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RESUMO 

O present.a est.udo consi st.e nU111a i nt.roduç5:) • 

per-colação. Damos uma visão -pla dos fen6-nos 

envolvidos na percolação, por6m co~ Just.it1cat.ivas be1ll 

a.nos rigorosas que do pont.o de vist.a mat.eút.ico. 

Trat.amos aqui de algumas a.di das da est.rut.ura do 

conglomerado t.ais come: o t.amanho mclio, o peri-t.ro 

• o raio do congl ~r ado; d1 scut.i mos um pouco a t.6cn1 ca 

de renoraa.lização de grupos. Est.e t.rabalho foi baseado 

em st.auffer (1985) . 

Palavras c::hav.s Perc::olaçiío, Tra.nsiçiío de fase, 

Teoria da escala, Renormalização d• grupo. 
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1. llfflt.ODUQIO 

Na t.eoria da percolação •xi•t•m vários tipos a r__. ca. 
1nt.•r-••· C:0-C•- c0111 um das r ~ -.is simpl- : I-gi~- um 
grande arranjo como -t.rado na figura C1. a). Flsicos a denomina.a de 
rede quadrada, •nquant.o mat.•mát.icos a denot.am por Z2. Em •~uida uaa 

fração dest.- quadrados Ct.a.,.111 chama.dos d• .sitíoa) serão pr-nchidos 
al-t.ori-...nt.e c0111 pont.os, coao na figura C1.b) . O.fini- agora um 
con1loaarado c01110 WI conJunt.o de slt.ios ocupados unidos por, pelo 

... nos, um dos lad0S do quadrado ocupado, como indica a figura Cl. c): 

• • 
• • • • ..,J 

-
• • • ~ ... • 

• • " ....!.. • 
Ca) Cb) Cc) 

Ficura t I Def'iniçãa de perco.lação e conclo-radaa 

Uma quest.ão inicial • co1110 0S pont.os -t.ão dist.ribuldos ent.r• 
os quadrados ~ figura 1 ? uaa s uposição silllJ)l- e be• aceit.a • que a 
presença ou não de cada pont.o em um sit.io • indepeude n t.e de qualquer 
out.ro sit.io est.ar ocupado ou não. Seja p a probabilidade de um sit.io 
est.ar ocupado• 1-p a de est.ar desocupado. 

O.tini- uma rede finit.a co1110 um subc:onJunt.o finit.o de ZZ; 
d i re- que t.e- percolaqão se e>Clst.ir um conglaa.rado que cont.enha a 
origem• alcance a borda de qualquer rede finit.a. S. t.-- N sit.i os 

CN grande) nu- rede finit.a, podemos esperar que Np dest.es sit.ias 
est.ej- ocupados. 

ocupadoc , e assim, 

Para p próxi.:> de 

em,.._ rede grande 

zero haveriliio poucos sit.ios 

não haverá percolação. Por 
out.ro lado, para p próx:i.1110 de 1 t.eremos um grande n.:-ro de slt.ios 
ocupados indicando que t.ere- percolação Cexcet.o para o caso 
unidiaensional, corr-pondent.• â rede de Bet.he com a•l, que só t.er•-
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per-col aqlc, •• p•1 ) . 

1Q99 ) que •xi•t.• UIII valor crlt.ico Pe int..ri.diário CO<pc,<1), t.al qu. 

•• p<pc niío t..r- percolaqSo, • ■e p)pc haver• percolaqSo coa 

probabilidac:» positiva. 

S. considerarmos a r9d• acima C nest.• caso, fi ni t.a ) como uma 

floresta, onde as árvores ■iío representadas pelos sltios ocupados, 

t.erelllOS um 1110delo d• propagaqiío de fogo na floresta. Est.• mod•lo pod• 

••r silllUlado no comput.ador consid•rando a red• finita como uma matriz 

Lxl... Isso nos cUo Lª sttios. Inicia- a si111Ulaçiío to-ndo cada sitio• 

ocupando-o c0111 probabilidade p fixada, ind•pendent• dos d•-i•. Dessa 

for- .. per.- L•p slt.ios ocupados Cm-voras). 

incendiar as m-vores. Isso • f'eito incendiando-• todas as árvoras na 

pri-ira linha da -triz, e a cada it•raçao C t.•mpo ) as árvor .. que 

estiver- i.-diatament• ao lado ou abai>C'O de uma árvore incendiada 

t &JDW• seriío inc•ndiadas. O gr.ti'ico do t•nq:x, d• duração do inc•ndio • 

o segui nt.e: 

T•mpo de 

Duraqao 

Pc:: 

Figura 2 1 Teapo d• dur-açilío 

do Cago na Cloreat.a. 

p 

Nota- neste gr.ti'ico qu. ptra p próximo d• zero ou d• 1, a 

duraçao • pequena. Isto ocorre porque para p próximo de zero, a 

-ioria das m-vores não tem vizinhas • dai o fogo nao pode prosseguir. 

Para P pró>d.1110 de 1 a -ior-ia das .,. __ t.e111 vizinhas • assim a cada 

tempo uma linha da matriz• incendiada,• o t.empo de duração do fogo• 

aproximada-nt.e igual ao tamanho da flor-ta CL). Para p lig•ir.-nte 

acima de Pe aparec• pela primeira vez UIII calllinho d• m-vores ligando o 

inicio ao fi111 da flor-ta, e -t• caminho, •m geral, • bem diferente 

de uma linha reta• assim o sistema l•va um t.e111p0 111Uito maior que L 
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para ext.inguir o fcgo. Para p ligeiraaent.e abai lCD de Pc ainda não há 
uai caminho ligando o inicio ao fia da florest.a, e o sist.ema l•va. UII 
t.empo auH.o ll&ior que L para p.rcet>.r isso C esgot..ar todos os 
posslveis caminhos ). 

H• di'Y9rsos out.ros fenó-nos que podem ser adapt.ados ao modelo de 
percolaçiío. Por e-.plo, um deles • o fen6-no de difusão de um •t.OfflO 
de Hidrog•nio at.rav•s de um sólido, onde cons1der.- uaa -t.riz L.xL 
como sendo o sólido• ocupa- cada ele-nt.o dest.a com probabilidade 
p, independent.e dos demais . Em seguida escolhemos aleat.oriaa.nt.e uai 

dos stt.ios ocupados e nele colocamos um •t.omo de hidJ'og6nic. Va­
assuaur que 9St.e •t.oao só possa se mov.r para um dos sit.ios escolhido 
aleat.cria-nt.• dent.re seus sit.ios vizinhos ocupados. Ent.end•mos por 
vizinhança de um sit.io aquel9S slt,ios que t.•nham um lado •• comum cOlll 
ele. 

Est.e IIIOd•lo foi chamado d• "formiga no labirint.o" por Gennes 
CtQ7e), e a qu-t.ão • ser• que a forllliga cons~e -capar do 
labirint.o? Tal coao no exemplo ant.erior C fogo na f'lor-t.a) •e p for 
próximo de zero a formiga não t.er• por onde se loc~v.r, para p 
próxiao de 1, ela -capar• facil-nt.e e para p ligeir.-nt.e aci- de 
Pc ela escapara, por•m com grande dificuldade, ou ••Ja, ' o t.empo gast.o 
para escapar s•r• grand•. 

2. NGolERO DE CONGLOMERADOS 

2.L Def"lni9Ao de ~ •.loa 

H4 alguns -t.er1ais na n,t.ureza coa a -t.rut.ura aolec:ular 
exat..-nt.e igual a reda quadrada, por•• h4 muit.os out.ros com est.rut.ura 
t.ot.al ment.e diferent.e. Surge ent.ão a n.cessidad• de definir out.ros 
t.ipos de rede. Al gumas dessas out.ras formas siic r~e t.riangular, 
col .. ia e out.ras r edes bi-dimensiona.is. Em t.r•s di-nse.s t.elllCIS, 
d•nt.r• out.ras , a rede cúbica simples, cúbica c•nt.ral • · a red• cúbica 
fac•-cent.ral. 



<•> 1 a.de Triancular a,> 1 a.d• c:6btca 

Ftcura S I Out.l'Olt t.tpoa de .-.de 

Na rede quadrada não faz diferença se definimos o sitio como o 

centro do quadrado ou co1n0 o pont.o de encontro de duas linhas vertical 

e horizontal e cruzamento ou nós). Se na rede triangular detinirmos o 

sltio coao o c•ntro do triAngulo, teremos a red• col1116ia. Na red• 

c6bica simples o sitio • o nó. Na rede c1'.lbica central, al•m dos nós 

t.amb6ta telllOS os centros dos cubos, • na red• ctJbica face-central al•m 

dos nós temos os centros de cada u- das faces dos cubos. 

O problema descri to anterior-nte denomina-se percolaçlao d• llft.lo 

< ou ele pont.o >. Quando consideramos que t.odos os slt.ios estão 

ocupados COJII probabilidade 1, e cada "laço" ligando dois sltios estar• 

aberto Cper-1111.tindo a. comunicaçlio entre est.es slt.ios) c0111 probabilidade 

p, e fechado co111 probabilidade 1-p independent-nte dos de-is, t•mos 

u,a outro proble111a denominado percolaçAo de lal;:o. Um con,t-,.ado na 

percola.çSo de laço • definido co1110 UIII conjunto de sities ligados por 

1 aQOII &bar tos. 

Para cada axlelo citado aci- existe um valor critico Pc nao 

trivial, ou seja, O<pc<1, tal que se p<pc a probabilidade do 

conglomerado associado a orig- ser infinito• zero, e para p>pc esta 

probabilidade • positiva. Deste .:,cio -t• haYendo uma mudança no 

comportaaent.o do sistema, ou seja, uma t..-anstc;ao de t_.. 

A tabela a seguir apresenta resultados obtidos atrav•s de simula­

ção para os parAINtros crlticos dos IIIC>delos apresentados anterior~t.•: 
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T ... la t. ......... ..,. Cl'lt.tooa - da- • t.Na dlaa...e.. .... Diaell ., Sit.to Laço 

Quadrada 2 O.Sir2'r.s 0. !90000 
TManpdar 2 0. !90000 0.3'72Q 
Colála 2 0.l!!Qe2 0. e52'71 
Cúbica Stapi.. 3 0.3117 0. 24Q2 
Cúbica C.nt.ral 3 0.24!5 0.1785 
Cúbica p_,...c.nt.a-al 3 0.1Q8 0.110 

O int.eress• do caso uni-di-■nsional da percolac;lo • que. al6m 
dela ter solução exata, 

di-a.. -1or... U.. 

•l• traz al gumas dicas par-a modelos COffl 

conglomerado no caso uni-di ~ i onal • 
caract.arizado por U1II conjunto da sitias ocupados coa os vizinhos dos 
axt.r■-:,s dessa conjunt.os est.ando vazios. c01110 mostra • Figura 4. 

e • • o • • • • • o • o 

Fleta'• 4 1 Exe-.,1o de cancJa-rado •• d-t. No cent.ro t.e- wa 
conclo-rado da '--nho s. 

Ccnsidaraaos inicial-te uma reda ~inita d• t.amanho L CL 
grande). A probabilidada da que haja U111 congl omerado da t .-nho s • 
P9(1-p)Z. onda p • a probabilidada da ua ■lt.io qual~ .. t.ar ocupado. 
O níaaaro -parado da congl ~ •dos ~ tamanho s • LP9(1-p)Z, Vamos 
da~inir o n ia-ro -parado da congl om■rados por slt.io, n_. Tar­
ant.ão : 

C1) 

Para p(1, o n íaaaro da conglo.-rados vai a zero quando s..- : 



11• '"'- • 11• ...C1-p)& • C1-p)ª li• ... • O 
-~~ -~- -~ 

E t.amt.a o nmaero esperado de sit.ios vazios vai a int'init.o quando 

Assia, nlío t.ere.::as um congl~ado de t.aaanho int'init.o, ou seja, 

nlío haWI"• pet'cola,;aa se p(1. Coa isso conclui- que 

(2) 

UI out.ro ass>'ct.o de iht.eress• • quarat.o ao tGMGnho -'dio do 
COfllla .. rodo. Para isso, leabreaos que n.s • a probabilidade de ua 
sit.io arbit.r•io pert.encer a wa coaiglo-rado de t.amanho s, d&1 • 

probabilidade de que ua ■it.io arbit.r6r1o pert.ença a qualquer 
cangloaarado 6 p, pois 

(3) 

anda a igualdade tt vale devido ao t.eorema da con'Y9rg•ncia dominada 

Cwtr, por e>antplo, J._C1Q81)). 

Seja w. a. probabilidade de que um congloaerado cont.endo u■ 

sit.io ocupado arbit.r•io cont.enha exat.a.ment.• • sit.ios. Te1110S ent.ao: 

S.Ja ainda S o t.-..nho Mdi o do conglomerado, ou ••J• 

Explicit.aaent.e, t.er..-: 

e 



s.._!_~ nsZ • 
p Ú•• • 

1 
p }: 

C1-p)Z 
p•Cl-p)ZsZ a 

•• p 

• Cl-p)Zp ~ dl Cp•) + (1-p)Z t.. -,c3p'f' 

2 1 
• C1-p)&p ~• + Cl-p)Z ~ a• ~ 1-p • e p<pc ) 

~ 

Assia o t.Alllilnho Mdio ~onglo-rado div.rg~ quando nos 

aproxi mamos de Pc · Result.ados ~ogos a -t.e podem ser· obt.idos para 

di -nsa.s maiores que 1 . Para o IIIOdelo de percolação -t.• diverg6ncia 

• be111 plauslvel, pois se h• um congl~rado infinit,o pr-ent.e acima de 

Pc• ent.ão, ligeira-mt.• aba1>e0 de Pc J• t.•- wn congloaerado IRU.i.t.o 

grande, por•m finito. 

Vamos definir a t"unção de corre.lação gCr) como a probabi lidade de 

que um stt.io à dist.Anc:ia r de um out.ro slt.io ocupado (origem) -t.eja 

no ..s-=i congl~rado. Not.• que o sist.e.a é hoaog6neo Co -m> p para 

t.odo stt.io:> • port.ant.o invariant.• por t.ranslação. I!: f'aeil not.ar que 

g(O)•l e g(1)•p. Para um sit.io â dist.~ia r, d•vamcs t.er -•• slt.io 

ocupado • os r-1 ent.r• est.• • a orig•• t.a~• devem -t.ar ocupados. 

T•- port.ant.o 

para t.odo p • r. Para p<1 est.a função d• correlação, ou f'unção de 

conect.i vidade, vai a zero e xponencial-nt.• quando r vai. a infinit.o : 

1 
COIII { • - ..... l-n"'c .. p5--

--

Usando que 

1 
--<pc-p) 
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para p ~ Pc • 1. CT.> 

Podelllos not.ar qua est.a out.ra caract.arillt.ica t, dtmollli nada 

c~to d• corr-9laç.,, d1 v.rge - Pc• Elll d1 menseles -1 ores t.•mos 

que o conq)ri.-nto de corr•laçiío • proporcional ao diam.t.ro d• um 

conglo-•do t.lpico. Para o caso unidi-nsional est.a r•laqiio • óbvia. 

o co,npri-t.o d• U111 conglomerado com s s1t.1os • •-1. nao t.ao diferent.e 

d• s •• s • grande. Assim, o compri-nt.o de correlaqiio t varia c0111 o 

t.amanho III06di o do congl o-ado : 

s « t (8) 

-1ores. Uma relação -1s geral• a seguint.e, 

I CD gCr) • S 

r•-• 
(g) 

onde r>O e r<O signif'ica que -t.a- t.Offlando, r-pect.ivament.e, 

vizinhos da direit.a •da-querela. O. f'at.o 

I CD gCr) • 2I •ger:>-gCO) • 2 I •pr - 1 • 2 
r•-~ r•O r•O 

1 - 1 - 1+p s 
--,-1--p- ~-

O caso unidi-nsional pode ser r-olvido exat.a-nt.e, enquant.o 

para d•2 apenas os congloaarados pequenos pocl- ser t.rat.ados 

exat.a-nt.e. e est.e o cont.eódo da secção seguint.e. 

Se a solução da Equação C 1) no caso uni di aM\si onal • si 111pl es, 

surge a seguint.• pergunt.a ser• poss1Yel aplicar o nwsmo principio 

para dinanslSes mais alt.as? Para responder -s• pergunt.a, va1110S olhar 

para a rede quadrada da f'i gura 1. Nest.a rede, para qua um slt.io 

ocupado ar bi t.r.6r i o seja um congl oaarado de t.a-nho s•1 . devemos t.er 
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- quat.ro Vizinhos vazios, independen~t.e. assi■ est.a 
probabilidade • n,ape:1-p:>•. O n'-ro de par- par slt.io • 
na-apa(1-p)•. pois ~ hav.r doi■ ■lt.ios acupadoa • ■-ua e vizinhos 
vazios, podendo -t.•r na v.rt.ic:al ou na horizont.al. G9ral..nt.e o 
n'-ero d• c:ongl oa.radce de t.aaanho • par stt.io for aando \ma linha ret.a 
• n.112pa(1-p)aa.& - uaa red• quadrada. Em d•3, na rede c:úbic:a 
si111pl .. , t.- u111 n.:-ro Mdio de c:onglo-rados de t.aaanho s por stt.io 
formando um.a linha r•t.a igual a 3p■C1-p)'8♦Z . Inf•liz-nt.• o 
congloaarado niío prac:isa for111ar nac:-saria-nt.e u111a linha ret.a. Na 
ract• quadrada, por e:x.mplo, podemos t.•r um conglomarado for .. ndo um 
t.riAngulo Cs•3), • nest.• caso t.erelllOS 7 vizinhos vazios • "' 
0rient.a9'1eS posslv■is, com probabilidade 4pllC1-p)7. Combi nando com o 
result.ado ant.•rior, t.aremos n 9 a2pll(1-p)• + 4p9(1-p)7 num t.ot.al da 
&-2+4) c:onfiguraçlles possivwis . 

O n~ro de Vizinhos • d•nominado "pari-t.ro" Ct.) d• um 
c:ongloaarado c-t.• pari.a.t.ro não pode ••r c~rado coa a suparflcie 
do conglom9rado por-qu. inclui buracos int.ernos). Assim, na rade 
quadrada coa sa3 t.e- t.•7 • t.-e. Se o núnaro d• cont'iguraçtlas d• UIII 

congl ~ ado d• t.amanho s • pertaat.ro t. • denot.ado por Oat• •nt..â5o 

C10) 

• o nC:.-ro llllkii o de conglo-ados da t.a-nho s por sit.io. A 
di.ficuld.a.de dest.a equação • que anYDlvw a soaa sobl"'• t.odos os 
posstvwis part-t.ros t. • assi ■ cada posstvwl configuração deva ser 
encont.rada • cuidadosa..nt.• .analizada para det.erminar Oat• o que ne111 
sempr• • possível, ou fácil. 

Uma r•lação para o n6-ro t.ot.al de cont'iguraçtlas Cveja St.auf'f•r, 
tg'7Q e Es■-, 1 Q80) g■•i 0al • 

CU) 

Para d-2 t.•- 9•1 , enquant.o para d•:3 t.- 9•3/c? • para d>8, 
9-S/2 c:01110 na rede da Bet.he. 



Tal cc-, o ca■o unidi-■ional • a red• de .&et.h• pode •er 

r-01 vida -t.aaent• Cver, por •)(9ffll)lo. AndJel & Gal'Y'eS c1gee)) e 

corr-p01ide • di-nsionalidade infinita. Porqua? Fagaac,11 uaa analogia 

: Para d-2 a circunfer•ncia de um circulo de raio r • 2m- e sua m-ea • 

m-Z. Para d•3 a superftcie d• U111& esfera de raio r • 4.m-Z, enquanto 

4 
seu voluma • ,-m-•· Apart.ir dai pode- notar que ell\ d dia.nsei.s a 

•uperf'tci• d• u.. -r•ra • proporcional a rk •nquant.o ••u volume • 

proporcional a rd, Assim 

(12) 

• no lilllit.• d .. a, a superf'ici• • proporcional ao volume. 

seguir que a red• d• Bethe possui est.a caraet.ertstica. 

VereJIIOS a 

Figura !S I a.de de Bet.he co• !Ea3 
e aada ■ft.to t..• a 
•izt~) 

Na rede de Bet.he h-' z stt.ios con■ct.ados • orig- Clª geração), 

zCz-1) sttios na 2<> g•ração, zCz-1)1 na 30 geração• assim por diant.•. 

Considerando o volume da esfera d• r g•raçZS.s como o nmnero de sit.ios 

at.• • Cr-1) .... 1- g•r-ação • • •uper-t'lci• como o núnaro d• stt.ios na 

,._..1_ geraçlio, o volume s•r-• igual a 

1 + z • zCz-1) + zCz-1)1 + zCz-1)1 + ... + zCz-t)r-1 

• l + z( 1 + Cz-1) + Cz-1):I + 

zCz-t)r-t. 
z-2 

••• + Cz-lJr-.1 ) • 
zCz-1,r-t.-2 

z-2 

• a super-fiei• ser• zCz-tJr-i_ Assim a r•lação ent.r• a super-fiei• • o 

voluna dessa esfera • Cz-2). Para z•3 podmnos not.ar que -t.ade dos 
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slt,ios -t.• na s uperttcie • a out.ra -t.ada ■st.• no int.eriar da astera. 

Podemos not.ar qua a relação t.✓s Conde s repr-ent.a o Y0lum■ do 

congl01111trado ) pode ser ascrit.a c01110 : 

t. 
s Pc: 

Est.a relação• válida para t.odas as r edes , não soment.e a rede de 

Bet.he. 

Mesmo para p>p., podemos t.■r a origem, ou qualquer out.ro pont.o 

fixado, nJío Ccn9Ct.ado ao infinit.o. Vaa:,s definir port.ant.o 8Cp), a 

probabilidad• d• percolação como sendo a probabilidade da origem, ou 

qualqu■r out.ro pont.o fixado, p■rt.•nc■r ao conglomerado infinit.o. 

Claral1191\t.e ■st.a probabilidade • zero s■ p<p., e qu■r ■mas calculá-la 

apenas para p>p.,. 

slt.io vizinho,.,,.,.-

\ ,'/ sub-ramo '. ,, 
Fisura 61 Eat.a f"isura ~a o qu■ 

cha- de •it.io, wtsinho 
raao • .ub-r-

( 

ramo 

Para o c.iculo d■ 9Cp) va- def"inir Q co1110 a probabilidade d■ que ua 

sit.io qualquer não ■st.eJa conec:t.ado ao uú"init.o at.raVlki de wa f"i xado 

ramo originado dest.e . sit.io. 

most.rado na figura aci--

Para simpliticar, t.oma- z•3 COIIIO 

A probabi lidade que dois sub-r.- que 

co~•m nWII vizinho fixado ocupado não ■st.■Jam con■ct.ados ao infinit.o 

9 pQZ. Est.■ vizinho ■st.ar• vazio com probabilidade 1-p. O.St.e IIIOdo 

Q • 1-p + pQZ • a probabilidade de que um fixado raao não leve ao 

1nfinit.o C ou porque a conexão J• • quebrada no 1° v1z1nhc ou por um 

de seus sUb-ramos). 

Est.a equação quadr•t.ica t.- duas sol ~ : Qal e Q-(1 -p)/p. A 

probabilu:tad■ p-9Cp) de que a orig■• est.■Ja ocupada -• não con■ct.da 
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ao intinit.o at.raws d• U111 de seus 3 r a.os • pJl'. Asai• t.-

p - 9Cp) • pJl', ou seja, 9Cp) • pC1-0-, 

que d• Zet"O para a solução Q,ol e 

9Cp>sp(1-( Cl-p)/p)■) (13) 

para a outra solução, que corresponde a p>pc•l/2. 

Tal COIIIO no caso unidinwnsional, poder- calcular o t.a-nho 

médio do conglon.rado S p.ar-a a rede de 9-t.he. 

por ■ill!plicidade . Seja To t.a-nho ..ctio de UIII dos ra,- . 

Se o vizinho -t.• 

vaz:io o t.a-nho Ndio do raMO é zero. S. o vizinho -t.• ocupado, el• 

cont.ribui co111 sua própria -••• Cuma unidade) para o conglo-rado • 

adiciona a -■sa de cada U1ft d• seus sub-ralllOS. Assi111 

T • C1-p:>O • pC1•2n, ou seja T-p/C1-~ 

O tamanho Mdio do conglo-rado é zero se a origem 

Ass1111 

S • pCl +3T) • p(l +p)/Cl-2p) 

• a for- exat.a par-a o t.amanho !Mdi o do eonglo-r-ado. 

pod•IIIOS not.ar que 

s • pCl+p) • 
1-ap 

S ar --
1
--­

Pc - P 

1 
a"" pCl+p) 

l 
a""-p 

IX 
1 

1 
a"" - p 

- 1 

Pc - P 
, resultando 

C14) 

qu• 

Cle:> 

A EquaçSo C13) nos diz que 9Cp)-0 para psp.,, • p.ar-a p>pc pode11105 

expandir 9Cp) •111 série de Taylor. T•r-elllOS , 

9Cp> • Cp -½->( e - 24Cp - -½-> + 80Cp - -½-)1 + . .. ). Ou seja, 

1 
ar (P - T") • ( P - Pc ) 
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().Jant.o ao n..__.o Mdi o de congl--•dos de t.aaanho s par ait.io. 
pode- not.ar q\a ua congl_.ado de t.aaanho s•1 de,.,. Ytr z Vizinhos 
desocupados e perta.t.ro ) , um congloaerado ~ t.amanho s-2 ~ve t..r 
pert..t.ro t.a2Cz-1)a2Cz-2)+Z. Cada slt.io que acrescent.aacs ao 
congloaarado cont.ribui com z-Z 

port.ant.o para um congloaarado 

-t.• r-ul t.ado na Equação C10), 

d• t.amanho s, t.asCz-a:>+a. 
r-ult.a 

Aplicando 

V•- t"azer nova-nt.e z•3 C lembre- que Pc•1/2 ) , e para eVit.ar o 
cálculo d• g. podemos olhar para 

Pc■c1-p.,)■ la-&> ♦I 

pie i -p5 • ta-2,.2 -[ 1-p 

1-po r 
dal 

(17) 

Pod-- not.ar ua decai-nt.o e xponencial para a raziío do n'-t-o de 
congloa.rado CEquaçiioC17)). 

peculiaridad• da reda d• Bat.he. Em d-2 ou da3 -·· decaiaent.o SÓ • 
~ido para grandeS congla-rados • p<p.,. 

Para det.erainar o c oapor t....nt.o aas1nt.ót.ico do núaaro de 
congloaerado - P-Pc:, leabr-e- que 

Para P-Pc -t.• soaa • infinit.a, enquant.o para p<p., ela permanece 
finit.a (Equação Clt5)). Se n.Cp,) decai e xponencial~t.e coa s, ent.iío 
S permanece tinit.o •• P-Pc:· 

13 



ond• T • denom1 nado "expoent,e d• Fi sher ", • a vali dad• dest,a l •i • 

geral, niío ficando r.st.rit,a soment,e • rect• d• Bet,h•. 

Vamos agora est.imar S • calcular T por comparação do result.ado 

com a Equação C15). Va1110s asswair p ligeiran.nt.• -nor que p.,. 

S ar I. sz-r•,q:,(-cs) 

aproxi111&ndo por uma int.egral, t.­

s ar fsZ-re,cpC-cs)ds 

fazendo zac:s 

S ar er-• Jzz-r •,q:,(-z)dz 

mas a 1nt.egral • uma const.ant.•, dai 

Segue que 

s ar e p-p.,) zcr -•> 

Da Equação (15) t.emos qul!' S Clf Cp-pc)-1 . Igualando os expoent..s 

2CT-3)•-1. Com isso, para a red• de Bet.h•, t.e1K>S 

T • !3/2 

Podemos ent.ik> reescreover a Equação C17) paras grande como 

(10) 

(20) 

(21) 

Em r-UIIIO, a solução da rede de Bet,he, E:quaçaes C1ID, C16) • (21), 

. bem como a solução un1di..-nsional, Equaçi5o C1), most.ram que o número 

14 



de congloaerado ■eg,.» uaa lei bem ■iaples, e o deeai-nt.o exponencial 
• comua ent.r• .. t. .. casos. Tent.ar- ut.ilizar .. \.e■ result.ados na 
sec;iío seguint.e para t.ornar plausl"91 a. lei de -ca.la para ao n.:a.ro de 
congloaerado •• geral, não apenas para d=1 ou d-

Nest.a seção iremos t.ent.ar encont.rar uma fórmula que cont.enha as 
soluqa.. do caso unidi-nsional e d.a r~ de S.t.he co110 casos 
esptM:ia1s. 

Tant.o a Equa.çãoC1) para o caso unidi-nsional COJm> a Equação C21) 
par a d1-ns1 onal 1 dad• 1 nf'i rú t.a são dominados, para s grande, por uma 

·lei d• deca1a.nt.o exponencial, log n• ex -s. Pode- ent.ão propor , 

n• ex •xp( -es) 

ond• o fat.or d• proporc1.onalida.de • o par._t.ro c depende111 de p. Os 
result.ados obt.idos at.ra~ da siaulação indicam que est.a deea1-nt.o 
exponencial não • consist.ent.e coa a Eqlação C21), caso •• que foi 
ancont.rado UJ11 rat.or s-r, 

Post.ul a.cs ent.ão : 

que • ault.iplicado pela exponancial. 

onde T • uma const.ant.a não nacessar1.aaant.• igual a !5/2. ProJXIIIIDS ant.ão 
para p prô>aao de Pc 

(23) 

cOJII u não nacessariaaant.e 1.gual a 1 ✓2 c01110 na rede de Bat.he. 
Essa const.rução fDi f'ait.a d• modo a ser uma generalização da reda 

de Bat.he, surg• ent.ão uma pergunt.a : est.a ganer.a.11.zaQiío irM:lui o caso 
unidi-nsional ? usando Pc&i • p-xpClnp)-xpCp-1)-xp(p-pc> para 
~e· ~crav.ndo a Equação (1), t.ar•-

que não • um caso espacial d• C20), uma vaz qu• t.•IIIOS uma pot.6ncia da 
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Cp-pal • nlío de s .,,. frent.• da •,q.,cc~ial. Tew ent.lío que escolher 

arit.re a a-n-ralizaçlio do caso unidi-sional • a c,.neralizaçao da rede 

de a.t.he. Opt..- pela rede de 8et.• por considerllla-la aais reallst.ica, 

caso •• que t.emos u.a t.ransiç.:, d• fase Cpc<l). 

V•- coaeqar por ge,,..,.a112ar 9Cp). p.,.• i ■t.o va- u■ar a 

expr-•KD geral, vlllalida. para t.oda rede : 

c-t.• equaç.llo siap1-..nt.e d.clara que um stt.io ocupado, probabilidade 

p, ou pertence ao congl o.ar ado i nf 1 ni t.o · , probabi 11 dade 8C p) , ou a um 

conoloaerado finit.o, prObabilidade D'.Cp)s) 

Exat..-t.e - P-Pc no■ t.•- que SCp)-0 e dai D-1.Cp)s • p C est.a 

SOIIIA • convergent.• se T)2, pois l)'l.Cpc)«-Es-<1"-u, que div.rge se 

CT-1):Sl, i.e.,Tg ). Pod9IIIOS .nt.Ko r-crev.r a Equaç.lío C24) como 

«p) -

por caU9a d• Cl 7) • C18). 

t,--

8C p) ar J st.-T" [ 1 -.xpC -cs) ] ds 

usando integral por part.es , 

SUbst.it.uinclo o •-tório pela il"llt.egral, 

Para P IIIU.it.o próxi1110 d• Pc• o fator e na expon.ncial ser• próX11110 d• 

z•ro e assim o pri-iro 't.er1110 da so- t.ambllm s•r• muit.o pequeno, 

t.er•- port.ant.o 

BCp) ar cf sZ-TexpC-cs)ds 
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aas a int.egral • apenas 1- const.ant.e. da1 

Coao na t.eoria dos f~nos cr.lt.ic011 •~ qu• 

o últ.1110 r-ult.ado vai nos dar uma das r•lac;;ZS.S conhecidas coao 
relaça.. de ew,eJe 

Vamos agora est.udar como S, o t.amanho Ndio do conglaa.ra.dc, 

di'Y9rg• •• Pc· Da Equação C10) t.•- que 

com • xpoent.• crit.ico 

(27) 

Pela nossa própria const.rução d•-- t.er (i • r posit.iYOS, • isso 
ocorre•• 2<T<3, coa a>O. 

t: i mpor t.ant.e ressal t.ar que dos 4 e xpoent.es crit.icos T, a, p • ;y 

apenas 2 d-t.es são necessM i os • os out.ros dois pod- ser d•r i vados 

dest.es dois. Est.es e xpoent.es neces....-ios são chaaados de ~ troa: 
liur•• • pod•• ser t.ant.o T • a coa:> (i • ;y, pois t.•-

a • 1/C(i+y) • T • 2 + (i/C(i+y) 

De modo geral, pod•- def'inir ~ o k-ésiao _,_nt.o da 

dist.ribuição do t.aaanho do conglom.rado, onde 1c • um int.•iro, 

C28. a) 
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Para lr•1. ~ a probabilidade de percola~ 9Cp), • para ke2 t.- o 

t.a.inanho aktio do congl ~rado S. 

v-- -•uair qua Jc>CT-1) paa-°a gAl'ant.ir a conYM"o•ncia da ao.a,• 

d• ror- análoga ao que foi f•it.o para S, t.•r--

C28. b) 

Aasi■ o •~nt.e CT-1-k)/o • novaaant.e e>Cpl"-so - t.er■os ct. Te 

o, coaa ~amb<'• poderia ser em t.er- de~ e y, .pois 

C2B.c) 

As relaç,bes (26), C2'T.> e C28. e) são t.rh das possi'Y9iS relaç8es 

de escala. 

Pod-- generalizar a Equação C17) ,,.cp>-n.Cp)/n.cp;, • 

•XF(-const.C p-p;,s0 ) e a C 22): ,,.-xp(-const.1 p-pc l '-'.,.s) reescrevendo 

COlftO 

C2Q) 

onde f•J(z) • d•n0Jllinada f'unção de .. cala. 

Not.• que no caso uni-di-nsional, co1110 Pcai, t.•IIIOS 

qtJ9 nao seria cont.•lllplado pela Equação C1 r., ou (22). Com a 

generalização podemos englobar -t.• caso, pois •• f'izerlllOS T-2 e o-w1, 

e usando z-Cp-pc>s, ou seja , P-Pc-Z/s. T- qu. 
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T--=- que l eabrar que a t unqllo I d9V9 .vit.ar o aurgl - t.o de ua 
congloaerado infinit.o abai>m de Pc· s.r• i ■t.o pca■l-1 ? V.- part.ir 

da Equa9iio C2') l __,,.ando que n_Cp.> ■p - p<pc; 

fj(p)•Í,s(n.Cpc'-n.Cp)) • l,s(s-" JtO)--" ,ltz)) • l,••-"(JtOJ-Jtz)) • 

aprcxi. aando por .- int.egral • fazendo %-Cp-p0)s'. t.er..:,s 

z,..,_, 
.....,ÕC"""p-"""""p'"'c-.)""i.,,7""8',... dz 

usando C2e> • C Z7"J t.- que {J+y•1 ✓o. dai 

onde a int.egral sobre z-Cp-p0 )s0' varia de -e a O para p<pc • de O a .._ 

para p>Pc· Como sabe- que 9Cp) ■o se p<p0 • a condi~ para isso • 

(30) 

Para p>p0 -t.a int.egral niío pode dar zero. p.,.a que ela ••Ja zero 

e nec-■•io •• p<pc', a funçiío jtz) ~ alt.ernar d• ■inal. A 

nat.ureza t.ornou a f(.z) si111pl- de t.al f'or- que ela ■6 t.enha ua M>d. 1110 

- ua -1or z_, • o -1or da f nest.e a6,dao •-• cha-do de f- • 
ÃSSill 

(31) 

Para UIII congloaerado de t.aaanho f'ixado s. o n<--o n. t.- ua 

úxiao ea p- abai>CD de Pc• co. z_-CP--Pc'•'• ou ••Ja 

p-■pc+%_s_, 

Emit.a- assuaindo aqui que a f • uaa f'unqaio analtt.ica, que 

significa groa-iraaent.• que t.od- - derivadas de f siío l'init.- para 

t.Ddo z. •• part.icular para z■o Ci. •· P-Pc'· 
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2.7. N6-ro de aonpoaer..._ para P IDnCtt de Po 

T..,.. hA int..--- •• det..-ainar o n....-o de congloaeradae para 

p longe de Pc• t poa■l'Y91 qua algun■ da ■- -.-c:t.os -J­
aproxiaadoa razoavala.nt.e pela ■alUQlio da rede de Bet.he. IN'eliza.nt.• 

essa aprox.i-çSo nea aeapre • ■at.tst'at.6ria. 

Inicial-nt.• v-..- arguaent.&r pof'que para p(pc o número de 

congloaeradae dacai •xpcM~ial-.nt.• coa •• i ■t.o • · 

(32) 

Foi viat.o na Equação C11) que o n'-ro g. de con1'igura9'Jes varia 

e,cponenci al W\t.e coa s, 1 ■to • 

log Cg.l oc +s 

a ~ de um fat.or de -nor import.~cia •-· Das aquaçeles C10) • C11) 

~ not.ar que •• p for .uit.o pequeno, t.er•acs n.Cp4'>)--paconst.•. 

Todavia ~ uaa crença geral apoiada por renoraalizaçiio de grupo C a 

-r discut.ida mais adiant.e ) que a Equação C:32:> • válida para t.odo 

p<p.,, • não apenas para p próxi.:, de zero. O..sa for-, past.ul-.-

(33) 

Ccnt.udo, de..,. ser leabrado que -t.a ext.en■iio da■ equaça.s C:32) • C33) 

para t.odo p<p., niio • r-igoros.-nt.• provada. Sabemas apenas que vale 

para p(p'<p., Cvwja Kunz and Souillard ,1'"8). Para percolaçiio de pont.o 

ou de 1 aqa - 2 ou 3 di-nsa.s niio há i ndi caq21es cont.r a a Equação e 33) 

at.• o -nt.o. 

Volt.•- agora para o caso super crlt.ico. Pode ser provado c..,.ja 

Kamz and Souillard, 1Q'79) que o COllpOl"t.&-.nt.o de n.Cp) para p)p' '>p., 

Cc:oa • gra.nda) iftClui a di-iM:> d na lei de ~ai-t.o e,cponencial. 

C34. a:> 

ou 

C34. b) 
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boa aproxi~ para • pr6xia:, de 10. O axpcafttA •• na ~ CM. b) 

• !Y4 - dua• e -1...v - t.r.. di-.Bea, da a.cardo coa Lubenslry e 

Nckane ClQB:ll. Na rede de a.t.he nao h6 dif'--.a ent.re u ~ 

C:38) • C3&), poi• coao ela corr-ponde 

expoen'-- 1 • 1-1 /d d5D iguai •· 

~ h6 cont.radiç8■■ ■nt.r• 

a di..._ionaU.dade tnt'init.a, os 

- (32) • CM), 

pr-uai-laent.e v6li~ longe de Pc• • a ■upoaiqlio de -ala C2Gl, 

pr-UlliY9l-■nt.e v6lida pert.o de Pc· Para p pr6xia:, de Pc e • grande de 

t.al for- que IZ l•IP-Pel•., ••J• IIIUit.o Maior que 1, u Equa~ csa:, a 
CM) • Caliil) ■aio -pera~ ■-r- v6li~. Cont.udo a tunqAa de asc:ala 

~z) na Equação C2liill deY9 comport.ar-•, para jz I grande, de t.al for­

que a Equação (33) ••Ja ob■dec:ida abai,a:, d■ Pe• • a EquaQllo CM. b) 

••J• obedecida aci- de Pc· Para p)pc• por ■--plo, nos prec:i■-

JCz)acztt--v,expe-const. • zu.-a,,clv~ 

para alcançar nos■o obJet.iYO, coa \ma lei ■i■pl- ablu,,a:, de p
0

• 

At.rav. de silM.llaçSc, pode- not.ar - boa conc:ordllncia de■■& funQSo. 

Nos podelllos su.arizar -t.- r-ult.ados coa ajuda de ua expo■'l ,t.e e 
def'.inido coao 

onde 

e C3e.b) 

No caplt.ulo seguint.• t.■nt.ar- in-t.igar - t.allb6a h6 -•• 

diferença ent.r• o comport.--■t.o ablu,a:, e aciaa de Pc na -t.rut.ura do 

congloaM"ado. 

S. A ESTRUTURA DO CONGLOMERADO 

Na ~ 2. 3 nos int.raduz.i- o Nperiaat.roN t. de ua congl_.ado, 

qua e o n'-ro de sit.ios vazios - t.orno do canglcaarado. Nos podew 

chamar o t.a-nho • de ma congloaerado de -■sa desse cangloeerado;, 
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ent.ao t. 6 - das quant.idadea que detinea a -t.rut.ura cleasa ---· Â 

palaW"a periaet.ro ■ugere que -t.a ..Uda -Ja - -p6cie de 

■uperttc1e. ■iailar ao pera..t.ro de ua circulo de raio r. que • 2nr. e 

as■ia • proporcional • raiz quadrada da --■a (6real nra do circulo. 

Maia noa Fª~ -perar que t. -Ja proporcional a au-v• - d 

di..,..lles. an6logo a i:qua9iio (12). O obJet.iYO da aeçiio seguint.e • 

-t.rar que ist.o não • v.rc:lade. 

Da fcraa coa:, o periaat.ro toi definido. "t.a.:,s considerando 

apena■ o pert-t.ro ext..rno. aaa o congloaerado poda t.er buracos • cada 

ua deat. .. buracca t.__,.a t.ea ua periaat.ro int.erno. S. t.ivar- u■ 

buraco a cada. dig.-. t.rint.a ■tt.ioa. t.er- um perlaet.ro 

proporcional ao núaero de stt.i011 na rede inf'init.a. Para um 

cangl_,.ado auit.o grande, por•• t'init.o, nos pode- asperar o -mo 

coapcrt.aa.nt.o de uma rede inf'init..a e assi■ t.aab6■ um perlaet.ro 

proporcional ao n'-ro de congloaeradcs. Asai■ 

t. ... 

parece J,laustval. de acordo co■ o argu■ent.o aci■a. S. ist.o f'or vardade 

a quant.idad• t. naio poda ■ar 1dent.it'icac:la coa:, a supert'tci• do 

conglaaerado. VeJ.- porque. Pri-iro ,,._ def'inir t.• o perlaet.ro 

■lkiio de um congloaerado de t.a■anho s : 

onda ne1. • get. pe C1-p)I. 

O.St.a f'or■a t.emos que n. • I.,n.t.· Derivando n• com relação a p, t.•-

dCn•) d 
dp • ãp (Í, g...pec 1 -p) 1.) • Í, g • .,( spe-SC 1 -p) t. - pec 1-p) t.-t.t,) 



dividindo Ulbcs os lados por n. 

dal ~ que 

1 
1-=i,t.• 

t.• • ...!,:E_ ■ - Cl-p) ~ (lnCry) P ap 

t.8 • ...!.:e.. • - e const.)s< p 

C3e.a) 

cae. b) 

Pode- not.ar agora que o perl-t.ro não • uma ■uper t'lci• no 

samt.ido usual, ou ••Ja, para p(pc Ccaso - que (-t) o peri-t.ro • 
proporcional • massa s, •nquant.o para p>pc Ccaso •111 que (•1-1/d) 

apenas o ■agundo t.-mo de t.. varia coa sa-Vd, • -■i• apanas -•• 

t.erao «Ui a cont.ribuiqllio proporcional • ■upert'lci• usual. 

Neeao que o perlmet.ro ••Ja r .. t.ri t.o apenas ao paru.t.ro axt..rno, 

•• alvu-s red-, c01110 na reda cúbica ■iapl-, o perl-t.ro varia coa o 
vol uae • • não co• uma supert'ici • oc ....... 

EIII r-umo, n- o parl~ro • ..,... o perlaet.ro •xt.erno a.d-. bem a 
s uper flci• de um congla..rado - d dia.nanes, COIIIO • palavra 
'pertmet.ro' ■uger•; d-t.• modo, out.ra■ det'iniça.. são rwc .. __.1_ para 
-t.udar • s uperf'f.ci• de um congl~ ado no sent.ido usual. Surge ent.llo 

a nec-■idade de -t.udar out.r- aedi~ da -t.rut.ura do congl~ ado, 

c:01110 por -,nplo o raio do conglo-rado. e i■■o que Y9r•- a seguir. 

Enquant.o a s upert'f.ci• do congloarado 6 uma madida diftcil de -

def'inida, o 'raio' d• U111 congl ~ ado J• parec• bem mais f6eil. S.Ja 

•nt.ao 
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onde 

r ­
ro • ~ --•­L.,,. ... s 

(37) 

(38) 

• a posiqiío do cent.ro de -ssa do conglomerado e ri. 4 a posição do 

i-•simo stt.io. 

Usar.do essa definição podemos calcular a dist.ància m4dia ent.re 

dois conglom&rados de massa s; que • definida como 

r .. r .. 1 ri. -r j I z 
= r. .. }.'; .. 1Cr,-r 0 ) Cr j-ro) 1z 

s2 
.. 

s 

[ Cri.-r 0 )Z + Cri-r 0 )Z acri.-r 0 )Crj-r 0 ) ] 

= }: •• }.': •• ------------5 ....... -------------

s s 

(39) 

Como já vimos na Seção 2 . 2, a função de correlação gCr) é a 

probabilidade que um sit.io à dist.ància r de um sit.io ocupado (origem) 

em um conglomerado finit.o t.amb4m est.eja ocupado e pert.ença ao mesmo 

conglaa.rado. O número médio de sit.ios conect.ados à origem é S=1gCr) 

Conde est.a soma envolve t.odos os sit.ios da rede ) . Por out.ro lado, 

est.e número é igual a }',_sz n 8 /p, uma vez que n 8 s/p é a probabilidade 

que um sit.io pert.ença a um conglomerado de t.amanho s. Assim 

C40) 

Vamos redefinir agora o compriment.o de correlação e C ou 

compriment.o de conect.ividade ) como uma dist.ància média de dois 

sit.ios pert.encent.es ao mesmo conglomerado: 

lr rZ gCr) 

Í, gCr) 
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Por•m, 2R: • a dist~cia Mdia ao quadrado entre dois sities no 

1n9smo congl ornar ado de tamanho s , logo s 2R:s • a di st~ci a Mdi a ao 

quadrado dos sities num conglomerado de tamanho s, e l s2R: sn• "' 

2lR!s2n
11 

é a dist.ància média ao quadrado de dois sities pert•ncentes 

ao mesmo conglomerado, que • igual a l,. r2ger), logo 

C 41 . b) 

C a 1n9nos de um fator num•rico p ) . 

O comprimento de correlação• o raio do conglomerado tipi ce , ou 

seJa, é o raio daquele conglomerado que dá a maior contribuição para o 

segundo momento da distribuição do tamanho do conglomerado perto do 

pont-o critico Pc · 

Este comprimento de correlação diverge no ponto critico com um 

expoente v . O.finimos então v atrav•s de 

e 41. c) 

Para percolação em d=2, argumentos plausiveis C por•m não 

rigorosos ) dão v=4/.3, em excelente concord.ància com resultados de 

simulação . Em d=3, v é próximo de O. Q e na rede de Bethe t•mos v=1/2. 

Agora vamos tentar estudar como o raio R
11 

varia com s no ponto 

critico. Esta questão leva a um conceito usado de di-naão f"ract.al . 

Cons1 der emas o •><1tmpl o a s•gui r : podemos notar que a massa de uma 

barra de ferro depende apenas de seu comprimento; se em vez da barra 

t- ivermos uma chapa, essa massa dependerá do comprimento e da largura 

da chapa, ao passo que se tivermos um sólido, a massa dependerá tamWm 

da altura . Assim, para um material em d dimansaes, a massa depender• 

de d medidas. Deste modo, temos que para percolação, a massa est• 

relacionada com R8 por s oc R! . Mais geralmente, Mandelbrot (1084) 

define o expoente de dim nsão fractal D atrav•s de 

C massa) oc C comprim•nto) 0 e 42) 

denota objetos como f"ract.ai■ se eles obedecem a Equação (42) com D 

diferente da sua dirrwnsão Euclidiana d . Em percolação usamos p=1/D. 
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U.ualwit.e -t.aw int..--•ados no COllpCll"~t.o mint.ót.ico para 

grandes C011priaant.os. • a Equaçlío C42) pode nlb ..,. v6lida para 

~ congl.oaerados. Ent.&o est.es objet.as •&o tract.&is apenas 

asaint.ot.icaaant.e. U. objet.o intinit.o coao ua congl~_ado que per-cola 

4' chaaada ua tract.&l - subsac:çDes grandea. por .. tinit.as. f'or­

rract.&is no sent.ida da Equaçlio C42J, Para nosos prop6sit.os • aai• 

prM.ico pensar •• fract.&is c01110 conjunt.os de objet.os de diterent.es 

t.aunhos que obedec- C42:> pelo -.nos as■int.ot.icaaent.e. • nlio apenas 

rest.ringir a tract.al prop,-iaaent.e apenu ua objeto intini t. ... nt.e 

grande. 

Si\arge agora uaa pergunt.a: ua congl~ado rini t.o • ua tract.al no 

sant.ido da Equa.çiio C42:>? Coao vi.os nest.a equaçiio. a massa s • 

proporcional ao raio R!. t.eaos ent.iio 

U3:> 

Pala Equaçiío C-'1. bJ podemos not.ar que seu denominador • o segundo 

-=--nt.o do conglaaerada CNz:, • port.ant.o diverge c011 expoent.e 

y-C3-T)-'O. Se p • pr6X1a:, de Pc ent.ao R. varia coa ~ • o nuaerador da 

~ c,1.b) • .ua ... nt.o COII k-2+2,o C pois atR! •Zn. ex Í.•ª·&ii>n. ) 
• -■-1• dJ. v.rge coa expoent.• C3-T+2p)-'ª• de acordo coa a Equaçiio C28). 

Port.ant.o. a razao (ª dJ. Y91'ge coa expoent.e 2çva e pois (&c.ca-~+z,-1.,, ,, 

s<9-C'v, • s..,.,, ) . Eat.e expoent.e. segundo a Equaçiio c,1. c) deve ••r 

igual a e» e pois PcxlP-Pcl-a.. ). Assi• 2p/a • ~. ou seja 

C44) 

Est.a di-nsao f'ract.al 1-'p • 1. 8Qe para d-8; cerca de 2. 5 para d•3 

•" para d'"CD Crede de Bet.he). Assim ua conglaaerado finit.o •• Pc • ua 

rract.al. pois sua di-nsão fract.al • -nor que a di-nsao d. 

Para rede de Bet.he • provado que pai/-' • o aesao para t.odo p • 

n&o apenas para P-Pc• Surge ent.ao uaa pergunt.a: pode-,s esperar t...Wm 

para o caso t.ridi.-n■ional que p ••J• o __, abaJ.XIO • acima d• Pc? 

Nii0 podemas. O argUJDant.o • o seguint.e: imagine que p • próX1a:, de 1. A 

~ C10) nos diz que apenas aquel-■ congl01Mrados coa o peru.t.ro 

bela pequeno ■iio iaport.ant.-■• O aenor perl.met.ro para WD conglo-rado de 

s-L• ■it.iaa - uaa rede cabica siaples • obt.1da da conf'1guração não 

t.endo buracos no seu interior; seu pera..t.ro • 151.a • seu raio Mdio • 

da ordea de L. ou seja 



aaL• t.~• ; R.OIL 

Assi■ R. • proporcicinal a s..,,. para p próxlao de 1. • n.lio a S--sº·' 
ccmo para P-Pc· Como foi vi st.o na s.çlo 2. 7. podetlos esperar o wao 
ccapcrt.aaent.o -•int.6t.1co para p abai,m de Pc CEqua9ilo C3!1. b)); --1• 
esperamos que essa lei de s t.__,.a ••J• v611da para R. quando p • 
lilaior que Pc• ou seja. p-1..-3. Em d di-.&es nos t.er._ ent.So 

(4!5) 

que -t.ra que p n11o • o _.1110 que - Pc• pois 1/p • igual a 2. 8 para 
P-Pc • 3 para p)Pc· ~ import.ant.• enfat.izar que conglamrados abaJ.,co de 
Pc t.aab6m slio t'ract.ais • conglomerados aci- d• Pc n5:> sã, t'ract.ais. 
mas obJ•t.os •noraaJ.s• COftl p-1/d, 

A Tabela 2 sumariza os result.ados exat.os e obt.idos via simulação 
para os para-t.ros d• percolaçJio considerando d-2.d•3 • d--. 

Analoga■-nt.a • Equaçao (33:> para o l'l'-ro da congl01arados. 
t.__,.111 • esperado para o raio do conglo-rada que haja uma função de 
escala da t.al maneira que ela 1..,. a diinens8es 1'ract.ais d11'erent.n 
abai>CD • aci- de Pc• Vaaos propor 

As Equaçn.s C2Q) • (4e) slio apen.a.s dois e,aniplos para o 
Compol't.aaent.o geral do si•t.- quando p .. u11 próxiao de Pc• 

Tabela :a 1 Expoent.ea de percolaçAo para a rede bl-dl--.lonal, 

t.Pl-dlaanalonal • .-.ele d• Bet.he 

Expoent.e d•2 da3 ·-
fl 5/.3e 0.4 1 
r 43/18 1.8 1 
li 4..-3 O.Q 1"'2 
o 3e/Q2. o. 4!! 1"'2 
T 187/Qi a.2 !!V2 
DCp<pc) 1.5!5 2 .. 
DCp-p~ Q1./48 2. !! .. 
DCp>p~ 2 3 .. 
(Cp<p~ 1"'2 2/3 1 
((p)p~ 1 1 1 
SCp<p~ 1 3"'2 !!V2 
SCp>p~ !Y.& -1.,g !!V2 



&a. O CI ...... Dll-.llliDl_l'.,.MIIIIOO inf'IDlt.o •• Po 

u.a das quesUles aaJ.s inter-sant- na percolaç!lea • - lúl ou n5o 

ua c:cnglaaarado 11\f'init.o - p-p0 • Nos ■abeacs que h6 para p)pc e n5o 

h6 para p(p0 • ll&S para P""Po • -lhor r .. post.a at.• agcra • : t.a.1 vwz. Ea 

simulaçlles feit.as coa redes grandes, consider.._,. que lúl ua 

congl~ado infinito quando ele consegue conectar a linha do topo Cou 

plano do topo) • linha da base C ou plano da base ) , e nest.as 

siaul._. uaa rraçlio finit.a de t.odas u redes tinham ua conglomerado 

infinito rwsse sentido. 

v._ olhar para WDa rede grande, por•11 finita Cc01D0 sempre 

oc:crre - caaput.adares ). Mesao para p<p0 o sist ... tea um aaior 

congl.oaarado, -• apenas para p)p0 o tamanho desse aaicr c:onglo-rado 

6 da ordea do tamanho do si st.eaa, par a p< Pc o taaanho s do maior 

congloa.arado auaant.a auit.o fracaaent.e C logarit.iiaicaaent.e ) com o 

t.aaanho do si ■t.•- L C scxl.ogL ). Aparece agora uma quest.iío : como 

a~t.a o tamanho s do maior congla.rado coa L - um sist.ema. com Lei 

si.tios ? Abai)CI) de Pc t.eaos que ele auaent.a coa logCU, aci- d• Pc 

coa L', a que esperar em p-p0 ? 

Parece ra.z~v.l que o aaior congloaerado t.enha o raio da ordem do 

t..-nho do sist.eaa: R. a: L, Coa> •• Pc nos t.emos R. oc sP, de'Y9r■-:,s 

t.er ent.llo L « sP e pois L.ocR.oaP) • auU.o si ai 1 ar .. Equaça■s e 42:> • 

e.a:>. Msi• o conglomerado intinit.o - Pc e que u vazes • chamado de 

congl.oaerado infinit.o incipiente ) t.amb6■ • um fract.al na nosso 

sent.ido, • t.e■ a -- cil-nsiio fract.al 1,p que um grande congl~rado 

f"init.o - Pe- Aciaa de Pc a aassa s do cangloaerado infinit.o auaent.a 

coa LV4. significa que •1• n5o • ua fract.al, pais p-1,d, t.al c01D0 

para o congloa.rado finit.o. Abai>e10 de Pc a di-nsllo f'ract.al 6 zero 

Ccorr-pondendo a ua auit.o fraco incr•-nto coa L ), ea contraste com 

a di~ fract.al de congloa.rados finit.os que • p-1/2 em t.r_.s 

di-n.s. 

A Figura 7 aost.ra resultados - duas di-nsa.s para redes 

contendo aciaa de 10'º sitias 

28 



n•---..... -..---~, 
s. 
O' 

10 

.! 
.1 r 

l 
' I 

;· 
" .. . 
10 

Ftcura T I a..ult.adolt de wtwdeçlo p_.a o 

t.-.ho do aaloP concJoaa•ado •• 
Pcat/2 da ,..._ t.1-1.ancui,ar 

Dasconsideranclo al gumas tlut.uaçlles . pocl- not.ar uma siiapl­

linha ret.a nest.e grMico do log(s) contra lag(L). A inclinaçSo dest.a 

linha est.• pr6xi.- do valor 1/p-Qi /"8. Assim t.emos agora uma respost.a 

-1.s qu.ant.it.at.iva. de quanto 41 grande o conal~ado iftf'in.it.o 

i nci pi ent.e. 

Nest.a tigura l nm•- Pc-1/2 coa:, 6 c onhecido para r ede 

tri angular. Mas a.smo que Pc nllo ••Ja c onhecido exat.aaent.• • •• 

t.omaJIIOS um p; ligeiraaent.• maior que o v.rdadeiro. ainda ob9ervaaos 

para o maior conglomerado a massa s s endo proporcional a LV,o,, t.Jlio 

grande quanto L • ~ que o c Olllpr' iaant.o de correlaçao (. CEia Pc• ( • 

intinit.o. • est.a c ondiçik> • s eapr• sat.isteit.a). Se L • auit.o aaior que 

t, a aassa do -.ior congl ~ ado ser6 6Cp)L•. prgporcional a Cp-pcl'. 

S. L • da ordem de t est.- duas 9,cpl"essBes «p>L• • LVP devam ser da 

-- ordela : 

•• 



Junt.ando coa aa out.raa leia de escala. obt.-

U,7) 

4. RENORMALIZAÇÃO DE GRUPO 

A renorll&l.1zaç5c 

K. G. Wilson t.rabalhau 

d• grupo t.•va sua orig•111 •111 1g'71 quando 

coa fenóaano crlt.ico • foi honrado UII& ~ada 

depois coa o pr•aio Nobel para flsica. Ela • uaa t.•nt.at.1 va de 

Justificar as suposiçllas de escala feitas ant•riorJNnte • calcular os 

expoentes crlticos atraws classas suposiçBes. Hist.oricament.• ela f'oi 

aplicada •• t.ransição d• fase 1\a. teraodil\Mica • depois astendida • 

parcolaçlo. Coao estareaos trabalhando sempre com waa. rede finita, 

far.-- uma introduçiío • 1•1 d• escala para rede f'inita • soment.e 

depois entraremos propria.ment• em renorlDalizaçiío de grupo. 

4.1. Lal ele eacala ~• .-.de flnlt.a 

A. pergunta inicial aqui • como - vm-ias quantidades de 

inter-•• •• comport- pró>d.ac> de Pc - uma rede grande, por•• finita? 

V.- t.oaar co■a e-.plo o t.aaanho renorlDalizado do ■aior 

canglaaarado, que • a. probabilidade 8Cp) de que um sitio arbitrário 

partenqa ao ■aior conglo■erado do sist•-· 

Para uaa rede f'inita., tendendo a inf'init.o, est.e .aior 

conglomera.do • tamb6m muito grande se p>pc. Se est.• t.amanho • dividido 

pelo taaanho do siste-, a razKo 9Cp) • f'init.a e -1or que zero. Para 

p(Pc• aesa:> o .aior conglOJNrado • relat.iv-.-nt.e pequeno e a razão 

deste tamanho pelo tamanho da rede vai a zero quando o t.amanho da rede 

vai ao inf'init.o. i. •·, 8Cp(pc)-O. Para p ligeiramente aci■a de Pc 

vi- na Equaçiio Cael que 6Cp)OIICp-p),. A pergunta que surge agora • : 

coa:> estes r .. ult.ados IIIUdam quando .. ta.mos considerando u■a rede 

f'init.a? Neste caso 6Cp) ~ depende apenas da concentraçiio p, mas 

t.amb6■ do compri-nt.o da rede L. por e:,cemplo. em uma rede c<abica 

■i■pl- de lado L t.er~ L• slt.ios. 

E■ r~i- assint.ót.ico. que signif'ica L muit.o grande C1"1.. pró>d.1110 
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da z-ol • p pr6xi-=» de p 0 Cp-p0 pr6xiao de zerol, asper.- 8Cp) 

--..ir 

6Cp)•L-•F [Cp-pclL•] c.&8. a) 

•• analogia caia a Equaçlio C-&e:> ou CaQJ. Aqui F • waa tunçlo de .. cala 

adequada • A • B sllc, expoent .. crtticos adequados. Caao o ■istw • 

tinit.o, o maior congla.rado • sempre finito e al•• disso nao rauda 

drast.icament.e perto de Pc• a função de -cala FCz) serAi sempre uma 

tunçlio posit.iva de seu arguaent.o z-Cp-pc>L• e• analtt.ica para t.oc:lo z, 

- especial para z-0 Cpapc>. Para L- e p fixado aci- de Pc• de.__ 

obt.er Cp-p•" para 8Cp) independent.~t.e de L. Aasia para um valor 

muit.o alt.o • posit.ivo de z, a fW\Çiío de -cala FCz) dev. variar coao 

zA/11 pois 

"Clbt.emos" ent.iio que SCp)OICp-pc)A/11 e com isso (r-A/B. Por out.ro lado. 

para z-0. que ocorre quando PªPc• o maior conglo-rado t.erAI seu raio 

da ordem do t.amanho do sist.ema L. Da Equaçiio C,&3) nos obt...os que o 

maior congloaarado cont•• cerca de LVP sit.ios quando P-Pc Cpois 

s ex it."'P ex LVP ). 

A probabilidade 9Cp) Ct.aaanho do conglo-rado dividido pelo 

t.aaanho da rede) varia c01110 L-...Vp (pois SCp) ex LVP.J'Ld ) - d 

di-nszs.s. Por out.ro - P-Pc t.•-• segundo C48). 9Cp)• L-•FCO) ex L-•. 
Port.ant.o A • d-1/p • (Yv Cpor C47)). Nossa relação ~ A/8•1/l,,I • B•Wf1. 

Podelllcs ent.iio reescrevar a Equaçiio C48. a> como 

(48.b> 

O que ast.a aquaçiio significa realaent.e ? Sua simplicidade raquer que 

haja apenas 1 compri.-nt.o de correlaçiio ,extp-p 1-.. ea nosso sist.-­

pois d• out.ro modo, dois diferent.- expoent.es v poderiam aparecer na 

Equaçiio C'8.b>. S. --- compri-nt.o de correlação • muit.o aanor que o 

t.ama.nho do sistema L,1.e. ,«L, que significa que P-Pc»L-v", niio 

ve1110S ■feit.o de borda do sist.-- - nossas simulaçl!les. que significa 
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que - quant.idadetl .. est.udo comport.aa-s• coao .. ua aiat.ema intinit.o. 

Est.e 6 o caso se o argument.o tz 1 6 mui t.o maior que 1 Cpois 

z-Cp-p,:)L'"" » L-V"Lª"" • 1). Se formos nos aproxiaando da Pc a U111 L 

fixado. o argun.-nt.o z-Cp-pc)LV., dilú.nua .nquant.o («IP-Pcl_., aw.nt.a. 

Quando ( chega • ordem de L. z ser• da ordem d• 1 Cpois 

z-Cp-p~LV., « L-v .. L,.,.., • 1) • ent.8o alguns desvios da. funç&o com 

ralaçlio ao comport.ament.o do sist.._ infinit.o s8o esperados. Est.a 

c0111p0rt..-nt.o geral 6 das.nhado esquemat.icament.• na Figura Q para 8Cp) 

dascrit.o ~la Equaç&o C"8. b). ce iinport.ant.e 1-..bra.r que t.oda.s as 

relaçZS.s de escala sSo v.iidas aJ)Mlas para r.cl.s grand.s • p próxi1110 

d• Per N8o pod._ a.pr•nd•r IIIUit.o aobr• parcola.çlio olhando •~•s 

para um 6nico sit.io ocupado). 

8Cp) 

o Pe p 

Ftcur• 81 Coapol".._nt.o •-iu-aM.lco 

de 9Cp> de acoNlo co• a 
t.aorla de •ac::aLa para 

r-ede f'lnlt.a. 

VU10S a.plicar essas idéias • probabilidade R•RCp.L) da que uma 

red• finit.a de di-nsão L parcole • onde p • a probabilidade de um 

slt.io est.ar ocupado. C 0.finilllOS que h• parcolaç&:, se pelo menos um 

congl01119ra.do con.«:t.a o t.opo • base da rede.) Ea U111 sist.e- finit.o. nos 

t.- R•1 se p>pc e R-0 se p(pc A qua.nt.idade dR/dp 6 a probabilidade 

que a rede e~• a per-colar quando passamos de p para p+dp. Co1110 -

uia ■i•t.- t.~dendo a infinit.o t.•IIIOS que R=1 para p acima de Pc• o 

axpc»nt.• crit.ico de R 6 zero, e o an.iogo • Equaçilo C4.7. b> - um 

sist. ... finit.o para L grande • p próxi1110 de Pc 6 

C4.Q. a) 

A funç&o da ascala da ~ aument.a da O para 1 sa o argu-nt.o 

aumant.a da -a, Cp muit.o abaixe de Pc) para +oo Cp muit.o acima de Pc). A 

derivada 6 : 



Para L~ nt.a deri vada aproxiu-se da f unçlio delt.a. 

v..,. definir a concent.raçlio Mdia p0 ., como o pri-iro valor de p 

em que vemos um congl0111erado per-colar 

(90) 

onde a i nt.egral vai de p-0 a p-=1. C Not.e que Jt dR/dp )SP • RC 1) -RC 0)-t). 

Nos podeaos det.er-1111 nar p 11., fazendo numerosas si aüaç8es, onde vaacs 

increaentando o valor de p at.6 aparecer um congloi.r-ado que per-cola. 

A pergunt.a qu• surge agora • : como est.e valor p11., para rede 

f'init.a se aproxima de seu valor assint.6t.1co Pc para r-.de in1"init.a? 

At.ra~ da EquaQlSes C!SO:>. t.emos que 

Cp0 ,,_Pc> • fp ( :: )dp - f Pc ( :: )dp 

• .fcP-Pcl [ :: )dp • JCp-pc->LV11~' [Cp-pc)LV"]dp • 

onde a 1 nt.egr al • a penas uma const.ant.e. logo 

(51) 

No caso especial da r-.d• t.ri angular a const.ant.e de 

proporcional idade pode ser zero, uaa vez que dR/dp • coaplet.aaent.e 

simt.rica em t.orno de zero. 

A variaçaio de P•v coa o t.aaanho do sist.•- L • uma maneira de 

det.ermi.nar o e,cpoent.e crlt.ico v. Vaaos definir ent.Aio \1111 par.,_t.ro de 

var iaçl'o de p 11.,. deftom1 nando--o de 6.: 



111' • J [Cp-pc:l-<Pav-Pc>]• ( :: )dp • 
111' • fCP-Pc>• ( : )dp + CPav-Pc:lª - 2CPav-Pc:l JCp-pc> ( :: )dp • 

• JCP-Pc>•(@: )dp + CPav-Pc>• - 2Cp•v-Pc:lª • 

pois Pav -t.• auit.o pr6xia:, de Po• ou seja. Cpav-Po>• • au1t.o pr6>Ciao 

de zero. Dai 

111' :. J L-V11z&L,V11-• [z]L-V"dz 

:. a-a,,., J zZ41• [z]dp 

e.o.o a int.egral • apenas uma const.ant.e, t.■- que 

111' ex 1.-a,,., , ou seja. 

C62.b) 

Traçanda o grMico de logA cont.ra logL, para v.-ios valores de L, 

podeaos obt.er o valor do e,cpoent.e do compri~t.o d• correlaçiio v 

at.ravn da inclinação dest.a ret.a. 

~ import.ant.• salient.ar que para det.erlllinaçiio d• uma est.imat.i va 

precisa do expoente do compri-nt.o d• correlaçiio • necess.-10 um 

n'-ro muito maior da simulaçlSes do que para a obtençlío de uma 

est.iaat.iva precisa de Pc· 

Na seçiio s egui nte ir•- mencionar r-ultados nuáricos, onde 

iremos aost.rar a proxiaidade entre lei de -cala para wa sistema 

f'init.o • - t.knicas de renoraalizaçiio de grupo. 



4.2. ..._. Useçlo 'Cl6...._ p a QSM--

A idtia báica de renormalização • a de aulo-si11Uaridade no 
pont.o crlt.ico. O que significa isso? Via,s na Equaçlo C48. b) que a 
quest.llo crucial da lei de escalonaaent.o para rede fihi t.a • se o 
t.amanho do sist.ema • maior ou menor que o compri.-nt.o de correlac;llo 
,cxj p-p0 1-. Vi&K>S nas Equaçlles C2Q) e C~ que os conglomer-ados pod­
ser separados - dois grupos principais : aqueles coa IÍla8sa -ior que 
'11tlP-Pol-v,, e aqueles co111 inanor massa. Para convlaaeradoa pequenos 
uma -pM:ie de lei de pot.•ncia 6 v6lida, por .-.plo 6Cp>•L--""• e 
para conglomarados grandes , uma out.ra lei de pot.•ncia • assegurada, 
por e>emaplo, 8Cp)-Cp-pc:,,. Em out.ras palavras, t.odos os conglomerados 
awncres Cno sent.ido do maior di an.t.ro) que o compriaent.o de correlaçlo 
, sllo aut.o-similares desde que cont.enha111 muit.os slt.ios. Est.a 
similaridade 6 quebrada para conglo-rados com di6-t.ros da ordem de, 
ou di6met.ros da ordem da dist.Ancia ent.re dois slt.ios na rede. 
Exat.ament.e ea Pc• o compri-nt.o de correlaçllo • infihit.o, logo t.odos 
os conglotnerados sllo similares. 

O procediment.o b6sico d• renoraalizaçilo 6 considerar ua conJunt.o 

da slt.ios coa:, um ónico slt.io denOlllinado s uper -stt.io, por examplo, 
t.noaa,s um quadrado de .&x4 slt.ios e t.ranfor-aaaos ele - um Onico 
stt.io. De for- geral, t.ransfor-lllOS um conJunt.o de t,<l stt.ios - ua 
(anlco •uper-f.t.io. Por6m est.a r enor-lizaçlo precisa de uma regra 
governaaent.al, ou seja, uaa regra para decidir se -t.e super-tt.io 
-t.•r• vazio ou ocupado. 

Cem a r .normalizaçiio leremos ua novo valor de p, digaa011 p' e -
geral t.er--=,s p' dif'erent.e de p. Apenas no pont.o crtt.ico Pe• onde a 
aut.o-siailaridade • v6lida, nos t.eeos p' -P-Pc· Ea geral conhec__,. 
que o c ompr iment.o de correlaçlío , Uai.la a validade da siailaridade e 
assia -t.e limit.e , • o a.s1n0 para a rede original e para a rede 
r enor-1izada : ,., •. S. na rede original t.emos 

na rede renormalizada com uma const.ant.e da rede b, t.er­

' • -const.b J p • -po 1-



cca a waa ccnst.ant.e de propcrcianal.idade • o ...., expoent.e crlt.ico 

"· Assi■ 

lt est.& a equaçJlo b6sica d• renormalizaç8a. Toaando o loga.rit.1110 de 

a11b0s as lados, obt...,_ 

1 [ P'-Pc ]/ 
~log p -pc log( b) 

C53.b:> 

para o e>epoent.• do coçri-nt.o de correlaçlia. 

Ea r-uao. renormaliz.- 1.ma c6lula de t.aaanho b para wa (Jni.co 

super-slt.io • para a quant.idade ( peraanec:er inalt.erada t.allb6■ 

renaraa.lizan,s p para p•. 

Coa, e,camplo, vaj&1110S o caso da rede t.riangular. Cada t.riAngulo 

t.ea t.rh slt.ios, • coloc&1110S o super-slt.io no cent.ro do t.riAngulo. A 

nossa revra de daci..-0 •-• a ■eguint.• , o super-lt.io -t.ar• abert.o 

se dois lados do t.riqulos est.-, conectados Cuma posslval regra de 

dec:islio •• resume a dizer qu. o super stt.J.o est.á aberto se dois lados 

da c•lwa estlio conectados. • fechado e■ caso contr41rio) e isso 

ocorr• ou •• os t.r•s sttios estlio ocupados C com probabilidade pi' ) ou 

•• apenas dois deles est.lio abertos C com probabilidade 3pZC1-p) ). 

Assia nossa probabilidade renormalizada • 

(54) 

Exat.a■-nt.e no pont.o crtt.ico nos dev.lllOS t.er UIII& similaridade coinplet.a, 

p•ap • chularea:,s de p• os valor- de p C pcnt.os ti:1C10S de C51) ) que 

sat.iatazea .... condiçlío. Ter-.:,s port.ant.o as seguint.- soluça.■ : 

ande a pri-ira Czero) e a 61.t.i- CUIII) slio soluçtSes t.rivia.is • exist.em 

para redes de diaens!Ses diferentes. Nos _t..._ int.er-sados sOD9nt.e 

na soluçlío p••1/2. Est.e pont.o fi>CIO concorda exat...-nt.• coa o pcnt.o 

critico Pc da rede t.riangular. uma pri-ira indicaçiío que a 1d61a de 



rMIDr-.11~ ._ ..- corret.a. Se e,cpandir- a Equaçlo CM:> -
•~1• ct. Taylor .. t.orno do pont.o ti>oo s,9-1-'2, t.er-

A Equaçlio C !53. b) t.- agar a a forma 

1 log ~ -· iog 6 

Em nosso caso part.icular, t.emos bZ•3, pois -t.a.iaos t.ransforll&ndo t,d 

Cd-aJ slt.ios em um l'.lnico super-slt.io. Assi■ 

Est.e r-ult.ado -t.• IINit.o próxia:, do valor, pr-uai-laant.e corret.o, 

v•4/3 - duas di-Bes. 
Inf'elizaant.e -t.• boa concordAnc:ia com os valor- de Pc • v • bela 

excepcional.. Para out.ras redes ou out.ras di-8-9 os r-ult.ados 

apresent.aa grand- desvios com relaçlio ao valor conhecido. 
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