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O presente estudo consiste numa introdugio a
percol agso. Damos uma vVisSo ampla dos fenémenos
envolvidos na percolagdo, porém com justificativas bem
menos rigorosas que do ponto de vista matemaético.
Tratamos aqui de algumas medidas da estrutura do
conglomerados tais como : o Lamanho médioc, © perimetro
@ o raio do conglomerado; discutimos um pouco a técnica
de renormalizacioc de grupos. Este trabalhoe foi baseado
em Stauffer (1885).

Palavras chaves : Percolagdo, Transigiic de fase,
Teoria de escala, Renormalizagio de grupo.
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1. INTRODUGAO

Na teoria da percolagic existem varios tipos de redes de
interesse. Comecemos com um das redes mais simples : Imaginemos um
grande arranjo como mostrado na figura Ci.a). Fisicos a denominam de
rede quadrada, enquanto mateméticos a denotam por 22. Em seguida uma
fragio destes quadrados (também chamados de sitios) seric preenchidos
alsatoriamente com pontos, como na figura C1.bd. Definimos agora um
conglomerado como um conjunto de sitios ocupadoes unidos por, pelo
menos, um dos lados do quadrado ocupado, como indica a figura €1.c):
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Figura 1 ; Definigio de percolagio e conglomerados

Uma quest3o inicial é : como os pontos estio distribuidos entre
©s quadrados na figura 1 ? uma suposigioc simples e bem aceita ¢ que a
presenga ou nioc de cada ponto em um sitio & independente de qualquer
outro sitio estar ocupado ou nioc. Seja p a probabilidade de um sitio
estar ocupado e 1-p a de estar desocupado.

Definimos uma rede finita como um subconjunto finite de 22;
diremos que temcos percolagio se exdstir um conglomerado que contenha a
origem @ alcance a borda de qualquer rede finita. Se temos N sitios
CN grande) numa rede finita, podemos esperar que Np destes sitios
estejam ocupados. Para p proximo de zero haverfo poucos sitios
ocuypados , ® assim, em uma rede grande nic havera percolagio. Por
outro lado, para p proximo de 1 teremos um grande numero de sitios
ocupados indicando que teremos percolagico (exceto para o caso
unidimensional, correspondente a rede de Bethe com a=i, que =6 teremos



percolagiico se p=i J. Prova-se (ver, por axemplo, Andjel e Galves,
1088 ) que existe um valor critico p. intermedifério COKp,<1), tal que
se p<p. niio teremos percolagiic, e se p>p. havers percolagiic com
probabilidade positiva.

Se considerarmos a rede acima C neste caso, finita > como uma
floresta, onde as s&rvores sio representadas pelos sitiecs ocupados,
teremos um modelo de propagagiio de fogo na floresta. Este modelo pode
ser simulado no computador considerande a rede finita como uma matriz
Lxl. Isso nos da L2 sitics. Iniciamos a simulagic tomando cada sitio e
ocupando~o com probabilidade p fisada , independente dos demais. Dessa
forma esperamos L2p sitios ocupados Carvoresd. O passo seguinte seré
incendiar ac sérvores. Isso & feito incendiando-se todas as arvores na
primeira linha da matriz, e a cada iteragio ¢ tempo D as #érvores que
estiverem imediatamente ac lado ou abaixo de uma érvore incendiada
também ser#c incendiadas. O grafico do tempo de duragico do incéndio &
o seguinte:

Tempo de
Duragio Figura 2 1 Tempo de duragio
do fogo mna floresta.

Pc

Notamos neste grafico que pjra p préximo de zero ou de 1, a
duragio ¢ pequena. Isto ocorre porque para p préximo de =zero, a
maioria das sérvores nic tem vizinhas e dai o fogo niio pode prosseguir.
Para p préximo de 1 a majoria das s#rvores tem vizinhas e assim a cada
tempo uma linha da matriz ¢ incendiada, e o tempo de duragic do fogo ¢
aproximadamente igual ao tamanho da floresta ClD. Para p ligeiramente
acima de p, aparece pela primeira vez um caminho de #&rvores ligando o
infcio ao fim da floresta, e este caminho, em geral, é bem diferente

de uma linha reta e assim o sistema leva um tempo muito maior que L



pPara extinguir o fogo. Para p ligeiramente abaisxo de P. ainda nio ha
um caminho ligando o inicio ao fim da floresta, ® o sistema leva um
tempc muito maior que L para perceber isso ¢ esgotar todos os
possiveis caminhos ).

Ha diversos outros fenémencs que podem ser adaptados ao modelo de
percoclagic. Por exsmplo, um deles ¢ o fendmenc de difus@io de um étomo
de Hidrogénioc através de um sélido, onde consideramos Uma matriz Lyl
como sendo o sélido ® ocupamos cada elemento desta com probabilidade
P: independente dos demais. Em seguida escolhemos aleatoriamente um
dos sitios ocupados e nele colocamos um aAtomo de hidrogénioc. Vamos
assumir que este atomo s6 possa se mover para um dos sitios escolhido
aleatoriamente dentre seus sitios vizinhos ocupados. Entendemos por
vizinhanga de um sitic aqueles sitios que tenham um lado em comum com
ele.

Este modelo foi chamado de "formiga no labirinto” por Gennes
C1078), @ a quest@ic é : sera que a formiga consegue escapar do
labirinto? Tal comc no exemple anterior € fogo na floresta > se p for
proxame de zero a formiga nio tera por onde se locomover, para p
préximo de 1, ela escapars facilmente e para p ligeiramente acima de
Pc ®la escapara, porem com grande dificuldade., ou seja, o tempo gasto
para escapar sera grande.

2. NOMERO DE CONGLOMERADOS
2.1. Definicio de modeloa

Ha4 alguns materiais na njtureza com a estrutura molecular
exatamente igual a rede quadrada, porém ha muitos outros com estrutura
totalmente diferente. Surge ent@c a necessidade de definir outros
tipos de rede. Algumas dessas outras formas s3o : rede triangular,
colméia e outras redes bi-dimensionais. Em trés dimensSes temos,
dentre outras , a rede cubica simples, ctibica central e a rede cubica

face-central.
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¢a) : Rede Triangular (b)Y : Rede clbica

Figura 8 : Outros tipos de rede

Na rede quadrada n3c faz diferenga se definimos o sitio come o©
centro do quadradc ou como o ponto de encontro de duas linhas vertical
e horizontal C cruzamento ou nés ). Se na rede triangular definirmos o
sitio comoc © centro do trisngulo, teremos a rede colméia. Na rede
ctbica simples o sitio & © né. Na rede ctubica central, além dos noés
Lambém temos centros dos cubos, @ na rede ctbica face-central além
dos nés temos os centros de cada uma das faces dos cubos.

O problema descrito anteriormente denomina-se percolacio de =itio
¢ ou de ponto ). Quando consideramos que todos os sitics est@o
ocupados com probabilidade 1., e cada “lago” ligando dois sitios estara
aberto (permitindo a comunicagic entre estes sitios) com probabilidade
p, @ fechado com probabilidade 1-p independentemente dos demais, temos
um outro problema denominado percolagio de lago. Um conglomerado na
percolagko de lago & definido como um conjunto de sitios ligados por
lacos abertos.

Para cada modelo citado acima existe um valor critico p. nlo
trivial, ou seja, O(pii, tal que se pip. a probabilidade do
conglemerado associado a origem ser infinitoc & zero, e para p>p. esta
probabilidade é positiva. Deste modo est& havendo uma nmudanga no
comportamento do sistema, ou seja, uma transicgiio de fame.

A tabela a seguir apresenta resultados obtidos através de simula-
G3o para os parametros criticos dos modelos apresentados anteriormente:



Tabela L. Pacdsetros Criticos em duss e trés dimensSes

Rede Dimenaiic Sitio Lago
Quadrada ] 0.36278 0. 30000
Triangular 2 0.80000 0.34729
Colméin 2 Q. 6982 0.65271
Cubica Simples 3 0.3117 0. 2402
Cibica Central 3 0.248 0.178%
Cabica Face-Central 3 0.108 0.119

2.2. Solugko exata em dimensio 1

O interesse do caso uni-dimensional da percolagiio é que. além
dele ter solug@c exata, ele traz algumas dicas para modelos com
dimensBies maiores. Um conglomerado no case uni-dimensional &
caracterizado por um conjunto de sitics ocupados com os vizinhos dos
extremos desse conjuntos estande vazios. como mostra a Figura 4.

O—P9—0—0—0—0—0—0—0—0—8—o

Figura 4 : Exemplo de conglomerado em desi. No centro temos w—m
conglomerado de tamanho 5.

Consideremd>s inicialmente uma rede finita de tamanhe L CL
granded. A probabilidade de que haja um conglomerado de tamanho s &
p*C1-pd)%, onde p ¢ a probabilidade de um sfitio qualquer estar ocupado.
O nGmerc esperado de conglomerados de tamanho s 4 Lp™1i-pd2. Vamos

definir o namero esperade de conglomerados por sitio, n,. Teremos
ent8o :

ng=psC1-pd2. €15

Para p<i, o nimerc de conglomerades vai a zero quando S :



lgg.n. = lgwl-p)l = (1-pO2 lgg_p' = 0
E também o numerc esperado de sitics vazios vai a infinite quando

Loo: ltscn-p)l. = Cl-pd lt%l.. = 4o

Assim, nic teremos um conglomerado de tamanho infiniteo, ou seja,
n¥c havera percolacgio se p<i. Com iss0 concluimes que

P~ (=3

Un outro aspécto de interesse é quanto ao tamanho médio do
conglomeradeo. Para 15350, lembremos que n,s & a probabilidade de um
sitio arbitraério pertencer a um comglomerade de tamanho s, dai a
probabilidade de que um sitio arbitrario pertenga a qualquer
conglomerado ¢ p, pois

T nes = Y, pX1-pdis = C1opdap Pty £ a-pp 4 ) -

o=t

d
= C1-pd3p — (_1.%) =p (&<>)
onde a igualdade # vale devido ac tecrema da convergéncia dominada
Cver, por exsmplo, JamesC1881)).
Seja w, a probabilidade de que um conglomerado contendo um
sitio ocupado arbitrério contenha exatamente s sitios. Temos entdc :

n.s

I N

Seja ainda S o tamanho médio do conglomerado, ou seja :

S = xnw.s = x_‘-i‘:—:c = -;— xun.ﬁ C4d

Explicitamente., teremos :



-pd2
= :3 ):-. nst = :a . PCI-pIEs2 = (ip_p) X_‘p' ses-ie1d =

2 Cps
= C1-pd2p "%57 ped Ci-pd2 x"%;Cpl)

dz
= -p2 p o (0,0 ¢ 1-p2 o (T p*)

2 1 i+
= C1~pd2p T * C1-pd2 Ty = ?'F;_ . € p<pg D '4->)
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Assim o tamanho médio Nonglomrado diverge quando nes
aproximamos de p,. Resultados andlogos a este podem ser obtidos para
dimenstes maiores que 1. Para o modelo de percolagioc esta divergéncia
® bem plausivel, pois se ha um conglomerado infinito presente acima de
Pee ®ntd3o, ligeiramemte abaixc de p, ja& temos um conglomerado muito

grande, porém finito.

Vamos definir a funcio de correlagio gir) como a probabilidade de
que um sitio a distancia r de um ocutro sitio ocupado Corigemd esteja
no mesmo conglomerado. Note que o sistema ¢ homogéneo (o mesmc p para
todo sitiod) e portanto invariante por translagio. £ facil notar que
glO2=1 e gCid=p. Para um sitio a distaéncia r, devemos ter esse sitio
ocupado e os r-1 entre este e a origem também devem estar ocupados.

Temos portanto

gCri=spr (4]

para todo p e r. Para p<1 esta fungio de correlacio, ou fungio de

conectividade, vai a zero exponencialmente quando r vai a infinito :

gCr) = pF = exp(1nCprd) = exp(r.1lnp) = oxp[%ncpyl = .xp(—.E—)

com £ = — _1?}35- . Usando que 1InCl-30 = x se x>0, temos

1 1 =
4 1<Cp.— =T ey

»a



t-—pc+p- para p > p, ® 1. <7

Podemos notar que esta outra caracteristica U, denomi nada
comprimento de correlaco, diverge em p.. Em dimens¥es maiores temos
que o comprimento de correlagio ¢ proporcional ac diametro de um
conglomerade tipico. Para o casc unidimensional esta relagioc é ébvia.
O comprimento de um conglomerado com s sitios ¢ s-1, nioc tEo diferente
de £ se s é grande. Assim, o comprimento de correlagio ¥ varia com o
tamanho médio do conglomerado :

St Cpepd (-5

Infelizmente esta relagdc torna-ze complicada em dimensBes

maiores. Uma relagio mais geral 4 a seguinte :

® gtrd = S e

y =00

onde r>0 e r<0 significa que estamos tomande, respectivamente,
vizinhos da direita e da esquerda. De fatc

® gCrd -aZ“’;;cr)-gcon -aZ"’Fr -1 '21—1“1 -1 . g
- P 1-p
ra-m r=0 re0

O caso unidimensional pode ser resolvido exatamente, enquanto
para d=2 apenas os conglomerados pequencs podem ser tratados
exatamente. P2 este o conteGdo da secgiio seguinte.

2.3. Conglomerados pequenos em d dimenades

Se a soclugic da Equagdo (1) no caso unidimensional ¢ simples,
surge a seguinte pergunta : sers possivel aplicar o mesmo principio
para dimensSes mais altas? Para responder essa pergunta, vamos olhar
para a rede quadrada da figura 1. Nesta rede, para gque um sitio

ocupade arbitrario seja um conglomerade de tamanho s=1. devemos ter



seus quatro vizinhos vazios, independentemente, assim esta
probabilidade & n=pC1-pde. O namero de pares por sitio @
nae2pi(1-pd%, pois devem haver dois sitios ocupados ¢ seus 8 vizinhos
vazios, podendo estar na wvertical ou na horizontal. Geralmente o
nimero de conglomeradcs de tamanho s por sitio formando uma linha reta
® n =2psC1-pdis*l em uma rede quadrada. Em d=3, na rede ecabica
simples, temos um nimero médic de conglomerados de tamanho s por sitio
formando uma linha reta igual a 3ps(1-plee+z, Infelizmente o
conglomerado niio precisa formar necessariamente uma linha reta. Na
rede quadrada, por exemplo, podemos ter um conglomeradoe formando um
triangulo (sa3), e neste caso teremos 7 vizinhos vazios e 4
orientagBes possiveis, com probabilidade ¢p*1-p)?. Combinando com o
resultadeo anterior, teremos Ng=2p#C1-pd8 + 4p¥i-pd? num total de
6C=2+4) configuragles possiveis.

O numero de vizinhos ¢ denominado “perimetro® (i) de um
conglomerado (este perimetro nic pode ser comparado com a superficie
do conglomerado porque inclui buracos interncs). Asgsim, na rede
quadrada com $=3 temos t=7 @ L=8. Se o numero de configuracSes de um
conglomerado de tamanho s e perimetro t & denctado por ggs entdo

n, = ZQ“ p* C1-pdt €100

& o nGmero medio de conglomerados de tamanho s por sitio. A
dificuldade desta equaciio & que envolve a soma sobre todoes os
possiveis perimetros t e assim cada possivel configuragic deve ser
encontrada e cuidadosamente analizada para determinar Jet+ © QuUe nem
sempre ¢ possivel, ou facil,

Uma relagio para o nGmero total de configuragdes Cveja Stauffer,
1070 e Essam, 1980 g.tz Gor ®

ge ® $™ Cconstds C11)

Para d=2 temos 6=1, enquanto para d=3 temcs 6332 o para d>8,
=82 como na rede de Bethe.



2.4. Alguns sspéctos da rede de Bethe

Tal como o caso unidimensional, a rede de Bethe pode ser
resol vida exatamente (ver, por exsmplo, Andjel & Galves C10888)) e
corresponde & dimensionalidade infinita. Porque? Fagamos uma analogia
. Para d=2 a circunferéncia de um circulo de raior é 2nr e sua &rea ¢
ar2. Para d=3 a superficie de uma esfera de raio r é 4mr2, enquanto
seou volume & —g-m". Apartir dai podemos notar que em d dimensBes a
superficie de uma esfera 4 proporcicnal a rdt enquanto seu volume é
proporcional a rd, Assim

Csuperficied « Cvolumedi-1/d a2

e no limite d + @ a superficie ¢ proporcional ao volume. Veremos a

seguir que a rede de Bethe possui esta caracteristica.

o

Figura 3 : Rede de Bethe com z=3
¢ cada =mitio tem 3
vizinhos >

Na rede de Rethe ha z sitios conectados a origem (1° geragdod,
2Cz~1) sitios na 2° geragic, z(z-122 na 3% geracio e assim por diante.
Considerando o volume da esfera de r geracgBes como o nimero de sitios
até a Cr-1D-ésima gerag3c e a superficie como o numerc de sitios na
r—ésima geragio, o volume sers igual a

1 + 2 + 2C2-1) + 2Cz-132 + 2(2-108 + ...  + z(z-1)r2

=1+ 2(1 ¢ C2z-1> + Cz-132 & ... & Cz-1dr-2 ) m 221702

zCz-1)r1
Z=

e a superficie sera z(z-1D>T"1, Assim a relagic entre a superficie e o

volume dessa esfera & (z-2). Para z=3 podemos notar que metade dos

10



sitios esta na supsrficie @ a outra metade estéd no interior da esfera.
Podemos notar que a relagio tL/s (onde = representa o volume do

conglomerado 3 pode ser escrita como :

1-p,
S > z-2 = z-1-1=C2-1> [ - 1 ]- g
s z~-1 Pc

Esta relagio & valida para todas as redes, n3c somente a rede de
Bethe.

Mesmo para p>p, podemos ter a origem, ou qualquer outro ponto
fixado, n#éo conectado ao infinite. Vamos definir portanto 6Cp), a
probabilidade de percolagic como sendo a probabilidade da origem. ou
qualquer outro ponto fixado, pertencer ao conglomerade infinito.
Claramente esta probabilidade é zero se p(p, @ queremos calcula-la

apenas para p>p..

vizinho -7 Figura 6: Ezsta figura mostra o que
7 chamamos de sitio, vizinho
ramo e sub-ramo

ramo

\ /
1 i
1 I
] \
! \

Para o calculo de 6C(p) vamos definir Q como a probabilidade de que um
sit1o qualquer nioc esteja conectado ao infinito através de um fixado
ramo originado deste. sitio. Para simplificar, tomamos 2z=3 como
mostrado na figura acima. A probabilidade que dois sub-ramos que
comecem num vizinho fixado ocupado nio estejam conectados ao infinito
& pQE. Este vizinho estara vazio com probabilidade 1-p. Deste modo
Q = 1-p + p2 @ a probabilidade de que um fixado ramo nio leve ao
infinito ( ou porque a conexio J& @ quebrada no 1° vazainho ou por um
de seus sub-ramos).

Esta equacio quadratica tem duas solugles : Q=1 e Qu(i-pd-p. A
probabilidade p-8Cp) de que a origem esteja ocupada mas nioc conectda

11



20 infinito através de um de seus 3 ramos ¢ pQ®. Assim temos :
p - 6Cpd = pQS, ou seja, 6Cp) = pC1-O
que d& zero para a solugdo Q=1 e

ecpd>=p(1-( C1-p>/p)? ) €13
para a outra solugio, que corresponde a P> Pp.*1 /2.

Tal como no caso unidimensicnal, podermos calcular o tamanho
médio do conglomerade S para a rede de Besthe. Novamente, tomamos z=3
por simplicidade. Seja T o tamanho médio de um dos ramos. Novamente,
sub-ramos tém o mesmo tamanho médio dos ramos CITD. Se o vizinho esta
vazio o tamanho médio do ramo é& zero. Se © vizinho esta ocupado, ele
eontribui com sua prépria massa Cuma unidade) para o conglomerado e

adiciona a massa de cada um de seus sub-ramos. Assim
T = C1-pdO + p1+2TO, ou seja T=psC1-2pd

para pi{p.=1-2. O tamanho médio do conglomerado ¢ zero se a origem

ests vazia @ C1+3T) se a crigem esta ocupada. Assam

S s pC1+3T> = pli+pds/C1-2pd c14d
é& a forma exata para o tamanho médio do conglomerado. Para p<p,
podemos notar que
1
1+pd
5 = PC
S = pgl_;g = T o 1 : = pl-p . resultando que
SEE T :
S & ———— Cp<pyd (1%
Pc - P Pe

A Equagiico C13) nos diz que 6C(pd=0 para p=p,, ® para p>p., podemos
expandir 6Cp) em série de Taylor. Teremos :

QCPJSCP--}E-)(G—&GCP—%—)4-80(p—-1r)1+... ). Ou seja,
«@-3)=(p-r) c1e

12



Quanto ac namero médio de conglomerados de tamanho s por sitio,
podemos notar que um conglomerado de tamanho s=1 deve ter z vizinhos
desocupados C perimetro ), um conglomerado de tamanho ss2 deve ter
perimetro t=20z-1)=2Cz-2)+2. Cada sitio que acrescentamcs ao
conglomerado contribui com z-2 outros sitios vizinhos vaziocs. Temos

pertantc para um conglomerado de tamanho s, t=sCz-2)+2. Aplicando
este resultado na Equagioc C10), resulta

N Cpd =g psC1 ~pd Bz=-2+2

Vamos fazer novamente z=3 ( lembremcs que p.=1/2 ), & para evitar o
calculo de g, podemos olhar para

neCpd PoC1-p ds(a-2ie2 1-p 12 o 1op 73
NglPe- = pCi-pystzZrer 1p, | T

c

0 I e - - - -pd -1 =1 -4C pmes -4Cp-pd2
onde P. TP, = 4pC1-pi=l—4pll-p)-1=1-4Cp —é—-)=1 4Cp-pI2, dat
n_Cpd

E:CT::S' o« [ 1-4Cp-p 12 ]‘8 oxp [ sin(1-4Cp-po2) ] =

o expl —cs) a1

com ¢ = -1n(1-4Cp-pd¥). Usando que 1nCl-x)a—x se 30
c o -(-4(p-p2) x Cp-p2

Podemos notar um decaimento exponencial para a raz& do numero de
conglomerado CEquag@oC17D). Infelizmente esse decaimento ¢ uma
peculiaridade da rede de Bethe. Em d=2 ou d=3 esse decaimento =6 ¢
valido para grandes conglomerados e p<p..

Para determinar o comportamento assintético de namero de
conglomerado em p=p. , lembremos que

S= 1T Z sin, o« z:zn.

Para p=p, esta soma ¢ infinita, enquanto para p<{p, ela permanece
finita CEquagioc (18)). Se n(p. decai exponencialmente com s, entio
S permanece finito em p=p,. Assim, um decaimento em lei de poténcia

i3



para n,Cp) ¢ mais plausivel
nCpo) o« s°F¥ , s grande c18d

onde T é denominade “expcente de Fisher”, e a validade desta lei &
geral, n3o ficando restrita somente & rede de Bethe.

Vamos agora estimar S e calcular T por comparagio do resultade

com a Equagdo (15). Vamos assumir p ligeiramente menor que p,.
S o 5‘ s2n,(pd
mas n(p) & nlplexpl(-cs) x s~Texpl-cs)
S z. s2-Texp( -cs)
aproximando por uma integral, temos
S & _rs"‘".xp(—cs)ds
fazendo z=cs
S o« ¢v8 [22°T expC-2zddz
mas a integral é uma constante, dai
S o ct-8
onde coCp-p. )% Segue que
S x (p=pl¥T-® c1ed

Da Equagiic (15) temos que S o« (p-p,J-1. Igualando os expoentes :
2(r-3D=~-1, Com isso, para a rede de Bethe, temcs

v = B2 €200
Podemcs ent3o reescrever a Equagdo C17) para s grande como :

nlpd = 5372 expl-csd, Vp ; colp-po2. pap, c21)

Em resumo, a solugio da rede de Bethe, Equagles (185), (18) e (21D,
bem como a solugiic unidimensional, Equag@o (1), mostram que © nuamero

14



de conglomerado segue uma lei bem simples, @ o decaimento sxponencial
¢ comum entre estes casos. Tentaremos utilizar estes resultades na
sogio seguinte para tornar plausivel a lei de escala Para ac nGmero de
conglomerado em geral, n3o apenas para d=i ou d=q.

mnlnot-oltlg&odoomman.

Nesta segioc iremos tentar encontrar uma férmula que contenha as
solugBes do caso unidimensional e da rede de Bethe come casos
especials.

Tanto a Equagio(1) para o caso unidimensional como a Equagdo €215
para dimensiocnalidade infinita s3o domi nados, para s grande, por uma

lei de decaimento exponencial, log ny x ~s. Podemos entdo propor
ng & expl-cs)

onde o fator de proporcionalidade e o parémetro ¢ dependem de p. Os
resultados obtidos através de simulag@o indicam que este decaimento
exponencial ndo & consistente com a Equagio (21D, caso em que foi
encontrado um fator -7, que é muliiplicado pela exponencial.
Postulamos ent3o :

ng & s~ Texpl -csd c22>

onde T @ uma constante n3o necessariamente igual a 5/2. Propomos entio

para p provamo de p. :

¢ x |p-pg|re Cpapd 23

com o hi3o necessariamente igual a 1/2 como na rede de Bethe.

Essa construgic foi feita de mode a ser uma generalizagio da rede
de Bethe, surge ent@c uma pergunta : esta generalizagiio inclui o caso
unidimensional 7 usando Pc=1 @ p=expllnp)=e>plp-1)=expl P-PY para
pPa>f.. Reescrevendo a EquagSo (1), teremos

nCpI=C1-pd2p® = Cp-p,dZexp(~Cp-p.) s)

que ndc ¢ um caso especial de C20), uma vez que temos uma poténcia de

15



(p~p,) ® niic de s en frente da exponencial. Temos entSc que escolher
sntre a generalizagio do caso unidimensional e a generalizagio da rede
de Bethe. Optamos pela rede de Bete por considers-la mais realistica,
caso em que temos uma transigio de fase (p<1D.

Vamos comegar por generalizar éCp). Para isto vamos usar a
expressioc geral, vélida para toda rede :

Cp) + L, nlpis = p c34d

Cesta equagiic simplesmente declara que um sitio ocupado, probabilidade
p» ou pertence ao cengl omerado infinito , probabilidade 6(p), ou a um
conglomerado finito, probabilidade Th,(pos J

Exatamente em p=p. nos temos que 6CpI=0 e dai Dlpds = p C esta
soma ¢ convergente se T>2, pois Dﬁ.(pc)a@""”. que diverge se
Cr-1)<1, {.e.,7S2 D). Podemos entiic reescrever a Equag3o (24) como :

ep) = p - Ln.Cp)s = Zn,(pc)s - Z'n.Cp)s = S‘(n,Cpc)—n.Cp)):

ocpd = Jnacpd[1- _E:g.'%:,- Jo = Yt [1-expi-esd ] ce®

por causa de (17> e (18). Substituindo © somatério pela integral,

temos

ocpd) o [s4-7 [ 1-expC-ced Jus

usando integral por partes :

Jre as = fg - [fa'ds, com fLsI=x2"T @ gCs) =1 —expl-cs) , temos
ecpd o 527 [ 1-expC-csd ] + efs*TexpC-csdds

Para p muito préximo de p., o fator ¢ na exponencial mer& préoximo de
zero ® assim o primeiro termoc da soma também sera muito pequeno,
teremos portanto

ep) o cI s2-Texpl -csdds

fazendo z=mcs, obtemos :

18



&Cp) & c¥-2[z2-Vexpl-zddz

mas a integral ¢ apenas uma constante, dai

(P a c 2 x (p-pIiTt-2/o

Como na teoria dos fenémenos criticos sSupomos que
Cpdalp-pof

o dltimo resulitado vai nos dar uma das relagSes conhecidas como
relagies de escala :

f=Ct-2>/0 (&=

Vamos agora estudar como S, o tamanho médio do conglomerado,
diverge em p,. Da Equagis (10) temos que

1 - -
S = - Z.szn.Cp) o Zszn.c;:) o 2_:3 Texpl-cs) o [ s Texpl-csd
o P Ip-pc ‘—(l—f)/’ = Ip--Pc l-r

com expoente critico

r=C3-1d/0 €27

Pela nossa prépria construgic devemos ter 3 @ y positivos, e isso
ocorre se 2{r<3, com 0.

£ importante ressaltar gque dos 4 expoentes criticos 7, o, 3 e y
apenas 2 destes £30 necessarios e os outros dois podem ser derivados
destes dois. Estes expoentes necessarios sdo chamados de parametros

livres @ podem ser tanto T @ o como ? @ ¥, pois temos
o = 1/A0R+yD (] T =2 + BAHAYY)

De modo geral, podemos definir M, o k-ésimo momento da
distribui¢dc do tamanho do conglomsrado, onde k ¢ um inteiro,

4 = s, e
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Para k=1, tLemos a probabilidade de percolagiic 6Cp), e para k=2 temos o
tamanho médioc do conglomerado S.

Vamos assumir que k>CT=-1) para garantir a convergéncia da soma, e
de forma andloga ao que foi feito para S. teremcs

M, o L,h—f.xpc-cs) o J' sk-Toypl -csdde « et 1=k
o |P_pc|(v-—‘-k)/a (28.bd

Assim o expoente (r1-1-kd/o &é novamente expresso em termos de T e

o, como também pcderia ser em termos de B @ ¥, pois
CT-1-kd/0 = —CA+ydCk-1]. ' €28.0

As relactes (25), (270 e (28.c) sdo trés das possiveis relagies
de escala.

MSupo-ipao-doucahpn-onﬁ-rodooonglo—Mo-

Podemos generalizar a Equagiio (€173 VP =En (PO /nCpY =
exp(—constC P~Pos°) o a (22): v =exp(-const |p-p. |1/ ¢s) reescrevendo
como

v (pPI= R 2D R z=(p-pIsT .

Lembrando que n(ple=-T, temos
ngCpd =8~ ACp-pO =) Cp+pos S0 €20

onde fafz) & denominada fungio de escala.
Note que no caso uni-dimensional., como p.=l1, temos

nCpd = Ci-pd2ps = (p.-pdiexplslogpd = Cp—PdEexp(—Cp.~POE)

que n3o seria contemplado pela Equagio (170 ou (22. Com a
generalizag3o podemcs englobar este caso, pois se fizermos T=2 e o=1,
e usando z=(p-pJls. ou seja , p-p.=2-/s. Temos que
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nCpl)=s-2z2e5p(2) = £-25C2D : com fz)=zZgxpl2d

Temoz que lembrar que a funglio f deve evitar o surgimento de um
conglomerado infinito abaisxo de p,. Sera isto possivel ? Vamos partir

da Equagiio (24) lembrando que n(pJJ=p se p<p.;
écp:t-Zs(n_Cpc)—n,cP)) = ZS(S"_KOJ-C"' £K=2d) = 2:'"(}(0)-}'(:)) =

aproximando por uma integral e fazendo z=(p-p ls?, teremcs

z U=-c)/o giso-1

= {T Cp-pT-ave J‘ |z|-a-u'-z)/¢ (ﬁo)-ﬂ:z)rz
usando (26) e (27) temos que f+y=lso, dai
8Cpd = CA+XIXCp-p P [|z]|2F (KO- D)z

onde a integral sobre z=(p-p.Jis? varia de ~@ a O para p<{p, @ de O a +»
para p>p.. Como sabemos que 6Cpd=0 se p<{p.. a condiglo para isso ¢

‘Ilzl"'[%{—]ﬂz'° c30)

Para p>p, e=ta integral nioc pode dar zero. Para que ela meja zero
C necessaric se p{p), a fungio Kz) deve alternar de sinal. A
natureza tornou a z) simples de tal forma que ela £6 tenha um misdmo
em um valor z,,., @ o valor da f neste micdmo sera chamado de f_...
Assim

FZ as? ™ Fmax ® fZI< S Y2oZ 0 c31)

Para um conglomerado de tamanho fixado s, © nGmero n, tem um

naxdimo em p,,, abaixo de p., com Z . =P, P27, ouU seja
Pm'pc‘zms-'

Estamos assuminde aqui que a f 6 uma fungEco analitica, que
significa grosseiramente que todas as derivadas de f so finitas para
todo 2z, em particular para z=0 Ci.e. p=pJ).
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2.7. NGmero de conglomerados para p longe de p,

Também hé interesse em determinar © nimero de conglomerados para
p longe de p.. £ possivel que alguns de smeus aspéctos sejam
aproximados razcavelmente pela solugio da rede de Bethe. Infelizmente
essa aproximagic nem sempre ¢ satisfatéria.

Inicialmente vamcos argumentar porque para p<p., © nGmerc de
conglomerados decai exponencialmente com s, isto 4

log (ny) x -= 32

Foi visto na Equagio (11) que o nGmero g, de configuragBies varia
exponencialmente com &, isto &

log (gl « +s Cs—oo)

a menos de um fator de menor importancia s"®. Das equacgBes (100 e (11)
podemos notar que se p for muito pequenc, teremos n,Cp+Qdos-®piconst®.
Todavia héa uma crenga geral apoiada por renormalizagiio de grupo ¢ a
ser discutida mais adiante D que a Equagio (32) ¢ valida para todo
P{P.» ® REoc apsnas para p préximo de zero. Dessa forma, postulamos

nCp<pY o s~*Cpconstds (o) 33

Contudo, deve ser lembrado que esta extensso das equaglies (32> e (33D
para todo p<{p, nic & rigorcsamente provada. Sabemcs apenas que vale
para p<p’<(p, (veja Kunz and Souillard ,16878>. Para percolagio de ponto
ou de lago em 2 ou 3 dimensBes nio hé indicagSes contra a Equagio (33D
até o momento.

Voltemos agora para © caso super critico. Pode ser provado Cveja
Kunz and Souillard, 19780 que o comportamento de n,(pd para p>p’’'>p.
Ccom s granda) inclui a dimensiio d na lei de decaimento exponencial.

log nlp>pd o —si—isd €34.20

nCP>pY o 7 exp(-Csi-i7d) C34.b)

Atraves de simulagBes podemos ver que a Equagiio (34.a) ja é& uma



boa aproxdimagio para s prédmo de 10. O esposnte 6 na Equaglo C(34.b)
é B/4 om duas e ~1/0 em trészs dimensBies, de acordo com Lubensky e
Mckane C1081). Na rede de Bethe niic ha diferengas entre as EquagBes
(32 e (34), pois como ela corresponde a dimsnsionalidade infinita, os
expoentes 1 e 1-1/d slio iguais.

NZo hé& contradigBes entre as férmilas €32 e (C34),
presumi velmente vhlidas longe de p,, @ a supcsigio de escala (200,
presumi velmente valida perto de p,. Para p préximo de p;, @ s grande de
tal forma que [z|=|p-p.[s® seja muito maior que 1, as Equaglies C32) a
(34> e (200 sio esperadas serem validas. Contudo a fungiic de escala
£z> na Equagic (20) deve comportar-se, para |z| grande, de tal forma
que a Equaglic (33> seja cbedecida abai>® de p,, ® a Equagiio (34.b)
seja obedecida acima de p.. Para pip., por sxemplo, nos precisamos

K zI)oxT e vaxpl —const * zU-t/dse)

para alcangar nosso cbjetivo, com uma lel simples abaixs de p,.
Atravées de simulacgic podemos notar uma boa concordéncia dessa fungio.

Nos podemos sumarizar estes resultados com ajuda de um expoente [
definido como

log n, or -s4 Csem, p fixadod Cas.a

[Cpipo = ° (Cp>po=1-1/d €38. b

No capitulo seguinte tentaremos investigar se também hé essa
diferenga entre o comportamentc abaixoc e acima de p, na estrutura do
congl omerado.

3. A ESTRUTURA DO CONGLOMERADO

Na Segio 2.3 nos introduzimos © “perimetro” ¢ de um conglomerado,
que é © namero de sitios vazios em torno do conglomerado. Nos podemos
chamar © tamanho s de um conglomsrado de massa desse conglomerado;



ontio ¢t é uma das quantidades que definem a estrutura dessa massza. A
palavra perimetro sugere que esta medida seja uma wespécie de
superficie, similar aoc perimetro de um circulo de raio r, que é 2nr, e
assim 6 proporcional & raiz quadrada da massa Caread mrZ do circulo.
AsSsim nos podemcs esperar que t seja proporcicnal a sii/d em d
dimensSes., andlogo a Equagiio (12). O objetivo da segic seguinte ¢
mosirar que isto nio ¢ verdade.

8.1, O perimetro do congiomerado & um perimstro real ¢

Da forma comc © perimetro foi definido, estamos considerando
apenas o perimetro externo, mas o conglomerado pode tLer buracos e cada
um destes buracos também tem um perimetro interno. Se tivermos um
burace a cada, digamos, trinta sitios, teremos um perimetro
proporcional aoc namero de sitios na rede infinita. Para um
conglomerado muito grande, porém finito, nos podemos esperar o mesmo
comportamento de uma rede infinita e assim também um perimetro
proparcional ao nGmero de conglomerados. Assim

txs [ 7 )

parece plausivel, de acordo com o argumento acima. Se isto for verdade
a quantidade t nio pode ser identificada como a superficie do
conglomerado. Vejamos porque. Primeiro vamos definir t, o perimetro
médio de um conglomerado de tamanho s :

Nt
"'Zz‘T onde n, = g, p® C1-pdt
Desta forma temos que n, = ztn"-' Derivando n, com relagio a p, temos
dingd d
i (Zguﬂl'l’)") = ZO.L(SP"‘U--P)‘ =~ peC1-pdt-it)
s 1
= = z‘g.‘_p'C:l.-p)* - T z‘g“p'(n-p)* t

'%“-‘Z"-t‘



dividindo ambos oz lades por n,
d 1 1
GHUrrR) = 5 - 15t
dai temos que
1 d
t, = —;L s - C1-pd = (intnyd) €38. ad
Como vimos na segiio anterior, In(ny)=ksé com k dependendo de p. Assim

ty= -1—;&- s - Cconstlsd Csaod C€38. b

Podemos notar agora que o© perimetro niic ¢ uma superficie no
sentido usual, ou seja, para pip, Ccaso em que {=1) o perimetro ¢
proporcional a massa s, enquanto para p>p, (caso em que (=1-1./d>
apenas © segundo termo de t, varia com si-ivd, ¢ assim apenas ease
termo d& a contribuigiio proporcional & superficie usual.

Mesmo que © perimetro seja restritoc apenas ac perimetro externo,

em algumas redes, como na rede chbica simples, o perimetro varia com o
volume 8 @ nic com uma superficie « s2/?,

Em resumo, nem o perimetro e nem o perimetro externoc medem bem a
superficie de um conglomeradc em d dimensBez, como a palavra
‘perimetro’ sugere; deste modo, outras definiglies sic necessarias para
estudar a superficie de um conglomerade no sentido usual. Surge enti¥o
a necessidade de estudar ocutras medidas da estrutura do conglomeradeo,
como por exemplo o raio do conglomerado. £ isso que veremos & seguir.

8.2. Rajo do conglomsrado & dimemnsiio fractal

Enquanto a superficie do conglomerado & uma medida dificil de ser
definida., © 'raio’ de um conglomerado ja parece bem mais faécil. Seja
entio



Iri-ro|®
Ry = X.,—Ls-——- 37>
onde

g
Fo = Nowi S c38e

é a posigaoc do centro de massa do conglomerado e r; é a posigdo do
i-ésimo sitio.

Usando essa definigao podemos calcular a distancia média entre
dois conglomerados de massa s; que é definida como

O en 0= Ep i=r D &

}:-12-:—7—' 2-:2-‘ - =T - =

[ €ri-rod2 + Crj=rgd2 = 2Cr-rgdCrj—ryd ]

& Tesdins frrie b

|ri-ro|? |ri-ro|?
= —_— + —_— =
X" s Z-i s
u €39

= 2R

Como ja vimos na Segao 2.2, a fungao de correlagac g(rd) é a
probabilidade que um sitio a distancia r de um sitio ocupado Corigem
em um conglomerado finito também esteja ocupado e pertenga aoc mesmo
conglomerado. O namero médio de sitios conectados a origem e S=§'gCr)
(onde esta soma envolve todos os sitios da rede ). Por outro lado,
este numero é igual a Zsz Nng/p, uma vez que n,s/p é a probabilidade

que um sitio pertenga a um conglomerado de tamanho s. Assim
pS = Zszn, = ngCr) Cp<ped 40>

Vamos redefinir agora o comprimento de correlagac § ( ou
comprimento de conectividade ) como uma distancia média de dois

sitios pertencentes aoc mesmo conglomerado:

2
2'_ ré& glrd

¥z = C41.ad
Z gcrd
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Porém, 2R: é a distancia média ao quadrado entre dois sitios no
mesmo conglomerado de tamanho s, logo s ZR:s é a distancia média ao
quadrado dos sitios num conglomerado de tamanho =, e Z. sER: sng =
ZZI?:szna é a distancia média ao quadrado de dois sitios pertencentes
ao mesmo conglomerado, que é igual a 2 r2gCrd, logo

2 5‘ R: sZng

Z. s2n,

¢ a menos de um fator numérico p OJ.

2 = C41.b

O comprimento de correlagdc é o raio do conglomerado tipico, ou
seja, é o raio daquele conglomerado que da a maior contribuigdo para o
segundo momento da distribuigdo do tamanho do conglomerado perto do
ponto critico p..

Este comprimento de correlagdoc diverge no ponto critico com um
expoente v. Definimos ent3doc v através de

eocs | pepis¥ c4L e

Para percolagaoc em d=2, argumentos plausiveis C porém nao
rigorosos ) d3o v=4/3, em excelente concordancia com resultados de
simulagdo. Em d=3, v é préximo de 0.0 e na rede de Bethe temos v=1,2.

Agora vamos tentar estudar como o raio R, varia com s no ponto
critico. Esta quest3o leva a um conceito usado de dimensdo fractal.
Consideremos © exemplo a seguir: podemos notar que a massa de uma
barra de ferro depende apenas de seu comprimento; se em vez da barra
tivermos uma chapa, essa massa dependera do comprimento e da largura
da chapa, ao passo que se tivermos um sélido, a massa dependera também
da altura. Assim, para um material em d dimens3es, a massa dependera
de d medidas. Deste modo, temos que para percolagdc, a massa esta

relacionada com R; por s R:. Mais geralmente, Mandelbrot C1084)
define o expoente de dimensdo fractal D através de

C(massa) « (comprimentodP 42>

e denota objetos como fractais se eles obedecem a Equagio (42) com D

diferente da sua dimensd3o Euclidiana d. Em percolagdo usamos p=1.D.




Ususlmente estamos interessados no comportamento assintético para
grandes comsprimentos, e a Equagko C42) pode nlc ser valida para
pequencs conglomerados. EntBo estes objetos silio fractais apenas
assintoticamente. Um objeto infinito como um conglomerado que percola
& chamado um fractal se subsecgles grandes, porém finitas, forem
fractais no sentido da Equagiio €42 . Para nosos propésitos é mais
prético pensar em fractais como conjuntes de objetos de diferentes
tamanhos que obedecem (42 pelo mencs assintoticamente, e nic apenas
restringir a fractal propriamente apenas um objeto infinitamente
grande.

Surge agora uma pergunta: Um conglomerado finito ¢ um fractal no
sentido da Equaglico (4207 Como vimos nesta equagiio, a massa s ¢
proporcicnal ao raio R‘:. Ltemos entdo

R, x s° CP=p.» S+a) C43

Pela Equagio C41.b) podemos notar que seu denominador ¢ o segundo
momentc do conglomerado (M) e portanto diverge com expoente
y*C3-12/0. Se p & proximo de p, entdio R, varia com s# e o numerador da
Equagiic C41.b) 6 um momento com k=2+2p C pols 22!: s3n, Xs"'ﬁn. p)
@ assim diverge com expoente (3-T+2p)/0, de acordo com a Equagi@io C28).
Portanto, a razio ¢3 diverge com expoente 2p/0 (pois [Zox@-Ti2oV/e
sO-To 8 g2/ 3, Este expoente, segundo a Equag@io (41.c) deve ser
igual a 2v C pois ¥ix|p-p.|-3¥ ). Assim 2p/0 = 2v. ou seja

osov Cddd

Esta dimensSo fractal 1/p é 1.808 para d=2; cerca de 2.5 para d=3
@ 4 para d=m Crede de Bethe). Assim um conglomerado finito em p. ¢ um
fractal, pois sua dimensdo fractal & menor que a dimensdoc d.

Para rede de Bethe & provado que p=1/4 é o mesmo para todo p e
nic apenas para p=p,. Surge entiio uma pergunta: podemcs esperar também
para o caso tridimensional que p seja o mesmoO abaixo @ acima de p.?
Nio podemos. O argumentc ¢ o seguinte: imagine que p ¢ préximo de 1. A
Equaglic €C10) nos diz que apenas aqueles conglomerados com o perimetro
bem pequenc s@c importantes. O menor perimetro para um conglomerado de
s=id gitios em uma rede cdbica simples é cbtida da configuracgiio nioc
tendo buracos no seu intericr; seu perimetro ¢ 6L2 ¢ seu raio médio ¢
da ordem de L, ou seja



sl ® : t=8L2 s R.d-

Assim R, & proporcional a si“? para p préximo de 1, @ nic a s*V=g0-4
como para p=p.. Como foi visto na Segiic 2.7, podemos esperar o mesmo
compor Lamento assintético para p abaixo de p, CEquaglio €33.b)); assim
esperamos que essa lei de s também seja valida para R, quandc p 6
faior que p., ou seja. p=1/3. Em d dimensSes nos tLeremos ent¥o

Pﬁ’;‘ Cp>ped (4%
que mostra que o nlic ¢ © mesmoc que em p., pois 1/p é igual a 2.8 para
P=p, ® 3 para pdp.. £ importante enfatizar que conglomerados abaixs de
P. também sSo fractais e conglomerados acima de p. nio s&o fractais,
mas objetos 'normais’ com p=i/d.

A Tabela 2 sumariza os resultados exatos e obtidos via simulagio
para os pardmetros de percolagso considerando d=2,d=3 ¢ d=m,

Analogamente & Equaglio (33) para o namero de conglomerados,
também & esperado para o raio do conglomeradoc que haja uma fungic de
escala de tal maneira que ela leve a dimensSes fractais diferentes
abaixo> ¢ acima de p.. Vamos propor

Ry=s~h{Cp-prs~) C4t0

Az Equaclles (200 e (46 sio apenas dois exemplos para o
comportamento geral do sistema quandc p esta préximo de Pe:

Tabela 2 : Expoentes de percolaciio para a rede bi-dimensional,
tri-dimensional @ rede de Bethe

Expoente d=2 d=3 dwoo
rn 5/38 0.4 1
r 4318 1.8 1
v 473 0.9 12
o 3ol 0.48 12
T 187,01 2.2 82
DXp<pd 1.58 2 4
DCp=pd 81748 2.9 4
DCp>pd 2 3 4
{Cpipd 12 273 1
{Cp>p 1 1 1
eXpipd 1 32 82
eXp>po S/4 -1,0 82




2.3, 0 conglomsrado infinito em p,

Usa das questles mais interessantes na percolagbes ¢ se ha ou niio
um conglomerado infinito em p=p,. Nos sabemos que ha para p>p, @ nio
ha para p<p.,., mas para p=p, a mslhor resposta até agora ¢ : talvez. Em
simulacles feitas com redes grandes, consideramos que ha um
conglomerado infinito quandc ele consegue conectar a linha do topo Cou
plamdotopo)tlinhadabaso(ouplmdabaso). @ nestas
simulagBes usa fragho finita de todas as redes tinham um conglomerado
infinito nesse sentido.

Vamos olhar para uma rede grande, porém finita C(como sempre
ocorre em computadores DO. Mesmo para pip. © sistema tem um maior
conglomsrado, mas apenas para p>p; © tamanho desse maior congl omer ado
& da ordem do tamanho do sistema; para p<p, © tamanho s do maior
conglonsrado aumenta muitc fracamente C logaritimicamente 5> com o
tamanho do sistema L ¢ sxlogl ). Aparece agora uma questdo : como
aumenta o tamanho = do maior conglomerade com L. em um sistema com L9
gitios ? Abaixo de p. temcs que ele aumenta com loglL), acima de p.
con Ld; o que esperar em p=p,?

Parece razo&vel que © maior conglomerado tenha o raic da ordem do
tamanho do sistema: R, « L. Como em p., nos temos R, « s, deveremos
ter entc L &« s (pois LoR,omP), muito similar é&s Equacles (420 e
C43). Assim o conglomerado infinito em p, ¢ que a&s vezes é chamado de
conglomerade infinito incipiente ) também 6 um fractal no nosso
sentido, @ tem a mesma dimensdo fractal 1/p que um grande conglomerado
finito em p.. Acima de p. &8 massa s do conglomerado infinito aumenta
com L4 gignifica que ele nEc é um fractal, pois p=1/d, tal como
para o conglomerado finito. Abaixo de p, a dimensSio fractal ¢ zero
Ccorrespondendo a um muito fraco incremento com L O, em contraste com

a dimensSo fractal de conglomerados finitos que ¢ p=i/2 em trés
dinenslies.

A Figura 7 mostra resultados em duas dimensdies para redes
contendo acima de 1040 gitios
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Desconsiderando algumas flutuagles, podemos notar uma simples
linha reta neste grafico do log(s) contra logCl). A inclinaglic desta
linha esta préxima do valor 1/p=01/48. Assim temos agora uma resposta
mais cquantitativa de quanta & grande o conglomerade infinite
incipiente.

Nesta figura tomamos p.=1/2 como ¢ conhecido para rede
triangular. Mas mesmc que p. nio seja conhecido exatamente ¢ se
tomamos um p; ligeiramente maior que o verdadeiroc. ainda observamos
para ¢ maior conglomerado a massa = sendo proporcional a Live, tio
grande quantc L ¢ menor que o comprimento de correlaglic . CEm p., £ &
infinito, » esta condigio ¢ sempre satisfeita). Se L ¢ muito maior que
£, a massa do maior conglomerado sersé 6CpdLld, proporcional a Cp=-pOf.
Se L & da ordem de I estas duas expressles 6CpdLY ¢ LvP devem ser da
mesma ordem :

6CpdLd=constLa/e se L=folp-po—¥
assim

CP-PPCp-pI~vd x Cp-pI-v7P
e daf

p-dva-p/p



Jjuntande com as ocutras leis de escala, cbtemocs

dysy+2fi=CT-1d/¢0 4T

4. RENORMALIZACAO DE GRUPO

A renormalizagic de grupo teve sua origem em 1871 quando
K.G.¥Wilson trabalhou com fendmeno critico e fol honrado uma década
depois com o prémio Nobel para fisica. Ela ¢ uma tentativa de
Justificar as suposiclies de escala feitas anteriormente e calcular cs
axpoentes criticos através dessas suposiglies. Histericamente ela foi
aplicada em transicio de fase na termodindmica e depois estendida &
percolagiio. Como estaremos trabalhando sempre com uma rede finita,
faremns uma introducic A lei de escala para rede finita e somente
depols entraremos propriamente em renormalizaciio de grupo.

4.1. Lai da escala para rede finita

A pergunta inicial aqui & : como as varias quantidades de
interesse se comportam préoximo de p. em uma rede grande, porém finita?
Vamos tomar comoc exsmplo o tamanho renormalizado do maior
conglomerado, que & a probabilidade 6(p) de que um sitic arbitrario
pertenga ac maior conglomeradc do sistema.

Para uma rede finita, tendende a infinito, este maior
conglomerado ¢ também muito grande se p>p.. Se este tamanho & dividido
pelo tamanho do sistema, a raziio 6(p) ¢ finita e maior que zero. Para
P{P.,: Mesme © maior conglomerado ¢ relativamente pequenc e a razdo
deste tamanho pelc tamanho da rede vai a zero quando o tamanho da rede
vai ao infinito, i.e., 6Cp<pI=0. Para p ligeiramente acima de p,
vimos na Equagiio (2680 que 8(plolp-p)f. A pergunta que surge agora & :
como estes resultados mudam quando estamos considerando uma rede
finita? Neste casc 8(p) nio depende apenas da concentragiio p, mas
também do comprimento da rede L, por exemplo, em uma rede cubica
simples de lado L teriamos L3 gitios.

Em regime assintético, que significa L muito grande (1/L préximo



de zerc) e p préximo de p, (p—p, préximo de zeroc), esperamos 6(pd
seguir

6Cpd=L-AF [Cp-p L] €48.2)
em analogia com a Equagiic (460 ou C2Q). Aqui F 6 uma fungic de escala
adequada # A ¢ B sio exposntes criticos adequados. Como o sistema ¢
finito, o maier conglomerado ¢ sempre finitc e além disso ndo muda
drasticamente perto de p.. a fungiic de escala F(2z) sers sempre uma
fungiio positiva de seu argumento z=(p-pILP e é analitica para todo z,
en especial paras z=0 (p=p.). Para Lew @ p fixado acima de Pc» devemos
obter C(p-pJJ# para 6(p) independentemente de L. Assim para um valor
muito alto @ positivo de 2z, a funcgiico de escala F(z) deve variar como
zZA/® pols

6CP) & (P=PIF = L ACp-pIFLA = L-ACP-pIA/BLYA = L-A[Cp-pILB]AsE
= L-AF [C PP L.']

"Obtemos™ entiic que 6(plop-pIA® e com isso f3=A/B. Por outro lado,
para z=0, que ocorre quando p=p., © maior conglomerado ter& seu raio
da ordem do tamanho do sistema L. Da Equagiico (43) nos cbtemos que o
maior conglomerado contém cerca de Li/e sities quando ps=p. (pois
s « R:’P x Lt7e 3.

A probabilidade 6(p)> (tamanho do conglomerado dividido pelo
tamanho da rede) varia como L-d4/s (pois &p) « L/PAd > em d
dimensSes. Por ocutro em p=p. temos, segundo (48), 6(pd= L-AFC0) & L-4&,
Portanto A = d-i/p = 3/ Cpor C47)). Nossa relagic da A/B=l/v e B=Af3.
Podemos entio reescrever a Equagiio (48.a) como

6Cp) =L-#/¥F [(p-pdLa/v] c48.B

O que esta equagiic significa realmente 7?7 Sua simplicidade requer que
haja apenas 1 comprimento de correlagiic f«|p-p|~* em nosso sistema
pois de outro modo, dois diferentes expoentes v poderiam aparecer na
Equagiic (48.b). Se esse comprimento de correlagio é muito menor que o
tamanho do sistema L.,i.e. <KL, que significa que p-p>L %, nio
vemos efeito de borda do sistema em nossas simulagBes. que significa



que as quantidades em estudo comportam-se como em um sistema infinito.
Este ¢ o caso se o argumento |z| ¢ muitc maior que 1 C(pois
2=Cp-pILL/v 3> L-/VLi/v = 1), Se formos nos aproximando de p, a um L
fixado, o argumento z=(p-pJLi > diminue enquanto txlp-pel'" aumenta.
Quando I chega & ordem de L, z sera da ordem de 1 (pois
z=(p-pILs¥ « L-t¥Li/v¥ = 1) e entlico alguns desvios da fungiic com
relagic ao comportamento do sistema infinito s#c esperados. Este
compor tamento geral é desenhado esquematicamente na Figura O para &pd
descrito pela Equagiio (48.b). (2 importante lembrar que todas as
relagles de escala sic validas apenas para redes grandes e p préximo
de p,. NEo podemcs aprender muitoc sobre percolagic clhando apenas
para um Gnico sitio ecupadod.

1
8Cpd
Figura 8: Comportamento emquematico
de 6¢(p> de acordo com a
Py (P teoria de esmcala para
rede finita
Z--1 Z-1
e
0 R p 1

Vamos aplicar essas idéias a probabilidade R=R(p,L) de que uma
rede finita de dimensZo L percole , onde p ¢ a prcbabilidade de um
sitio estar ocupado. ( Definimos que hé& percolagiic se pelc mencs um
conglomerado conecta © topo & base da rede.) Em um sistema finito, nos
temos R=1 se p>p, @ R=0 se p<p. A quantidade dR/dp & a probabilidade
que a rede comece a percolar quando passamos de p para p+dp. Como em
um sistema tendendc a infinito temos que R=1 para p acima de Per ©
expoente critico de R é zero, e o anslogo & Equagiic C47.b) em um
sistema finito para L grande & p préximo de P & :

R=¢[Cp-poLL+]. C40. 2>

A funciic de escala de ¢ aumenta de O para 1 se o argument.o
aumenta de ~o (p muito abaixo de p.) para +w Cp muito acima de Pl A
derivada & :



-g%—-l-""r fcp-poLa]. €40.bd

Para L+o esta derivada aproxima-se da fungio delta.

Vamos definir a concentragio média p,, como o primeirc valor de p
em que vemos um conglomerado percolar

Pav =f P [%s—]dp ¢30d

onde a integral vai de p=0 a p=l. C(Note que J'[dR/dp):lp = RC1J-RCOD=1),
Nos podemos determinar p,, fazendo numercsas simulagBes, onde vamcs
incrementando o valor de p até aparecer um conglomerado que percola.

A pergunta que surge agora & : como este valor p,, para rede
finita se aproxima de seu valor assintético p, para rede infinita?
Através da Equagles (507, temos que

dR dR
Cpav-Pe? = IP [—a'p" dp - Jpc [1"—-]dp
dr N
= fto-po [G)dp = Jep-poLire’ [cp-poLL]ep =
Fazendo z=Cp-pJLi/¥, teremos dz=Lt/vdp. Segue que
Cp=Pay’ = L-1/¥[z¢'C2ddz
onde a integral é apenas uma constante, logo

Cp—PpPgy) « L-tsv €515

No caso especial da rede triangular a constante de
proporcionalidade pode ser zero, uma vez que dR/dp ¢ completamente
simétrica em torno de zero.

A variagico de p,, com o tamanho do sistema L ¢ uma maneira de

determinar o expoente critico v. Vamos definir ento um parémetro de
variagiio de p,,, denominando-o de A:

At = j‘cp—pwaz[%ﬁ—]dp cs2. )



Com essa definigio, temos que
82 = [ [CPPO<PavPR ) (% gp =

L= Icp-pe”[-ﬁ:—]dp *+ CPay=PA? ~ 2CPqy P [CP-P [%ﬁ—]dp -

dR
- JCp-pGD'[-a;:-]dP + CPavPI* = 2Pay~PI* =

x> [Cp-pI? [—%g—]dp

polis p,, estd muito préximo de p,. ou seja. C(pg,~P 2 ¢ muito préximo
de zero. Dai

ar = [cp-p 2Ly [Cp-pILL/v]dp
Fazendo z=Cp-p lLi/v. temos
a2 x [ L-arvzilesve [2]L-s/vdz
x aL-av [ z2¢° [z]dp
Como a integral é apenas uma constante, temos que

42 x L-2/v , ou seja,

A x L-v 82.bd

Tragando ¢ grafico de logA contra logl, para vérios valores de L,
podemos obter © valor do exposnte do comprimento de correlagio v
através da inclinagic desta reta.

£ importante salientar que para determinagiic de uma estimativa
precisa do expoente do comprimento de correlagio ¢ necessario um

nimero muito maior de simulacBes do que para a obtengic de uma
estimativa precisa de p,. :

Na segic seguinte iremos mencionar resultados numéricos, onde
iremocs mostrar a proximidade entre lei de escala para um sistema
finito @ as técnicas de rencrmalizagioc de grupo.



4.2, Recwrmalizacio obluias pequenas

A idéia bssica de renormalizagiic é a de auto-similaridade no
ponto critico. O que significa isso? Vimos na Equaglio C48.b) que a
questBoc crucial da lei de escalocnamento para rede finita ¢ se o
tamanho do sistema ¢ maior ou menor que © comprimento de correl aco
fx|p-p|~. Vimos nas Equactes (200 e (48 que os conglomerados podem
ser separados em dois grupos principais : aqueles com massa maior que
{m|p—p°|-i/¢'. ® aqueles com menor massa. Para conglomerados pequencs
uma espécie de lei de poténcia ¢ valida, por exemplo pi=L-frv, o
para conglomerados grandes, uma outra lei de poténcia ¢ assegurada,
por exemplo, 8(p)=(p-pJJf. Em outras palavras, todos eos congl omer ados
menores (no sentido do maior dismetro) que o comprimento de correl acio
I sEo auto-similares desde que contenham muites sitios. Esta
similaridade & quebrada para conglomerados com dismetros da ordem de b4
ou dismetros da ordem da disténcia entre dois sitios na rede.
Exatamente em p., o comprimento de correlacSo ¢ infinito, logo todos
os conglomerados =30 similares.

O procedimento b&sico de renormalizacSo & considerar um conjunto
de sitios como um dnico sitioco denominado super-sitic, por exsmplo,
tomamos um quadradeo de 4xd sitios e tranformamos ele em um Unico
sitio. De forma geral, transformamos um conjunto de bd sitios em um
Unico super-~sitic. Porém esta renormalizagiio precisa de uma regra
governamental, ou seja, uma regra para decidir se este super-sitio
estaré vazio ‘ou ocupado.

Com a rencrmalizag@c teremos um novo valor de p, digamos p° e em
geral teremos p°’ diferente de p. Apenas no ponto critico Pee Onde a
auto-similaridade ¢ valida, nos temos p’=p=p.. Em geral conhecemos
que o comprimento de correlaglo ¢ limita a validade da similaridade o
assim este limite { & o mesmo para a rede coriginal e para a rede
renormalizada :{={'. Se na rede original temos

Z=const |[p-p.|¥

na rede rencormalizada com uma constante da rede b, teremos
¥*=constb|p’ -p.|-¥



com a mesma constante de proporcionalidade @ o mesmo expoente critico
v. Assim

b|p’ =P |™=|P-Pc|™ (53,2

£ esta a equaciio basica de renormalizacgiic. Tomando o logaritimo de
ambos os lados, obtemos

P’ “Pc
.log[ ]/long) ¢53.b

para o expoente do comprimento de correlagio.

Em resumo, renormalizamos uma célula de tamanho b para um unice
super-sitic e para a quantidade { permanecer inalterada também
renormalizamos p para p°.

Como exemplo, vejamos o casoc da rede triangular. Cada triangulo
tem trés sitics, e colocamos o super-sitio no centro do triangulo. A
nossa regra de decizsfo ser4 a seguinte : o super-sitic estara aberto
se dois lados do trisngulos estéo conectados Cuma possivel regra de
deciso se resume a dizer que o super sitioc esta aberto se dois lados
da célula estiico conectados, @& fechado em caso contréried e isso
ocorre ou se os trés sitios estiio ocupados C com probabilidade p? > ou
se apenas dois deles estio abertos ( com probabilidade 3p2Ci-p) ).
Assim nossa probabilidade rencrmalizada ¢

P’ =pP+3p3C1-pd 540
Exatamente no ponto critico nos devemos ter uma similaridade completa:

P'=p e chamaremcs de p® os valores de p ( pontos fixos de (51> ) que
satisfazem essa condigiic. Teremos portanto as seguintes solugBes :

p*=0, 1,2 e 1

onde a primeira Czero) e 2 Gltima Cum) so solucBes triviais e existem
para redes de dimensBes diferentes. Nos estamos interessados somente
na soluglic p®=1,2. Este ponto fixo concorda exatamente com o ponto
critico p. da rede triangular, uma primeira indicagiic que a idéia de

36



rencormalizagiic deve ser correta. Se expandirmos a Equagloc (B4) em
aérie de Taylor em torno do ponto fixo p®si/2, teremocs

P =p*+ACp-p*I +OCp-p*I2
com A=dp’® /dp=8pC1-p)=3/2 em p=p®=i /2
A EquagBo (53.b) tem agora a forma

1 log A
> " T b =

Em nozso caso particular, temos b2=3, pois estamos transformando bd
Cd=2) sitios em um Gnico super-sitio. Assim

Este resultado esté muito préximo do valor, presumivelmente correto,
v=4/3 am duas dimensBes.

Infelizmente esta boa concordancia com os valores de p, @ v é bam
excepcional. Para outras redes ou outras dimensBes os resultados
apresentam grandes desvios com relagio ao valor conhecido.
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