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Abstract In this work we study the formation of N∗’s as
a consequence of the dynamics involved in the NDD̄∗ −
N D̄D∗ system when the DD̄∗ − D̄D∗ subsystem generates
X (3872) in isospin 0 and Zc(3900) in isospin 1. States with
isospin I = 1/2 and mass in the energy region 4400 − 4600
MeV are found to arise with spin-parity J P = 1/2+ and
3/2+, thus leading to predictions of the existence of N∗ res-
onances with hidden charm and a three-body nature. We also
discuss the possibility of the existence of Δc states, i.e., Δ’s
with hidden charm.

1 Introduction

Recently, the LHCb collaboration announced the existence
of possible hidden charm pentaquarks in the J/ψp invari-
ant mass distribution of the process Λ0

b → J/ψpK− [1–
3]. The observation of such states, denoted as P+

c (4312),
P+
c (4440), and P+

c (4457), constitutes a turning point in the
experimental search for signals related to exotic baryons,
which had gradually diminished after the lack of evidence
for the existence of Θ+(1540) was reported in higher statis-
tics experiments [4–7] 1. Indeed, continuing the hunt for
exotic baryons, more recently the LHCb collaboration has
claimed the existence of yet another pentaquark with hid-
den charm, similar to the abovementioned Pc states, but with
nonzero strangeness, whose mass is around 4459 MeV [10].
Coming back to the discussion on the Pc’s, we must recall
that two states were initially claimed in Ref. [1], the so-
called P+

c (4380), with a width of 205 ± 18 ± 86 MeV, and
P+
c (4450), with a width of 39±5±19. Of the two states, the

existence of the former was based more on a requirement for
a good description of the data than on a direct observation[1].

1 See also Refs. [8,9] for a possible theoretical explanation of the signal
observed by the LEPS collaboration for Θ+(1540).

a e-mail: amartine@if.usp.br (corresponding author)

The best fit to the data in Ref. [1] was obtained by consid-
ering spin-parity J P = 3/2− for P+

c (4380) and 5/2+ for
P+
c (4450), although acceptable solutions were also obtained

for the combinations J P = 3/2+ and 5/2− and J P = 5/2+
and 3/2−, respectively. The updated analysis of the same
processes as in Ref. [1], but with much larger statistical sig-
nificance, was made in Ref. [3], which revealed the presence
of two states, P+

c (4440) (mass M = 4440.3 ± 1.3+4.1
−4.7 MeV,

width Γ = 20.6 ± 4.9+8.7
−10.1 MeV) and P+

c (4457) (M =
4457.3 ± 0.6+4.1

−1.7 MeV, Γ = 6.4 ± 2.0+5.7
−1.9 MeV), instead

of P+
c (4450), and a narrow peak at 4312 MeV, P+

c (4312)

(M = 4311.9±0.7+6.8
−0.6 MeV, Γ = 9.8±2.7+3.7

−4.5), though no
definite spin-parity is assigned to the three states yet. The fits
performed in Ref. [3] with and without P+

c (4380) describe
the data well, and its existence could not be ascertained. Sev-
eral theoretical descriptions, as well as different spin-parity
assignments, have been proposed for the nature of these Pc
states, including pentaquarks [11–15], meson-baryon states
[16–24], peaks arising from triangle singularities [25–27]
(which seems to be more plausible for P+

c (4457), although
further investigations are necessary [3]), or a virtual state for
P+
c (4312) [28]. In the case of the meson-baryon molecular

attribution, the predominant interpretation is to consider the
Pc’s as states arising from the Σc D̄∗, Σ∗

c D̄
∗ and coupled

channel dynamics in s-wave. Within such a description, the
Pc states, although there is no consensus on the spin assign-
ment, would have negative parity. However, in Ref. [19], by
introducing Λc(2595)D̄ coupled to Σc D̄∗, the authors deter-
mined a positive parity assignment for Pc(4457).

With all the experimental and theoretical efforts being
made to understand the properties of the Pc states claimed
in Ref. [3], and with the debate on their spin-parity assign-
ments still under way, it is important to investigate the pos-
sible formation of N∗ states with hidden charm and pos-
itive parity. Such states may naturally arise as a conse-
quence of the dynamics involved in the three-body systems
NDD̄∗ and N D̄D∗ since the interactions between the dif-
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ferent subsystems are attractive in s-wave, forming states
like X (3872), Zc(3900), and Λc(2595) [29–41]. Further, the
NDD̄∗ (N D̄D∗) threshold lies around 4814 MeV, and due
to the strong attraction present in the ND and ND∗ coupled
channel system in s-wave, where Λc(2595) (among other Λc

and Σc states) has been found to be generated around 210
(352) MeV below the DN (D∗N ) threshold, we can expect
large binding energies in the three-body system considered,
of the order of 200–300 MeV. In this way, there exists a pos-
sibility of finding positive parity state(s) in the energy region
4400–4600 MeV, precisely where the Pc’s were observed in
Refs. [1,3].

Motivated by this reasoning, in this work we study
the N X (3872) − N Zc(3900) coupled configurations of
the NDD̄∗ − N D̄D∗ system. To do this, we solve the
Faddeev equations within the fixed center approximation
(FCA) [42–45] assuming that DD̄∗ − D̄D∗ clusters as
X (3872)/Zc(3900). As we will show, N∗ states with hid-
den charm, spin-parity J P = 1/2+, 3/2+, and masses in
the energy region 4400–4600 MeV are found to arise due
to the underlying three-body dynamics. We discuss differ-
ent processes where such positive parity Pc’s can be studied
experimentally. We also investigate the possible existence
of isospin 3/2 states with hidden charm. Finally, we test the
applicability of FCA to the current system by calculating
diagrams beyond the approximation and show that such con-
tributions are negligible.

2 Formalism

In the FCA to the Faddeev equations, the scattering between
the three particles forming the system is described in terms
of a particle interacting with a scattering center. Such a
treatment is relevant when two of the particles cluster as
a state whose mass is heavier than the third one, which
rescatters with those forming the cluster through a series
of interactions (for a review on the topic see Ref. [45]). In
this way, the cluster plays the role of the scattering cen-
ter, which stays unaltered in the scattering process. In this
work we study the N X (3872)/N Zc(3900) configurations
of the NDD̄∗ − N D̄D∗ system. We consider then that the
DD̄∗ − D̄D∗ system clusters as X (3872) [Zc(3900)] in
isospin 0 (1) and that the nucleon rescatters, successively,
off the D (D̄) and D̄∗ (D∗) mesons. Since

|X (3872)〉 = 1√
2

[
|DD̄∗; IDD̄∗ = 0, IzDD̄∗ = 0〉

+ |D̄D∗; ID̄D∗ = 0, Iz D̄D∗ = 0〉
]
,

|Zc(3900)〉 = 1√
2

[
|DD̄∗; IDD̄∗ = 1, IzDD̄∗ = 1〉

+ |D̄D∗; ID̄D∗ = 1, Iz D̄D∗ = 1〉],

Fig. 1 A possible contribution to the transition N (DD̄∗) → N (D̄D∗)
when DD̄∗ (D̄D∗) clusters as X (3872). Reading the diagram from left
to right, the nucleon interacts with the D meson belonging to X (3872)

to produce ND∗ (or ND). The rescattered nucleon propagates and inter-
acts with D̄∗. After the latter interaction, the nucleon rescatters again
and interacts with the D∗, or the D, meson formed in the first rescat-
tering, leading to the final state N (D̄D∗). Such transition involves the
presence of virtual N (D∗ D̄∗) or N (DD̄) states, which basically do not
overlap with N X (3872)

when adding a nucleon, we can write the three-body state as

|NCa; I, Iz〉 = 1√
2

[
|N (DD̄∗)Ia ; I, Iz〉

+ |N (D̄D∗)Ia ; I, Iz〉
]
, (1)

where Ca represents the cluster, whose isospin is Ia , and
I (Iz) is the isospin (and its third component) of the three-
body system. In this way, to describe the interaction between
an N and the cluster Ca we need to calculate the scattering
T -matrix

〈NCa; I, Iz |T |NCa; I, Iz〉
= 1

2

[
〈N (DD̄∗)Ia ; I, Iz |T |N (DD̄∗)Ia ; I, Iz〉

+ 〈N (D̄D∗)Ia ; I, Iz |T |N (D̄D∗)Ia ; I, Iz〉
]
. (2)

Note that the transition

〈N (DD̄∗)Ia ; I, Iz |T |N (D̄D∗)Ia ; I, Iz〉

requires that the scattering of the nucleon on DD̄∗ converts
the cluster to D∗ D̄∗ or DD̄ in the intermediate states (see
Fig. 1). Since our purpose is to identify the cluster with
X (3872) or Zc(3900) in all intermediate states, both of which
are understood as DD̄∗− D̄D∗ “molecules,” other intermedi-
ate processes are expected to be small and are not considered
in the formalism.

Indeed, it was shown in Refs. [45,46] that such considera-
tions lead to small contributions to the dominant process for
center-of-mass energies below the threshold. We thus limit
ourselves to investigating the formation of three-body states
below the threshold. Besides, to test the validity of the for-
malism, we explicitly evaluate the diagrams beyond FCA and
confirm that such contributions are indeed negligible for the
system considered in this work, at least for energies below the
threshold (consistent with the findings of Ref. [46]). Details
of these calculations are given in a subsequent section.
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Fig. 2 Diagrammatic representation of some of the contributions to
the T1 and T2 partitions

Continuing here with the discussions on the formalism, we
can say that we need to study the NDD̄∗ and N D̄D∗ systems
where DD̄∗ (D̄D∗) clusters either as X (3872) or Zc(3900).
Note that the interactions in the two kinds of three-body sys-
tems are different. While one case involves a series of ND
and N D̄∗ interactions, the other consists of N D̄ and ND∗
interactions. Within the FCA to the Faddeev equations, the
T -matrix for the NDD̄∗ (N D̄D∗) system is obtained from
the resummation of two series which consider the rescatter-
ing of the nucleon on D (D̄) and D̄∗ (D∗), as shown in Fig. 2.
In this way,

T = T1 + T2, (3)

where the partitions T1 and T2 are obtained by solving the
coupled equations

T1 = t1 + t1G0T2,

T2 = t2 + t2G0T1, (4)

for a given isospin I and angular momentum J of the three-
body system. Since we consider s-wave interactions, the
value of J for the NDD̄∗ (N D̄D∗) system is given by the
spin of the N D̄∗ (ND∗) subsystem. The t1 and t2 in Eq. (4)
are two-body t-matrices related to the ND (N D̄) and N D̄∗
(ND∗) systems, respectively, and G0 represents the propa-
gator of a nucleon in the cluster formed. For total isospin
I = 1/2 of the NDD̄∗ (N D̄D∗) system, we treat N (DD̄∗)0

and N (DD̄∗)1 [N (D̄D∗)0 and N (D̄D∗)1] as coupled chan-
nels, since both configurations can lead to isospin 1/2.

We must emphasize here that both X (3872) and Z(3900)

are interpreted as DD̄∗ − D̄D∗ quasi-bound states with the
same mass, although different isospin and width [31,33,47].
Thus, FCA can be used to take into account transitions
between the two systems as in the study of N f0(980) −
Na0(980) [48]. If the reader is interested in an analysis of the
effects of considering FCA for coupled channels with clusters
having different masses, we refer them to Ref. [49], where

effective systems like πK ∗
2 (1430) and Ka2(1320) have been

studied.
In this way, t1, t2, and G0 are matrices in the coupled

channel space,

t1 =
(

(t1)00 (t1)01
(t1)10 (t1)11

)
, t2 =

(
(t2)00 (t2)01
(t2)10 (t2)11

)
,

G0 =
(

(G0)00 0
0 (G0)11

)
, (5)

where for a given isospin I ,

Oab = 〈N (C1C2)Ib ; I, Iz |O|N (C1C2)Ia ; I, Iz〉, (6)

with O = t1, t2, G0 and C1, C2 being the two particles
forming a cluster with a defined isospin. To see how the
elements of Eq. (6) can be determined, let us consider, for
example, the N (DD̄∗)0 system. We can write

|N (DD̄∗)0; I = 1/2, Iz = 1/2〉
= |N ; IN = 1/2, IzN = 1/2〉

⊗ |DD̄∗; IDD̄∗ = 0, IzDD̄∗ = 0〉. (7)

Since t1 (t2) is related to the ND (N D̄∗) interaction, to eval-
uate (t1)00 from Eq. (6) it is convenient to write Eq. (7) in
terms of the isospin of the ND system, while to determine
(t2)00 it is useful to express Eq. (7) in terms of the isospin of
the N D̄∗ system. For the former case, using Clebsch–Gordan
coefficients, we get

|N (DD̄∗)0; I = 1/2, Iz = 1/2〉
= 1√

2

[
|IN D = 1, IzN D = 1〉 ⊗

∣∣∣ID̄∗ = 1

2
, Iz D̄∗ = −1

2

〉

− 1√
2

(
|IN D = 1, IzN D = 0〉 + |IN D = 0, IzN D = 0〉

)

⊗
∣∣∣ID̄∗ = 1

2
, Iz D̄∗ = 1

2

〉]
, (8)

and now using Eq. (6),

(t1)00 = 〈N (DD̄∗)0; I = 1/2, Iz = 1/2|t1
× |N (DD̄∗)0; I = 1/2, Iz = 1/2〉

= 1

4
(3t1

ND + t0
ND). (9)

In Eq. (9), t0
ND (t1

ND) corresponds to the two-body t-
matrix for the ND → ND transition in isospin 0 (isospin 1).
This process has been investigated within different models
by solving the Bethe–Salpeter equation in a coupled chan-
nel approach (see, for example, Refs. [36–40]). All stud-
ies point to a common finding: the DN , πΣc, and coupled
channel dynamics are attractive and give rise to the forma-
tion of Λc(2595) (J P = 1/2−). In Refs. [36,37], the pseu-
doscalar nucleon interactions with charm +1 are deduced
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from a Lagrangian based on the SU(4) symmetry. In Refs.
[38,39], by using a model based on the SU(8) spin-flavor
symmetry, which is compatible with the heavy-quark sym-
metry, pseudoscalar-baryon and vector-baryon channels are
considered as coupled systems, and the generation of sev-
eral J P = 1/2−, 3/2− Λc, and Σc states is reported. In
the latter references, Λc(2595) was found to have large cou-
plings to the DN as well as to the D∗N channel. The studies
in Refs. [38,39] were updated more recently in Ref. [41] for
the Λc sector, and it was again concluded that Λc(2595) has a
predominantly molecular nature. However, it was suggested
that Λc(2625) (J P = 3/2−) should be viewed mostly as
a dressed three-quark state. In Ref. [40], within a different
formalism based on arguments of heavy-quark and SU(4)
symmetries, the DN , πΣc, and other coupled pseudoscalar-
baryon channels and the D∗N , ρΣc, and other coupled
vector-baryon channels systems are studied. In this latter
work, box diagrams are considered to construct a transition
amplitude for the process DN ↔ D∗N . Several Λc and Σc

states with J P = 1/2− and 3/2−, including Λc(2595), are
found. A large coupling of Λc(2595) to DN and D∗N is also
obtained as in Refs. [38,39]. In the present work, we have
considered the models of Refs. [38,40], since in both cases
the DN and D∗N channels are coupled, which is compatible
with the heavy-quark symmetry. However, since the Λc and
Σc states obtained in Refs. [38,40] are not all the same, and
many of them have not yet been observed experimentally,
when investigating the NDD̄∗ (N D̄D∗) system, we focus
mainly on the energy region in which Λc(2595) is gener-
ated, since all models find similar properties and attribute a
molecular nature to it.

Coming back to the discussions on the three-body for-
malism, proceeding in a similar way as in Eq. (9), we can
get the rest of the elements in Eq. (5), for which we need
the two-body t-matrices for the N D̄ and N D̄∗ systems in
isospin 0 and 1. Within the SU(8) model of Refs. [38,39],
in Ref. [32] the N D̄ and N D̄∗ coupled system was studied,
and several Λc̄ and Σc̄ with J P = 1/2− and 3/2− were
claimed to have been generated with masses in the energy
region of 2800–3000 MeV. So far, however, no clear experi-
mental evidence on the existence of such states is available,
although the existence of an anticharm baryon with mass
around 3000 MeV was claimed in Ref. [50]. Nevertheless,
subsequent experimental investigations have failed to con-
firm the former finding [51]. Within the model of Ref. [37],
where D̄N and D̄∗N are not considered as coupled channels,
we do not find formation of any state, since the interaction is
repulsive for the charm −1 sector. If we extend the model of
Ref. [40] to the charm −1 sector, we find the formation of a
Λc̄ with a mass around 2950 MeV. Due to the different predic-
tions within the models of Refs. [32,37,40] and the absence
of conclusive experimental evidence in favor of the existence
of any states with charm −1, we adopt the same strategy as

in the charm +1 sector. We thus consider D̄N and D̄∗N
as coupled channels within the models of Refs. [32,40] and
restrict ourselves to an energy region in which the findings
of the models, including the one of Ref. [37], are compatible.
In this way, our predictions for three-body states would be
consistent with different input two-body amplitudes.

Proceeding further with the discussion of the FCA, in
Eq. (5), the propagator G0 is given by [48]

(G0)aa = 1

2Ma

∫
d3q

(2π)3

mN

ωN (q)

Fa(q)

q0 − ωN (q) + iε
, (10)

with Ma being the mass of the cluster formed by DD̄∗

(D̄D∗), mN [ωN (q) =
√

q 2 + m2
N ] representing the mass

(energy) of the nucleon which rescatters off the components
of the cluster, and q0 the nucleon on-shell energy in the
nucleon-cluster rest frame, i.e.,

q0 = s + m2
N − M2

a

2
√
s

, (11)

where
√
s is the center-of-mass energy of the three-body

system. The function Fa(q) in Eq. (10) is a form factor related
to the wave function of the particles of the cluster and is given
by [45,46]

Fa(q) = 1

N

∫

|p|,|p−q|<Λ

d3 p fa(p) fa(p − q),

fa(p) = 1

ωa1(p)ωa2(p)

1

Ma − ωa1(p) − ωa2(p) + iε
,

(12)

where ωa1(a2)(p) =
√

p + M2
a1(a2) are the energies of the

particles in the cluster and N is a normalization factor,
N = Fa(q = 0). The upper limit of the integration in Eq. (12)
is related to the cutoff used when regularizing the two-body
loops in the Bethe–Salpeter equation to generate X (3872) or
Zc(3900) from the coupled channel interactions. We consider
a value for Λ ∼ 700 MeV as in Refs. [33,52,53] and vary it
in a reasonable region to determine the uncertainties involved
in the results. The unstable character of Zc(3900) is imple-
mented in the formalism by substituting Ma → Ma − i Γa

2 in
Eq. (12) (a width of 28 MeV is considered in this case). Note
that the 1/(2Ma) present in Eq. (10) is a normalization fac-
tor whose origin lies in the normalization of the fields when
comparing the scattering matrix S for a process in which a
particle, in this case a nucleon, rescatters off particles C1 and
C2 of a cluster C and the S-matrix for an effective two-body
particle-cluster scattering [45,54]. As a consequence of the
normalization of those S-matrices,
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(G0)aa → 1

2Ma
(G0)aa, (13)

and a normalization factor needs to be included in the two-
body t-matrices t1 and t2 too,

(t1)ab →
√

Ma

M1a

√
Mb

M1b
(t1)ab, (14)

(t2)ab →
√

Ma

M2a

√
Mb

M2b
(t2)ab. (15)

With these ingredients, we first solve Eq. (4) and determine
the T -matrix from Eq. (3) as a function of the center-of-mass
energy

√
s for the N (DD̄∗) and N (D̄D∗) systems. We then

construct the T -matrix of Eq. (2) and search for peaks in |T |2,
which are identified with three-body states generated from
the N X (3872)/N Zc(3900) coupled channel dynamics.

3 Results

3.1 Isospin 1/2

In Fig. 3 we show the |T |2 for isospin 1/2 and J P = 1/2+
for the (a) N X → N X and (b) N Zc → N Zc transitions
obtained by using the two-body amplitudes determined from
the model based on the heavy-quark and SU(4) symmetries
[40]. As can be seen, the three-body dynamics generate two
states at M − i Γ

2 = 4410 − i1 MeV and 4560 − i10 MeV,
respectively, where M and Γ represent the mass and width
found. The results shown in Fig. 3 correspond to a value
of Λ = 700 MeV in Eq. (12). We find that changing Λ

in a reasonable range, 700–770 MeV, produces small shifts
in the masses of the states, ∼ 3 − 5 MeV. Similar results
are found if we determine the two-body amplitudes from
the SU(8) Lagrangian of Ref. [38], with the corresponding
peak positions being 4404 − i1 MeV and 4556 − i2 MeV.
The results obtained from different two-body interactions
and different cutoffs used in the form factor provide us with
an estimate of the uncertainties present in the model.

The states obtained correspond to N∗’s with hidden
charm and are generated when the DN − D∗N subsystem
forms Λc(2595) while DD̄∗ − D̄D∗ clusters as X (3872)

or Zc(3900) (see Fig. 4). In this sense, the correspond-
ing wave functions would have an overlap with molecular
Λc(2595)D̄(∗) components, besides N X − N Zc.

The formation of states from the interaction of a Λc(2595)

and a D̄ has been suggested in Refs. [19,55,56]. In particular,
the possibility of interpreting the Pc states observed in Refs.
[1–3] as Σc D̄∗−Λc(2595)D̄ molecules was discussed in the
former works. In Ref. [55], such a possibility was claimed
based on an analogy between the mass difference of D∗ and

NX → NX

NZ → NZ

(a)

(b)

Fig. 3 Modulus squared of the T -matrix for the a N X → N X and b
N Zc → N Zc transitions for I (J P ) = 1/2 (1/2+) as a function of

√
s

Fig. 4 Internal structure of the N∗ states with hidden charm obtained.
The ND − ND∗ interaction generates Λc(2595), while DD̄∗ − D̄D∗
clusters as X (3872)/Zc(3900). In the energy range considered, the
N D̄ − N D̄∗ interaction does not give rise to any state

123



33 Page 6 of 12 Eur. Phys. J. A (2022) 58 :33

D, with X (3872) being formed in the DD̄∗ + c.c. system,
and the mass difference of Λc(2595) and Σc. In this way,
according to Ref. [55], the Σc D̄∗−Λc(2595)D̄ system could
generate a bound state in analogy with X (3872) formed in
DD̄∗ + c.c. In Ref. [56], by using scale invariance and argu-
ments of heavy-quark symmetry, the Σc D̄∗ − Λc(2595)D̄
potential was obtained by means of pion exchange. It was
found that for J P = 1/2+, the attraction in the system is
strong enough to generate bound states, pointing in this way
to the existence of 1/2+ Σc D̄∗ −Λc(2595)D̄ molecules, but
no detailed calculation of the expected mass of such states
was presented. Since the nominal mass of P+

c (4457) is close
to the Σc D̄∗ − Λc(2595)D̄ thresholds, the former could be
a candidate for such kind of molecular state. This suggestion
was further considered in Ref. [19] where the potentials for
the inelastic Σc D̄∗ − Λc(2595)D̄ as well as for the elastic
Σc D̄∗ − Σc D̄∗ channels were obtained by using arguments
of heavy-quark symmetry in the former case, as in Ref. [56],
and the quark model in the latter. By varying the parame-
ters of the model, the authors of Ref. [19] find bound states
with J P = 1/2+ and 3/2−, with the former having a larger
mass than the latter. In view of the proximity of P+

c (4457)

to the Σc D̄∗ and Λc(2595)D̄ thresholds, the parameters of
the model were adjusted to set the mass of the J P = 3/2−
state to the nominal mass of P+

c (4440), and the 1/2+ state
found was identified with P+

c (4457).
In our formalism, although the wave function of the

states obtained have an overlap with Λc(2595)D̄, the dynam-
ics considered are different from those studied in Refs.
[19,56]. In our case, Λc(2595) is generated from the inter-
action of DN , D∗N , and other coupled channels, and
X (3872)/Zc(3900) are treated as clusters of the DD̄∗−D̄D∗
system. In this way, we explicitly consider the three-body
dynamics involved in the NDD̄∗ − N D̄D∗ system, instead
of treating it as an effective two-body system. We also con-
sider all the interactions in s-wave. We must mention that
since the cutoffs present in the calculation of the input two-
body t-matrices, which are also used to set the value of Λ in
Eq. (12), are fixed to reproduce the properties of Λc(2595)

and X (3872)/Zc(3900), respectively, there are no parame-
ters in our model which could produce a significant shift of
the masses obtained for the N∗ states.

Considering only the formation of Λc(2595) in the input
DN − D∗N two-body t-matrices, no state is obtained with
J P = 3/2+. However, meson–baryon interactions with
charm +1 are found to be attractive at higher energies as
well, within different approaches, leading to the generation
of further states. For example, in Refs. [38,40], a Λc with
J P = 1/2− and another with J P = 3/2−, both with molec-
ular nature and masses in the energy region 2600−2660 MeV,
are found, although the masses and widths obtained within
the two approaches do not coincide and no experimental evi-
dence for these states has yet been found. Nevertheless, if we

 (a) NX → NX

 (b) NZ → NZ

Fig. 5 Modulus squared of the T -matrix for the a N X → N X and b
N Zc → N Zc transitions for I (J P ) = 1/2 (3/2+) as a function of

√
s

consider the generation of these Λc’s in the input DN−D∗N
two-body t-matrices, three-body states with J P = 3/2+ can
be obtained. In Fig. 5 we show the modulus squared of the
T -matrix for the (a) N X → N X and (b) N Zc → N Zc tran-
sitions in isospin 1/2 and J P = 3/2+ determined following
the model of Ref. [40]. As can be seen, the formation of two
states, one at 4467 − i3 MeV and another at 4565 − i7 MeV,
is found. In the case of using the SU(8) model of Ref. [38] for
the two-body amplitudes, the corresponding peak positions
are 4513 − i1.3 MeV and 4558 − i2.4 MeV.

The N∗ states generated from the NDD̄∗ − N D̄D∗ inter-
actions, due to their three-body nature, can decay to three-
body channels like N J/ψγ and N J/ψπ . Because of the
formation of Λc states in the DN − D∗N subsystems when
generating the N∗ states, decay channels like πΣc D̄ can also
be useful for studying the properties of these states. Note
that two-body decay channels like J/ψp and D̄(∗)Σc can
also exist, involving in this case triangular loops (see Fig. 6),
although the strength of the signal in such two-body invari-
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Fig. 6 Some of the decay modes of the N∗ states with hidden charm
found in this work for two-body channels

ant masses might not be large enough for a clear detection
of the states. Indeed, the J/ψp invariant mass distribution
reconstructed in Ref. [3] shows fluctuations around 4400
MeV and 4550 MeV, which could correspond to some of
the states obtained in this work, and data with higher statis-
tics would be necessary for confirming it. Interestingly, the
I (J P ) = 1/2 (3/2+) state obtained at 4467−i3 MeV is com-
patible with the mass and width of the P+

c (4457) claimed in
Ref. [3].

Further, we would add that the available data on weak
decay processes like Λb → X (3872)pK− [57] and Λb →
pJ/Ψ π+π−K− [58] can be analyzed to investigate the
states found in our work. In the former case, the invariant
mass spectrum of pK− has been reconstructed, and it shows
the signal of Λ(1520). The reconstruction of the X (3872)p
invariant mass can be useful in finding the nucleon states
predicted in our work. The reconstruction of the invariant
mass spectrum of pJ/Ψ π− using data from Ref. [58] can
also show hidden charm states with positive parities. The
states predicted in this work can also be studied at FAIR, in
processes like p̄d → nJ/Ψ π , nJ/Ψ ππ , D̄Σcπ , etc.

3.2 Isospin 3/2

So far, we have restricted the discussions to the formation
of N∗’s, where the dominant two-body interactions form
well-known resonances, and different models agree on the
description of such interactions. For example, there exists
a general agreement on the strong coupling or association
of the D(∗) D̄(∗) isospin 0 and 1 interactions with X (3872)

and Zc(3900), respectively [29–35]. Similarly, the ND(∗)

isoscalar interaction is known to be attractive in nature, lead-
ing to the formation of Λc(2595) in various models [36–41].
There exist enough experimental data to define the proper-
ties of X (3872), Zc(3900) and Λc(2595). The reliability of
the description of the isovector ND(∗) interaction within dif-
ferent models, however, is difficult to judge at this moment,
since Σc states are not yet well known experimentally. For
example, only threeΣc states are listed in Ref. [59] by the Par-
ticle Data Group, out of which the quantum numbers of only
two are known. Additionally, different theoretical models
predict different spectra. For example, as mentioned earlier,
we have considered the theoretical works of Refs. [38,40]
to describe the ND(∗) interactions. In the former work, rela-

|T
|2  (

M
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-2
 )
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5

10

15
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30
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4350 4400 4450 4500 4550

Fig. 7 Modulus squared of the T -matrix for N Zc → N Zc transitions
with I (J P ) = 3/2 (1/2+) as a function of

√
s

tively narrow Σc’s with J P = 1/2−, 3/2− were found with
mass around 2600 MeV (which is within the range of invari-
ant masses considered in our study). Such states have not
yet been observed experimentally. In Ref. [40], the isospin
1 ND(∗) and coupled channel interactions are found to be
attractive, but only a very broad state (width ∼ 300 MeV) is
obtained around 2600 MeV. Still, it can be worth exploring
the formation of three-body states with isospin 3/2, which
requires all the two-body subsystems to interact in isospin 1.
Such states will be like Δ’s with hidden charm, which must
also, presumably, exist in nature.

In Fig. 7, we show the isospin 3/2 three-body modulus
squared amplitude for total spin 1/2. The amplitude depicted
in Fig. 7 is computed with the ND(∗) interactions, which
give rise to formation of some 1/2−, 3/2− Σc’s in the energy
region around 2600 MeV [38]. It can be seen that two states
arise from the interactions, one with mass around 4359 MeV
and width of about 1.5 MeV, and another around 4512 MeV
and width ∼4 MeV. Similar results are obtained for total
spin 3/2. We thus find almost spin-degenerate states, which
we denote as Δc.

We must add that within the model of Ref. [40], no such
isospin 3/2 states are found. Thus, the existence of the Δc’s
shown in Fig. 7 is conditioned to the existence of narrow
negative-parity Σc state(s) with mass similar to Λc(2595).

4 Contributions from diagrams beyond the fixed center
approximation

Before ending the discussions, we would like to analyze the
uncertainties involved in our findings from additional dia-
grams beyond those involved in the FCA. In the current study,
we consider that D and D̄∗ form a cluster which stays unper-
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Fig. 8 One-loop diagrams contributing to the two Faddeev series
within the static approximation [see Eq. (4)]. The labels in the brackets
represent the momenta assigned to each hadron
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Fig. 9 Diagrams which can contribute at the one-loop level, beyond
the static approximation. The meaning of the labels in brackets is the
same as in Fig. 8

turbed during the scattering. The meaning of such a consid-
eration is that the third hadron scatters off the constituents
of the cluster which act like static sources. Within such an
approximation, at the level of one loop, the diagrams besides
those shown in Fig. 8 are considered to be suppressed. In
the present case, where the mass of the nucleon is about half
of the mass of D/D̄∗, one might wonder whether the addi-
tional diagrams shown in Fig. 9 can be neglected and whether
the fixed center approximation is appropriate for the current
system. To test the applicability of the approximation, we
explicitly calculate the diagrams in Fig. 9 in this section and
show that the resulting contributions turn out to be negligible.
We also discuss the reason behind such findings.

Before going into the details of the calculations, we would
remind the reader that the fixed center or the static approx-
imation has been applied to studies of anti-kaon deuteron
scattering in Refs. [60,61], where the kaon is about half as
heavy as the nucleon. Still, results of the scattering length
were obtained in good agreement with the experimental data.
Indeed, contributions from recoil effects were scrutinized in
detail in Ref. [62] by considering a perturbative expansion
in terms of the ratio of the masses MK /mN , and corrections
of the order of 10–15% were found. Such a small correc-

tion was attributed to cancellations among different terms in
the perturbative series. These cancellations were attributed in
Ref. [62] to the Pauli principle or to the orthogonality of the
deuteron wave function and the NN continuum, depending
on the isospin of the K̄ N interactions. Similar conclusions
were obtained in a later study in Ref. [63]. It should be men-
tioned that besides the anti-kaon deuteron case, cancellations
have also been found in the case of the πd scattering [64],
where even though the static approximation may be expected
to work well, corrections (from binding energy) turn out to
be large when considering each term of the scattering series
separately. However, corrections to the different terms end up
canceling each other when the series is summed [64], ren-
dering the FCA applicable to the system. Interestingly, the
validity of the FCA was also discussed in Ref. [46] in the case
of the φK K̄ system. It was found that the FCA amplitude is
not reliable in the former case, as expected, except for ener-
gies below the cluster-particle threshold, thereby limiting the
prospects of the excitation of the constituents of the cluster.
Thus, the static approximation has been found to work in a
series of unexpected systems for different reasons.

It might also be useful to cite examples of some three-
hadron systems which have been studied by solving the Fad-
deev equations with and without the consideration of the
static approximation for one of the subsystems. For example,
the NK K̄ system and coupled channels were studied in Refs.
[65,66] by solving the Faddeev equations without invoking
the static approximation for any of the pairs. In this case a
1/2+ state with mass around 1924 MeV was found with the
width ranging between 20 and 30 MeV. Similar results were
reported in Ref. [67], where Faddeev equations were solved
using an effective potential for each of the pairs. A state with
a mass around 1880−1920 MeV was obtained in the former
work. Further, the same system was studied by treating K̄ N
and K̄ K as fixed scattering centers in Ref. [48], and results
compatible with those of Refs. [65–67] (mass ∼ 1915–1925
MeV, width ∼ 30–80 MeV) were found. As shown in Ref.
[46], the condition in which FCA seems to works well is
when a three-body system is studied at energies below the
threshold, besides having a two-body cluster which is heavier
than the third one. Yet another system, DK K̄ , was studied by
solving full Faddeev equations [68] and by introducing the
FCA [69]. A D-meson with spin parity 1/2−, mass around
2900 MeV, and width of 55 MeV was found to arise from
the three-body interactions in Ref. [68], whose decay to two
mesons was studied in Ref. [70]. Indeed, a state with the same
quantum numbers was found in Ref. [69] but with the val-
ues of mass (and, consequently, width) about 50 MeV lower
than those determined with full Faddeev calculations [68].
However, it must be mentioned that the state found in Ref.
[68] appeared in the Df0(980) configuration, while a clear
signal was not found in the Ds(2317)K̄ arrangement of the
three-body system. The latter is precisely the configuration
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studied in Ref. [69] in order to use the FCA (although the
authors of Ref. [69] arrive at the conclusion that Df0(980) is
the dominant configuration). From the above discussion, one
can see that, as far as the energy region studied is below the
three-body threshold, the order of uncertainties in the results
obtained by using FCA is similar to that found within other
methods for solving the Faddeev equations where no static
approximations are considered.

Let us now discuss the case of the NDD̄∗ system by evalu-
ating the amplitudes for the diagrams shown in Fig. 9, where
the D and D̄∗ can propagate as free particles in the loop. Fol-
lowing the same normalization as in Ref. [46], we can write
the contribution to the S matrix, to start with, for the diagram
in Fig. 9a as

S9a =
√

2MN

2k0

√
2MN

2k′0

√
1

2p0
1

√
1

2p0
2

√
1

2p′0
1

√
1

2p′0
2

×
∫

d4x1

∫
d4x2

∫
d4x3

∫
d4q

(2π)4

×
∫

d4q ′

(2π)4

∫
d4 p

(2π)4

[
−i tDN (k + p1)

]

×
[
−i tDD̄∗

(√
sDD̄∗

)][−i tDN
(
k′ + p′

1

)]

× ieiq(x1−x2)

q2 − m2
D + iε

ieiq
′(x2−x3)

q ′2 − m2
D̄∗ + iε

× ieip(x1−x3)ū(k′)
(
/p + mN

)
u(k)

p2 − m2
N + iε

× eik
′0x0

3 eip
′0
1 x0

3 eip
′0
2 x0

2 e−ik0x0
1 e−i p0

1x
0
1 e−i p0

2x
0
2

× 1√
V
e−ik′·x3φ1(x3)φ2(x2)

1√
V
eik·x1φ1(x1)φ2(x2),

(16)

where φi (x j ) represent the wave functions of the particles
of the cluster in the initial/final state. We refer the reader to
Fig. 9a to identify the momenta assigned to each particle.
The invariant mass of the DD̄∗ system, in Eq. (16), depends
on a loop variable through

sDD̄∗ = s + m2
N − 2

√
s ωN (p). (17)

Integrating on the zero component of the six variables in
Eq. (16) and defining

x1 − x2 ≡ r, (18)

x3 − x2 ≡ r ′,

R ≡ 1

2
(x1 + x2) ,

we can write

1

2
(x3 + x2) = R + r

2
+ r ′

2
. (19)

Such change in variables allows us to write

φ1(x1)φ2(x2) = 1√
V
eiP12·Rφ ( r ) (20)

and

φ1(x3)φ2(x2)= 1√
V
e−iP′

12·Rφ ( r ) e−iP′
12·r ′/2eiP

′
12·r/2φ

(
r ′)

(21)

where P12
(
P ′

12

)
denotes the momentum of the cluster in the

initial (final) state. Finally, integrating on r, r ′, and R, we
get

S9a = −i
(2π)4 δ4

(
Ptot − P ′

tot

)

V 2

√
2MN

2k0

√
2MN

2k′0

×
√

1

16p0
1 p

0
2 p

′0
1 p′0

2

√
k0 + mN

2mN

√
k′0 + mN

2mN

× tDN (k + p1) tDN
(
k′ + p′

1

) ∫
d4q

(2π)4

∫
d4q ′

(2π)4

×
∫

d4 p

(2π)4 tDD̄∗
(√

sDD̄∗
) ωN (p) + mN

2ωN (p)

× 1[
k0 + p0

1 − ωN (p)
]2 − ω (q)2 + iε

× 1[
k′0 + p′0

1 − ωN (p)
]2 − ω (q ′)2 + iε

× φ1

(
p + q − k

2

)
φ2

(
p + q ′ − k ′

2

)
, (22)

where Ptot
(
P ′
tot

)
represents the total four-momentum of the

three-body system in the initial (final) state, and φ1 and φ2 are
calculated following Ref. [47]. It must be emphasized here
that the different two-body amplitudes receive contributions
from different isospin with different weights (as explained
in Sect. 2). Following the same procedure, we can obtain the
amplitudes for the remaining diagrams in Fig. 9 as

t9b = t9d =
√
k0 + mN

2mN

√
k′0 + mN

2mN
tDN (k + p1)

× tD̄∗N
(
k′ + p′

2

) ∫
d4q

(2π)4

∫
d4q ′

(2π)4

∫
d4 p

(2π)4

× ωN (p) + mN

2ωN (p)

tDD̄∗
(√

sDD̄∗
)

[
k0 + p0

1 − ωN (p)
]2 − ω (q)2 + iε

123



33 Page 10 of 12 Eur. Phys. J. A (2022) 58 :33

4350 4400 4450 4500 4550 4600

Total energy (MeV)

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02
R

Fig. 10 The ratio defined in Eq. (26) as a function of the total energy
of the three-body system

× 1[
k′0 + p′0

2 − ωN (p)
]2 − ω (q ′)2 + iε

× φ1

(
p + q − k

2

)
φ2

(
p + q ′ − k ′

2

)
, (23)

and

t9c =
√
k0 + mN

2mN

√
k′0 + mN

2mN
tD̄∗N (k + p2) tD̄∗N

(
k′ + p′

2

)

×
∫

d4q

(2π)4

∫
d4q ′

(2π)4

∫
d4 p

(2π)4 tDD̄∗
(√

sDD̄∗
)

× ωN (p) + mN

2ωN (p)

1[
k0 + p0

2 − ωN (p)
]2 − ω (q)2 + iε

× 1[
k′0 + p′0

2 − ωN (p)
]2 − ω (q ′)2 + iε

(24)

× φ1

(
p + q − k

2

)
φ2

(
p + q ′ − k ′

2

)
. (25)

Let us denote the amplitude of the diagrams shown in
Fig. 8, which contribute to the FCA series [Eqs. (4)], as t8a
and t8b. To study the effect of the considerations of the dia-
grams in Fig. 9, which go beyond the FCA, we show in Fig. 10
the ratio

R = |t8a + t8b + t9a + t9b + t9c + t9d |
|t8a + t8b|

. (26)

It can be seen that the ratio stays very close to unity, show-
ing that the contribution from the diagrams beyond the FCA
provides a very small correction, hence indicating that the
approximation is indeed reliable in the present case.

To understand the reason behind such a small correction,
we compare the different amplitudes in Fig. 11. Firstly, it can
be observed that the sum of the amplitudes of the one-loop
diagrams in the FCA series (see the real and imaginary parts
represented as solid and dashed lines in Fig. 11) is much

4300 4350 4400 4450 4500

Total Energy (MeV)

-10

-5

0

5

10

Fig. 11 Comparison of the different amplitudes for the diagrams
shown in Figs. 8 and 9. The thick solid (dashed) line shows the real
(imaginary) part of the sum of the amplitudes for the one-loop diagrams
contributing to the FCA series, i.e., t8a + t8b. The dotted (dash-dotted)
line represents the real (imaginary) part of the sum of the amplitudes
for Fig. 9a, c, while the line with boxes (line with diamonds) shows the
real (imaginary) part of the sum of the amplitudes for Fig. 9b, d

larger than the amplitudes corresponding to the diagrams
beyond the static approximation (see the caption of Fig. 11
for more detail).

It should be mentioned that the limits on the vertical axis
in Fig. 11 have been kept as shown in the figure to facilitate
a comparison of the different amplitudes. Besides the small
contributions from the diagrams in Fig. 9, to which we will
come back in a moment, it should be noted that the sum of the
amplitudes t9a+t9c and t9b+t9d have opposite signs, leading
to cancellations between the two. The real part of t9a + t9c is
shown as a dotted line, which should be compared with the
real part of t9b + t9d , shown as a line with boxes. The imagi-
nary parts of t9a+ t9c and t9b+ t9d are shown as a dash-dotted
line and a line with diamonds, respectively. The imaginary
parts are much smaller, which should be expected at energies
below the threshold, though nonzero since there exist lighter
(and, hence, open) coupled channels in the two-body subsys-
tems. For example, πΛc and πΣc are open below the DN
threshold. In any case, we can question why the amplitudes
for the diagrams in Fig. 9 turn out to be much smaller. To
understand this, one must recall that (1) we have a greater
number of heavier particles (D/D̄∗) propagating in the inter-
mediate state in Fig. 9 when compared to the diagrams shown
in Fig. 8, and (2) the energies of interest, where we find the
states, are below the three-body threshold, where the con-
tributions from the excitation of the particles in the cluster
are expected to be small (as found in Ref. [46]). Finally, we
add that the opposite signs in the amplitudes shown in Fig. 11
arise from the dynamics involved in the different subsystems.

From the discussions in this section, we can conclude that
for the present system, contributions from diagrams beyond
those summed in the FCA series are negligible. Hence, we
can conclude that the results obtained in the present work do
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Table 1 Summary of the isospin 1/2 and 3/2 states found in the present
work

Isospin Spin-parity Mass (MeV) Width (MeV)

1/2 1/2+ 4404–4410 2

1/2 1/2+ 4556–4560 4–20

1/2 3/2+ 4467–4513 ∼ 3–6

1/2 3/2+ 4558–4565 ∼ 5–14

3/2 1/2+, 3/2+ 4359 1.5

3/2 1/2+ 4512 4

3/2 3/2+ 4514 1

not obtain significant corrections from the diagrams beyond
FCA.

5 Conclusions

In this work, we have investigated the formation of N∗ states
as a consequence of the dynamics involved in the NDD̄∗ −
N D̄D∗ system. To do this, we solve the Faddeev equations,
treating the open charm mesons as a cluster. We find that the
generation of Λc(2595) in the DN − D∗N system, together
with the clustering of D (D∗) and D̄∗ (D̄) as X (3872) or
Zc(3900), produces enough attraction to form isospin 1/2
and 3/2 states with masses in the energy region 4400–4600
MeV and positive parity as summarized in Table 1, where
the uncertainties are related to different models considered
when determining the two-body interactions. The certainty
of the results on isospin 3/2 states depends on the strength
of the isovector D(∗)N interactions, which are not yet well
known.

In this way, we can conclude that N∗ and Δ∗ states with
hidden charm and positive parity arise from three-hadron
dynamics. We have discussed that data from Λb decays are
available on final states which can confirm the existence of
such positive-parity states.
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