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ABSTRACT. In this paper we analyze the asymptotic behavior of a family of
solutions of a semilinear elliptic equation, with homogeneous Neumann bound-
ary condition, posed in a two-dimensional oscillating region with reaction terms
concentrated in a neighborhood of the oscillatory boundary 6. C Q. C R2 when
a small parameter € > 0 goes to zero. Our main result is concerned with the
upper and lower semicontinuity of the set of solutions in H'. We show that
the solutions of our perturbed equation can be approximated with one defined
in a fixed limit domain, which also captures the effects of reaction terms that
take place in the original problem as a flux condition on the boundary of the
limit domain.

1. Introduction. In this paper we analyze the asymptotic behavior of the family
of solutions of the following semilinear elliptic equation with homogeneous Neumann
boundary conditions:

—Auf +uf = d(u) + 1XGEf(uE) in Q,

ou € (1)
=0 on 0f).,

ove

where . C R? is an oscillating domain, ® represents a reaction term acting in

. 1 . .
the whole domain and =y% f (u®) represents a reaction term concentrated in an
extremely thin region 6. close to the border 02, which can also present oscillatory
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structure. See Figure 1 to visualize the oscillating domain 2., as well as the narrow
oscillating neighborhood ..

FIGURE 1. The oscillatory domain 2. and strip 6. where reactions
take place.

Under our assumptions, the two-dimensional family of oscillating regions 2. ap-
proaches a bounded domain  C R2, and the narrow strip ., that may also have an
oscillatory behavior, degenerates into a fixed set I' C 92 as the positive parameter
€ goes to zero.

We will show that the solutions of (1) converge in certain sense to be specified
later to the solutions of the following problem posed in the fixed domain §2:

—Au+u = P(u) in €, )
ou 2
5 = :U/f(u) on F7

where (i is a parameter related to the geometry of the oscillations of Q. and ..
Observe that the reaction term concentrated in 6. transforms as ¢ — 0 into a
boundary reaction term, in accordance to some results in the works [11, 20, 21].

We show that the family of solutions of (1) is upper semicontinuous at ¢ = 0,
and under the additional condition on hyperbolicity of the solutions of the limit
problem (2), we also obtain the lower semicontinuity. Moreover, we show that the
perturbed equation (1) has one and only one solution nearby a solution of the limit
equation for e small enough.

As we will see, in order to show our results, we need to estimate and analyze the
asymptotic behavior of concentrating integrals such as

1 q
2 | w@r @

for different values of ¢ > 1 and open sets . C 2. C R2. Notice the factor 1/¢ in
(3). The arrangement of this term with the narrow strip can be thought as a model
to measure the concentration of w on 6. at ¢ = 0. In fact, a suitable control of
this integral is useful to analyze models set in regions of R? which present singular
behavior. For instance, we mention our recent work [12], where an oscillating thin
domain is studied.

Here, we are in agreement with the notation from papers [11, 20, 21] calling (3)
as concentrating or concentrated integral. Indeed, this kind of problem was initially
proposal in [11], where linear elliptic equations were considered with reaction and
potential terms concentrated on the boundary. There, the neighborhood 6. has
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been set as a strip without oscillatory behavior in a fixed domain ). Later, the
dynamical system given by a semilinear parabolic problem in the same situation
was analyzed in [20, 21] where the upper semicontinuity of attractors at ¢ = 0 has
been shown. In [3, 4] the results of [11, 20] were extended to a reaction-diffusion
problem with delay. In these works, the boundary of the domain is always assumed
to be smooth.

Subsequently some results of [11] were adapted in [5] to be considered in a semi-
linear elliptic problem posed on a Lipschitz fixed domain €2 with the e-neighborhood
presenting highly oscillatory behavior. The upper and lower semicontinuity of the
attractor to the associated parabolic problem in smooth fixed domains were shown
in [6].

Recently, some results from [11, 5] have been adapted in [1, 2] to a class of narrow
strips 6. and bounded oscillatory domains .. Under the restricted assumption
QC Q. and 0. C Q. \ Q for all € > 0, the authors have been able to estimate
concentrating integrals and analyze the asymptotic behavior of semilinear elliptic
equations as Q. — Q and 99, — 92 when ¢ — 0 in the sense of Hausdorff.

This paper is organized as follows: in Section 2 we introduce the assumptions,
notations and the main result. In Section 3, we show some technical results concern-
ing extension operators, Lebesgue-Bochner and Sobolev-Bochner generalized spaces
needed to get our estimates. Following by Section 4, we prove some properties about
concentrating integrals which are used in Section 5 to study the nonlinearities of our
problem. Finally, in Section 6, we pass to the limit in a semilinear elliptic problem
getting the upper semicontinuity of the solutions. Moreover, assuming hyperbolic-
ity to the solutions of the limit equation, we also obtain the lower semicontinuity
at € = 0, and we will exclude the possibility that, near an equilibrium point of the
limiting equation, may exist several different equilibrium points of the perturbed
problem, and therefore, we will also prove some sort of uniqueness of the equilibrium
points.

2. Assumptions, notations and main result. To fix the problem, notation and
main hypotheses, let us start considering problem (1) where

QE = {(:I:],l?) € R2;x1 € (07 1)’ 0< T2 < Ga(xl)} and

6. = 2. (4)
. = {(z1,22) € R% 21 € (0,1), Ge(x1) —eHe(x1) < 29 < Ge(21)}

are set by functions G¢, H. : (0,1) — R satisfying conditions:

H(@{) Go(x1) = m(z1) +eg(xy/e*) with 0 < o < 1, where
(a) m: (0,1) = R is C*!, bounded, with bounded derivative,
(b) g: (0,1) = R is a C! bounded function, L,-periodic with bounded
derivative.
(¢) Ge = m as € — 0 uniformly in (0, 1).
(d) there are constants Gg, G1 > 0 such that Go < G.(x) < G; for all
x € (0,1).
H(ii) H.(z1) = h(x1/€%), B > 0, where the function h is bounded, ie there are
Hy, Hy > 0 such that Hy < H.(z) < H;y for all z € (0,1), and Lj-periodic.
The vector v = (v§, 1/§) is the unit outward normal vector to the boundary 9,
d/0vF is the derivative in the direction of v5, and x% is the characteristic function
of the neighborhood 6.. The nonlinearities ® : R — R and f : R — R are bounded
functions of class C? with bounded derivatives.



4 JOSE M. ARRIETA, ARIADNE NOGUEIRA AND MARCONE C. PEREIRA

Under assumptions H, it is not difficult to associate (4) with the following limit
sets
Q= {(x1,72) € R%z; € (0,1), 0 < x5 < m(x1)} and )
I = {(z1,72) € R*% 2y € (0,1), 29 = m(z1)}.
As we mentioned in the introduction, passing to the limit in (1) we obtain equa-
tion (2) where i € L>°(T") is given by

R s -
ji= e ), ©)

vV1i4+m/
where pp € L°(T) is the weak™ limit of H.. In fact, due to H(ii), it follows from

[17, Teorema 2.6] that
Ly

Ly Jo

The coefficient [i captures the influence of the small neighborhood 6., as well as
the geometry of the limit domain 2. It also suggests with nonlinearity f a flux con-
dition on the boundary, giving a qualitative idea on the effect of the concentrating
reaction terms on the original problem.

Notice that, to obtain the convergence results, we have to compare functions
defined in different functional spaces as € — 0. In order to do that, we consider the
following family of operators

E.:H'(Q) — H'(Q.):u— E.u:= R.Pu (7)

where R, : H'(R?) — H!(Q.) is the restriction operator to the open set 2. and

P: HY(Q) — H'(R?) is a continuous extension operator from functions defined in

) to the whole plane R2. The existence of P is guaranteed by [19, Theorem 1.4.3.1].
From [7], we have

H. — h(s)ds.

HEsUHHl(QE) — ||u||H1(Q)7 as € — 0,

and then, we can compare solutions from (1) and (2) using the notion of E-
convergence as in [14].

In general, consider a family of Banach spaces H. and a limit Banach space H.
Besides, let E. : Hy — H. a family of operators such that ||E.ul|g. — ||u|lg, when
e —0.

Definition 2.1. We say that a sequence of u® € H. F-converges to ug € Hy, if
lu® — Ecullg. — 0 as e — 0. We denote this convergence by u. .

If H. and H are Hilbert spaces, we can define a weak FE-convergence.
Definition 2.2. A sequence of {u®}, with u® € H., E-converges weakly to u € Hy
if for any sequence E-convergent to w we have (w®,u®) . — (u,w)y, when £ — 0.
We may denote such convergence by u® o

We also need a notion of compactness for sequences, and convergence for opera-

tors which are defined in different spaces. We recall the exposition from [14]. See
also [7] and [12].

Definition 2.3. A sequence {u,}, u, € H., with ¢, — 0, is E-precompact if for
all subsequence {u, } there are a subsequence {u,~} and an element v € Hy such

that w, BN family is said to be E-precompact if all sequence {u,}, u, € He,
with g,, — 0, is E-precompact.
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Definition 2.4. We say that a family of operators {T.}, with T, : H. — H., E-

converges to T : Hy — Hy when ¢ — 0 if T u® L T for any u® B, 4. We denote
. EE

this convergence by T. — T..

Furthermore we may define a notion of compact convergence for operators.
Definition 2.5. A family of compact operators {7}, with T, : H. — H., converges
compactly toT : Hy — Ho when € — 0 if, for any family {u°} with ||u®| g, uniformly
bounded, we have that {T.u°} is E-precompact and T EE. 7. We denote this

cc
compact convergence by T, — T.
This notion of convergence can be extended to sets in the following manner: let

Je be a family of sets in some Banach spaces Z.. We say that J. is

(i) upper semicontinuous at ¢ = 0 if disty (Jz, E-Jp) 20, 0;
(ii) lower semicontinuous at e = 0 if disty (E:Jy, Je) =% 0.

Here, disty (A, B) denotes the Hausdorff semi-distance given by

disty (A, B) = sup inf ||z — y|z..
rcAYEB

Remark 1. In order to show the upper or lower semicontinuity of sets, the following
characterizations are useful:

(i) The family {J.} is upper semicontinuous at € = 0 if every sequence {u. }, with
us € J. and € — 0, has a subsequence F-convergent to an element of Jy;
(ii) The family {J.} is lower semicontinuous at e = 0 if Jy is compact and for all

u € Jy exists a sequence {u,}, with u. € J. and € — 0, such that w, N

Finally, for € > 0, let us consider
E. = {u® € H'(Q); u® is a solution of (1)}
and
& = {u € H(Q); u is a solution of (2)}.
The main goal of this work is to prove the upper and lower semicontinuity of the
set & at ¢ =0:
Theorem 2.6. If we consider the semilinear elliptic problem (1) then:
(i) for any sequence u® € &, with e — 0, there is a subsequence (also denoted by
u®) and ug € & such that u® £, Uug.
(i) for any hyperbolic equilibrium point u* € &y, there is sequence u® € &, such
that v 2> u* when & — 0. Moreover, there are n > 0 and 9 > 0 such that
exists an unique u® € E. which satisfies

|u® — Ecu™||gia.) <n, forall 0<e <ep.

Remark 2. Recall that u* is a hyperbolic equilibrium point of (2), if A = 0 is
not an eigenvalue of the linearized problem of (2) around u*. For instance, if u* is
solution of (2) and is hyperbolic, then A = 0 is not an eigenvalue of

—Av+ov=>"(u*)v+ Av in Q,
M s
af,uf(u)v on T
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Furthermore, we notice that item (i) of the Theorem 2.6 also give us a kind of
uniqueness result to the solutions near a hyperbolic equilibrium point of the limit
equation for sufficiently small e.

3. Functional spaces and technical results. In this section, we introduce the
main functional spaces used throughout this paper and work with some of their
properties. Then we set some technical results that will be useful in next sections.
First, we define fractional Sobolev spaces.

Definition 3.1. For s > 0, 1 < p < oo and O C R", we denote by W*?(0O) and
call fractional Sobolev space, the functional set given by the space of distributions
defined in O such that

(i) 0%u € LP(0), for |a| < m, when s =m € N;
(ii) w e W™P(O) and
« _ Ao p
[[ 0y,
OxO |z —

T

for |o| = m, when s = m + o with o € (0,1).
The norm in W#?(0), that makes it Banach, is:

T — /O 0% u(z)|Pdz in the case (i)

la|<m
and
|0%u(z) — 0%u(y)|P . iy
||u||€vs‘,,(o) = Hu||€vm,p(0) + Z //Oxo i — g dzdy in the case (ii).
|a]=m

Besides if p = 2 we denote it by H*(O), which is a Hilbert space.

Now let us introduce the Lebesgue and Sobolev-Bochner generalized spaces.
Here, they are given in a similar way to [23], as a natural generalization to the
Lebesgue and Sobolev spaces using Bochner integrals. The usual Lebesgue and
Sobolev-Bochner spaces may be found, for instance, in [15, 17].

Definition 3.2. Let us consider a function G : (0,1) — R satisfying 0 < Gy <
G(z) < Gy, Vx € (0,1), for some constants 0 < G < G1. Let 1 <p<ooel<g<
0o. The Lebesgue-Bochner generalized spaces, denoted by LP(0,1; L4(0,G(x1))),
are defined by

L?(0,1; LY(0,G(x1))) := {u : Q. — R measurable; u(x1,-) € L1(0,G(z1))
for almost every z; € (0,1)}.

They are Banach spaces with the norm

1 » 1/p
(fo Hu<331, ')HLq(Qg(wl))d-Tl) , P < oo,

esssup [lu(@1, )| 24(0,G(21)) p = oo.
z€(0,1)

lull e (0,1:29(0,G(21))) =

When p = ¢ = 2 such space is Hilbert with the inner product

1
(U, ) £2(0,1522(0,G(21))) =/ (u(y,-),v(x1,°))12(0,G(21))dT1-
0

Remark 3. Since ¢ < oo, the function 1 — [[u(21,-)| £e(0,G(2,)) is measurable by
Fubini’s Theorem. Then the space LP(0,1; LY(0,G(z1))) is well defined.
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Analogously, we have that the Sobolev-Bochner generalized spaces, denoted by
LP(0,1; W#1(0,G(x1))) for s > 0, are defined by

LP(0,1; W*9(0, G(21))) := {u € LP(0,1; L(0, G(21))); u(z1,-) € W*9(0, G(z1))}-

Such spaces are Banach with the norm

1 p 1/17
(o s, Mooy dan) -+ p< oo,

esssup [[u(z1,-)|lwea(0,c(a1)) p = 00,
z1€(0,1)

[ulle0,1,w9(0,G6(21)) =

and, again, they are Hilbert spaces if p = ¢ = 2.
In general, it follows from [17, Proposition 3.59] that, if H is a Hilbert space and
1 < p < oo, then the dual space of LP(0,1; H) is given by
[LP(0,1; H)) = LY(0,1; H'),

where H' is the dual space of H and p, q are conjugates.

In our case we will consider the family of Lebesgue and Sobolev-Bochner gen-
eralized spaces for the function G.(x1) = m(z1) + eg(z1/e%) defined in hypothesis
H(i) from (4).

Now we set important and nontrivial results that will help us to work with
different definitions of Sobolev fractional spaces making their norms equivalent.
The proofs are analogous to [12, Propositions 3.4, 3.5 and 3.6].

Lemma 3.3. Fized ¢ > 0 and 1 € (0,1), if we call I, = (0,G(x1)), there is
a continuous linear extension operator P : L?(I.) — L?*(R) such that Pu = u
in I, with | Pul[r2r) < Xollull 2, 1Pullp=r) < Asllullgs.) and [|Pul[grr) <
Allullgr(r.y, for 0 < s < 1, where the constants Ao, s, A\1 > 1 are independent of
e>0 and z1 € (0,1).

Theorem 3.4. Let I. = (0,G.(x1)), withe >0, 1 € (0,1) and 0 < s < 1 fized.
Then there are Cq,Co > 0 independent of € such that

Ol“UHHs(Is) < ”uHH[“](IE) < C2||U||Hs(15), Yu € HS(IE)7
where Hﬁ(Ie) is the complex interpolation space
H[S](IE) = [L2(IE)’H1(IE)]37 fOT 0<s<1.

Proposition 1. For each ¢ > 0, we have H*(Q.) C L*(0,1; H*(0,G:(z1))) for
all 0 < s < 1, with constant of inclusion independent of . Besides H'(Q.) C
L?(0,1; H*(0,Ge(x1))) with compact immersion if 0 < s < 1.

According to the properties of our domains 2. defined in (4), we also have the
important result.

Proposition 2. The family of sets Q. admits a continuous extension operator
P.: L?(Q.) — L*(U), where the open set U = Uy x Uy C R? is such that the closure
of Q¢ is contained in U for all ¢ > 0, and

[ Peu[| oy < Collu®llma.),
| Pev[| 2y ;a2 (v2)) < COsllu||L2(0,115(0,6. (2)))
[ Peut |22y < Cil[ut][r2(a.),
where the constants Cy,Cs,Cy > 0 are independent of € > 0 and 0 < s < 1.
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Proof. By hypothesis H(i), we have |GL(z)| < C for all z € (0,1), with C > 0
independent of € > 0. Thus, the proof follows from the extension operator defined
in [10, Lemma 3.1]. O

Our next step is to prove some inclusions involving Sobolev fractional spaces and
Sobolev-Bochner generalized spaces that will be useful in the further analysis of
concentrating integrals.

Proposition 3. Fore > 0 and considering the domains defined in (4), the following
inclusions hold with immersion constants independent of €.

(a) HY(Q:) € L>(0,1; L*(0,G.(2)));
(b) if ¢ > 2 then H'(Q.) C L9(0,1; H*(0,Gc(x))), where s = 2/q;
(¢) HY(Q:) C LI(Q.), for 2 < q < 6.

Proof. (a) For each x1 € (0,1), we can use the extension operator given by Propo-
sition 2 to get

[u(@1, ) L2(0,6. (21)) < [Pew(z, ) z2(0,64)-
Hence,
[ullzoe 015220, @1 < [1Pettll o= 0,1;22(0,60)- (8)
From [15, Corollary 1.4.36] follows that
[ Peullzo<(0,1522(0,61)) < CllPullm(0,1522(0,61)) < CllPeullm ). (9)
Thus using (9) in (8) and the continuity of P. with constant Cy = ||P-||z(m1 (0. ), 51 (1)
uniformly bounded for each e, we have
[ullz=0,1;22(0.6.(21))) < ClIPeullrw) < CCullull .,

which concludes the proof.

(b) First of all, let ¢ > 2 and define s = 2/¢, 0 < s < 1. For each xz; € (0,1)
fixed, we have by Theorem 3.4 and properties of interpolation spaces that there
exists C' > 0, independent of € and 1, such that

lu(@s, )l ,6.@) < Clules, Mg o,6.60)
< Ollu(@s, Mizfo,c. ey 1@ Min 0,600
Since by the item (a) H'(2.) C L>(0,1; L?(0, G-(x1))), we have that
a1, e 0,6. 00 < Cllulinto,) lul@n )i o6, @)-
On the other hand, Proposition 1 implies H*(2.) C L?(0,1; H*(0,G.(x1))), and
then,
1 2/
HuH%Q(O,l;HS(O,Gz(m))) :/0 Hu(ml,.)HHS(O’GE(M))dxl
1 . . 2/s
< /O (C||u||H1(QE)|\U($1, ~)HH1<o,cs<x1>>) dzy
1
s 2(1-s)/s
< Ol /0 lu@r, i 0.6. @y dos
sy, 112(1—s)/s 8 |l 2
< Gl @) Il ) = ulifq,) = CTllullin .-

Thus, H'(Q.) C L9(0,1; H?/9(0, G.(x1))) for ¢ > 2.
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(¢) Since L1(£2.) = L9(0,1; L9(0,G.(x1))) isometrically, we conclude the proof
by item (b) if we show
H?/4(0,Ge (1)) € L(0, Ge(21))

with constant of inclusion independent of 1 € (0,1) and ¢ > 0.
If ¢ = 2, it follows from the definition of the spaces. If 2 < ¢ < 4, then 1/2 <
2/q < 1. Hence, by [26, Theorem 1.36] we get

H*9(R) C H?(R) € L"(R), Vr > 2.

In particular, it holds for r = ¢ with 2 < ¢ < 4. Besides, by the operator P :
H*(0,Ge(z1)) — H*(R) from Lemma 3.3, whose norm is independent of ¢ > 0 and
z1 € (0,1) for any 1/2 < s < 1, we have

lu(@1, Mao,6. @) < 1Pul@r, Mizaw < CllPulz, )l g g
< CllPu(zy, )l g2raey < CIPNu(@y, M ar2re0,6. (20)-
Finally, if 4 < ¢ <6, then 1/3 < 2/q < 1/2. Again by [26, Theorem 1.36], we get

2
H*4(R) C L"(R), V2 <r < :
1—-2s
. . 2 .

In particular, since ¢ = — < , we obtain that

s 1—2s

H?4(R) C LI(R).

Hence, we conclude the proof arguing as in the previous case 2 < ¢ < 4. O

4. Concentrating integrals and its behavior at the limit. Our first results
are about concentrating integrals. Notice that some estimates are given in different
functional spaces. Under the conditions of Proposition 3, we may improve [12,
Theorem 3.7] estimating the concentrated integrals with the H' () norm.

Theorem 4.1. Foreg > 0 sufficiently small, there is a constant C > 0, independent
of € € (0,e0) and u® € H* (), such that, for all 3 <s<1,0<e < e, we have

1
g/a [uf[? < C||U€||qu(o,1;Hs(o,GE(z1)))’ Vg1, (10)

2
1 12 5 H(‘?u‘S
- uf|? < O | [|uf |5 + || = . 11
G (nHmd 92 )

1 £ £
2wl < Ol 2 <0< (12)

and

In particular,

Proof. Take u € H'(Q.). In a.e. z; € (0,1), we have u(xy,-) € H(0,Ge(z1)).
Define

2" =Gy —eoHy and 2° := G.(x1) — eH.(x1)
for g > 0 sufficiently small in such way that, for all € < ¢(, we have

[2° — 2%, 2°] C [0,G.(x1)].

See Figure 2 for a representation.
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Gs(xl)
X2
25 =G (x1) —eH.(x
( 1) ( 1) Z* = Go —€0H1

:Ug—z*

0

FIGURE 2. Fixed z; € (0,1) and ¢ > 0, we get a fiber of the
oscillatory domain for € < gg.

Since (G:(z1) — eH.(21)) < 22 < Ge(z1) and § < s < 1, it follows from [19,
Theorem 1.5.1.3] for n = 1 that there exists K > 0 independent of ¢ > 0 such that
u(z1, 22)| < Kljuz, ) ms @s -2 ,20) < Kllul@r, ) m 0,62 0)-

Indeed, the interval where we are applying the result is fixed and independent of
the parameters ¢ > 0 and z; € (0,1).

Hence,
1 1 1 Gs(wl)
7/ |u|q:/ f/ |u(zy, z2)|Tdzoday
€ Jo. 0 € JG.(x1)—eH:(21)
1 1 Gg(zcl)
< - K|u(zy, )|, oo dradry
/o 3 ~/Gs(a:1)—eHE(x1) H?(0,Ge (1))

1
= Kqu/o 1, ')H%S(mce(u))dml = ClH“”%q(o,l;Hs(O,Gsm)))’

where C5 is independent of e, proving (10).
Consequently, taking ¢ = 2/s, since by Proposition 3(b) we have H(Q.) C
L9(0,1; H*(0,Ge(21))) for 1 < s <1 with constant independent of €, it follows that

1 1
b q q e
5 /05 lulf < K /0 (@1, ) s 0.6, 21y 421

= Kl Logo,0 0,6y < Clllli o,y
proving (12).
Now, let us prove (11). Here we use that C°°(Q.) is dense in H({.) (see

[19, Theorem 1.4.2.2]). Let u € C*°(2.) and fixed z; € (0,1). By Fundamental
Theorem of Calculus, we have

u(xy, x2) = u(x1,0) —l—/ %(xl, s)ds.
0 3;C2
Then
1 2
2 2 “2 ] Ou ? ’ R 2
lu(z1, 22)|* < 2|u(x1,0)]* + 2 —(x1,8)| ds 1%ds
0 axg 0
2 T2 au 2
< 2|u(z1,0)]* + 2G:(x1) —(x1,8)| ds.
0o |0z
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Consequently,
Ge(z1) Ge(z1)
/ uar,2)Pdoa <2 [ fu(a,0)|das
Ge(z1)—eH:(21) Ge(z1)—eHe (1)
Gs(xl) T2 a 2
+2G6(x1)/ / u(xl,s) ds | dxo
Go(z1)—eH. (x1) 0 |02
Ge(@1) | gy 2
§25H1|u(x1,0)|2+2G15H1/ —(x1,x2)| dxa.
0 8332

Hence, if y(u) is the trace of u given by [19, Theorem 1.5.1.3], we get

1 2 =(o1) 2
- / |u|* = / / |u(z1, z2)|*droday
€ Jo. Ge(z1)—eH:(z1)

1 Gg(atl) au 2
§2Hl/ |U($170)|2d$1+2G1H1/ / —(x1,72)| drodzy
0 0 31’2
ou
< 2H|Jv(u)||72(0,1) + 2H1Gh E.
22|12,

On the other hand, if Qy = (0,1) x (0, Gy), we have Qp C )., and there exists a
constant ¢ > 0 such that [[y(u)||r2(0,1) < cllullr=(q,) for all & < s < 1. Then, due
ou

to the previous inequality with k = 2H,
2
<01 (Il + |
L2(9.) < 2 e

with C7 independent of ¢. O

ou

/ lul? < kc||u||H5 @) T kG4 92s

Notice that the above theorem is important because give us a better range of
estimates with the H'(Q.) norm. However, the space may still varies with respect
to the parameter €.

Now we may study the behavior of the integrals which set the problem. We start
analyzing the terms without concentration.

Proposition 4. Let U C R? an open set such that Q. C U for all e > 0. If
u, o € HY(U) then

/ u(xy, xe)p(x1, v2)drodry — [ w(xy, z2)p(x1, x2)dxodry, ase — 0.
Q Q

Proof. Using [19, Theorem 1.4.2.1], we know that
C(U) :={ue C™U); u=ny,, comv e CX(R?}

is dense in H'(U). Hence, we can assume u,p € C°(U). Then, since G.(z1) =
m(x1) + £ge(x1), where g.(z1) = g(x1/e%) with 0 < « < 1, performing the change
of variables

xo —m(x1)

Y1 =21, Y2 =
£ge (1)
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we get

m(z1)+ege(z1)
/ u(wy, 2)p(x1, v2)dwodr, = // u(wy, 2)p(x1, v2)drodry
m(x1)
/ / 1‘1,:132) (zl,xg)dx2d$1

m(z1)+ege(z1)
/ / u(xy, x2)p(x1, x2)dradry
(z1)

:/u(xl,xg)cp(thg)dmzdml
Q

+6/ / u(y, m(y1) + y229:(y1)) (Y1, m(y1) + y2ege (Y1))ge (Y1) dy2dys
0 0

—>/U($1,$2)(P(I1,I2)d$2d$1,
Q

since u, € C>(U) and g.(r;) is bounded by Hypothesis H(i) from the domain
(4). Thus the result is valid through density properties. O

We can also prove results concerning to the behavior of the trace operator at
¢ = 0. Notice that, at the limit, a coefficient term appears capturing the geometry
of the oscillating domain 2. and the oscillatory strip 6..

Proposition 5. Let U C R? an open set such that Q. C U for all ¢ > 0. If
u,p € HY(U) then
1 N
g/ u(xy, x2)p(x1, 2)dxadry H/u'y(u)'y(g@)ds, as e — 0,
6. r

where vy is the trace operator given by [19, Theorem 1.5.1.3] and fi given by (6).
Proof. Again, due to [19, Theorem 1.4.2.1], we know that C°(U) := {u € C*(U); u

= v, comv € CX(R?)} is dense in H'(U) and we can assume u,p € C(U).
Then, performing the change of variables

To — GE(Z‘1) + €HE($1)

Yy =1, Y2=

EHE(.’El) ’
we get
1 Ge(z1)
f/ u(x1, x2)p(x1, x2)dr2dr1 = / / u(x1, x2)p(x1, x2)dr2dr
€ Jo. c(x1)—eHe (1)

:/0 /0 w(yr, Ge(y1) — eHe (Y1) (1 — y2))e(y1, Ge(y1) — eHe(y1) (1 — y2)) He (y1)dy2dys

:A A (U(thE(yl) - EHs(yl)(l — y2)) — U(ylym(yl)))
e(y1, Ge(y1) — eHe(y1)(1 — y2)) He (y1)dy2dy

+ / / w(yn, m(yn) (@, Ge () — eHe(n) (1 — 42)) — @(yn, m(yn))) He (31 ) dyadlys
0 0
4 / / w(yr myn) ey, m(yn) (He (1) — ) dysdys
+Mh/ u(yr, m(y1))e(y1, m(y1))dys %Mh/ u(yr, m(y1))e(y1, m(y1)) pndyi,
0 0
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as € — 0, since G. — m by Hypothesis H(i) from the domain (4). Finally, we
obtain

/uw@mwm%mMmWw=/mWM@%
0 N

changing variables on the line integral, where [ is given by (6), proving the result
using density and trace operator properties. O

Remark 4. The function i given by (6) is independent of the parametrization
chosen in I' and, therefore, is unique.

We also have similar results to nonlinearities @, f.
Corollary 1. Let U C R? an open set such that Q. C U for all e > 0. If u,p €
HYU) and @, f : R — R bounded functions of class C*, then

/Q D (u(z1,x2))p(1, x2)drodr, — / u(zy, x2))p(r1, x2)dradry
and
- | S aetn, adadn - [ (e
ase — 0, where v is the trace operator given by [19, Theorem 1.5.1.3] and i € L*>°(T")
is the coefficient given by (6).

Proof. Arguing as in the proof of Propositions 4 and 5, we can assume u,¢ €
C2°(U). Then, using the same change of variables as before and noting that f is
C', we have, for instance,

Ge(w1)
i/ﬁs f(u)pdradr, = / / fu(zy, 22)) (21, 2)dTodr

Ge(z1)—eH:(z1)

= /0 ; Jfu(yr, Ge(yr) — eHe(y1)(1 — 12)))
o(y1, Ge(y1) —eHe(y1) (1 — y2))He(y1)dy2dys

%/ﬁ%ﬂ@h@ﬂ& as & 0.
N

The other convergence is analogous. O

The following corollaries possess similar proofs.

Corollary 2. Let U C R? an open set such that Q. C U for all e > 0. If u,p,9 €
HY(U), then

/ u(xy, xe)p(x1, w2)W(x1, xo)drodry — | w(wy, z2)p(21, 22)Y (21, 22)dxodry
Q Q

and

1 N

[ e aeon syt aadoadn - [ pre)(0)ds
6. r

ase — 0, where 7y is the trace operator given by [19, Theorem 1.5.1.3] and 1 € L>°(T")

is the coefficient given by (6).
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Corollary 3. Let U C R? an open set such that Q. C U for all e > 0. If u,p,v €
HYU) and f,® : R — R bounded functions of class C*, then

/ D(u(z1,x2))p(x1, 22) (21, 2)d22dT1 %/<I>(u(x1,x2))np(:v1,xz)zb(:cl,xg)dxgd:cl
Q. Q

and
i/‘gg f(u(w1,m2)) (21, 22)Y (21, T2 )dT2dT1 — Aﬂy(f(u))7(¢)7(¢)ds7

ase — 0, where 7y is the trace operator given by [19, Theorem 1.5.1.3] and 1 € L>°(T")
is the coefficient given by (6).

5. Nonlinear maps. In this section we discuss the main properties of the maps
used to describe the reaction terms on the nonlinearities of the elliptic problems (1)
and (2). For § < s < 1, consider the Sobolev-Bochner spaces

X. = L*0,1; H%(0,G.(21))) and X! = L(0,1; {H*(0,G-(x1))}).
Then define
F.:HY(Q.) — X!
ur Fo(u): Xe - R (13)
v = (Fo(u),v) :/Q D(u)v + é/g f(u)v,

where @, f € C?(R) are bounded functions with bounded derivatives.

Remark 5. Notice that the assumption @, f € C?(R) bounded with bounded
derivatives it is not a big restriction since we are interested in analyze f(u) when u
is uniformly bounded in L*°(€.). More details can be found in [9, Remark 2.2] or
[7, Remark 2.2].

Remark 6. Notice that L%(£2.) C X. with constant independent of ¢. Indeed, it
follows from [24, Proposition 2.1] that, if u € X,

1 GE(Il) 1
el Z20.) :/O /O |u(@y, x2)|*daaday :/0 w1, 72 0,6 (21 421

1
< / Cllu(r, MWereo.6. @ d21 = Cllulk.,

where C' > 0 is independent of the domain and, furthermore, of €.
Now we prove an analogous result to [6, Lemma 3.6] and [25, Lemma 3.1].

Proposition 6. The function F. defined in (13) satisfies for constants independent
of e:
(a) there exists K > 0 such that

sup [ Fe(uf)|lx; < K
us€H(Q)

(b) F_ is globally Lipschitz continuous, that is, there exists L > 0 such that

1Fe(us) = Fe(us)llx; < Llluf — uslla o), Vi, us € H'(Q:).
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(¢) F. is Frechet differentiable, with

Fl HYQ.) — L(HY(20), X1)
uf = F(u) : HY(Q) — X!
w® = Fl(u®)(w®) : Xe - R

v® = (FL(u®) (w®), v°) :/Q P (u®)w® + - / f(u

(d) fized u¢ € H'(S2.), there is C > 0 such that

V2 ) (w5 — ), < Ol — wilans oy, Voo, w§ € HY(QL);
(e) there are 9 € (0,1) and M > 0 such that

L) = FL0%) g ooy < Mlu® — %, Vas,0° € X
(f) there is k > 0 such that
[ F2(u® 4+0°) — Fo(u®) — FL(u®)v®||x; < kHUEH};‘EQE), Vo € (0,1), Yu®,v® € HY(Q.).
Proof. (a) For u® € HY(Q.),

[Fe(u)lx: = sup  |[(Fe(u®),v%)].

lvellx.=1

Hence, if v € X, it follows from Theorem 4.1 and Remark 6 that

() < [ e+ [ e
() () ) ()

1 1
< <su£ |<I><x)|) Gl ey + <p |f<:c>) HEC||x. < K||ox.
€ Te

Therefore

sup  [[Fe(u”)|x; < K.
us€H(Q.)

(b) Indeed, for any u§,u5 € H'(Q.), we have

[Fe(ui) = Fe(ua)llx; = sup  [(Fe(u]),v) — (Fe(u3), v%)|.

lvellx.=1

Using Mean Value Theorem, with Theorem 4.1 and Remark 6 again, we get

[{Fe(ui), v%) = (Fe(u3), v%)] = [(Fe(ui) = Fe(u3), v%)]

g/Q|<<I><> (ug))o?] + /l (uf) — F(u5)0]

< (/ B () —<1><u2>2)2 (/ )
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/|fu WP 1/ o)’
1 c 0.

< (su§|q>'<x>|) s — gy e sy
xE

n (sup f’(x)) O — S o° .
rER
<Ll — w5l sy o x..

Thus
[Fe(ui) = Fe(uy)llx; < Llluf — us| a1 o)
and, therefore, F is globally Lipschitz with constant independent of €.
(¢) In fact, if u®, h® € H'(£2.) and v* € X., applying Mean Value Theorem,

(Pl + 1) — Fo(uf) — Fl(u)he,0%)] <
< /Q () = () — ) o

1
o2 [0 ) = ) - e

Ui 1
(fyeen-no-rewt) ()

where u®(z) < £%(x), (*(z) < (u® + h%)(2).
Thus it follows that

<Fa<uf+h5>—Fs<u5>—Fg<uE>hivE>s( | @) - >>hf|2) e sy

o2 INGGE ))h€|2>1||vs||x

We will analyze the second part of (14). Notice that, applying Mean Value
Theorem again, we get

(1€ - 7P < IO ~ e < (sup @) 1 15)

for £2(z) < n°(z) < us(x), for all z € ..
On the other side,

(14)

[(F/(€°) = [/ = [f/(€°) = f'(u)*|pe]? < 2 (ig%f’(@f 2. (16)
Then putting (15) and (16) together, we have
[(F'(€°) = f'(u¥))h* < K min{|h*|*, 1}|p°]%. (17)
However, for all § € [0,1],
min{|h%|?,1} = min{|h¥|?, 1}° min{|h%|?, 1}17° < |hF|?



NONLINEAR EQUATIONS WITH REACTION TERMS 17

and, thus, (17) became
[(F/(€°) = F/(u¥))he > < Kol [PH9), W6 € [0,1].
Analogously, using the properties of ® we may say that, for the first part of (14),
[((¢%) = @' ()R < K BP0, 6 € [0, 1],
Then it follows from (14) and using Remark 6 that

1
2
(R + 1) — Fa(u) — F(u)he oF)| < K ( / |h5|2<1+5>) e,
Q

€

1
1 2
s (2 [ eRee) o,

Furthermore, if § € (0,1), we can use Theorem 4.1 to get

[Fe(u® + %) = Fe(u®) = FL(u")h"||x;

1 1
2 1 2
< K, (/ |h52(1+6)> + Ky <E/ |h€2(1+5)> < C”}f”};?ﬂs)
Qe 0

Consequently,

F.(u® + h®) — F.(u®) — FL(u®)h%| x:
|| = (u ) — Fe(u®) — Fi(w) HXegc?HheH%l(szs)_*O

1Pl & (0.

when [|A%|| g1(q.) — 0 and, thus, F; is Frechet differentiable.
(d) Indeed, since ®, @', ®", f, f’, f"" are bounded, if w$, w5 € H' () and v¢ €
X., we have by Theorem 4.1

[(FL(u)ws — FL(u)wi, v%)]

S/ (@ (u)ws — @' (u)wi)v"| +é |(f (w)ws — f'(u)wi)oe|
0. 6

/ e g2 % €12 %
< (sprwen) ([, ms-eie) (/] 1o7)
/ 1 & £12 % 1 €12 %
e (i) (2 [ ws—wi) (2 )

<Cllwy — willa @ lv]

X.-
It follows that
|1 FL(u®) (w5 — wi)|[x; < Cllws —willm .,

proving the result.
(e) If uf,v® € HY(Q.) and w® € X,

IF () = FL() e xp = sup sup  ((F/(u%) — FZ(v%))w*, 2%).

HwEHHI(QE):l lz=llx. =1

Hence, if w® € H(.) and 2 € X., it follows from Theorem 4.1 and Holder’s
Inequality Generalized with 3 < ¢ <4 and 4 < p < 6 (since 1/p + 1/q = 3) that
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((Fe(u®) = Fz(v%))w®, 27)
(. € r(, € g _¢€ 1 1¢, € ow- £ _E
S/ (@7 (u™) = @' (v))w 2"+ = [ [(f (w) = f(v7))w"z
Qe

1

([ e (L) 1 )
(2 frren) (¢ fer) ()

( [ o) - <1>'<f>|?)’1’ +(2 GE f'<v5>|”>‘17

3

} H'LUEHHl(Qg)HZE”Xs‘

IFL(u) = FL ()l e, xpy = sup [((FL(u®) = FL(v%))w®, 2%)]

llz5llx.=1

< [( IR vorr) (L[ GE f’<v6>|p);] .

Now, for all z € )., we have

| (w (2)) = f(v%(2))] < 2 <Sup If’(fv)l) :

rxeR
On the other hand, by Mean Value Theorem,
@) — (@) < (sggu"(x)) 0 (2) — (@)
Thus, if 9 € (0, 1),
|f'(u®) = f'(v°) P < Ky min{1, [u® —v°|P}

= K min{1, |u® — vs|p}19 min{1, [u® — v8|p}1_0
< Kllus _ vs|19p.

Taking ¢ such that ¥p = 2 (ie, for some 1/3 < ¥ < 1), it follows that

1/p 1/p
(2 [ rw-rer) " < (2 [ s —o)

< Milu® = %[ q.)-
In a similar way,

W -wwr) < ([ R —op)
U )" < ([, s - )

< My|u® = o° || 5y
Furthermore, for some 9 € (0, 1),

12 (1) = FL(0%) | e (o)xz) < Mus = v% [l oy
(f) If us,v® € H'(Q,) and 2° € X,

(Fo(u® +v°) — Fo(u®) — FL(u*)v%, 2%) =

[ @ 07 =0 )+ [ (109 = f0) = )0

€
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Hence, we can argue as in the proof of item (c) to obtain, for any ¢ € (0, 1), that

1
21 ) ) = e <

1 1

€ e\ _ €Y & (1€ \0E|2 : €12 2
< ([ w00 - aw) —w ) ([ F)
. 5o ;
+ (2] 1400 - g - o) (2 [ 1)
€12(1+9) : € 1 €12(1+9) : €
<o ([ wPr) e s 0 (2 [ )

< kllo® |50 121 x. -
Therefore,
1F2(u® +0°) = Fo(u®) = FL(u")o" || xs < ko[, V6 € (0, 1),
which concludes the proof. O

Remark 7. The results from Proposition 6 are also valid if
F.: H'(Q.) — H ()
ws Fo(u): HY(Q.) - R

v (Fs(u),v>:/Q <I>(u)v+é/0 fluv
F.: X, — H ()
wrs Fo(u): H(Q.) - R

1
v (Fa(u),v) = / B(u)o + 7/ Flu)o.
Q. € Jo.
This is a consequence of Proposition 1 and Theorem 4.1.

6. Upper and lower semicontinuity of solutions. Our main goal in this section
is to prove Theorem 2.6, passing to the limit in problem (1). First of all, we write
equations (1) and (2) in an abstract way. Next, we combine the results from the
previous sections with those ones from [7, 9] concerned with compact convergence
to obtain upper and lower semicontinuity to & at € = 0.

6.1. Abstract setting and existence of solutions. In order to write problem
(1) in an abstract way, we consider the linear operator

A.: D(A.) € L*(Q.) — L*(Q.)

u® — Au® = —Au® +u’
with D(A.) = {u® € H*(Q.); 2% = 0}.

Let Z0 = L?(Q.), Z} = D(A.) and consider the scale of Hilbert spaces con-
structed by complex interpolation between Z2 and Z!. In our context, such spaces
isometrically coincide with the fractional power space of the operator A. (see
[26, Theorem 16.1]). Such scale can be extended to negative exponents such as
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1 1
Z7* = (Z2) for a > 0. Notice that Z2 = H'(Q.) and Z. * = (H*(Q.))’. Hence,
1

FRRSEN]
if we consider the realizations of A. in this scale, we have A, 1 € £(Z2, Z: *) with

€,—3

(A, _1 u®,¢%) :/ VufVe© +uf e, Yoo € H(Q.).
Q.
With some abuse of notation we identify all different realizations of this operator
writing as A.. Then the problem (1) can be rewrite as
Au® = F.(u®), (18)
where the map F. is given by
F.:H' () = X!
u® > Fo(uf) : L*(0,1; H*(0,Ge(21))) = R
1
v (P o) = [ et 2 [ pee
Q. 0.

with % <s <1

Thus, u¢ € H(£2.) is a solution of (18) if, and only if, u* = AZ'F.(u®). Then,
u® € H*(.) must be a fixed point of AZ'F. : HY(Q.) — H (). The existence
of such solutions follows from Schaefer Fixed Point Theorem [18, Section 9.2.2,
Theorem 4].

Indeed, as we will see in Proposition 11, we have that the operator AZ'F. is
compact. Hence, to conclude the existence, we just need to prove that

O. ={¢° € H1(96)3 " = Ae_lFs(‘PE)}

is a bounded set. Now, it is a direct consequence from Hoélder’s Inequality and
Theorem 4.1 since

1
1o 2 ) < / D7) | + » / £
Q. € Je.
1

S ep) (L ep)
<(sup|q><x>) e ( [ 1 |2) +(sup|f<x>|) 1, ( [ e )
z€R Q. z€R € Jo.
< Clle a0,

for any ¢° € O,.
In a similar way, we can analyze the limit problem given in (2). We first consider
the linear operator Ay € L(H' (), H'(Q)") with

(Ag u, p) = / VuVe +up, Yo € HY(Q),
Q

and then, we set the nonlinearity
Fo: H'(Q) = L*(0,1; {H*(0,m(z1))}’)
u e Fo(u) : L2(0,1; H*(0,m(21))) — R

v (Folu),v) = / B(u)o + / iy (f ()1 (0)dS.

Then the limit problem (2) can be rewritten as

Aou = Fy(u) (19)
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and, with this notation, u € H'(£) is a solution of (19) if, and only if, u = Ay" Fy(u).
In other words, u € H'(Q2) is a fixed point of Ay 'Fy : H'(Q) — H(Q). Again, the
existence of a solution follows from Schauder’s Fixed Point Theorem.

6.2. Extension operator. A particular continuous linear extension operator is
useful here. For the proof see [7, Proposition 4.1].

Proposition 7. Let Q. be the family of domains defined in (4). Then, for each
1 <p < oo, there are g > 0 and a continuous extension operator Pq_ : Ll(QE) —
LY(R?) such that, with the notation X (V) = LP(V) or WLP(V) for an open set
V C R2, Pq_ transforms functions of X (Q.) in X (R?) with

[ Po. llcex ., x®2)) < K, for 0 <e < eg,
for some K > 0 independent of ¢.

Moreover, Pq_ is constructed in such way that Po_u = 0 outside an open set U,
where U contain the closure of Qe for all e > 0.

Remark 8. The construction of operators Pq_ allows us to introduce a new family
of operator Po_ v : X(2%) — X (V) given by Po_v = RyPqo_, where Ry is the
restriction to the open set V. Using this notation, Py, = Po_re. We also have
| Pa.vcix@o),x vy < C independent of ¢ (see [7, Remark 4.2]).

The next lemma is convenient to get E-convergence results in €. (see [7, Lemma
4.3)).

Lemma 6.1. Let {u®} be a family in H' () with |[uf]| g1,y < M. Then

(i) there is a subsequence of u®, denoted by u*, and ug € H*(Q) such that u®* X
Uo;

(ii) there is a subsequence of u®, denoted by u®", and w € HY(U) such that
Po_ vum —uin HY(U) and usr X ulq.

6.3. Continuity of the equilibria set. We first show that the solutions are uni-
formly bounded in L>(€.).

Proposition 8. If u® € H'(Q.) is a solution of (18), then there is C > 0 indepen-
dent of € > 0 such that ||u| .y < C.

Proof. 1f u* € H'((.) is solution of (18), we have for all ¢* € H'(Q.) that
ou® 0p° ou® 0yp° / A / /
Q. 61’1 6371 + Q. 8332 8332 * Q. vy = Q. 90 e f

Now, if Aok = {(z1,22) € Qo3 u®(z1,22) > k} for k > 0, take p° = (u® — k)T €
H'(Q.), where

€ —k, if A g,
(u® = k)" (z1,22) = W (e, @2) ! (xl’ajb) & Sk
0, otherwise.

Then we have

Ouf d(uf — k)T Ouf O(uf — k)T U +
/Qa 8$1 8$1 + /Qa 8182 8162 + AE u (u k)

_ wE) (uf — + 1 ws) (uf — +
= [ e w2 s -0
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Thus using Hoélder’s Inequality, Theorem 4.1 and the definition of A j, we get

€ I 1> 1 I €
I = e = | I G / G

£
—/ k(u® — k)T
QEﬂAE,k
1
2
s(/ |<1><uf>2> (/ |uf—k|2>
QEHAE,,C QsﬂAi,k
1 2 (1
+< / |f(u€)|2> ( / u€k|2>
€ Jo.nAk € Jo.nAx

1 02| A |2
< (sup <I>(x>|) e [Hlu® — Koy + <sup|f(x)> BB e b s
x€eR zeR E2
Since the set 6. has order €, we obtain that
[uf — kllmi(o.) < CilAekl? (20)

where C7 > 0 is independent of € > 0.
Otherwise, notice that for p,q conjugates (in other words, 1/p + 1/¢ = 1) we
have

1w = k)" llLrca s = /Am(u8 —h < <~/Ag,k 1”) ’ </Af=k(u6 . k)q> Uq

< Ak VPN (W = B)llaga.)- (21)

From Proposition 3(c), we have that H!'(Q.) C L4(Q.) for 2 < ¢ < 4. Thus,
taking 2 < ¢ < 4 and its conjugate 1 < p < 2, we obtain from (20) in (21) that

ut — 1A, ) < ColAc i u® — k)| gy < k| FTYP = KA [T
(¢ B)*pra. . < Cal Akl 7| )l o) < KlAc k| :

1
2

N|=

for some & > 0 since 2+ < 1/p < 1.
Therefore, applying [22, Lemma 5.1] we obtain ||| ;s (q,) uniformly bounded,
proving the result. O

We also need the following lemma.

Lemma 6.2. Let u,w® € H' () given by w® = AZ'F.(u®). Then ||w®|mr(q.) <
C for some C > 0 independent of €.

Proof. Since w® = AZ1F.uf, it follows that, for any ¢ € HY(Q.),

Ow® Jp* Ow® Op* / c e / /
+ + = +2
a. 0z1 0z Jo, Oxg Oxa  Jq_ v Q. R Flu

Therefore, taking ¢° = w®, we have from Holder’s Inequality, the limitation of
®, f and Theorem 4.1 that

et < () (L) L)’ ()

1 1
< (sup o)) 630l + (50010 ) 12 ol o) < Cllu e,
AN zeR

which shows the result. O

Nl
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Next, we analyze the asymptotic behavior of the nonlinear terms of the problem.

Proposition 9. Let w®,u® € H'(Q.) and w,u € H (U) such that Po_ y(uf) — u
and Po_ y(w®) — w in HY(U), where Pq_y is the extension operator given by
Proposition 7. Then

€ i 1 1> £ o
Lf@Ww+A@@w mdeéfWMw+Ammmmmw,
where [i is given by (6).

Proof. To prove the first convergence, notice that using the Main Value Theorem
we obtain

/QE @(ug)wf_/gcb(u)w‘ < /Q @(UE)(we_w)‘ N
[ ot [ ot
<(4Jyf”ﬁé(Aﬁwa””ﬁé+(ﬁj¢mﬂ—¢mW)é(ijﬁ%
[ wtw = [ wwul

1
< (sup |<I>(J:)|) Gt llw® — w2 + (sug |<I>’(m)|) u® — ullx. ||lwl L2 (0.
re

zeR

Lf@m%@wm4

+

+

_|_

/ D(u)w — / @(u)w‘ =1+ 40 + i3
Q. Q
Since Po,_ i (uf) — wand Po_ y(w®) — win H'(U), we have that Po_ (u®) — u

and Po_ y(w®) — w in L?(U). Using that ® and &' are uniformly bounded and
properties from the extension operator given by Proposition 7, we obtain

i= (s 91 ) 63 o — vl < (supl@)) #1100 = wlzz) 0
and

it = (sup 0] ) I = ulre ol

< (sup 7)) 1P, =l lwlzzery — 0

Since iii — 0 by Corollary 1, we obtain the first result.
On the other side, to prove the second convergence we have

iljwww—w]
! 1/fwm—zﬁwﬂwwmm#

L[ ) - ) + |
+<ifka3—wa)é<iAJwﬁé

(L) o)

iAﬂﬂM‘AMWWMM“F

"

€

o= D
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1 X
+12 fww— [ py(f(u))y(w)dS
' I

1
< (sug If(af>|) HY [|w® —wlx, + <su§ If’(x)l) [u = ullx. wl .
xre xe

1
+ g/ f(u)w—/ﬂ'y(f(u))’y(w)ds =I+II+111I,
0: r
with X, = L?(0,1; H%(0, G<(z1))) for 1 < s < 1.
Notice that, since we are working on R?, U C U; x Us, with U;,U; C R open
sets, (0,1) C Uy and (0,Ge(z1)) C Uy for all x; € (0,1) and 0 < € < gg. Therefore

HYU) c HY(Uy xUsy) C L?(Uy; H*(Us)) =: Xy, where the last inclusion is compact
by Proposition 1. Thus, for some ki, ks > 0,

1= (sup 1)) £} " = wilx. <kt | oo = wllx, 0
and
1= (sup 7@ ) e = ulx. ol oy < ballPo. oo =l wllan) = 0
Finally 111 — 0 again by Corollary 1 and we conclude the proof. O
Proposition 10. Let u®,v® € H'(Q.) and u,v € H'(U) such that Pqo_y(uf) —

u and Po_ y(v®) — v in H'(U), where Pq_y is the extension operator given by
Proposition 7. Then, for all ¢ € HY(U),

1 .
| wwrros [ @ ad 2 [ raenes [ @neneds,
where [i is given by (6).
Proof. Indeed, to prove the first result we have

/Q RGLTS /Q ()

<

[ oo v)w‘ o] [ @) - e

/QE @/(u)vcpf/ﬂqy(u)vcp

Remembering that ®,®’ are uniformly bounded and that Pq, y(u®) — u and
Po.u(v®) — v in HY(U) implies Pqo_ y(u®) — u and Po_ y(v¥) — v in L2(U), we
can analyze each term on the right:

[ v == Gagwen) (=)' (/,17)'

< (su§|¢>'<x>|> 1o = vll oo el o
e

+ =1+ 17+t

i:

< <su§|¢>'<a:>|) 1Po.wv® = vl el ey = 0
xE

and using the Sobolev inclusion [26, Theorem 1.36] we have, for some C' > 0 inde-
pendent of ¢ that
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1=

/ (@' (uF) — @ (u))vp| < / (@ () — ()]
Q. Q.

<o) ([ =) ()" ()

< lu® —ullzzollvlliLaallellza.y < 1Pa.vu® —ullpzanllvllca@y lellLaw)
< C||Pa.vu® —ull2an loll @y llell 2 oy — 0.

| @we— [ @
Q. Q
proving the first result.

To prove the second convergence, we have

S e =2 [ 00t - ve [ 0w - Fawe +

€

For iz, using Corollary 3,

il = — 0,

1
+g/ f(wyvp=T+II+1I1I.
0c

Analyzing each term separately and using the definition of Xy given in the proof
of Proposition 9:

=L e s (i) (2 o) (2 o)’

< Cllo* —vlx Ml . < CllPa.vv” = vlxy llellaw) = 0.

Since f’ is C', applying Corollary 3, we get
1 N
1= [ fwe = [t ntonts
B r

Finally, notice that we can rewrite I as

U, HY(U) =

P = / (u))ve.

It follows that ¥ is a bounded linear operator in H'(U) since, using Theorem
4.1

)

1 2 /1 2
I‘I’e(w)lé2(supf'(w)> ( / v|2) ( / W) < Cllollm el ).
rzER € 6. € 0.

Besides, for all ¢ € C°(U),
V()= 2 [ (1) - Fpe

g

0

< (smotr@) (3 [ e - )é(i/95|v|2)é||sonoo

< K| Po. vu® = ullxy [0l g @) el gy =0

and then, by density, we have IT = ¥.(p) — 0, for all ¢ € H*(U). This concludes
the proof. O
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For now on, consider the spaces H. = H'(Q.) and Hy = H'(Q) in the con-
text of Definition 2.1. We prove the result which guarantee the upper and lower
semicontinuity of the set of solutions from (18) at € = 0.

Proposition 11. Using the notations from (18) and (19), we have that AZ1F. <,
At Fy.
Proof. To prove the compact convergence, we verify separately each item.

(a) AZ1F. is a compact operator, for each ¢ > 0.
Since by Proposition 1 H(€.) — X. with compact immersion, we have
X! < H~YQ.) compactly. Also, F. is a Lipschitz function by Proposition
6(b). Thus, we get the result from

. —1
m) 5 x L g 2 miay).
(b) If [uf| g (0.y < K, then {AZPF.(u®)} is E-precompact.
Let {u°} such that [|u®||g1(o.) < K. By Lemma 6.1 we obtain a subsequence,

that we still call u®, such that Po_pu® — u in H'(U) and u® X u|q for some
uw € H'(U). Consider w® = AZ'F.(uf). By Lemma 6.2, ||w®| g1,y < C
and, thus, again by Lemma 6.1, there exists a subsequence, also called w®, and
w € HY(U) such that Py, yw® — w in H'(U) and w® X wlq.

If we call ug = ulg and wg = w|g, we have that wg = AalFo(uo). Indeed,

we & wo implies for any v € H'(U) that (w®,v)g1(a.) — (wo,v)m1(q). On
other hand, by Proposition 9 we have

1 R
(wmm«mz/‘Mww+f/fwmwﬁ/m%w+/mwwmwww.
Q. € Jo, Q r

Thus, since the limit is unique, we get, for all v € H(U),
mWww#wmm@=A¢mw+/mmwmww=@wmm,
¢ T

and, therefore, wy = Ay ' Fy(ug). Now, let us prove ||[we| i (a.) — [|wollm(a).
implying w*® s wo by [7, Proposition 3.2]. As a matter of fact, using Proposi-
tion 9 again, we have

w3, = (W w) (o) = (A7 Fe(u®), w) g

1 N
= [ oot 2 [ st [ dwu+ [ o (f)wn)ds
Qe € Jo. Q r
= (A Fo(uo), wo) () = (wo, wo) () = llwollF oy

(c) If u® £, u, then AZYF (uf) N Ayt Fo(u).

Indeed, if we assume that u® B, u, we get |[uf| g1y < C, for some C' > 0
independent of €. In particular, for any subsequence of u®, we can find another
subsequence, denoting all by u®, such that, using the same argument of the
previous item, we have Po_ y(u®) — u, with ug = u|q and, for this subsequence,

AZYF (uf) B, AalFo(uo). As we can prove this for any subsequence, we obtain
the E-convergence of all family, that is, AZ1F, (u®) EEN Ayt Fo(ug).
O
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Finally, we can conclude the upper and lower semicontinuity of the equilibrium
set at £ = 0 proving Theorem 2.6. Indeed, from Proposition 11 and [9, Proposition
5.6], we have:

Proposition 12. For any family {u}, u® € HY(Q.) solution of (18), there is u, €
HY(Q) solution of (19) and a subsequence still denoted by us, such that u® s u,.

Moreover, with the assumption that the limit solution is hyperbolic, we can get
lower semicontinuity of the equilibrium set. More precisely, from Proposition 11
and [9, Proposition 5.7] we have

Proposition 13. If u, € H'(Q) solution of (19) is hyperbolic, then there is a
sequence {u}, us € HY(Q.) solution of (18), such that uS ..

Remark 9. In the case when all equilibria points of the limit equation (19) are
hyperbolic, we have that all of them are isolated and there is only a finite number
of them (see [9, Corollary 5.4 or Proposition 5.5]).

Notice that the continuity above does not exclude the possibility that near an
equilibrium point of the limiting equation may exist several different equilibrium
points of the perturbed problem. We show that is possible to obtain some sort of
uniqueness of the equilibrium points concluding the proof of Theorem 2.6.

First we will prove an important result about the compact convergence of the
operators AZ1F!(uf) if uS € H'(€.) is a sequence of solutions from (18) that is
FE-convergent.

Proposition 14. If {uf} is a sequence of solutions of (18), u¢ € H* (), and
up € HY(Q) is solution of (19) then AZ1F!(uf) <, Ayt Ey(uo) whenever uf s we.
Proof. We prove by steps, as in Proposition 11.
(i) AZ1F!(uf) is compact, for each € > 0.
Since H'(€.) < X. with compact immersion by Proposition 1, we have

Fl(uf)

. —1
o) M x4 gy A gy,

where F!(uf) is continuous by Proposition 6(d), proving the affirmation.
(i) AZ'F.(u®)v® is E-precompact whenever ||[v¢|| 1.y < C.
Let {v°} family in H*(€.) such that |[v°]|g1 (o) < C and define w® =
AZ1F!(uf)ve. Then for any ¢° € H'(Q.),
ow® Oy ow® Op* / . / /
= ' (
Q68$18$1+ 958$28$2+ ng@ Q v@—’_ f

e

If ¢* = w® follows by Theorem 4.1

1
W oy = [ @@+ 2 [ faear
Q. 0.
< (sgg@’(x)) o L e o sy + (sggv'(zn) O s o I 1

and, thus, ||w®||g1(q.) < K, for some K > 0 independent of . Therefore, by
Lemma 6.1 we obtain subsequences, also denoted by v¢, w®, and v, w € H(U)

such that Py, 7(v¥) — v and Pq_ y(w®) — w both in HY(U), with v* A vla

E
and w® = w)gq.



28 JOSE M. ARRIETA, ARIADNE NOGUEIRA AND MARCONE C. PEREIRA

Now if we call vy = v|q and wy = w|n we may prove that wy = AalFé(uo)vo.
Indeed, for ¢ € HY(U)

1
(w®, @) m (0.) =/ ¢’(u5)v6¢+g/ fu e (22)
Qe 0
On one hand, using Proposition 10, we have
g (> 1 g (> o
[ oo 2 [ rue s [ @oumet [ i @ntoes
Qe 0 Q r
= (Ag " F} (ug)vo, O H1(Q)-
However, since w*® X wla,
(W, @) a1y — (Wo, ) H1(Q)-
Thus wg = AglFé(uo)vo.

Finally, we show that w® - wo. By [7, Proposition 3.2], it is enough to
prove |[w®| g1,y — [lwollar(). But, if we take ¢ = w® in (22) we obtain
arguing as in the proof of Proposition 11, the norm convergence.

(ifl) AZVF(uf)of s ASVFY(ug)vo se v° 25 vp.

To prove that w® EEN wg for the whole sequence it is enough to use an
analogous proof of this step in Proposition 11.

O

The following lemma is the last one that we need to conclude the uniqueness of
equilibrium points near a hyperbolic limit solution.

Lemma 6.3. If uS € H'(S.) is a solution of (18) then there is K > 0 such that,
for all v¢ € HY(Q.) with [|v°| g1y < 1, we have
IAZH (Fe(ug +0°) = Fe (u5) = FL(uS)o") | ) < Klo® I3, for some 6 € (0,1).

Proof. Let w® = AZY(Fo(us + v°) — F.(uS) — F/(uf)v®). This implies that, for all
©° € Hl(QE),

Ow® Op° Owe 0p° ,
€ € — P (ut Y d(uf) — B (u )t
AJ%ﬁm+AJm8m+Lf¢ [J(%+”) () — & (u ) )p

1 [ s o) = 1) - F)e

Taking ¢ = w®, the left side of the equation becomes ||w5|@11(95). For the right
side, with a fixed 1 < p < 2 in a way that its conjugate ¢ is 2 < ¢ < 4, follows by
Theorem 4.1 that

@) — o) — @i+ [0 ) - ) - s

O

< (/S B (us + v°) — B(u) —‘I”(ui)qﬁp)l/p (/S |w8|q>1/q+
i (i‘ /9 |f(ul + %) = fug) - f’(ui)vs|p)l/p (i /9 |w5|q>1/q
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1/p
g(/|ﬂ@+wﬂ—@wa—@%@nwj -
Q

: 1 . _ _ oo 1/p E
+ <€ /05 |f<u* +v ) - f(u*) - f (u*)’U |p> Hw ||H1(Q€)~

By Proposition 6(f) we obtain, for § € (0, 1) such that p(1 + §) = 2 or, in other
words, 2/p = (1+9),

12 12
2p 1 2p
o o < ([ 108) I limon +€ (2 [ 10B) T Il

2
< o[ Nl @y = Kl It 1wl o)

and, thus,

[w® 20y < Kl [0,

proving the result. O
Now we can conclude the uniqueness of the equilibrium as ¢ is close to zero.

Proposition 15. If uf is a hyperbolic equilibrium of (19), then there exist n > 0
and g9 > 0 such that, for 0 < e < gq, there exists one, and only one, us solution of

(18) such that ||us — Ecugll gy < 1. Furthermore ug N ug.
Proof. This is a consequence of [7, Proposition 5.5] or [9, Theorem 5.8]. O
Finally, we can prove the main result of this section.

Proof of Theorem 2.6. The item (a) follows from Theorem 12. On the other hand,
(b) follows from Theorem 13 and Proposition 15. O
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