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C/ Nicolás Cabrera 13-15, 28049 Madrid, Spain

Ariadne Nogueira
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Abstract. In this paper we analyze the asymptotic behavior of a family of

solutions of a semilinear elliptic equation, with homogeneous Neumann bound-

ary condition, posed in a two-dimensional oscillating region with reaction terms
concentrated in a neighborhood of the oscillatory boundary θε ⊂ Ωε ⊂ R2 when

a small parameter ε > 0 goes to zero. Our main result is concerned with the
upper and lower semicontinuity of the set of solutions in H1. We show that

the solutions of our perturbed equation can be approximated with one defined

in a fixed limit domain, which also captures the effects of reaction terms that
take place in the original problem as a flux condition on the boundary of the

limit domain.

1. Introduction. In this paper we analyze the asymptotic behavior of the family
of solutions of the following semilinear elliptic equation with homogeneous Neumann
boundary conditions:

−∆uε + uε = Φ(uε) +
1

ε
χθεf(uε) in Ωε,

∂uε

∂νε
= 0 on ∂Ωε,

(1)

where Ωε ⊂ R2 is an oscillating domain, Φ represents a reaction term acting in

the whole domain and
1

ε
χθεf(uε) represents a reaction term concentrated in an

extremely thin region θε close to the border ∂Ωε which can also present oscillatory
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2 JOSÉ M. ARRIETA, ARIADNE NOGUEIRA AND MARCONE C. PEREIRA

structure. See Figure 1 to visualize the oscillating domain Ωε, as well as the narrow
oscillating neighborhood θε.

Ωϵ

θϵ

Figure 1. The oscillatory domain Ωε and strip θε where reactions
take place.

Under our assumptions, the two-dimensional family of oscillating regions Ωε ap-
proaches a bounded domain Ω ⊂ R2, and the narrow strip θε, that may also have an
oscillatory behavior, degenerates into a fixed set Γ ⊂ ∂Ω as the positive parameter
ε goes to zero.

We will show that the solutions of (1) converge in certain sense to be specified
later to the solutions of the following problem posed in the fixed domain Ω:−∆u+ u = Φ(u) in Ω,

∂u

∂ν
= µ̂f(u) on Γ,

(2)

where µ̂ is a parameter related to the geometry of the oscillations of Ωε and θε.
Observe that the reaction term concentrated in θε transforms as ε → 0 into a
boundary reaction term, in accordance to some results in the works [11, 20, 21].

We show that the family of solutions of (1) is upper semicontinuous at ε = 0,
and under the additional condition on hyperbolicity of the solutions of the limit
problem (2), we also obtain the lower semicontinuity. Moreover, we show that the
perturbed equation (1) has one and only one solution nearby a solution of the limit
equation for ε small enough.

As we will see, in order to show our results, we need to estimate and analyze the
asymptotic behavior of concentrating integrals such as

1

ε

∫
θε

|u(x)|qdx (3)

for different values of q ≥ 1 and open sets θε ⊂ Ωε ⊂ R2. Notice the factor 1/ε in
(3). The arrangement of this term with the narrow strip can be thought as a model
to measure the concentration of u on θε at ε = 0. In fact, a suitable control of
this integral is useful to analyze models set in regions of R2 which present singular
behavior. For instance, we mention our recent work [12], where an oscillating thin
domain is studied.

Here, we are in agreement with the notation from papers [11, 20, 21] calling (3)
as concentrating or concentrated integral. Indeed, this kind of problem was initially
proposal in [11], where linear elliptic equations were considered with reaction and
potential terms concentrated on the boundary. There, the neighborhood θε has
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been set as a strip without oscillatory behavior in a fixed domain Ω. Later, the
dynamical system given by a semilinear parabolic problem in the same situation
was analyzed in [20, 21] where the upper semicontinuity of attractors at ε = 0 has
been shown. In [3, 4] the results of [11, 20] were extended to a reaction-diffusion
problem with delay. In these works, the boundary of the domain is always assumed
to be smooth.

Subsequently some results of [11] were adapted in [5] to be considered in a semi-
linear elliptic problem posed on a Lipschitz fixed domain Ω with the ε-neighborhood
presenting highly oscillatory behavior. The upper and lower semicontinuity of the
attractor to the associated parabolic problem in smooth fixed domains were shown
in [6].

Recently, some results from [11, 5] have been adapted in [1, 2] to a class of narrow
strips θε and bounded oscillatory domains Ωε. Under the restricted assumption
Ω ⊂ Ωε and θε ⊂ Ωε \ Ω for all ε > 0, the authors have been able to estimate
concentrating integrals and analyze the asymptotic behavior of semilinear elliptic
equations as Ωε → Ω and ∂Ωε → ∂Ω when ε→ 0 in the sense of Hausdorff.

This paper is organized as follows: in Section 2 we introduce the assumptions,
notations and the main result. In Section 3, we show some technical results concern-
ing extension operators, Lebesgue-Bochner and Sobolev-Bochner generalized spaces
needed to get our estimates. Following by Section 4, we prove some properties about
concentrating integrals which are used in Section 5 to study the nonlinearities of our
problem. Finally, in Section 6, we pass to the limit in a semilinear elliptic problem
getting the upper semicontinuity of the solutions. Moreover, assuming hyperbolic-
ity to the solutions of the limit equation, we also obtain the lower semicontinuity
at ε = 0, and we will exclude the possibility that, near an equilibrium point of the
limiting equation, may exist several different equilibrium points of the perturbed
problem, and therefore, we will also prove some sort of uniqueness of the equilibrium
points.

2. Assumptions, notations and main result. To fix the problem, notation and
main hypotheses, let us start considering problem (1) where

Ωε = {(x1, x2) ∈ R2;x1 ∈ (0, 1), 0 < x2 < Gε(x1)} and

θε = {(x1, x2) ∈ R2;x1 ∈ (0, 1), Gε(x1)− εHε(x1) < x2 < Gε(x1)}
(4)

are set by functions Gε, Hε : (0, 1)→ R satisfying conditions:

H(i) Gε(x1) = m(x1) + εg(x1/ε
α) with 0 < α ≤ 1, where

(a) m : (0, 1)→ R is C1, bounded, with bounded derivative,
(b) g : (0, 1)→ R is a C1 bounded function, Lg-periodic with bounded

derivative.
(c) Gε → m as ε→ 0 uniformly in (0, 1).
(d) there are constants G0, G1 > 0 such that G0 ≤ Gε(x) ≤ G1 for all

x ∈ (0, 1).
H(ii) Hε(x1) = h(x1/ε

β), β > 0, where the function h is bounded, ie there are
H0, H1 ≥ 0 such that H0 ≤ Hε(x) ≤ H1 for all x ∈ (0, 1), and Lh-periodic.

The vector νε = (νε1 , ν
ε
2) is the unit outward normal vector to the boundary ∂Ωε,

∂/∂νε is the derivative in the direction of νε, and χθε is the characteristic function
of the neighborhood θε. The nonlinearities Φ : R→ R and f : R→ R are bounded
functions of class C2 with bounded derivatives.
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Under assumptions H, it is not difficult to associate (4) with the following limit
sets

Ω = {(x1, x2) ∈ R2;x1 ∈ (0, 1), 0 < x2 < m(x1)} and

Γ = {(x1, x2) ∈ R2;x1 ∈ (0, 1), x2 = m(x1)}.
(5)

As we mentioned in the introduction, passing to the limit in (1) we obtain equa-
tion (2) where µ̂ ∈ L∞(Γ) is given by

µ̂ =
µh√

1 +m′2
∈ L∞(Γ), (6)

where µh ∈ L∞(Γ) is the weak* limit of Hε. In fact, due to H(ii), it follows from
[17, Teorema 2.6] that

Hε ⇀ µh =
1

Lh

∫ Lh

0

h(s)ds.

The coefficient µ̂ captures the influence of the small neighborhood θε, as well as
the geometry of the limit domain Ω. It also suggests with nonlinearity f a flux con-
dition on the boundary, giving a qualitative idea on the effect of the concentrating
reaction terms on the original problem.

Notice that, to obtain the convergence results, we have to compare functions
defined in different functional spaces as ε→ 0. In order to do that, we consider the
following family of operators

Eε : H1(Ω)→ H1(Ωε) : u 7→ Eεu := RεPu (7)

where Rε : H1(R2) → H1(Ωε) is the restriction operator to the open set Ωε and
P : H1(Ω)→ H1(R2) is a continuous extension operator from functions defined in
Ω to the whole plane R2. The existence of P is guaranteed by [19, Theorem 1.4.3.1].

From [7], we have

‖Eεu‖H1(Ωε) → ‖u‖H1(Ω), as ε→ 0,

and then, we can compare solutions from (1) and (2) using the notion of E-
convergence as in [14].

In general, consider a family of Banach spaces Hε and a limit Banach space H0.
Besides, let Eε : H0 → Hε a family of operators such that ‖Eεu‖Hε

→ ‖u‖H0
when

ε→ 0.

Definition 2.1. We say that a sequence of uε ∈ Hε E-converges to u0 ∈ H0, if

‖uε − Eεu‖Hε
→ 0 as ε→ 0. We denote this convergence by uε

E−→ u.

If Hε and H0 are Hilbert spaces, we can define a weak E-convergence.

Definition 2.2. A sequence of {uε}, with uε ∈ Hε, E-converges weakly to u ∈ H0

if for any sequence E-convergent to w we have (wε, uε)Hε → (u,w)H0 when ε→ 0.

We may denote such convergence by uε
E
⇀ u.

We also need a notion of compactness for sequences, and convergence for opera-
tors which are defined in different spaces. We recall the exposition from [14]. See
also [7] and [12].

Definition 2.3. A sequence {un}, un ∈ Hεn with εn → 0, is E-precompact if for
all subsequence {un′} there are a subsequence {un′′} and an element u ∈ H0 such

that un′′
E−→ u. A family is said to be E-precompact if all sequence {un}, un ∈ Hεn

with εn → 0, is E-precompact.
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Definition 2.4. We say that a family of operators {Tε}, with Tε : Hε → Hε, E-

converges to T : H0 → H0 when ε → 0 if Tεu
ε E−→ Tu for any uε

E−→ u. We denote

this convergence by Tε
EE−−→ T .

Furthermore we may define a notion of compact convergence for operators.

Definition 2.5. A family of compact operators {Tε}, with Tε : Hε → Hε, converges
compactly to T : H0 → H0 when ε→ 0 if, for any family {uε} with ‖uε‖Hε uniformly

bounded, we have that {Tεuε} is E-precompact and Tε
EE−−→ T . We denote this

compact convergence by Tε
CC−−→ T .

This notion of convergence can be extended to sets in the following manner: let
Jε be a family of sets in some Banach spaces Zε. We say that Jε is

(i) upper semicontinuous at ε = 0 if distH(Jε, EεJ0)
ε→0−−−→ 0;

(ii) lower semicontinuous at ε = 0 if distH(EεJ0, Jε)
ε→0−−−→ 0.

Here, distH(A,B) denotes the Hausdorff semi-distance given by

distH(A,B) = sup
x∈A

inf
y∈B
‖x− y‖Zε .

Remark 1. In order to show the upper or lower semicontinuity of sets, the following
characterizations are useful:

(i) The family {Jε} is upper semicontinuous at ε = 0 if every sequence {uε}, with
uε ∈ Jε and ε→ 0, has a subsequence E-convergent to an element of J0;

(ii) The family {Jε} is lower semicontinuous at ε = 0 if J0 is compact and for all

u ∈ J0 exists a sequence {uε}, with uε ∈ Jε and ε→ 0, such that uε
E−→ u.

Finally, for ε > 0, let us consider

Eε = {uε ∈ H1(Ωε); u
ε is a solution of (1)}

and

E0 = {u ∈ H1(Ω); u is a solution of (2)}.
The main goal of this work is to prove the upper and lower semicontinuity of the
set Eε at ε = 0:

Theorem 2.6. If we consider the semilinear elliptic problem (1) then:

(i) for any sequence uε ∈ Eε, with ε→ 0, there is a subsequence (also denoted by

uε) and u0 ∈ E0 such that uε
E−→ u0.

(ii) for any hyperbolic equilibrium point u∗ ∈ E0, there is sequence uε ∈ Eε such

that uε
E−→ u∗ when ε → 0. Moreover, there are η > 0 and ε0 > 0 such that

exists an unique uε ∈ Eε which satisfies

‖uε − Eεu∗‖H1(Ωε) ≤ η, for all 0 < ε < ε0.

Remark 2. Recall that u∗ is a hyperbolic equilibrium point of (2), if λ = 0 is
not an eigenvalue of the linearized problem of (2) around u∗. For instance, if u∗ is
solution of (2) and is hyperbolic, then λ = 0 is not an eigenvalue of−∆v + v = Φ′(u∗) v + λ v in Ω,

∂v

∂ν
= µ̂f ′(u∗) v on Γ.
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Furthermore, we notice that item (ii) of the Theorem 2.6 also give us a kind of
uniqueness result to the solutions near a hyperbolic equilibrium point of the limit
equation for sufficiently small ε.

3. Functional spaces and technical results. In this section, we introduce the
main functional spaces used throughout this paper and work with some of their
properties. Then we set some technical results that will be useful in next sections.
First, we define fractional Sobolev spaces.

Definition 3.1. For s > 0, 1 ≤ p < ∞ and O ⊂ Rn, we denote by W s,p(O) and
call fractional Sobolev space, the functional set given by the space of distributions
defined in O such that

(i) ∂αu ∈ Lp(O), for |α| ≤ m, when s = m ∈ N;
(ii) u ∈Wm,p(O) and∫∫

O×O

|∂αu(x)− ∂αu(y)|p

|x− y|n+σp
dxdy <∞,

for |α| = m, when s = m+ σ with σ ∈ (0, 1).

The norm in W s,p(O), that makes it Banach, is:

‖u‖pWm,p(O) =
∑
|α|≤m

∫
O

|∂αu(x)|pdx in the case (i)

and

‖u‖pW s,p(O) = ‖u‖pWm,p(O) +
∑
|α|=m

∫∫
O×O

|∂αu(x)− ∂αu(y)|p

|x− y|n+σp
dxdy in the case (ii).

Besides if p = 2 we denote it by Hs(O), which is a Hilbert space.

Now let us introduce the Lebesgue and Sobolev-Bochner generalized spaces.
Here, they are given in a similar way to [23], as a natural generalization to the
Lebesgue and Sobolev spaces using Bochner integrals. The usual Lebesgue and
Sobolev-Bochner spaces may be found, for instance, in [15, 17].

Definition 3.2. Let us consider a function G : (0, 1) → R satisfying 0 < G0 ≤
G(x) ≤ G1, ∀x ∈ (0, 1), for some constants 0 < G0 ≤ G1. Let 1 ≤ p ≤ ∞ e 1 ≤ q <
∞. The Lebesgue-Bochner generalized spaces, denoted by Lp(0, 1;Lq(0, G(x1))),
are defined by

Lp(0, 1;Lq(0, G(x1))) := {u : Ωε → R measurable;u(x1, ·) ∈ Lq(0, G(x1))

for almost every x1 ∈ (0, 1)}.
They are Banach spaces with the norm

‖u‖Lp(0,1;Lq(0,G(x1))) =


(∫ 1

0
‖u(x1, ·)‖pLq(0,G(x1))dx1

)1/p

, p <∞,
ess sup
x∈(0,1)

‖u(x1, ·)‖Lq(0,G(x1)), p =∞.

When p = q = 2 such space is Hilbert with the inner product

(u, v)L2(0,1;L2(0,G(x1))) =

∫ 1

0

(u(x1, ·), v(x1, ·))L2(0,G(x1))dx1.

Remark 3. Since q <∞, the function x1 7→ ‖u(x1, ·)‖Lq(0,G(x1)) is measurable by
Fubini’s Theorem. Then the space Lp(0, 1;Lq(0, G(x1))) is well defined.
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Analogously, we have that the Sobolev-Bochner generalized spaces, denoted by
Lp(0, 1;W s,q(0, G(x1))) for s > 0, are defined by

Lp(0, 1;W s,q(0, G(x1))) := {u ∈ Lp(0, 1;Lq(0, G(x1)));u(x1, ·) ∈W s,q(0, G(x1))}.

Such spaces are Banach with the norm

‖u‖Lp(0,1;W s,q(0,G(x1))) =


(∫ 1

0
‖u(x1, ·)‖pW s,q(0,G(x1))dx1

)1/p

, p <∞,
ess sup
x1∈(0,1)

‖u(x1, ·)‖W s,q(0,G(x1)), p =∞,

and, again, they are Hilbert spaces if p = q = 2.
In general, it follows from [17, Proposition 3.59] that, if H is a Hilbert space and

1 ≤ p <∞, then the dual space of Lp(0, 1;H) is given by

[Lp(0, 1;H)]′ = Lq(0, 1;H ′),

where H ′ is the dual space of H and p, q are conjugates.
In our case we will consider the family of Lebesgue and Sobolev-Bochner gen-

eralized spaces for the function Gε(x1) = m(x1) + εg(x1/ε
α) defined in hypothesis

H(i) from (4).
Now we set important and nontrivial results that will help us to work with

different definitions of Sobolev fractional spaces making their norms equivalent.
The proofs are analogous to [12, Propositions 3.4, 3.5 and 3.6].

Lemma 3.3. Fixed ε > 0 and x1 ∈ (0, 1), if we call Iε = (0, Gε(x1)), there is
a continuous linear extension operator P : L2(Iε) → L2(R) such that Pu = u
in Iε, with ‖Pu‖L2(R) ≤ λ0‖u‖L2(Iε), ‖Pu‖Hs(R) ≤ λs‖u‖Hs(Iε) and ‖Pu‖H1(R) ≤
λ1‖u‖H1(Iε), for 0 < s < 1, where the constants λ0, λs, λ1 ≥ 1 are independent of
ε > 0 and x1 ∈ (0, 1).

Theorem 3.4. Let Iε = (0, Gε(x1)), with ε > 0, x1 ∈ (0, 1) and 0 < s < 1 fixed.
Then there are C1, C2 > 0 independent of ε such that

C1‖u‖Hs(Iε) ≤ ‖u‖Hs
[]
(Iε) ≤ C2‖u‖Hs(Iε), ∀u ∈ Hs(Iε),

where Hs
[](Iε) is the complex interpolation space

Hs
[](Iε) = [L2(Iε), H

1(Iε)]s, for 0 < s < 1.

Proposition 1. For each ε > 0, we have H1(Ωε) ⊆ L2(0, 1;Hs(0, Gε(x1))) for
all 0 ≤ s ≤ 1, with constant of inclusion independent of ε. Besides H1(Ωε) ⊆
L2(0, 1;Hs(0, Gε(x1))) with compact immersion if 0 < s < 1.

According to the properties of our domains Ωε defined in (4), we also have the
important result.

Proposition 2. The family of sets Ωε admits a continuous extension operator
Pε : L2(Ωε)→ L2(U), where the open set U = U1×U2 ⊂ R2 is such that the closure
of Ωε is contained in U for all ε > 0, and

‖Pεuε‖H1(U) ≤ C0‖uε‖H1(Ωε),

‖Pεuε‖L2(U1;Hs(U2)) ≤ Cs‖uε‖L2(0,1;Hs(0,Gε(x))),

‖Pεuε‖L2(U) ≤ C1‖uε‖L2(Ωε),

where the constants C0, Cs, C1 > 0 are independent of ε > 0 and 0 ≤ s ≤ 1.



8 JOSÉ M. ARRIETA, ARIADNE NOGUEIRA AND MARCONE C. PEREIRA

Proof. By hypothesis H(i), we have |G′ε(x)| ≤ C for all x ∈ (0, 1), with C > 0
independent of ε > 0. Thus, the proof follows from the extension operator defined
in [10, Lemma 3.1].

Our next step is to prove some inclusions involving Sobolev fractional spaces and
Sobolev-Bochner generalized spaces that will be useful in the further analysis of
concentrating integrals.

Proposition 3. For ε > 0 and considering the domains defined in (4), the following
inclusions hold with immersion constants independent of ε.

(a) H1(Ωε) ⊂ L∞(0, 1;L2(0, Gε(x)));
(b) if q ≥ 2 then H1(Ωε) ⊂ Lq(0, 1;Hs(0, Gε(x))), where s = 2/q;
(c) H1(Ωε) ⊂ Lq(Ωε), for 2 ≤ q ≤ 6.

Proof. (a) For each x1 ∈ (0, 1), we can use the extension operator given by Propo-
sition 2 to get

‖u(x1, ·)‖L2(0,Gε(x1)) ≤ ‖Pεu(x1, ·)‖L2(0,G1).

Hence,

‖u‖L∞(0,1;L2(0,Gε(x1))) ≤ ‖Pεu‖L∞(0,1;L2(0,G1)). (8)

From [15, Corollary 1.4.36] follows that

‖Pεu‖L∞(0,1;L2(0,G1)) ≤ C‖Pεu‖H1(0,1;L2(0,G1)) ≤ C‖Pεu‖H1(U). (9)

Thus using (9) in (8) and the continuity of Pε with constant C1 = ‖Pε‖L(H1(Ωε),H1(U))

uniformly bounded for each ε, we have

‖u‖L∞(0,1;L2(0,Gε(x1))) ≤ C‖Pεu‖H1(U) ≤ CC1‖u‖H1(Ωε),

which concludes the proof.
(b) First of all, let q ≥ 2 and define s = 2/q, 0 < s ≤ 1. For each x1 ∈ (0, 1)

fixed, we have by Theorem 3.4 and properties of interpolation spaces that there
exists C > 0, independent of ε and x1, such that

‖u(x1, ·)‖Hs(0,Gε(x1)) ≤ C‖u(x1, ·)‖Hs
[]
(0,Gε(x1))

≤ C‖u(x1, ·)‖1−sL2(0,Gε(x1))‖u(x1, ·)‖sH1(0,Gε(x1)).

Since by the item (a) H1(Ωε) ⊂ L∞(0, 1;L2(0, Gε(x1))), we have that

‖u(x1, ·)‖Hs(0,Gε(x1)) ≤ C‖u‖1−sH1(Ωε)‖u(x1, ·)‖sH1(0,Gε(x1)).

On the other hand, Proposition 1 implies H1(Ωε) ⊂ L2(0, 1;H1(0, Gε(x1))), and
then,

‖u‖qLq(0,1;Hs(0,Gε(x1))) =

∫ 1

0

‖u(x1, ·)‖2/sHs(0,Gε(x1))dx1

≤
∫ 1

0

(
C‖u‖1−sH1(Ωε)‖u(x1, ·)‖sH1(0,Gε(x1))

)2/s

dx1

≤ C2/s‖u‖2(1−s)/s
H1(Ωε)

∫ 1

0

‖u(x1, ·)‖2H1(0,Gε(x1))dx1

≤ C2/s‖u‖2(1−s)/s
H1(Ωε) ‖u‖

2
H1(Ωε) = C2/s‖u‖2/sH1(Ωε) = Cq‖u‖qH1(Ωε).

Thus, H1(Ωε) ⊆ Lq(0, 1;H2/q(0, Gε(x1))) for q ≥ 2.
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(c) Since Lq(Ωε) = Lq(0, 1;Lq(0, Gε(x1))) isometrically, we conclude the proof
by item (b) if we show

H2/q(0, Gε(x1)) ⊆ Lq(0, Gε(x1))

with constant of inclusion independent of x1 ∈ (0, 1) and ε > 0.
If q = 2, it follows from the definition of the spaces. If 2 < q ≤ 4, then 1/2 ≤

2/q < 1. Hence, by [26, Theorem 1.36] we get

H2/q(R) ⊆ H 1
2 (R) ⊆ Lr(R), ∀r ≥ 2.

In particular, it holds for r = q with 2 ≤ q ≤ 4. Besides, by the operator P :
Hs(0, Gε(x1))→ Hs(R) from Lemma 3.3, whose norm is independent of ε > 0 and
x1 ∈ (0, 1) for any 1/2 < s < 1, we have

‖u(x1, ·)‖Lq(0,Gε(x1)) ≤ ‖Pu(x1, ·)‖Lq(R) ≤ C‖Pu(x1, ·)‖
H

1
2 (R)

≤ C‖Pu(x1, ·)‖H2/q(R) ≤ C‖P‖‖u(x1, ·)‖H2/q(0,Gε(x1)).

Finally, if 4 < q ≤ 6, then 1/3 ≤ 2/q < 1/2. Again by [26, Theorem 1.36], we get

H2/q(R) ⊆ Lr(R), ∀2 ≤ r ≤ 2

1− 2s
.

In particular, since q =
2

s
≤ 2

1− 2s
, we obtain that

H2/q(R) ⊆ Lq(R).

Hence, we conclude the proof arguing as in the previous case 2 ≤ q ≤ 4.

4. Concentrating integrals and its behavior at the limit. Our first results
are about concentrating integrals. Notice that some estimates are given in different
functional spaces. Under the conditions of Proposition 3, we may improve [12,
Theorem 3.7] estimating the concentrated integrals with the H1(Ωε) norm.

Theorem 4.1. For ε0 > 0 sufficiently small, there is a constant C > 0, independent
of ε ∈ (0, ε0) and uε ∈ H1(Ωε), such that, for all 1

2 < s ≤ 1, 0 < ε < ε0, we have

1

ε

∫
θε

|uε|q ≤ C‖uε‖qLq(0,1;Hs(0,Gε(x1))), ∀q ≥ 1, (10)

and

1

ε

∫
θε

|uε|2 ≤ C

(
‖uε‖2Hs(Ωε) +

∥∥∥∥∂uε∂x2

∥∥∥∥2

L2(Ωε)

)
. (11)

In particular,
1

ε

∫
θε

|uε|q ≤ C‖uε‖qH1(Ωε), 2 ≤ q < 4. (12)

Proof. Take u ∈ H1(Ωε). In a.e. x1 ∈ (0, 1), we have u(x1, ·) ∈ H1(0, Gε(x1)).
Define

z∗ := G0 − ε0H1 and zε := Gε(x1)− εHε(x1)

for ε0 > 0 sufficiently small in such way that, for all ε < ε0, we have

[zε − z∗, zε] ⊂ [0, Gε(x1)].

See Figure 2 for a representation.
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Figure 2. Fixed x1 ∈ (0, 1) and ε > 0, we get a fiber of the
oscillatory domain for ε < ε0.

Since (Gε(x1) − εHε(x1)) < x2 < Gε(x1) and 1
2 < s ≤ 1, it follows from [19,

Theorem 1.5.1.3] for n = 1 that there exists K > 0 independent of ε > 0 such that

|u(x1, x2)| ≤ K‖u(x1, ·)‖Hs(x2−z∗,x2) ≤ K‖u(x1, ·)‖Hs(0,Gε(x1)).

Indeed, the interval where we are applying the result is fixed and independent of
the parameters ε > 0 and x1 ∈ (0, 1).

Hence,

1

ε

∫
θε

|u|q =

∫ 1

0

1

ε

∫ Gε(x1)

Gε(x1)−εHε(x1)

|u(x1, x2)|qdx2dx1

≤
∫ 1

0

1

ε

∫ Gε(x1)

Gε(x1)−εHε(x1)

Kq‖u(x1, ·)‖qHs(0,Gε(x1))dx2dx1

≤ KqH1

∫ 1

0

‖u(x1, ·)‖qHs(0,Gε(x1))dx1 = C1‖u‖qLq(0,1;Hs(0,Gε(x1))),

where C2 is independent of ε, proving (10).
Consequently, taking q = 2/s, since by Proposition 3(b) we have H1(Ωε) ⊂

Lq(0, 1;Hs(0, Gε(x1))) for 1
2 < s ≤ 1 with constant independent of ε, it follows that

1

ε

∫
θε

|u|q ≤ Kq

∫ 1

0

‖u(x1, ·)‖qHs(0,Gε(x1))dx1

= Kq‖u‖qLq(0,1;Hs(0,Gε(x1))) ≤ C‖u‖
q
H1(Ωε),

proving (12).
Now, let us prove (11). Here we use that C∞(Ωε) is dense in H1(Ωε) (see

[19, Theorem 1.4.2.2]). Let u ∈ C∞(Ωε) and fixed x1 ∈ (0, 1). By Fundamental
Theorem of Calculus, we have

u(x1, x2) = u(x1, 0) +

∫ x2

0

∂u

∂x2
(x1, s)ds.

Then

|u(x1, x2)|2 ≤ 2|u(x1, 0)|2 + 2

(∫ x2

0

∣∣∣∣ ∂u∂x2
(x1, s)

∣∣∣∣2 ds
) 1

2 (∫ x2

0

12ds

) 1
2

2

≤ 2|u(x1, 0)|2 + 2Gε(x1)

∫ x2

0

∣∣∣∣ ∂u∂x2
(x1, s)

∣∣∣∣2 ds.
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Consequently,∫ Gε(x1)

Gε(x1)−εHε(x1)

|u(x1, x2)|2dx2 ≤ 2

∫ Gε(x1)

Gε(x1)−εHε(x1)

|u(x1, 0)|2dx2

+ 2Gε(x1)

∫ Gε(x1)

Gε(x1)−εHε(x1)

(∫ x2

0

∣∣∣∣ ∂u∂x2
(x1, s)

∣∣∣∣2 ds
)
dx2

≤ 2εH1|u(x1, 0)|2 + 2G1εH1

∫ Gε(x1)

0

∣∣∣∣ ∂u∂x2
(x1, x2)

∣∣∣∣2 dx2.

Hence, if γ(u) is the trace of u given by [19, Theorem 1.5.1.3], we get

1

ε

∫
θε

|u|2 =
1

ε

∫ 1

0

∫ Gε(x1)

Gε(x1)−εHε(x1)

|u(x1, x2)|2dx2dx1

≤ 2H1

∫ 1

0

|u(x1, 0)|2dx1 + 2G1H1

∫ 1

0

∫ Gε(x1)

0

∣∣∣∣ ∂u∂x2
(x1, x2)

∣∣∣∣2 dx2dx1

≤ 2H1‖γ(u)‖2L2(0,1) + 2H1G1

∥∥∥∥ ∂u∂x2

∥∥∥∥2

L2(Ωε)

.

On the other hand, if Ω0 = (0, 1)× (0, G0), we have Ω0 ⊂ Ωε, and there exists a
constant c > 0 such that ‖γ(u)‖L2(0,1) ≤ c‖u‖Hs(Ω0) for all 1

2 < s ≤ 1. Then, due
to the previous inequality with k = 2H1,

1

ε

∫
θε

|u|2 ≤ kc‖u‖2Hs(Ω0) + kG1

∥∥∥∥ ∂u∂x2

∥∥∥∥2

L2(Ωε)

≤ C1

(
‖u‖2Hs(Ωε) +

∥∥∥∥ ∂u∂x2

∥∥∥∥2

L2(Ωε)

)

with C1 independent of ε.

Notice that the above theorem is important because give us a better range of
estimates with the H1(Ωε) norm. However, the space may still varies with respect
to the parameter ε.

Now we may study the behavior of the integrals which set the problem. We start
analyzing the terms without concentration.

Proposition 4. Let U ⊂ R2 an open set such that Ωε ⊂ U for all ε > 0. If
u, ϕ ∈ H1(U) then∫

Ωε

u(x1, x2)ϕ(x1, x2)dx2dx1 −→
∫

Ω

u(x1, x2)ϕ(x1, x2)dx2dx1, as ε→ 0.

Proof. Using [19, Theorem 1.4.2.1], we know that

C∞c (Ū) := {u ∈ C∞(U); u = v|U , com v ∈ C∞c (R2)}

is dense in H1(U). Hence, we can assume u, ϕ ∈ C∞c (Ū). Then, since Gε(x1) =
m(x1) + εgε(x1), where gε(x1) = g(x1/ε

α) with 0 < α ≤ 1, performing the change
of variables

y1 = x1, y2 =
x2 −m(x1)

εgε(x1)
,
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we get∫
Ωε

u(x1, x2)ϕ(x1, x2)dx2dx1 =

∫ 1

0

∫ m(x1)+εgε(x1)

0

u(x1, x2)ϕ(x1, x2)dx2dx1

=

∫ 1

0

∫ m(x1)

0

u(x1, x2)ϕ(x1, x2)dx2dx1

+

∫ 1

0

∫ m(x1)+εgε(x1)

m(x1)

u(x1, x2)ϕ(x1, x2)dx2dx1

=

∫
Ω

u(x1, x2)ϕ(x1, x2)dx2dx1

+ ε

∫ 1

0

∫ 1

0

u(y1,m(y1) + y2εgε(y1))ϕ(y1,m(y1) + y2εgε(y1))gε(y1)dy2dy1

→
∫

Ω

u(x1, x2)ϕ(x1, x2)dx2dx1,

since u, ϕ ∈ C∞c (Ū) and gε(x1) is bounded by Hypothesis H(i) from the domain
(4). Thus the result is valid through density properties.

We can also prove results concerning to the behavior of the trace operator at
ε = 0. Notice that, at the limit, a coefficient term appears capturing the geometry
of the oscillating domain Ωε and the oscillatory strip θε.

Proposition 5. Let U ⊂ R2 an open set such that Ωε ⊂ U for all ε > 0. If
u, ϕ ∈ H1(U) then

1

ε

∫
θε

u(x1, x2)ϕ(x1, x2)dx2dx1 −→
∫

Γ

µ̂γ(u)γ(ϕ)dS, as ε→ 0,

where γ is the trace operator given by [19, Theorem 1.5.1.3] and µ̂ given by (6).

Proof. Again, due to [19, Theorem 1.4.2.1], we know that C∞c (Ū) := {u ∈ C∞(U); u
= v|U , com v ∈ C∞c (R2)} is dense in H1(U) and we can assume u, ϕ ∈ C∞c (Ū).
Then, performing the change of variables

y1 = x1, y2 =
x2 −Gε(x1) + εHε(x1)

εHε(x1)
,

we get

1

ε

∫
θε

u(x1, x2)ϕ(x1, x2)dx2dx1 =
1

ε

∫ 1

0

∫ Gε(x1)

Gε(x1)−εHε(x1)

u(x1, x2)ϕ(x1, x2)dx2dx1

=

∫ 1

0

∫ 1

0

u(y1, Gε(y1)− εHε(y1)(1− y2))ϕ(y1, Gε(y1)− εHε(y1)(1− y2))Hε(y1)dy2dy1

=

∫ 1

0

∫ 1

0

(u(y1, Gε(y1)− εHε(y1)(1− y2))− u(y1,m(y1)))

ϕ(y1, Gε(y1)− εHε(y1)(1− y2))Hε(y1)dy2dy1

+

∫ 1

0

∫ 1

0

u(y1,m(y1))(ϕ(y1, Gε(y1)− εHε(y1)(1− y2))− ϕ(y1,m(y1)))Hε(y1)dy2dy1

+

∫ 1

0

∫ 1

0

u(y1,m(y1))ϕ(y1,m(y1))(Hε(y1)− µh)dy2dy1

+ µh

∫ 1

0

u(y1,m(y1))ϕ(y1,m(y1))dy1 → µh

∫ 1

0

u(y1,m(y1))ϕ(y1,m(y1))µhdy1,
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as ε → 0, since Gε → m by Hypothesis H(i) from the domain (4). Finally, we
obtain ∫ 1

0

µhu(y1,m(y1))ϕ(x1,m(x1))dy1 =

∫
Γ

µ̂γ(u)γ(ϕ)dS

changing variables on the line integral, where µ̂ is given by (6), proving the result
using density and trace operator properties.

Remark 4. The function µ̂ given by (6) is independent of the parametrization
chosen in Γ and, therefore, is unique.

We also have similar results to nonlinearities Φ, f .

Corollary 1. Let U ⊂ R2 an open set such that Ωε ⊂ U for all ε > 0. If u, ϕ ∈
H1(U) and Φ, f : R→ R bounded functions of class C1, then∫

Ωε

Φ(u(x1, x2))ϕ(x1, x2)dx2dx1 →
∫

Ω

Φ(u(x1, x2))ϕ(x1, x2)dx2dx1

and

1

ε

∫
θε

f(u(x1, x2))ϕ(x1, x2)dx2dx1 →
∫

Γ

µ̂γ(f(u))γ(ϕ)dS,

as ε→ 0, where γ is the trace operator given by [19, Theorem 1.5.1.3] and µ̂ ∈ L∞(Γ)
is the coefficient given by (6).

Proof. Arguing as in the proof of Propositions 4 and 5, we can assume u, ϕ ∈
C∞c (Ū). Then, using the same change of variables as before and noting that f is
C1, we have, for instance,

1

ε

∫
θε

f(u)ϕdx2dx1 =
1

ε

∫ 1

0

∫ Gε(x1)

Gε(x1)−εHε(x1)

f(u(x1, x2))ϕ(x1, x2)dx2dx1

=

∫ 1

0

∫ 1

0

f(u(y1, Gε(y1)− εHε(y1)(1− y2)))

ϕ(y1, Gε(y1)− εHε(y1)(1− y2))Hε(y1)dy2dy1

→
∫

Γ

µ̂γ(f(u))γ(ϕ)dS, as ε→ 0.

The other convergence is analogous.

The following corollaries possess similar proofs.

Corollary 2. Let U ⊂ R2 an open set such that Ωε ⊂ U for all ε > 0. If u, ϕ, ψ ∈
H1(U), then∫

Ωε

u(x1, x2)ϕ(x1, x2)ψ(x1, x2)dx2dx1 →
∫

Ω

u(x1, x2)ϕ(x1, x2)ψ(x1, x2)dx2dx1

and

1

ε

∫
θε

u(x1, x2)ϕ(x1, x2)ψ(x1, x2)dx2dx1 →
∫

Γ

µ̂γ(u)γ(ϕ)γ(ψ)dS,

as ε→ 0, where γ is the trace operator given by [19, Theorem 1.5.1.3] and µ̂ ∈ L∞(Γ)
is the coefficient given by (6).
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Corollary 3. Let U ⊂ R2 an open set such that Ωε ⊂ U for all ε > 0. If u, ϕ, ψ ∈
H1(U) and f,Φ : R→ R bounded functions of class C1, then∫

Ωε

Φ(u(x1, x2))ϕ(x1, x2)ψ(x1, x2)dx2dx1 →
∫

Ω

Φ(u(x1, x2))ϕ(x1, x2)ψ(x1, x2)dx2dx1

and

1

ε

∫
θε

f(u(x1, x2))ϕ(x1, x2)ψ(x1, x2)dx2dx1 →
∫

Γ

µ̂γ(f(u))γ(ϕ)γ(ψ)dS,

as ε→ 0, where γ is the trace operator given by [19, Theorem 1.5.1.3] and µ̂ ∈ L∞(Γ)
is the coefficient given by (6).

5. Nonlinear maps. In this section we discuss the main properties of the maps
used to describe the reaction terms on the nonlinearities of the elliptic problems (1)
and (2). For 1

2 < s < 1, consider the Sobolev-Bochner spaces

Xε = L2(0, 1;Hs(0, Gε(x1))) and X ′ε = L2(0, 1; {Hs(0, Gε(x1))}′).

Then define

Fε : H1(Ωε)→ X ′ε

u 7→ Fε(u) : Xε → R (13)

v 7→ 〈Fε(u), v〉 =

∫
Ωε

Φ(u)v +
1

ε

∫
θε

f(u)v,

where Φ, f ∈ C2(R) are bounded functions with bounded derivatives.

Remark 5. Notice that the assumption Φ, f ∈ C2(R) bounded with bounded
derivatives it is not a big restriction since we are interested in analyze f(u) when u
is uniformly bounded in L∞(Ωε). More details can be found in [9, Remark 2.2] or
[7, Remark 2.2].

Remark 6. Notice that L2(Ωε) ⊂ Xε with constant independent of ε. Indeed, it
follows from [24, Proposition 2.1] that, if u ∈ Xε,

‖u‖2L2(Ωε) =

∫ 1

0

∫ Gε(x1)

0

|u(x1, x2)|2dx2dx1 =

∫ 1

0

‖u(x1, ·)‖2L2(0,Gε(x1))dx1

≤
∫ 1

0

C‖u(x1, ·)‖2Hs(0,Gε(x1))dx1 = C‖u‖2Xε
,

where C > 0 is independent of the domain and, furthermore, of ε.

Now we prove an analogous result to [6, Lemma 3.6] and [25, Lemma 3.1].

Proposition 6. The function Fε defined in (13) satisfies for constants independent
of ε:

(a) there exists K > 0 such that

sup
uε∈H1(Ωε)

‖Fε(uε)‖X′ε ≤ K;

(b) Fε is globally Lipschitz continuous, that is, there exists L > 0 such that

‖Fε(uε1)− Fε(uε2)‖X′ε ≤ L‖u
ε
1 − uε2‖H1(Ωε), ∀uε1, uε2 ∈ H1(Ωε).
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(c) Fε is Frechet differentiable, with

F ′ε : H1(Ωε)→ L(H1(Ωε), X
′
ε)

uε 7→ F ′ε(u
ε) : H1(Ωε)→ X ′ε

wε 7→ F ′ε(u
ε)(wε) : Xε → R

vε 7→ 〈F ′ε(uε)(wε), vε〉 =

∫
Ωε

Φ′(uε)wεvε +
1

ε

∫
θε

f ′(uε)wεvε;

(d) fixed uε ∈ H1(Ωε), there is C̄ > 0 such that

‖F ′ε(uε)(wε2 − wε1)‖X′ε ≤ C̄‖w
ε
2 − wε1‖H1(Ωε), ∀wε1, wε2 ∈ H1(Ωε);

(e) there are ϑ ∈ (0, 1) and M > 0 such that

‖F ′ε(uε)− F ′ε(vε)‖L(H1(Ωε),X′ε) ≤M‖uε − vε‖ϑXε
, ∀uε, vε ∈ Xε;

(f) there is k > 0 such that

‖Fε(uε + vε)−Fε(uε)−F ′ε(uε)vε‖X′ε ≤ k‖v
ε‖1+δ
H1(Ωε), ∀δ ∈ (0, 1), ∀uε, vε ∈ H1(Ωε).

Proof. (a) For uε ∈ H1(Ωε),

‖Fε(uε)‖X′ε = sup
‖vε‖Xε=1

|〈Fε(uε), vε〉|.

Hence, if vε ∈ Xε, it follows from Theorem 4.1 and Remark 6 that

|〈Fε(uε), vε〉| ≤
∫

Ωε

|Φ(uε)vε|+ 1

ε

∫
θε

|f(uε)vε|

≤
(∫

Ωε

|Φ(uε)|2
) 1

2
(∫

Ωε

|vε|2
) 1

2

+

(
1

ε

∫
θε

|f(uε)|2
) 1

2
(

1

ε

∫
θε

|vε|2
) 1

2

≤
(

sup
x∈R
|Φ(x)|

)
G

1
2
1 ‖vε‖L2(Ωε) +

(
sup
x∈R
|f(x)|

)
H

1
2
1 C‖vε‖Xε

≤ K‖vε‖Xε

Therefore

sup
uε∈H1(Ωε)

‖Fε(uε)‖X′ε ≤ K.

(b) Indeed, for any uε1, u
ε
2 ∈ H1(Ωε), we have

‖Fε(uε1)− Fε(uε2)‖X′ε = sup
‖vε‖Xε=1

|〈Fε(uε1), vε〉 − 〈Fε(uε2), vε〉|.

Using Mean Value Theorem, with Theorem 4.1 and Remark 6 again, we get

|〈Fε(uε1), vε〉 − 〈Fε(uε2), vε〉| = |〈Fε(uε1)− Fε(uε2), vε〉|

≤
∫

Ωε

|(Φ(uε1)− Φ(uε2))vε|+ 1

ε

∫
θε

|(f(uε1)− f(uε2))vε|

≤
(∫

Ωε

|Φ(uε1)− Φ(uε2)|2
) 1

2
(∫

Ωε

|vε|2
) 1

2
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+

(
1

ε

∫
θε

|f(uε1)− f(uε2)|2
) 1

2
(

1

ε

∫
θε

|vε|2
) 1

2

≤
(

sup
x∈R
|Φ′(x)|

)
‖uε1 − uε2‖L2(Ωε)‖vε‖L2(Ωε)

+

(
sup
x∈R
|f ′(x)|

)
C2‖uε1 − uε2‖H1(Ωε)‖vε‖Xε

≤L‖uε1 − uε2‖H1(Ωε)‖vε‖Xε .

Thus

‖Fε(uε1)− Fε(uε2)‖X′ε ≤ L‖u
ε
1 − uε2‖H1(Ωε)

and, therefore, Fε is globally Lipschitz with constant independent of ε.
(c) In fact, if uε, hε ∈ H1(Ωε) and vε ∈ Xε, applying Mean Value Theorem,

|〈Fε(uε + hε)− Fε(uε)− F ′ε(uε)hε, vε〉| ≤

≤
∫

Ωε

|Φ(uε + hε)− Φ(uε)− Φ′(uε)hε||vε|

+
1

ε

∫
θε

|f(uε + hε)− f(uε)− f ′(uε)hε||vε|

≤
(∫

Ωε

|Φ(uε + hε)− Φ(uε)− Φ′(uε)hε|2
) 1

2
(∫

Ωε

|vε|2
) 1

2

+

(
1

ε

∫
θε

|f(uε + hε)− f(uε)− f ′(uε)hε|2
) 1

2
(

1

ε

∫
θε

|vε|2
) 1

2

where uε(x) ≤ ξε(x), ζε(x) ≤ (uε + hε)(x).
Thus it follows that

|〈Fε(uε + hε)− Fε(uε)− F ′ε(uε)hε, vε〉| ≤
(∫

Ωε

|(Φ′(ζε)− Φ′(uε))hε|2
) 1

2

‖vε‖L2(Ωε)

+ C

(
1

ε

∫
θε

|(f ′(ξε)− f ′(uε))hε|2
) 1

2

‖vε‖Xε

(14)

We will analyze the second part of (14). Notice that, applying Mean Value
Theorem again, we get

|(f ′(ξε)− f ′(uε))hε|2 ≤ |f ′′(ηε)|2|ξε − uε|2|hε|2 ≤
(

sup
x∈R
|f ′′(x)|

)
|hε|4 (15)

for ξε(x) ≤ ηε(x) ≤ uε(x), for all x ∈ Ωε.
On the other side,

|(f ′(ξε)− f ′(uε))hε|2 = |f ′(ξε)− f ′(uε)|2|hε|2 ≤ 2

(
sup
x∈R
|f ′(x)|

)2

|hε|2. (16)

Then putting (15) and (16) together, we have

|(f ′(ξε)− f ′(uε))hε|2 ≤ K min{|hε|2, 1}|hε|2. (17)

However, for all δ ∈ [0, 1],

min{|hε|2, 1} = min{|hε|2, 1}δ min{|hε|2, 1}1−δ ≤ |hε|2δ
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and, thus, (17) became

|(f ′(ξε)− f ′(uε))hε|2 ≤ K2|hε|2(1+δ), ∀δ ∈ [0, 1].

Analogously, using the properties of Φ we may say that, for the first part of (14),

|(Φ′(ζε)− Φ′(uε))hε|2 ≤ K1|hε|2(1+δ), ∀δ ∈ [0, 1].

Then it follows from (14) and using Remark 6 that

|〈Fε(uε + hε)− Fε(uε)− F ′ε(uε)hε, vε〉| ≤ K1

(∫
Ωε

|hε|2(1+δ)

) 1
2

‖vε‖Xε

+K2

(
1

ε

∫
θε

|hε|2(1+δ)

) 1
2

‖vε‖Xε
.

Furthermore, if δ ∈ (0, 1), we can use Theorem 4.1 to get

‖Fε(uε + hε)− Fε(uε)− F ′ε(uε)hε‖X′ε

≤ K1

(∫
Ωε

|hε|2(1+δ)

) 1
2

+K2

(
1

ε

∫
θε

|hε|2(1+δ)

) 1
2

≤ C‖hε‖1+δ
H1(Ωε).

Consequently,

‖Fε(uε + hε)− Fε(uε)− F ′ε(uε)hε‖X′ε
‖hε‖H1(Ωε)

≤ C2‖hε‖δH1(Ωε) → 0

when ‖hε‖H1(Ωε) → 0 and, thus, Fε is Frechet differentiable.

(d) Indeed, since Φ,Φ′,Φ′′, f, f ′, f ′′ are bounded, if wε1, w
ε
2 ∈ H1(Ωε) and vε ∈

Xε, we have by Theorem 4.1

|〈F ′ε(uε)wε2 − F ′ε(uε)wε1, vε〉|

≤
∫

Ωε

|(Φ′(uε)wε2 − Φ′(uε)wε1)vε|+ 1

ε

∫
θε

|(f ′(uε)wε2 − f ′(uε)wε1)vε|

≤
(

sup
x∈R
|Φ′(x)|

)(∫
Ωε

|wε2 − wε1|2
) 1

2
(∫

Ωε

|vε|2
) 1

2

+

(
sup
x∈R
|f ′(x)|

)(
1

ε

∫
θε

|wε2 − wε1|2
) 1

2
(

1

ε

∫
θε

|vε|2
) 1

2

≤C‖wε2 − wε1‖H1(Ωε)‖v‖Xε .

It follows that

‖F ′ε(uε)(wε2 − wε1)‖X′ε ≤ C‖w
ε
2 − wε1‖H1(Ωε),

proving the result.
(e) If uε, vε ∈ H1(Ωε) and wε ∈ Xε,

‖F ′ε(uε)− F ′ε(vε)‖L(H1(Ωε),X′ε) = sup
‖wε‖H1(Ωε)=1

sup
‖zε‖Xε=1

〈(F ′ε(uε)− F ′ε(vε))wε, zε〉.

Hence, if wε ∈ H1(Ωε) and zε ∈ Xε, it follows from Theorem 4.1 and Hölder’s
Inequality Generalized with 3 < q < 4 and 4 < p < 6 (since 1/p+ 1/q = 1

2 ) that
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|〈(F ′ε(uε)− F ′ε(vε))wε, zε〉|

≤
∫

Ωε

|(Φ′(uε)− Φ′(vε))wεzε|+ 1

ε

∫
θε

|(f ′(uε)− f ′(vε))wεzε|

≤
(∫

Ωε

|Φ′(uε)− Φ′(vε)|p
) 1

p
(∫

Ωε

|wε|q
) 1

q
(∫

Ωε

|zε|2
) 1

2

+

(
1

ε

∫
θε

|f ′(uε)− f ′(vε)|p
) 1

p
(

1

ε

∫
θε

|wε|q
) 1

q
(

1

ε

∫
θε

|zε|2
) 1

2

≤ C

[(∫
Ωε

|Φ′(uε)− Φ′(vε)|p
) 1

p

+

(
1

ε

∫
θε

|f ′(uε)− f ′(vε)|p
) 1

p

]
‖wε‖H1(Ωε)‖z

ε‖Xε .

Thus,

‖F ′ε(uε)−F ′ε(vε)‖L(H1(Ωε),X′ε) = sup
‖zε‖Xε=1

|〈(F ′ε(uε)− F ′ε(vε))wε, zε〉|

≤

[(∫
Ωε

|Φ′(uε)− Φ′(vε)|p
) 1

p

+

(
1

ε

∫
θε

|f ′(uε)− f ′(vε)|p
) 1

p

]
.

Now, for all x ∈ Ωε, we have

|f ′(uε(x))− f ′(vε(x))| ≤ 2

(
sup
x∈R
|f ′(x)|

)
.

On the other hand, by Mean Value Theorem,

|f ′(uε(x))− f ′(vε(x))| ≤
(

sup
x∈R
|f ′′(x)|

)
|uε(x)− vε(x)|.

Thus, if ϑ ∈ (0, 1),

|f ′(uε)− f ′(vε)|p ≤ K1 min{1, |uε − vε|p}

= K1 min{1, |uε − vε|p}ϑ min{1, |uε − vε|p}1−ϑ

≤ K1|uε − vε|ϑp.

Taking ϑ such that ϑp = 2 (ie, for some 1/3 < ϑ < 1
2 ), it follows that(

1

ε

∫
θε

|f ′(uε)− f ′(vε)|p
)1/p

≤
(

1

ε

∫
θε

K1|uε − vε|2
)1/p

≤M1‖uε − vε‖ϑH1(Ωε).

In a similar way,(∫
Ωε

|Φ′(uε)− Φ′(vε)|p
)1/p

≤
(∫

Ωε

K̄2|uε − vε|2
)1/p

≤ M̄2‖uε − vε‖ϑH1(Ωε).

Furthermore, for some ϑ ∈ (0, 1),

‖F ′ε(uε)− F ′ε(vε)‖L(H1(Ωε),X′ε) ≤M‖uε − vε‖ϑH1(Ωε)

(f ) If uε, vε ∈ H1(Ωε) and zε ∈ Xε,

〈Fε(uε + vε)− Fε(uε)− F ′ε(uε)vε, zε〉 =

=

∫
Ωε

(Φ(uε + vε)− Φ(uε)− Φ′(uε)vε)zε +
1

ε

∫
θε

(f(uε + vε)− f(uε)− f ′(uε)vε)zε.
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Hence, we can argue as in the proof of item (c) to obtain, for any δ ∈ (0, 1), that

1

ε

∫
θε

|f(uε + vε)− f(uε)− f ′(uε)vε||zε| ≤

≤
(∫

Ωε

|Φ(uε + vε)− Φ(uε)− Φ′(uε)vε|2
) 1

2
(∫

Ωε

|zε|2
) 1

2

+

+

(
1

ε

∫
θε

|f(uε + vε)− f(uε)− f ′(uε)vε|2
) 1

2
(

1

ε

∫
θε

|zε|2
) 1

2

≤ C1

(∫
Ωε

|vε|2(1+δ)

) 1
2

‖zε‖Xε
+ C2

(
1

ε

∫
θε

|vε|2(1+δ)

) 1
2

‖zε‖Xε

≤ k‖vε‖1+δ
H1(Ωε)‖z

ε‖Xε
.

Therefore,

‖Fε(uε + vε)− Fε(uε)− F ′ε(uε)vε‖X′ε ≤ k‖v
ε‖1+δ
H1(Ωε), ∀δ ∈ (0, 1),

which concludes the proof.

Remark 7. The results from Proposition 6 are also valid if

Fε : H1(Ωε)→ H−1(Ωε)

u 7→ Fε(u) : H1(Ωε)→ R

v 7→ 〈Fε(u), v〉 =

∫
Ωε

Φ(u)v +
1

ε

∫
θε

f(u)v

or

Fε : Xε → H−1(Ωε)

u 7→ Fε(u) : H1(Ωε)→ R

v 7→ 〈Fε(u), v〉 =

∫
Ωε

Φ(u)v +
1

ε

∫
θε

f(u)v.

This is a consequence of Proposition 1 and Theorem 4.1.

6. Upper and lower semicontinuity of solutions. Our main goal in this section
is to prove Theorem 2.6, passing to the limit in problem (1). First of all, we write
equations (1) and (2) in an abstract way. Next, we combine the results from the
previous sections with those ones from [7, 9] concerned with compact convergence
to obtain upper and lower semicontinuity to Eε at ε = 0.

6.1. Abstract setting and existence of solutions. In order to write problem
(1) in an abstract way, we consider the linear operator

Aε : D(Aε) ⊂ L2(Ωε)→ L2(Ωε)

uε 7→ Aεu
ε = −∆uε + uε

with D(Aε) = {uε ∈ H2(Ωε);
∂uε

∂νε = 0}.

Let Z0
ε = L2(Ωε), Z

1
ε = D(Aε) and consider the scale of Hilbert spaces con-

structed by complex interpolation between Z0
ε and Z1

ε . In our context, such spaces
isometrically coincide with the fractional power space of the operator Aε (see
[26, Theorem 16.1]). Such scale can be extended to negative exponents such as
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Z−αε = (Zαε )′ for α > 0. Notice that Z
1
2
ε = H1(Ωε) and Z

− 1
2

ε = (H1(Ωε))
′. Hence,

if we consider the realizations of Aε in this scale, we have Aε,− 1
2
∈ L(Z

1
2
ε , Z

− 1
2

ε ) with

〈Aε,− 1
2
uε, ϕε〉 =

∫
Ωε

∇uε∇ϕε + uεϕε, ∀ϕε ∈ H1(Ωε).

With some abuse of notation we identify all different realizations of this operator
writing as Aε. Then the problem (1) can be rewrite as

Aεu
ε = Fε(u

ε), (18)

where the map Fε is given by

Fε : H1(Ωε)→ X ′ε

uε 7→ Fε(u
ε) : L2(0, 1;Hs(0, Gε(x1)))→ R

vε 7→ 〈Fε(uε), vε〉 =

∫
Ωε

Φ(uε)vε +
1

ε

∫
θε

f(uε)vε,

with 1
2 < s < 1.

Thus, uε ∈ H1(Ωε) is a solution of (18) if, and only if, uε = A−1
ε Fε(u

ε). Then,
uε ∈ H1(Ωε) must be a fixed point of A−1

ε Fε : H1(Ωε) → H1(Ωε). The existence
of such solutions follows from Schaefer Fixed Point Theorem [18, Section 9.2.2,
Theorem 4].

Indeed, as we will see in Proposition 11, we have that the operator A−1
ε Fε is

compact. Hence, to conclude the existence, we just need to prove that

Oε = {ϕε ∈ H1(Ωε); ϕ
ε = A−1

ε Fε(ϕ
ε)}

is a bounded set. Now, it is a direct consequence from Hölder’s Inequality and
Theorem 4.1 since

‖ϕε‖2H1(Ωε) ≤
∫

Ωε

|Φ(ϕε)ϕε|+ 1

ε

∫
θε

|f(ϕε)ϕε|

≤
(

sup
x∈R
|Φ(x)|

)
G

1
2
1

(∫
Ωε

|ϕε|2
) 1

2

+

(
sup
x∈R
|f(x)|

)
H

1
2
1

(
1

ε

∫
θε

|ϕε|2
) 1

2

≤ C‖ϕε‖H1(Ωε),

for any ϕε ∈ Oε.
In a similar way, we can analyze the limit problem given in (2). We first consider

the linear operator A0 ∈ L(H1(Ω), H1(Ω)
′
) with

〈A0 u, ϕ〉 =

∫
Ω

∇u∇ϕ+ uϕ, ∀ϕ ∈ H1(Ω),

and then, we set the nonlinearity

F0 : H1(Ω)→ L2(0, 1; {Hs(0,m(x1))}′)
u 7→ F0(u) : L2(0, 1;Hs(0,m(x1)))→ R

v 7→ 〈F0(u), v〉 =

∫
Ω

Φ(u)v +

∫
Γ

µ̂γ(f(u))γ(v)dS.

Then the limit problem (2) can be rewritten as

A0u = F0(u) (19)
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and, with this notation, u ∈ H1(Ω) is a solution of (19) if, and only if, u = A−1
0 F0(u).

In other words, u ∈ H1(Ω) is a fixed point of A−1
0 F0 : H1(Ω)→ H1(Ω). Again, the

existence of a solution follows from Schauder’s Fixed Point Theorem.

6.2. Extension operator. A particular continuous linear extension operator is
useful here. For the proof see [7, Proposition 4.1].

Proposition 7. Let Ωε be the family of domains defined in (4). Then, for each
1 ≤ p ≤ ∞, there are ε0 > 0 and a continuous extension operator PΩε

: L1(Ωε) →
L1(R2) such that, with the notation X(V ) = Lp(V ) or W 1,p(V ) for an open set
V ⊂ R2, PΩε

transforms functions of X(Ωε) in X(R2) with

‖PΩε
‖L(X(Ωε),X(R2)) ≤ K, for 0 < ε < ε0,

for some K > 0 independent of ε.
Moreover, PΩε is constructed in such way that PΩεu ≡ 0 outside an open set U ,

where U contain the closure of Ωε for all ε > 0.

Remark 8. The construction of operators PΩε allows us to introduce a new family
of operator PΩε,V : X(Ωε) → X(V ) given by PΩε,V = RV PΩε

, where RV is the
restriction to the open set V . Using this notation, PΩε

= PΩε,R2 . We also have
‖PΩε,V ‖L(X(Ωε),X(V )) ≤ C independent of ε (see [7, Remark 4.2]).

The next lemma is convenient to get E-convergence results in Ωε (see [7, Lemma
4.3]).

Lemma 6.1. Let {uε} be a family in H1(Ωε) with ‖uε‖H1(Ωε) ≤M . Then

(i) there is a subsequence of uε, denoted by uεk , and u0 ∈ H1(Ω) such that uεk
E
⇀

u0;
(ii) there is a subsequence of uε, denoted by uεn , and u ∈ H1(U) such that

PΩεn ,U
uεn ⇀ u in H1(U) and uεn

E
⇀ u|Ω.

6.3. Continuity of the equilibria set. We first show that the solutions are uni-
formly bounded in L∞(Ωε).

Proposition 8. If uε ∈ H1(Ωε) is a solution of (18), then there is C > 0 indepen-
dent of ε > 0 such that ‖uε‖L∞(Ωε) ≤ C.

Proof. If uε ∈ H1(Ωε) is solution of (18), we have for all ϕε ∈ H1(Ωε) that∫
Ωε

∂uε

∂x1

∂ϕε

∂x1
+

∫
Ωε

∂uε

∂x2

∂ϕε

∂x2
+

∫
Ωε

uεϕε =

∫
Ωε

Φ(uε)ϕε +
1

ε

∫
θε

f(uε)ϕε.

Now, if Aε,k := {(x1, x2) ∈ Ωε; u
ε(x1, x2) > k} for k > 0, take ϕε = (uε − k)+ ∈

H1(Ωε), where

(uε − k)+(x1, x2) =

{
uε(x1, x2)− k, if (x1, x2) ∈ Aε,k,
0, otherwise.

Then we have∫
Ωε

∂uε

∂x1

∂(uε − k)+

∂x1
+

∫
Ωε

∂uε

∂x2

∂(uε − k)+

∂x2
+

∫
Ωε

uε(uε − k)+

=

∫
Ωε

Φ(uε)(uε − k)+ +
1

ε

∫
θε

f(uε)(uε − k)+.
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Thus using Hölder’s Inequality, Theorem 4.1 and the definition of Aε,k, we get

‖(uε − k)+‖2H1(Ωε) =

∫
Ωε∩Aε,k

Φ(uε)(uε − k)+ +
1

ε

∫
θε∩Aε,k

f(uε)(uε − k)+

−
∫

Ωε∩Aε,k

k(uε − k)+

≤

(∫
Ωε∩Aε,k

|Φ(uε)|2
) 1

2
(∫

Ωε∩Aε,k

|uε − k|2
) 1

2

+

(
1

ε

∫
θε∩Aε,k

|f(uε)|2
) 1

2
(

1

ε

∫
θε∩Aε,k

|uε − k|2
) 1

2

≤
(

sup
x∈R
|Φ(x)|

)
|Aε,k|

1
2 ‖uε − k‖H1(Ωε) +

(
sup
x∈R
|f(x)|

)
|θε|

1
2 |Aε,k|

1
2

ε
1
2

‖uε − k‖H1(Ωε).

Since the set θε has order ε, we obtain that

‖uε − k‖H1(Ωε) ≤ C1|Aε,k|
1
2 (20)

where C1 > 0 is independent of ε > 0.
Otherwise, notice that for p, q conjugates (in other words, 1/p + 1/q = 1) we

have

‖(uε − k)+‖L1(Aε,k) =

∫
Aε,k

(uε − k) ≤

(∫
Aε,k

1p

)1/p(∫
Aε,k

(uε − k)q

)1/q

≤ |Aε,k|1/p‖(uε − k)‖Lq(Ωε). (21)

From Proposition 3(c), we have that H1(Ωε) ⊆ Lq(Ωε) for 2 ≤ q ≤ 4. Thus,
taking 2 < q < 4 and its conjugate 1 < p < 2, we obtain from (20) in (21) that

‖(uε − k)+‖L1(Aε,k) ≤ C2|Aε,k|1/p‖(uε − k)‖H1(Ωε) ≤ K|Aε,k|
1
2 +1/p = K|Aε,k|1+δ

for some δ > 0 since 1
2 < 1/p < 1.

Therefore, applying [22, Lemma 5.1] we obtain ‖uε‖L∞(Ωε) uniformly bounded,
proving the result.

We also need the following lemma.

Lemma 6.2. Let uε, wε ∈ H1(Ωε) given by wε = A−1
ε Fε(u

ε). Then ‖wε‖H1(Ωε) ≤
C for some C > 0 independent of ε.

Proof. Since wε = A−1
ε Fεu

ε, it follows that, for any ϕε ∈ H1(Ωε),∫
Ωε

∂wε

∂x1

∂ϕε

∂x1
+

∫
Ωε

∂wε

∂x2

∂ϕε

∂x2
+

∫
Ωε

wεϕε =

∫
Ωε

Φ(uε)ϕε +
1

ε

∫
θε

f(uε)ϕε.

Therefore, taking ϕε = wε, we have from Hölder’s Inequality, the limitation of
Φ, f and Theorem 4.1 that

‖wε‖2H1(Ωε) ≤
(∫

Ωε

|Φ(uε)|2
) 1

2
(∫

Ωε

|wε|2
) 1

2

+

(
1

ε

∫
θε

|f(uε)|2
) 1

2
(

1

ε

∫
θε

|wε|2
) 1

2

≤
(

sup
x∈R
|Φ(x)|

)
G

1
2
1 ‖wε‖H1(Ωε) +

(
sup
x∈R
|f(x)|

)
H

1
2
1 ‖wε‖H1(Ωε) ≤ C‖wε‖H1(Ωε),

which shows the result.
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Next, we analyze the asymptotic behavior of the nonlinear terms of the problem.

Proposition 9. Let wε, uε ∈ H1(Ωε) and w, u ∈ H1(U) such that PΩε,U (uε) ⇀ u
and PΩε,U (wε) ⇀ w in H1(U), where PΩε,U is the extension operator given by
Proposition 7. Then∫

Ωε

Φ(uε)wε →
∫

Ω

Φ(u)w and
1

ε

∫
θε

f(uε)wε →
∫

Γ

µ̂γ(f(u))γ(w)dS,

where µ̂ is given by (6).

Proof. To prove the first convergence, notice that using the Main Value Theorem
we obtain∣∣∣∣∫

Ωε

Φ(uε)wε −
∫

Ω

Φ(u)w

∣∣∣∣ ≤ ∣∣∣∣∫
Ωε

Φ(uε)(wε − w)

∣∣∣∣+

∣∣∣∣∫
Ωε

(Φ(uε)− Φ(u))w

∣∣∣∣
+

∣∣∣∣∫
Ωε

Φ(u)w −
∫

Ω

Φ(u)w

∣∣∣∣
≤
(∫

Ωε

|Φ(uε)|2
) 1

2
(∫

Ωε

|wε − w|2
) 1

2

+

(∫
Ωε

|Φ(uε)− Φ(u)|2
) 1

2
(∫

Ωε

|w|2
) 1

2

+

∣∣∣∣∫
Ωε

Φ(u)w −
∫

Ω

Φ(u)w

∣∣∣∣
≤
(

sup
x∈R
|Φ(x)|

)
G

1
2
1 ‖wε − w‖L2(Ωε) +

(
sup
x∈R
|Φ′(x)|

)
‖uε − u‖Xε

‖w‖L2(Ωε)

+

∣∣∣∣∫
Ωε

Φ(u)w −
∫

Ω

Φ(u)w

∣∣∣∣ = i+ ii+ iii

Since PΩε,U (uε) ⇀ u and PΩε,U (wε) ⇀ w in H1(U), we have that PΩε,U (uε)→ u
and PΩε,U (wε) → w in L2(U). Using that Φ and Φ′ are uniformly bounded and
properties from the extension operator given by Proposition 7, we obtain

i =

(
sup
x∈R
|Φ(x)|

)
G

1
2
1 ‖wε − w‖L2(Ωε) ≤

(
sup
x∈R
|f(x)|

)
H

1
2
1 ‖PΩε,Uw

ε − w‖L2(U) → 0

and

ii =

(
sup
x∈R
|Φ′(x)|

)
‖uε − u‖L2(Ωε)‖w‖L2(Ωε)

≤
(

sup
x∈R
|f ′(x)|

)
‖PΩε,Uu

ε − u‖L2(U)‖‖w‖L2(U) → 0.

Since iii→ 0 by Corollary 1, we obtain the first result.
On the other side, to prove the second convergence we have∣∣∣∣1ε
∫
θε

f(uε)wε −
∫

Γ

µ̂γ(f(u))γ(w)dS

∣∣∣∣ ≤ ∣∣∣∣1ε
∫
θε

f(uε)(wε − w)

∣∣∣∣
+

∣∣∣∣1ε
∫
θε

(f(uε)− f(u))w

∣∣∣∣+

∣∣∣∣1ε
∫
θε

f(u)w −
∫

Γ

µ̂γ(f(u))γ(w)dS

∣∣∣∣
≤
(

1

ε

∫
θε

|f(uε)|2
) 1

2
(

1

ε

∫
θε

|wε − w|2
) 1

2

+

(
1

ε

∫
θε

|f(uε)− f(u)|2
) 1

2
(

1

ε

∫
θε

|w|2
) 1

2
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+

∣∣∣∣1ε
∫
θε

f(u)w −
∫

Γ

µ̂γ(f(u))γ(w)dS

∣∣∣∣
≤
(

sup
x∈R
|f(x)|

)
H

1
2
1 ‖wε − w‖Xε

+

(
sup
x∈R
|f ′(x)|

)
‖uε − u‖Xε

‖w‖H1(Ωε)

+

∣∣∣∣1ε
∫
θε

f(u)w −
∫

Γ

µ̂γ(f(u))γ(w)dS

∣∣∣∣ = I + II + III,

with Xε = L2(0, 1;Hs(0, Gε(x1))) for 1
2 < s < 1.

Notice that, since we are working on R2, U ⊂ U1 × U2, with U1, U2 ⊂ R open
sets, (0, 1) ⊂ U1 and (0, Gε(x1)) ⊂ U2 for all x1 ∈ (0, 1) and 0 < ε < ε0. Therefore
H1(U) ⊂ H1(U1×U2) ⊂ L2(U1;Hs(U2)) =: XU , where the last inclusion is compact
by Proposition 1. Thus, for some k1, k2 > 0,

I =

(
sup
x∈R
|f(x)|

)
H

1
2
1 ‖wε − w‖Xε

≤ k1H
1
2
1 ‖PΩε,Uw

ε − w‖XU
→ 0

and

II =

(
sup
x∈R
|f ′(x)|

)
‖uε − u‖Xε‖w‖H1(Ωε) ≤ k2‖PΩε,Uu

ε − u‖XU
‖w‖H1(U) → 0.

Finally III → 0 again by Corollary 1 and we conclude the proof.

Proposition 10. Let uε, vε ∈ H1(Ωε) and u, v ∈ H1(U) such that PΩε,U (uε) ⇀
u and PΩε,U (vε) ⇀ v in H1(U), where PΩε,U is the extension operator given by
Proposition 7. Then, for all ϕ ∈ H1(U),∫

Ωε

Φ′(uε)vεϕ→
∫

Ω

Φ′(u)vϕ and
1

ε

∫
θε

f ′(uε)vεϕ→
∫

Γ

µ̂γ(f ′(u))γ(v)γ(ϕ)dS,

where µ̂ is given by (6).

Proof. Indeed, to prove the first result we have∣∣∣∣∫
Ωε

Φ′(uε)vεϕ−
∫

Ω

Φ′(u)vϕ

∣∣∣∣ ≤ ∣∣∣∣∫
Ωε

Φ′(uε)(vε − v)ϕ

∣∣∣∣+

∣∣∣∣∫
Ωε

(Φ′(uε)− Φ′(u))vϕ

∣∣∣∣
+

∣∣∣∣∫
Ωε

Φ′(u)vϕ−
∫

Ω

Φ′(u)vϕ

∣∣∣∣ = i+ ii+ iii

Remembering that Φ,Φ′ are uniformly bounded and that PΩε,U (uε) ⇀ u and
PΩε,U (vε) ⇀ v in H1(U) implies PΩε,U (uε) → u and PΩε,U (vε) → v in L2(U), we
can analyze each term on the right:

i =

∣∣∣∣∫
Ωε

Φ′(uε)(vε − v)ϕ

∣∣∣∣ ≤ (sup
x∈R
|Φ′(x)|

)(∫
Ωε

|vε − v|2
) 1

2
(∫

Ωε

|ϕ|2
) 1

2

≤
(

sup
x∈R
|Φ′(x)|

)
‖vε − v‖L2(Ωε)‖ϕ‖L2(Ωε)

≤
(

sup
x∈R
|Φ′(x)|

)
‖PΩε,Uv

ε − v‖L2(U)‖ϕ‖L2(U) → 0

and using the Sobolev inclusion [26, Theorem 1.36] we have, for some C > 0 inde-
pendent of ε that
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ii =

∣∣∣∣∫
Ωε

(Φ′(uε)− Φ′(u))vϕ

∣∣∣∣ ≤ ∫
Ωε

|(Φ′(uε)− Φ′(u))vϕ|

≤
(

sup
x∈R
|Φ′′(x)|

)(∫
Ωε

|uε − u|2
) 1

2
(∫

Ωε

|v|4
)1/4(∫

Ωε

|ϕ|4
)1/4

≤ ‖uε − u‖L2(Ωε)‖v‖L4(Ωε)‖ϕ‖L4(Ωε) ≤ ‖PΩε,Uu
ε − u‖L2(U)‖v‖L4(U)‖ϕ‖L4(U)

≤ C‖PΩε,Uu
ε − u‖L2(U)‖v‖H1(U)‖ϕ‖H1(U) → 0.

For iii, using Corollary 3,

iii =

∣∣∣∣∫
Ωε

Φ′(u)vϕ−
∫

Ω

Φ′(u)vϕ

∣∣∣∣→ 0,

proving the first result.
To prove the second convergence, we have

1

ε

∫
θε

f ′(uε)vεϕ =
1

ε

∫
θε

f ′(uε)(vε − v)ϕ+
1

ε

∫
θε

(f ′(uε)− f ′(u))vϕ +

+
1

ε

∫
θε

f ′(u)vϕ = I + II + III.

Analyzing each term separately and using the definition of XU given in the proof
of Proposition 9:

I =
1

ε

∫
θε

f ′(uε)(vε − v)ϕ ≤
(

sup
x∈R
|f ′(x)|

)(
1

ε

∫
θε

|vε − v|2
) 1

2
(

1

ε

∫
θε

|ϕ|2
) 1

2

≤ C‖vε − v‖Xε‖ϕ‖H1(Ωε) ≤ C‖PΩε,Uv
ε − v‖XU

‖ϕ‖H1(U) → 0.

Since f ′ is C1, applying Corollary 3, we get

III =
1

ε

∫
θε

f ′(u)vϕ→
∫

Γ

µ̂γ(f ′(u))γ(ϕ)γ(ψ)dS.

Finally, notice that we can rewrite II as

Ψε : H1(U)→ R

ϕ 7→ 1

ε

∫
θε

(f ′(uε)− f ′(u))vϕ.

It follows that Ψ is a bounded linear operator in H1(U) since, using Theorem
4.1,

|Ψε(ϕ)| ≤ 2

(
sup
x∈R
|f ′(x)|

)(
1

ε

∫
θε

|v|2
) 1

2
(

1

ε

∫
θε

|ϕ|2
) 1

2

≤ C‖v‖H1(U)‖ϕ‖H1(U).

Besides, for all ϕ ∈ C∞c (Ū),

Ψε(ϕ) =
1

ε

∫
θε

(f ′(uε)− f ′(u))vϕ

≤
(

sup
x∈R
|f ′′(x)|

)(
1

ε

∫
θε

|uε − u|2
) 1

2
(

1

ε

∫
θε

|v|2
) 1

2

‖ϕ‖∞

≤ K‖PΩε,Uu
ε − u‖XU

‖v‖H1(U)‖ϕ‖H1(U) → 0

and then, by density, we have II = Ψε(ϕ)→ 0, for all ϕ ∈ H1(U). This concludes
the proof.
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For now on, consider the spaces Hε = H1(Ωε) and H0 = H1(Ω) in the con-
text of Definition 2.1. We prove the result which guarantee the upper and lower
semicontinuity of the set of solutions from (18) at ε = 0.

Proposition 11. Using the notations from (18) and (19), we have that A−1
ε Fε

CC−−→
A−1

0 F0.

Proof. To prove the compact convergence, we verify separately each item.

(a) A−1
ε Fε is a compact operator, for each ε > 0.
Since by Proposition 1 H1(Ωε) ↪→ Xε with compact immersion, we have

X ′ε ↪→ H−1(Ωε) compactly. Also, Fε is a Lipschitz function by Proposition
6(b). Thus, we get the result from

H1(Ωε)
Fε−→ X ′ε

i−→ H−1(Ωε)
A−1

ε−−−→ H1(Ωε).

(b) If ‖uε‖H1(Ωε) ≤ K, then {A−1
ε Fε(u

ε)} is E-precompact.
Let {uε} such that ‖uε‖H1(Ωε) ≤ K. By Lemma 6.1 we obtain a subsequence,

that we still call uε, such that PΩε,Uu
ε ⇀ u in H1(U) and uε

E
⇀ u|Ω for some

u ∈ H1(U). Consider wε = A−1
ε Fε(u

ε). By Lemma 6.2, ‖wε‖H1(Ωε) ≤ C
and, thus, again by Lemma 6.1, there exists a subsequence, also called wε, and

w ∈ H1(U) such that PΩε,Uw
ε ⇀ w in H1(U) and wε

E
⇀ w|Ω.

If we call u0 = u|Ω and w0 = w|Ω, we have that w0 = A−1
0 F0(u0). Indeed,

wε
E
⇀ w0 implies for any v ∈ H1(U) that (wε, v)H1(Ωε) → (w0, v)H1(Ω). On

other hand, by Proposition 9 we have

(wε, v)H1(Ωε) =

∫
Ωε

Φ(uε)v +
1

ε

∫
θε

f(uε)v →
∫

Ω

Φ(u0)v +

∫
Γ

µ̂γ(f(u0))γ(v)dS.

Thus, since the limit is unique, we get, for all v ∈ H1(U),

〈A0w0, v〉 = (w0, v)H1(Ω) =

∫
Ω

Φ(u0)v +

∫
Γ

µ̂γ(f(u0))γ(v)dS = 〈F0(u0), v〉,

and, therefore, w0 = A−1
0 F0(u0). Now, let us prove ‖wε‖H1(Ωε) → ‖w0‖H1(Ω),

implying wε
E−→ w0 by [7, Proposition 3.2]. As a matter of fact, using Proposi-

tion 9 again, we have

‖wε‖2H1(Ωε) = (wε, wε)H1(Ω) = (A−1
ε Fε(u

ε), wε)H1(Ω)

=

∫
Ωε

Φ(uε)wε +
1

ε

∫
θε

f(uε)wε →
∫

Ω

Φ(u0)w0 +

∫
Γ

µ̂γ(f(u0))γ(w0)dS

= (A−1
0 F0(u0), w0)H1(Ω) = (w0, w0)H1(Ω) = ‖w0‖2H1(Ω).

(c) If uε
E−→ u, then A−1

ε Fε(u
ε)

E−→ A−1
0 F0(u).

Indeed, if we assume that uε
E−→ u, we get ‖uε‖H1(Ωε) ≤ C, for some C > 0

independent of ε. In particular, for any subsequence of uε, we can find another
subsequence, denoting all by uε, such that, using the same argument of the
previous item, we have PΩε,U (uε) ⇀ u, with u0 = u|Ω and, for this subsequence,

A−1
ε Fε(u

ε)
E−→ A−1

0 F0(u0). As we can prove this for any subsequence, we obtain

the E-convergence of all family, that is, A−1
ε Fε(u

ε)
E−→ A−1

0 F0(u0).
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Finally, we can conclude the upper and lower semicontinuity of the equilibrium
set at ε = 0 proving Theorem 2.6. Indeed, from Proposition 11 and [9, Proposition
5.6], we have:

Proposition 12. For any family {uε}, uε ∈ H1(Ωε) solution of (18), there is u∗ ∈
H1(Ω) solution of (19) and a subsequence still denoted by uε, such that uε

E−→ u∗.

Moreover, with the assumption that the limit solution is hyperbolic, we can get
lower semicontinuity of the equilibrium set. More precisely, from Proposition 11
and [9, Proposition 5.7] we have

Proposition 13. If u∗ ∈ H1(Ω) solution of (19) is hyperbolic, then there is a

sequence {uε∗}, uε∗ ∈ H1(Ωε) solution of (18), such that uε∗
E−→ u∗.

Remark 9. In the case when all equilibria points of the limit equation (19) are
hyperbolic, we have that all of them are isolated and there is only a finite number
of them (see [9, Corollary 5.4 or Proposition 5.5]).

Notice that the continuity above does not exclude the possibility that near an
equilibrium point of the limiting equation may exist several different equilibrium
points of the perturbed problem. We show that is possible to obtain some sort of
uniqueness of the equilibrium points concluding the proof of Theorem 2.6.

First we will prove an important result about the compact convergence of the
operators A−1

ε F ′ε(u
ε
∗) if uε∗ ∈ H1(Ωε) is a sequence of solutions from (18) that is

E-convergent.

Proposition 14. If {uε} is a sequence of solutions of (18), uε ∈ H1(Ωε), and

u0 ∈ H1(Ω) is solution of (19) then A−1
ε F ′ε(u

ε)
CC−−→ A−1

0 F ′0(u0) whenever uε
E−→ u0.

Proof. We prove by steps, as in Proposition 11.

(i) A−1
ε F ′ε(u

ε) is compact, for each ε > 0.
Since H1(Ωε) ↪→ Xε with compact immersion by Proposition 1, we have

H1(Ωε)
F ′ε(uε)−−−−→ X ′ε

i−→ H−1(Ωε)
A−1

ε−−−→ H1(Ωε),

where F ′ε(u
ε) is continuous by Proposition 6(d), proving the affirmation.

(ii) A−1
ε F ′ε(u

ε)vε is E-precompact whenever ‖vε‖H1(Ωε) ≤ C.

Let {vε} family in H1(Ωε) such that ‖vε‖H1(Ωε) ≤ C and define wε =

A−1
ε F ′ε(u

ε)vε. Then for any ϕε ∈ H1(Ωε),∫
Ωε

∂wε

∂x1

∂ϕε

∂x1
+

∫
Ωε

∂wε

∂x2

∂ϕε

∂x2
+

∫
Ωε

wεϕε =

∫
Ωε

Φ′(uε)vεϕε +
1

ε

∫
θε

f ′(uε)vεϕε.

If ϕε = wε follows by Theorem 4.1

‖wε‖2H1(Ωε) =

∫
Ωε

Φ′(uε)vεwε +
1

ε

∫
θε

f ′(uε)vεwε

≤
(

sup
x∈R
|Φ′(x)|

)
‖vε‖H1(Ωε)‖wε‖H1(Ωε) +

(
sup
x∈R
|f ′(x)|

)
C2‖vε‖H1(Ωε)‖wε‖H1(Ωε)

and, thus, ‖wε‖H1(Ωε) ≤ K, for some K > 0 independent of ε. Therefore, by

Lemma 6.1 we obtain subsequences, also denoted by vε, wε, and v, w ∈ H1(U)

such that PΩε,U (vε) ⇀ v and PΩε,U (wε) ⇀ w both in H1(U), with vε
E
⇀ v|Ω

and wε
E
⇀ w|Ω.
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Now if we call v0 = v|Ω and w0 = w|Ω we may prove that w0 = A−1
0 F ′0(u0)v0.

Indeed, for ϕ ∈ H1(U)

(wε, ϕ)H1(Ωε) =

∫
Ωε

Φ′(uε)vεϕ+
1

ε

∫
θε

f ′(uε)vεϕ. (22)

On one hand, using Proposition 10, we have∫
Ωε

Φ′(uε)vεϕ+
1

ε

∫
θε

f ′(uε)vεϕ→
∫

Ω

Φ′(u0)v0ϕ+

∫
Γ

µ̂γ(f ′(u0))γ(v0)γ(ϕ)dS

= (A−1
0 F ′0(u0)v0, ϕ)H1(Ω).

However, since wε
E
⇀ w|Ω,

(wε, ϕ)H1(Ωε) → (w0, ϕ)H1(Ω).

Thus w0 = A−1
0 F ′0(u0)v0.

Finally, we show that wε
E−→ w0. By [7, Proposition 3.2], it is enough to

prove ‖wε‖H1(Ωε) → ‖w0‖H1(Ω). But, if we take ϕ = wε in (22) we obtain
arguing as in the proof of Proposition 11, the norm convergence.

(iii) A−1
ε F ′ε(u

ε)vε
E−→ A−1

0 F ′0(u0)v0 se vε
E−→ v0.

To prove that wε
E−→ w0 for the whole sequence it is enough to use an

analogous proof of this step in Proposition 11.

The following lemma is the last one that we need to conclude the uniqueness of
equilibrium points near a hyperbolic limit solution.

Lemma 6.3. If uε∗ ∈ H1(Ωε) is a solution of (18) then there is K > 0 such that,
for all vε ∈ H1(Ωε) with ‖vε‖H1(Ωε) ≤ 1, we have

‖A−1
ε (Fε(u

ε
∗+vε)−Fε(uε∗)−F ′ε(uε∗)vε)‖H1(Ωε) ≤ K‖vε‖1+δ

H1(Ωε), for some δ ∈ (0, 1).

Proof. Let wε = A−1
ε (Fε(u

ε
∗ + vε) − Fε(uε∗) − F ′ε(uε∗)vε). This implies that, for all

ϕε ∈ H1(Ωε),∫
Ωε

∂wε

∂x1

∂ϕε

∂x1
+

∫
Ωε

∂wε

∂x2

∂ϕε

∂x2
+

∫
Ωε

wεϕε =

∫
Ωε

(Φ(uε∗ + vε)− Φ(uε∗)− Φ′(uε∗)v
ε)ϕε

+
1

ε

∫
θε

(f(uε∗ + vε)− f(uε∗)− f ′(uε∗)vε)ϕε.

Taking ϕε = wε, the left side of the equation becomes ‖wε‖2H1(Ωε). For the right

side, with a fixed 1 < p < 2 in a way that its conjugate q is 2 < q < 4, follows by
Theorem 4.1 that∫

Ωε

(Φ(uε∗ + vε)− Φ(uε∗)− Φ′(uε∗)v
ε)wε +

1

ε

∫
θε

(f(uε∗ + vε)− f(uε∗)− f ′(uε∗)vε)wε

≤
(∫

Ωε

|Φ(uε∗ + vε)− Φ(uε∗)− Φ′(uε∗)v
ε|p
)1/p(∫

Ωε

|wε|q
)1/q

+

+

(
1

ε

∫
θε

|f(uε∗ + vε)− f(uε∗)− f ′(uε∗)vε|p
)1/p(

1

ε

∫
θε

|wε|q
)1/q
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≤
(∫

Ωε

|Φ(uε∗ + vε)− Φ(uε∗)− Φ′(uε∗)v
ε|p
)1/p

‖wε‖H1(Ωε)+

+

(
1

ε

∫
θε

|f(uε∗ + vε)− f(uε∗)− f ′(uε∗)vε|p
)1/p

‖wε‖H1(Ωε).

By Proposition 6(f) we obtain, for δ ∈ (0, 1) such that p(1 + δ) = 2 or, in other
words, 2/p = (1 + δ),

‖wε‖2H1(Ωε) ≤
(∫

Ωε

|vε|2
) 1

2
2
p

‖wε‖H1(Ωε) + C

(
1

ε

∫
θε

|vε|2
) 1

2
2
p

‖wε‖H1(Ωε)

≤ C2‖vε‖2/pH1(Ωε)‖w
ε‖H1(Ωε) = K‖vε‖1+δ

H1(Ωε)‖w
ε‖H1(Ωε)

and, thus,

‖wε‖H1(Ωε) ≤ K‖vε‖1+δ
H1(Ωε)

proving the result.

Now we can conclude the uniqueness of the equilibrium as ε is close to zero.

Proposition 15. If u∗0 is a hyperbolic equilibrium of (19), then there exist η > 0
and ε0 > 0 such that, for 0 < ε < ε0, there exists one, and only one, uε∗ solution of

(18) such that ‖uε∗ − Eεu∗0‖H1(Ωε) ≤ η. Furthermore uε∗
E−→ u∗0.

Proof. This is a consequence of [7, Proposition 5.5] or [9, Theorem 5.8].

Finally, we can prove the main result of this section.

Proof of Theorem 2.6. The item (a) follows from Theorem 12. On the other hand,
(b) follows from Theorem 13 and Proposition 15.
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