be noted that we sacrifice consistency in
terms of significant digits here to display all values and their
uncertainty with the same number of decimal places, thereby
enabling comparison of the magnitudes of the uncertainties. As
discussed in the Uncertainty Quantification section of the
Tutorial Part, we calculate the finite size corrected self-diffusion
coefficient D∞ from the finite size self-diffusion coefficient DL

and the Yeh� Hummer correction[97] K . We stress here, that we
refer to DL as the finite size self-diffusion coefficient calculated
by approach 2 (linear regression on the averaged MSD of all
simulations). For comparison and discussion, we also show
DL;ave, the finite size self-diffusion coefficient obtained from
approach 1 (linear regression of the MSD of every simulation
and subsequent averaging).

Firstly, DL is always found close to DL;ave and within its
uncertainty DDL;ave, which is the standard deviation of the
individual simulations. Secondly, the relative uncertainty of
DL;ave is always below 5%. From that, we conclude, that the
individual simulations of each system do not exhibit large
spreads of their MSDs among each other. The uncertainty DDL

(originating from the error weighted fit) is very small and almost
negligible, indicating the high linearity of the regime in which
the fit is performed. In the present case DDL is about 2 to 3
orders of magnitude smaller than DDL;ave but it should be
mentioned that these two uncertainties originate from distinctly
different sources, thus describing different kinds of uncertain-
ties and are not interchangeable, which is discussed in the
Tutorial Part in more detail.

To extrapolate DL to an infinite simulation box size, the
correction term K is added. Notably, the correction is inversely
proportional to the size of the box and thus is particularly
relevant to small systems (see 7th column of Table 2) Moreover,
when viscous liquids with slow dynamics, such as ILs, are
investigated, the correction often constitutes a significant part
of D∞. For example, it constitutes > 45% to D∞ of the anion for
MD256 system and still contributes 11% to the polMD256

diffusion coefficient. We note here that the Yeh� Hummer
correction was initially developed for non-ionic systems with
faster dynamics, but to the best of our knowledge, there is no
clear evidence in the literature that this correction is not
applicable to ILs.

Additionally, the uncertainty DK , obtained from the Gaus-
sian error propagation, is relatively large compared to the actual
value of K . Its magnitude originates from the uncertainty of the
reference viscosity.[106] As a consequence, DK is also consid-
erably larger than DDL in most cases, resulting in DD∞ being
approximately the same as DK . This results in large relative
uncertainties in the diffusion coefficients of systems with slow
dynamics (simulations with unity charges).

Table 2. Finite box size diffusion coefficients DL and DL;ave, Hummer correction terms K , infinite box size diffusion coefficients D∞ and their uncertainties
DDL , DDL;ave, DK , DD∞ (all in 10� 12m2s� 1). The data is visualized in Figure 5.

Ion System DL DDL DL;ave DDL;ave K DK D∞ DD∞

½C2C1Im�
þ MD256 35.176 0.004 35.033 1.243 18.045 10.986 53.221 10.986

MD512 34.862 0.005 34.701 0.894 14.325 8.721 49.187 8.721

MD1024 35.861 0.001 35.779 0.393 11.372 6.923 47.233 6.923

MD512� 08 152.005 0.011 151.497 1.088 14.180 8.632 166.184 8.632

NGOLP512 221.801 0.028 219.630 7.211 14.347 8.735 236.149 8.735

polMD256 192.438 0.013 193.267 5.662 17.963 10.936 210.402 10.936

polMD512 214.769 0.036 212.730 3.319 14.180 8.633 228.949 8.633

Ref. [106] – – – – – – 197.541 46.466

½NTf2�
� MD256 20.567 0.003 20.678 0.815 18.045 10.986 38.612 10.986

MD512 20.873 0.002 20.794 1.033 14.325 8.721 35.199 8.721

MD1024 21.016 0.003 20.894 0.371 11.372 6.923 32.388 6.923

MD512� 08 102.778 0.005 102.630 1.033 14.180 8.632 116.958 8.632

NGOLP512 127.863 0.012 127.902 1.705 14.347 8.735 142.211 8.735

polMD256 139.851 0.019 140.189 3.745 17.963 10.936 157.815 10.936

polMD512 156.813 0.039 153.773 5.771 14.180 8.633 170.993 8.633

Ref. [106] – – – – – – 132.066 25.771
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Ionic Conductivity

The ionic conductivities calculated using the Nernst� Einstein
(sNE) and Einstein� Helfand (sEH) formalisms are depicted in the
bottom panel of Figure 6 as orange and purple bars, respec-
tively. Several experimentally derived reference values of the
ionic conductivity, including uncertainties, from Refs. [106–112],
were considered, and are listed in detail in Section 5 of the
Supporting Information. In Figure 6, we show the weighted
average of these values as a black dashed line and its
uncertainty in gray, given as sref ¼ ð3:01� 0:11ÞSm� 1. We

emphasize again that, due to its statistical sensitivity, it was not
possible to identify a linear regime in the collective MSD of
each individual simulation. To this end, as described in the
Tutorial Part, we calculated the ionic conductivities by a linear
regression of the averaged collective MSD of each system.

It is evident, that for all systems the Nernst� Einstein
conductivity sNE is larger than the Einstein� Helfand conductiv-
ities sEH. This is a consequence of the sum of the cross terms
being consistently smaller than zero, thus reducing the overall
conductivity, and showing strong ionic correlation effects. The
source of this effect is not straightforwardly interpretable
because the magnitudes of the individual cross terms strongly
depend on the chosen frame of reference. The influence of the
cross terms on the ionic conductivity is further quantified by
the ionicity (see Eq. 11), visualized in the last column of Table 3.
For the systems studied, the ionicity ranges from 0.68 (polMD
512) to 0.92 (MD512� 0:8) but lacks a solid trend. The difference in
the ionicity between the polMD512 and polMD256 systems (0.68
vs. 0.91) is probably related to the spread of the collective MSD
of the individual simulations, which is discussed in more detail
in Section 4 of the Supporting Information. That points to the
suggestion that five independent trajectories (as performed in
this work) might not be enough to fully converge the
Einstein� Helfand ionic conductivity in simulations using polar-
izable force fields.

To compare the calculated ionic conductivities to the
reference data quantitatively, Table 3 is examined. The results
from the MD256, MD512 and MD1024 simulations describe the ionic
conductivity poorly and yield values that are systematically too
small by a factor of around five to six. Unlike that, the other
systems approach the reference values much better. The
calculated Nernst� Einstein ionic conductivities for NGOLP512,
polMD256 and polMD512 overestimate the references, while the
prediction for MD512� 0:8 is at the lower bound of the reference.
For NGOLP512 and the polarizable systems, the Einstein� Helfand
ionic conductivities are closer to the references than the
Nernst� Einstein conductivities and yield a very good agree-
ment. It is remarkable that quantitatively correct ionic con-
ductivities can even be obtained using a nonpolarizable force
field, precisely by refining the LJ parameters as done for the
NGOLP force field. Other than that, we emphasize that
considering the cross terms of the collective MSD is crucial
when aiming at quantitative ionic conductivities. Lastly, it
should be mentioned that the uncertainties of sNE and sEH,
obtained from the weighted fit of the collective MSD, are very
small and negligible in this case.

To investigate the qualitative behavior of the ionic con-
ductivity of different force fields, the ideal transport numbers
tidz , displayed in the top panel of Figure 6, are often used.
However, upon considering Eqs. 9 and 13, tidz effectively reduces
to Dz

DþþD�
, and hence, contains the same information as the top

panel of Figure 5. It can be concluded that all systems show a
very similar qualitative behavior when comparing the contribu-
tions of cations and anions to the Nernst� Einstein conductivity
(i. e., the charge transport in the systems). As already discussed
in the Tutorial Part, there is no analogous comparison for the
Einstein� Helfand conductivity because calculated real trans-

Figure 6. Bottom panel: Nernst� Einstein ionic conductivity sNE (orange bars)
and Einstein� Helfand ionic conductivity sEH (purple bars), all in S m� 1.
Corresponding values are shown in Table 3. The reference value is shown as
black dashed line and its uncertainty in gray. Top panel: Ideal transference
numbers of cations, tþ , (blue bars), and anions, t� (red bars).

Table 3. Ionic conductivities calculated using the Nernst� Einstein (sNE)
and Einstein� Helfand (sEH) formalisms and their uncertainties in compar-
ison to experimentally derived reference data (all in S m� 1) as well as the
corresponding ionicities (dimensionless). Visualization of the data is shown
in Figure 6.

System sNE DsNE sEH DsEH
sEH

sNE

MD256 0.6669 0.0002 0.5832 0.0002 0.88

MD512 0.6680 0.0002 0.5618 0.0002 0.84

MD1024 0.6766 0.0001 0.6051 0.0001 0.89

MD512� 08 2.8908 0.0001 2.6626 0.0004 0.92

NGOLP512 4.1785 0.0001 3.2875 0.0001 0.79

polMD256 3.8751 0.0001 3.5217 0.0005 0.91

polMD512 4.3049 0.0005 2.2940 0.0009 0.68

Ref. – – 3.0057 0.1119 –
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ference numbers from MD simulations of binary ionic systems
(in the barycentric frame of reference) are solely dependent on
the mass ratio of the ions, while for other frames of reference,
there are similar issues.[103,104]

Lifetimes and Reorientation Dynamics

Having discussed the global movement of molecules in the IL
simulations, we now shift our focus to the investigation of local
dynamics, namely ion pair/ion cage lifetimes and reorientation
times (also known as rotational relaxation times) of the cations.

Reorientation dynamics are particularly interesting quanti-
ties to calculate from MD simulations, as they can be related to
certain nuclear magnetic resonance (NMR) and electron para-
magnetic resonance (EPR) spectroscopy experiments. To inves-
tigate the rotation of the cation, three vectors perpendicular to
each other are defined (using the atom labels from Figure 1): ~a
connects C2 and the adjacent hydrogen atom, while~b connects
the two nitrogen atoms N1 and N2, and ~c is standing
perpendicular to the plane generated by C2, C3 and C4 (that is,
the ring plane).

The calculated reorientation times T and their uncertainties
DT are displayed in Table 4. It is important to note that the 512
IP systems are shown exclusively, as these systems feature all
relevant trends. The full table, including all seven systems, is
provided in Section 6 of the Supporting Information.

First, a clear trend in relaxation times is observed,
independent of the system: T ~a � T ~c� T ~b. This trend can be
rationalized by recalling that the reorientation time of a
molecule along a vector is proportional to the spatial extension
of the molecule along this vector. For example, the extension of
the cation along the N� N axis is the largest, due to the methyl
and ethyl groups attached to the nitrogen atoms, and
consequently, the vector T ~b has the slowest relaxation time,
while T ~a presents the fastest relaxation.

When comparing the different systems, it is observed that
the MD512 dynamics are roughly three times slower than the
dynamics observed in the other three systems. The latter
systems all exhibit reorientation times of similar magnitude.
Consistently, the uncertainties of the reorientation times,
originating from an error weighted fit, are very small.

To validate the calculated relaxation times, we compared
the values for ~a with the experimental data from Wulf et al.[113]

They employed 2H magnetic relaxation experiments to study
the rotational relaxation along the C2-H vector and found a
relaxation time of 13.1 ps at 343 K (see Tab. 1 of Ref. [113]). The
calculated T ~a values are about a factor of two times larger than
the experiment when considering the MD512� 08, NGOLP512, and
polMD512 systems. As the quantitative prediction of relaxation
times and lifetimes is a challenging task, the calculated results
are deemed acceptable. Additionally, other works[113–118] inves-
tigating the rotational dynamics of different ILs indicate that
our calculated reorientation times are in the correct order of
magnitude and are in line with previous findings. In contrast to
that, the MD512 reorientation dynamics are found to be too
slow.

Next, we turn to the discussion of ion pair and ion cage
lifetimes. At this point, it is worth noting that the formation of
ion pairs and ion cages, as well as their impact on the dynamics,
is a long-standing topic in the IL community.[41,119–126] The results
of our calculations are presented in Table 5, but to keep this
section brief and informative, we discuss the 512 ion pair
simulations and continuous lifetimes only. Full information on
all systems, including intermittent lifetimes, is available in
Section 6 of the Supporting Information. A fair comparison to
experimental data is not possible at this point because the ion
pair and ion cage lifetimes cannot be measured directly.

The lifetimes of the ion pairs are considerably shorter (more
than one order of magnitude) than those of the ion cages
(T IP� T CG). That is because the complete decomposition of an
ion cage requires all ions within the first solvation shell to be
removed from the vicinity of the central ion of the cage,
whereas the decomposition of an ion pair solely requires two
distinct ions to separate. We observe that the lifetimes of the
MD512 simulations are significantly larger than those obtained
from the MD512� 08, NGOLP512 and polMD512 simulations. In
addition, we note that the uncertainties of lifetimes from the
error weighted fits are found to be very small.

In summary, it is remarkable that the rotational dynamics
and ion pair/ion cage lifetimes of the MD512� 08, NGOLP512

simulations are comparable to those using polarizable force
fields, as was already observed for the diffusion coefficients and
ionic conductivities.

Table 4. Reorientation times T of the cations (in ps) for all 512 ion pair
systems. Three different vectors, oriented perpendicular to each other (cf.
Figure 1), were considered in the reorientation analyzes:~a connects C2 and
the adjacent hydrogen atom, ~b connects the two nitrogen atoms N1 and
N2, and~c stands perpendicular to the plane created by C2, C3 and C4 (i. e.,
the ring plane).

~aC2;H ~bN1;N2 ~cC2;C3;C4

System T DT T DT T DT

MD512 72.2 0.5 318.2 1.1 84.8 0.4

MD512� 08 24.9 0.1 97.7 0.1 30.4 0.1

NGOLP512 28.0 0.1 102.4 0.1 27.6 0.1

polMD512 24.6 0.1 73.8 0.1 28.9 0.1

Table 5. Ion pair (IP) and ion cage (CG) lifetimes T of ½NTf2�
� around

½C2C1Im�
þ and their corresponding uncertainties (all in ps), for all 512 ion

pair systems. Correlation functions were calculated in continuous fashion.

System T IP DT IP T CG DT CG

MD512 20.4 0.5 1253.2 3.5

MD512� 08 10.8 0.1 375.5 0.8

NGOLP512 8.5 0.5 301.3 0.7

polMD512 9.6 0.1 289.9 0.4
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Conclusions

We presented a detailed tutorial on how to obtain reliable
transport properties for ionic liquids from molecular dynamics
simulations using http://www.travis-analyzer.de/TRAVIS (our
open-source and freely available software) in conjunction with
a custom Python routine available at https://github.com/
kirchners-manta/msdiff. In the tutorial, we discuss common
pitfalls and put special emphasis on the calculation and
discussion of uncertainties. This work features a new TRAVIS
module for the calculation of ionic conductivities based on the
collective mean squared displacement that will be available to
the public in the near future. To apply the tutorial, molecular
dynamics simulations of the ionic liquid ½C2C1Im�½NTf2�, employ-
ing various force fields, were presented, and their performance
in terms of transport properties was discussed, including a
comparison to reference data where possible. In particular, non-
polarizable force fields with unity charges and scaled charges,
polarizable force fields with Drude oscillators, and non-polar-
izable force fields with refined Lennard-Jones parameters were
considered in calculating self-diffusion coefficients, ionic con-
ductivities, rotational dynamics, and ion pair/ion cage lifetimes.

From our calculations, we observed that the simulations
using the non-polarizable CL&P force field with unity charges
consistently feature too slow dynamics, which is in agreement
with various previous studies. Scaling the molecular charges by
an empirical factor of 0.8 accelerates the dynamics and leads to
a reasonable agreement between the simulated and reference
data (but is known to adversely affect structural properties that
were not investigated in this work). The addition of explicit
polarizability in the CL&Pol force field decreases the sluggish-
ness of the dynamics, thus yielding very good agreement of the
theoretical self-diffusion coefficients and ionic conductivities
with the reference data. Although the NGOLP force field also
employs a unity charge model, transport properties using this
force field are predicted very well and close to reference values,
highlighting how reparametrization of the Lennard-Jones
parameters can be useful in improving the ILs’ transport
properties’ description.

Another central point of this work was the investigation of
the qualitative performance of the different force fields. To this
end, the ratios of the calculated anion and cation self-diffusion
coefficients and ideal transference numbers were compared
among all force fields. We found a good qualitative perform-
ance of all force fields considered in this work, which also
translated to the rotational dynamics and lifetimes.

Our study highlights that all force fields can be employed to
provide reliable physicochemical information from a qualitative
point of view. However, the use of polarizable force fields or
refinement of Lennard-Jones parameters is required to improve
the quantitative agreement with experimental reference data.
The latter option is also very appealing from a resource point of
view due to the lower computational costs compared to
performing simulations with polarizable force fields. Although
scaling the charges accelerates the dynamics, this approach
tends to negatively affect the density and other structural

features, and an additional reparametrization of other force
field parameters may be necessary.
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