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Abstract. In this paper we introduce the notion of pseudo-spherical evolutes of
curves on a timelike surface in three dimensional Lorentz-Minkowski space. We
investigate the singularities and geometric properties of these pseudo-spherical evo-
lutes. Furthermore, we investigate the relation of the de Sitter (hyperbolic) evolute
of a spacelike curve in S2

1 with the lightlike surface along this spacelike curve.

1. Introduction

We introduce the notion of pseudo-spherical evolutes of curves on a timelike surface
in the Minkowski space R3

1 and investigate their geometric properties. The study of
submanifolds in Minkowski space is of interest in relativity theory. See [2] and [7] for
more on evolutes. The principal tools for the study of evolutes are the Frenet-Serret
formula and height functions along a curve on a timelike surface. We explain in §2 the
basic notions of Lorentz-Minkowski space and introduce Lorentzian Darboux frame
that will be used throughout the paper. In §3, we define two families of functions on a
curve, which are a spacelike height function HS and a timelike height function HT . By
differentiating these functions, we obtain new invariants σD and σH whose properties
are characterized by some conditions on the derivatives of HS and HT . We also define
two important curves dγ in de Sitter space and hγ in the hyperbolic space by observing
the conditions of first and second derivatives of HS and HT , respectively. We call dγ
a de Sitter evolute of γ relative to M and hγ a hyperbolic evolute of γ relative to M.
We show that the de Sitter evolute dγ is constant if and only if σD ≡ 0. In this case
the curve γ is a special curve on the surface M, which is called a de Sitter-slice (or an
D-slice) of M. We also show that the hyperbolic evolute hγ is constant if and only if
σH ≡ 0 and define a special curve on the surface M called a hyperbolic-slice (or an
H-slice) of M. The D-slice and H-slice on M can be consider as the model curve on
the surface M . We show that H-slice is always non-singular, but we have the case
that D-slice has a singular point (see §3). In §4, as an application of the theory of
unfoldings of functions in [1], we give a classification of singularities of both the de
Sitter evolute and the hiperbolic evolute in Theorems 4.4 and 4.5, which are some of
the main results in this paper. In §5, we consider curves on a timelike plane, R2

1, and
on the de Sitter space, as special cases of curves on timelike surface. Finally in §6,
we give a relation of the de Sitter evolute and of the hyperbolic evolute of a spacelike
curve γ in S2

1 with the lightlike surface along γ.
1
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2. Preliminaries

The Minkowski space R3
1 is the vector space R3 endowed with the pseudo-scalar

product 〈x, y〉 = −x0y0 + x1y1 + x2y2, for any x = (x0, x1, x2) and y = (y0, y1, y2)
in R3

1. We say that a non-zero vector x ∈ R3
1 is spacelike if 〈x, x〉 > 0, lightlike if

〈x, x〉 = 0 and timelike if 〈x, x〉 < 0. We say that γ : I → R3
1 is spacelike (resp.

timelike) if γ′(t) is a spacelike (resp. timelike) vector for all t ∈ I. A point γ(t) is
called a lightlike point if γ′(t) is a lightlike vector. The norm of a vector x ∈ R3

1 is

defined by ‖ x ‖=
√
| 〈x, x〉 |. For a non-zero vector v ∈ R3

1 and a real number c, we
define a plane with pseudo-normal v by

P (v, c) = {x ∈ R3
1 | 〈x, v〉 = c}.

We call P (v, c) a spacelike plane, a timelike plane or lightlike plane if v is timelike,
spacelike or lightlike, respectively. We now define Hyperbolic plane by

H2
+(−1) = {x ∈ R3

1 | 〈x, x〉 = −1, x0 > 0}

and de Sitter space by

S2
1 = {x ∈ R3

1 | 〈x, x〉 = 1}.
For any x = (x0, x1, x2), y = (y0, y1, y2) ∈ R3

1, the pseudo vector product of x and
y is defined as follows:

x ∧ y =

∣∣∣∣∣∣
−e0 e1 e2
x0 x1 x2
y0 y1 y2

∣∣∣∣∣∣ ,
where {e0, e1, e2} is the canonical basis of R3.

We consider a timelike embedding X : U → R3
1 from an open subset U ⊂ R2. We

write M = X(U) and identify M and U through the embedding X. We say that X is a
timelike embedding if the tangent space T pM is a timelike plane at any p = X(u). Let
γ̄ : I → U be a regular curve and a curve γ : I →M ⊂ R3

1 defined by γ(s) = X(γ̄(s)).
We say that γ is a curve on the timelike surface M .

Observe that the curve γ can be spacelike, timelike or the curve can have lightlike
points. In the case that γ is spacelike or timelike, we can reparameterize it by the
arc-length s. So we have the unit tangent vector t(s) = γ′(s) of γ(s). Since X is a
timelike embedding, we have a unit spacelike normal vector field n along M = X(U)
defined

n(p) =
Xu1(u) ∧Xu2(u)

‖ Xu1(u) ∧Xu2(u) ‖
,

for p = X(u). We define nγ(s) = n ◦ γ(s), so that we have a unit spacelike normal
vector field nγ along γ. Therefore we can construct the binormal vectors b(s) given by
b(s) = nγ(s) ∧ t(s). We say that a vector v is future directed if 〈v, e0〉 < 0. We choose
the orientation of M such that b (resp. t ) is future directed when γ is spacelike (resp.
timelike). We have also that 〈t(s), t(s)〉 = ε(γ(s)), 〈nγ(s), nγ(s)〉 = 1, 〈nγ(s), b(s)〉 = 0
and 〈b(s), b(s)〉 = −ε(γ(s)), where ε(γ(s)) = sign(t(s)), that can be 1 if γ is spacelike
or −1 if γ is timelike. Then we have the pseudo-orthonormal frames {b(s), nγ(s), t(s)}
if γ is spacelike and {t(s), b(s), nγ(s)} if γ is timelike, which are called the Lorentzian



PSEUDO-SPHERICAL EVOLUTES OF CURVES ON A TIMELIKE IN R3
1 3

Darboux frames along γ. By standard arguments, we have the following Frenet-Serret
type formulae: 

b′(s) = τg(s)nγ(s)− ε(γ(s)) kg(s) t(s)

n′γ(s) = ε(γ(s)) τg(s) b(s)− ε(γ(s)) kn(s) t(s)

t′(s) = −ε(γ(s)) kg(s) b(s) + kn(s)nγ(s)

where kn(s) = 〈nγ(s), t′(s)〉, kg(s) = 〈b(s), t′(s)〉, τg(s) = 〈nγ(s), b′(s)〉 and ε(γ(s)) =
sign(t(s)).

Here, we have the following properties of γ characterized by the conditions of kg,
kn, τg.

γ is

 a geodesic curve if and only if kg ≡ 0
an asymptotic curve if and only if kn ≡ 0
a principal curve if and only τg ≡ 0

Observe that t′(s) = 0 means that kn(s) = 0 and kg(s) = 0. We suppose then
t′(s) 6= 0 to define, for example, the pseudo-spherical evolutes.

3. Height Functions

In this section, we introduce two families of functions on a curve on a timelike surface
M : the timelike height function and the spacelike height function. Furthermore, we
define the pseudo-spherical evolutes.

We define the family of height functions on a curve, γ : I →M ⊂ R3
1, on a timelike

surface M as follows:

HS : I × S2
1 → R; (s, v) 7→ 〈γ(s), v〉.

We call HS the spacelike height function of γ on M . We denote hSv (s) = HS(s, v) for
any fixed v ∈ S2

1 .

Proposition 3.1. Suppose that t′(s) 6= 0. Then for any (s, v) ∈ I × S2
1 , we have the

following:

(1) (hSv )′(s) = 0 if and only if v = µb(s) + λnγ(s), where µ, λ ∈ R such that
−ε(γ(s))µ2 + λ2 = 1.

(2) (hSv )′(s) = (hSv )′′(s) = 0 if and only if

v = ± 1√
k2g(s)− ε(γ(s))k2n(s)

(kn(s)b(s)− kg(s)nγ(s))

and k2g(s) > ε(γ(s))k2n(s).

(3) (hSv )′(s) = (hSv )′′(s) = (hSv )′′′(s) = 0 if and only if

v = ± 1√
k2g(s)− ε(γ(s))k2n(s)

(kn(s)b(s)− kg(s)nγ(s)),

k2g(s) > ε(γ(s))k2n(s) and σD(s) = 0, where σD(s) = (k′gkn + εk2gτg − kgk′n −
k2nτg)(s).
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(4) (hSv )′(s) = (hSv )′′(s) = (hSv )′′′(s) = (hSv )(4)(s) = 0 if and only if

v = ± 1√
k2g(s)− ε(γ(s))k2n(s)

(kn(s)b(s)− kg(s)nγ(s)),

k2g(s) > ε(γ(s))k2n(s), σD(s) = 0 and (σD)′(s) = 0.

Proof. (1) In order to show the proposition, we use the Frenet-Serret type formulae.
Then,

(hSv )′(s) = 〈γ′(s), v〉 = 〈t(s), v〉 = 0,

that is, there are µ, λ ∈ R such that v = µb(s) + λnγ(s) and as v ∈ S2
1 we have that

−ε(γ(s))µ2 + λ2 = 1.
(2) (hSv )′(s) = (hSv )′′(s) = 0 if and only if 〈t′(s), µb(s)+λnγ(s)〉 = 0 with−ε(γ(s))µ2+

λ2 = 1. This is equivalent to kg(s)µ + kn(s)λ = 0 with −ε(γ(s))µ2 + λ2 = 1. This
means that µ2(k2g(s) − ε(γ(s))k2n(s)) = k2n(s). Therefore, considering the condition

that k2g(s) > ε(γ(s))k2n(s) we have

v = ± 1√
k2g(s)− ε(γ(s))k2n(s)

(kn(s)b(s)− kg(s)nγ(s)).

For (3), we have that (hSv )′(s) = (hSv )′′(s) = (hSv )′′′(s) = 0 if and only if (k′gkn +

εk2gτg − kgk′n − k2nτg)(s) = 0. So, we define σD(s) = (k′gkn + εk2gτg − kgk′n − k2nτg)(s).
Therefore, (σD)′(s) = (k′′gkn + 2εkgk

′
gτg + εk2gτ

′
g − kgk′′n − 2knk

′
nτg − k2nτ ′g)(s). But,

we have that (hSv)
′(s) = (hSv)

′′(s) = (hSv)
′′′(s) = (hSv)

(4)(s) = 0 if and only if
(k′′gkn + 2εkgk

′
gτg + εk2gτ

′
g − kgk′′n − 2knk

′
nτg − k2nτ ′g)(s) = 0, i.e, the item (4) is proved.

�

The above proposition induces an invariant σD. Motivated by the above calculations
we define a curve dγ : I → S2

1 by

dγ(s) =
kg(s)√

k2g(s)− ε(γ(s))k2n(s)
nγ(s)− kn(s)√

k2g(s)− ε(γ(s))k2n(s)
b(s).

We call dγ a de Sitter evolute of γ relative to M .

Lemma 3.2. d′γ(s) = 0 if and only if σD(s) = 0.

Proof. We have

d′γ(s) =

−k′nkg + knk
′
g + εk2gτg − k2nτg

(k2g − εk2n)
√
k2g − εk2n

 (s)(kg(s)b(s)− εkn(s)nγ(s)).

Therefore,

d′γ(s) = 0 if and only if σD(s) = (−k′nkg + knk
′
g + εk2gτg − k2nτg)(s) = 0.

�
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We define also the family of height functions on a curve, γ : I → M ⊂ R3
1, on a

timelike surface M as follows:

HT : I ×H2
+(−1)→ R; (s, v) 7→ 〈γ(s), v〉,

We call HT the timelike height function of γ on M . We denote hTv (s) = HT (s, v) for
any fixed v ∈ H2

+(−1).

For any (s, v) ∈ I ×H2(−1), we have that (hTv )′(s) = 0 if and only if v = µb(s) +
λnγ(s) where µ, λ ∈ R such that −ε(γ(s))µ2 + λ2 = −1.

Remark 3.3. In the case that γ is a timelike curve, i.e, ε(γ(s)) = −1, there is no
v ∈ H2(−1) such that (hTv )′(s) = 0 for some s ∈ I. Thus, we have that the bifurcation
set of HT for a timelike curve is empty. Then, in this case we consider only a spacelike
curve γ on the timelike surface M .

We have the following proposition.

Proposition 3.4. Suppose that t′(s) 6= 0. Then for any (s, v) ∈ I ×H2(−1), we have
the following:

(1) (hTv )′(s) = 0 if and only if v = µb(s) + λnγ(s) where µ, λ ∈ R such that
−µ2 + λ2 = −1.

(2) (hTv )′(s) = (hTv )′′(s) = 0 if and only if

v = ± 1√
k2n(s)− k2g(s)

(kn(s)b(s)− kg(s)nγ(s))

and k2n(s) > k2g(s).

(3) (hTv )′(s) = (hTv )′′(s) = (hTv )′′′(s) = 0 if and only if

v = ± 1√
k2n(s)− k2g(s)

(kn(s)b(s)− kg(s)nγ(s)),

k2n(s) > k2g(s) and σH(s) = 0, where σH(s) = (kgk
′
n + k2nτg − k′gkn − k2gτg)(s).

(4) (hTv )′(s) = (hTv )′′(s) = (hTv )′′′(s) = (hTv )(4)(s) = 0 if and only if

v = ± 1√
k2n(s)− k2g(s)

(kn(s)b(s)− kg(s)nγ(s)),

k2n(s) > k2g(s), σH(s) = 0 and (σH)′(s) = 0.

Proof. (1) In order to show the proposition, we use the Frenet-Serret type formulae
in the case that γ is spacelike. Then,

(hTv )′(s) = 〈γ′(s), v〉 = 〈t(s), v〉 = 0,

that is, there are µ, λ ∈ R such that v = µb(s) + λnγ(s) and as v ∈ H2(−1) we have
−µ2 + λ2 = −1.

(2) (hTv )′(s) = (hTv )′′(s) = 0 if and only if 〈t′(s), µb(s)+λnγ(s)〉 = 0 with −µ2+λ2 =
−1. This is equivalent to kg(s)µ+ kn(s)λ = 0 with −µ2 + λ2 = −1. This means that
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µ2(k2n(s)− k2g(s)) = k2n(s). Therefore, considering the condition that k2n(s) > k2g(s) we
have

v = ± 1√
k2n(s)− k2g(s)

(kn(s)b(s)− kg(s)nγ(s)).

For (3), we have that (hTv )′(s) = (hTv )′′(s) = (hTv )′′′(s) = 0 if and only if (kgk
′
n +

k2nτg − k′gkn − k2gτg)(s) = 0. Then we define σH(s) = (kgk
′
n + k2nτg − k′gkn − k2gτg)(s).

Thus, follows that (σH)′(s) = (kgk
′′
n − k′′gkn + 2knk

′
nτg + k2nτ

′
g − 2kgk

′
gτg − k2gτ ′g)(s).

But we have that (hT v)
′(s) = (hT v)

′′(s) = (hT v)
′′′(s) = (hT v)

(4)(s) = 0 if and only if
(kgk

′′
n − k′′gkn + 2knk

′
nτg + k2nτ

′
g − 2kgk

′
gτg − k2gτ ′g)(s) = 0, i.e, the item (4) is proved.

�

Similar to Proposition 3.1, the above proposition induces an invariant σH and mo-
tivated by the above calculations we define a curve hγ : I → H2

+(−1) by

hγ(s) = − kg(s)√
k2n(s)− k2g(s)

nγ(s) +
kn(s)√

k2n(s)− k2g(s)
b(s).

We call hγ a hyperbolic evolute of γ relative to M . Furthermore, we have the following
result analogous to Lemma 3.2.

Lemma 3.5. h′γ(s) = 0 if and only if σH(s) = 0.

Proof. We have

h′γ(s) =

−knk′g + k′nkg − k2gτg + k2nτg

(k2n − k2g)
√
k2n − k2g

 (s)(εkn(s)nγ(s)− kg(s)b(s)).

Therefore,

h′γ(s) = 0 if and only if σH(s) = (k′nkg − knk′g − k2gτg + k2nτg)(s) = 0.

�

We also call dγ and hγ a pseudo-spherical evolute of γ relative to M . By Lemma
3.2, dγ(s) = v0 is constant if and only if σD(s) ≡ 0. In this case, by Proposition 3.1
(2), hSv0 is constant, that is, there is a real number c ∈ R such that 〈γ(s), v0〉 = c. It
means that Imγ = P (v0, c) ∩M . It suggests that curves of the form P (v, c) ∩M for
v ∈ S2

1 are the candidates of model curves on M . We call it a de Sitter-slice (or, a
D-slice) of M . Here we remark that we can consider the D-slice under the condition
kn 6= 0. If kn(s0) = 0, we have dγ(s0) = nγ(s0) and thus P (nγ(s0), c0) is the tangent
plane Tγ(s0)M of M , where c0 = hSnγ(s0)(s0) and P (nγ(s0), c0)∩M has a singular point.

By the same way, by Lemma 3.5, we can also define hyperbolic-slice (or, an H-slice)
of M by P (v, c) ∩M for v ∈ H2

+(−1). Since P (v, c) for v ∈ H2
+(−1) is a spacelike

plane and M is a timelike surface, an H-slice is always a regular curve
Let us study the geometry of the invariants σD and σH . For this purpose, we define

the order of contact between curves and surfaces.
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Definition 3.6. Let F : R3
1 → R (respectively, F |M : M → R) be a submersion and

γ : I → M be a regular curve. We say that γ and F−1(0) (respectively F−1(0) ∩M)
have contact of order k at s0 if the function f(s) = F ◦ γ(s) satisfies f(s0) = f ′(s0) =

· · · = f (k)(s0) = 0 and f (k+1)(t0) 6= 0, i.e, f has Ak-type singularity at t0.

We now introduce the following another family of function:

HS : R3
1 × S2

1 → R; (x, v) 7→ 〈x, v〉.

We denote hSv0(x) = HS(x, v0) for any fixed v0 ∈ S2
1 , then, we have

hSv0(s) = 〈γ(s), v0〉 = HS(γ(s), v0) = hSv0(γ(s)).

Moreover, for any s0 ∈ R and v0 = dγ(s0), (hSv0 |M )−1(c) is a D-slice of M .

Observe that by Proposition 3.1, (hSv0)−1(c0) = P (v0, c0) is tangent to γ at γ(s0),

where c0 = hSv0(s0). We denote TP Tv0,γ(s0) = P (v0, c0) which is called a timelike tangent

plane of γ at γ(s0) with respect to v0 = dγ(s0).

Lemma 3.7. If kn(s0) 6= 0, i.e, the D-slice (hSv0 |M )−1(c0) is non-singular at γ(s0),

and P (v0, c0) is tangent to γ at γ(s0), where c0 = hSv0(s0). Then, the D-slice is a curve
of M , tangent to γ at γ(s0).

Proof. We suppose that the D-slice (hSv0 |M )−1(c0) and γ intersects transversely at
γ(s0). As P (v0, c0) is tangent to γ at γ(s0) and the D-slice is contained in P (v0, c0),
follow that the γ′(s0) and the tangent vector to the D-slice at γ(s0) generate the
tangent plane to M at γ(s0). Therefore, we conclude that P (v0, c0) is precisely this
plane, i.e, the D-slice is singular and therefore we have a contradiction. �

We call the D-slice (hSv0 |M )−1(c0) of a tangent D-slice of γ at γ(s0) relative to M

and we denoted by TDM,γ(s0)
. By Proposition 3.1, we conclude that γ and TP Tv0,γ(s0)

have contact of order three at γ(s0) if and only if σD(s0) = 0 and σ′D(s0) 6= 0. Under
the assumption that kn(s0) 6= 0 the above conditions are equivalent to the condition
that γ and TDM,γ(s0)

have contact of order three at γ(s0). Therefore, we have the

following proposition:

Proposition 3.8. Let γ : I → M be a regular curve on M . Then the following
conditions are equivalent:

(1) γ and the timelike tangent plane TP Tv0,γ(s0) have contact of order three, where

v0 = dγ(s0),
(2) σD(s0) = 0 and σ′D(s0) 6= 0.

If kn(s0) 6= 0, then the tangent D-slice TDM,γ(s0)
of γ at γ(s0) is non-singular

and the above two conditions are equivalent to the following condition:
(3) γ and the tangent D-slice TDM,γ(s0)

have contact of order three.

Proof. For v0 = dγ(s0) and c0 = hSv0(s0), we define F = h̃Sv0 : R3
1 → R by F (x) =

h̃Sv0(x) = 〈x, v0〉 − c0 and consider f = F ◦ γ. Thus the prove follows from Definition
3.6 and Proposition 3.1. �
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Remember that an H-slice is always a regular curve. We also define

HT : R3
1 ×H2

+(−1)→ R; (x, v) 7→ 〈x, v〉.
By exactly the same arguments as the above case, we have the notions of spacelike

tangent plane of γ at γ(s0) with respect to v0 = hγ(s0) and tangent H-slice of γ at γ(s0)
relative to M . We respectively denote these as TPSv0,γ(s0) and THM,γ(s0)

. In this case

the tangent H-slice is always non-singular at γ(s0). It also follows from Proposition
3.4 that γ and THM,γ(s0)

have contact of order three at γ(s0) if and only if σH(s0) = 0

and σ′H(s0) 6= 0.
By the Remark 3.3, in the next result we only need to consider spacelike curve.

Proposition 3.9. Let γ : I → M be a spacelike regular curve on M . The following
conditions are equivalent:

(1) γ and the spacelike tangent plane TPSv0,γ(s0) have contact of order three, where

v0 = hγ(s0),
(2) σH(s0) = 0 and σ′H(s0) 6= 0,
(3) γ and the tangent H-slice THM,γ(s0)

have contact of order three.

As a consequence, we have that γ is a model curve on M if and only if its pseudo-
spherical evolutes are constant, that is, h′γ ≡ 0 or d′γ ≡ 0, or equivalently the invariants
are zero functions.

4. Unfolding of Functions

In this section, we investigate the singularities of pseudo-spherical evolutes and we
use well known theorem in the unfolding theory for obtaining new results.

Let F : R×Rr, (s0, x0)→ R be a function germ. We call F an r-parameter unfolding
of f , where f(s) = Fx0(s). We denote the (k − 1)-jet of the partial derivative ∂F

∂xi
at

s0 by jk−1( ∂F∂xi (s, x0))(s0) =
∑k−1

j=1 αjis
j for i = 1, . . . , r. Then F is called a (p)-versal

unfolding if the (k− 1)× r matrix of coefficients (αji) has rank k− 1 (k− 1 ≤ r). The
bifurcation set of F is defined to be

BF = {x ∈ Rr | ∂F
∂s

(s, x) =
∂2F

∂s2
(s, x) = 0 at (s, x) for some s}.

Then we have the following fundamental result of the unfolding theory (see [1]).

Theorem 4.1. Let F : R × Rr, (s0, x0) → R be an r-parameter unfolding of f which
has the type Ak at s0. If F is a (p)-versal unfolding and k = 3, then the germ of BF
at x0 is diffeomorphic to (C × Rr−2) as set germs, where C = {(x1, x2) | x21 = x32)}.

By Propositions 3.1 and 3.4, we have the following.

Proposition 4.2. (1) For a curve γ : I → M with the arc-length parameter s and
t′(s) 6= 0, the bifurcation set of the height function HS is BHS = {dγ(s) | s ∈ I}.

(2) For a timelike curve γ : I →M , the bifurcation set of the height function HT is
empty. Moreover, for a spacelike curve with the arc-length parameter s and t′(s) 6= 0,
the bifurcation set of HT is BHT = {hγ(s) | s ∈ I}.
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We have the following proposition.

Proposition 4.3. Let γ : I → M be a curve with the arc-length parameter s and
t′(s0) 6= 0.

(1) If hSv0(s) has type A3 at s0, then HS is a (p)-versal unfolding of hSv0(s).

(2) If hTv0(s) has type A3 at s0, then HT is a (p)-versal unfolding of hTv0(s).

Proof. (1) We denote γ(s) = (x0(s), x1(s), x2(s)), v = (v0, v1,
√

1 + v20 − v21) ∈ S2
1 .

Therefore we have

HS(s, v) = −x0(s)v0 + x1(s)v1 + x2(s)
√

1 + v20 − v21,

and

∂HS

∂v0
= −x0(s) +

v0√
1 + v20 − v21

x2(s),
∂HS

∂v1
= x1(s)−

v1√
1 + v20 − v21

x2(s)

∂2HS

∂s∂v0
= −x′0(s) +

v0√
1 + v20 − v21

x′2(s),
∂2HS

∂s∂v1
= x′1(s)−

v1√
1 + v20 − v21

x′2(s)

∂3HS

∂s∂v0
= −x′′0(s) +

v0√
1 + v20 − v21

x′′2(s),
∂3HS

∂s∂v1
= x′′1(s)− v1√

1 + v20 − v21
x′′2(s)

So, we have the following matrix

A =

 −x′0(s) +
v0√

1 + v20 − v21
x′2(s) x′1(s)−

v1√
1 + v20 − v21

x′2(s)

−x′′0(s) +
v0√

1 + v20 − v21
x′′2(s) x′′1(s)− v1√

1 + v20 − v21
x′′2(s)

 .

By Proposition 3.1, we have that hSv has type A3 at s if and only if

v = ± 1√
k2g(s)− ε(γ(s))k2n(s)

(kn(s)b(s)− kg(s)nγ(s)),

k2g(s) > ε(γ(s))k2n(s), σD(s) = 0 and σ′D(s) 6= 0.
For prove the assertion (1), we have to show that the matrix is non-singular, i.e,

detA 6= 0. Therefore we calculate the determinant of this matrix.
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detA = ((x′0, x
′
1, x
′
2) ∧ (x′′0, x

′′
1, x
′′
2))


v0√

1 + v20 − v21
− v1√

1 + v20 − v21
−1


= − 1√

1 + v20 − v21
(t ∧ (−ε(γ(s))kg(s)b(s) + kn(s)nγ(s)))

 −v0
v1√

1 + v20 − v21



= ±

√
k2g(s)− ε(γ(s))k2n(s)√

1 + v20 − v21
6= 0.

By the same way, if we consider the timelike height function HT , we can prove
(2). �

As a consequence, we have the following theorems:

Theorem 4.4. Let γ : I → M be a regular curve such that t′(s) 6= 0. Then we have
the following assertions:

(1) The de Sitter evolute at dγ(s0) is regular if σD(s0) 6= 0.
(2) The following conditions are equivalent:

(i) the germ of the de Sitter evolute at dγ(s0) is diffeomorphic to the ordinary
cusp C, where C = {(x1, x2) | x21 = x22};

(ii) σD(s0) = 0 and σ′D(s0) 6= 0;
(iii) γ and the timelike tangent plane TP Tv0,γ(s0) have contact of order three;

(iv) if kn(s0) 6= 0, then the tangent D-slice TDM,γ(s0)
of γ at γ(s0) is non-

singular, and γ and the tangent D-slice TDM,γ(s0)
have contact of order

three.

Proof. (1) By Lemma 3.2, we have d′γ(s) = 0 if and only if σD(s) = 0. It means that
the de Sitter evolute at dγ(s0) is regular if σD(s0) 6= 0.

(2) By Proposition 3.1, the bifurcation set of HS is

BHS =

v = ± 1√
k2g(s)− ε(γ(s))k2n(s)

(kn(s)b(s)− kg(s)nγ(s)) | k2g(s) > ε(γ(s))k2n(s)

 .

By Theorem 4.1 and Proposition 4.3, the germ of the bifurcation set is diffeomorphic
to the ordinary cusp if σD(s0) = 0 and σ′D(s0) 6= 0. Moreover we have the other
equivalences by Proposition 3.8. This complete the proof for (1) and (2). �

Theorem 4.5. Let γ : I → M be a spacelike regular curve such that t′(s) 6= 0. Then
we have the following assertions:

(1) The hyperbolic evolute at hγ(s0) is regular if σH(s0) 6= 0.
(2) The following conditions are equivalent:
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(i) the germ of the hyperbolic evolute at hγ(s0) is diffeomorphic to the ordi-
nary cusp C;

(ii) σH(s0) = 0 and σ′H(s0) 6= 0;
(iii) γ and the spacelike tangent plane TPSv0,γ(s0) have contact order three;

(iv) γ and the tangent H-slice THM,γ(s0)
have contact of order three.

Proof. The prove of this proposition is analogous the prove of the above proposition.
�

5. Examples

Now, we consider two examples of curves on a timelike surface: curves on a timelike
plane, R2

1, and curves on the de Sitter space, S2
1 .

Example 5.1. Suppose that M = R2
1 = {x = (x0, x1, x2) | x2 = 0}. We consider a

plane curve γ : I → R2
1. In this case we have nγ = e2, t(s) = γ′(s) and b(s) = e2∧t(s).

It follows that kn(s) ≡ τg(s) ≡ 0 and kg = 〈b(s), t′(s)〉 = −ε(γ(s))k(s). Then we have
the following Frenet-Serret formulae on Minkowski plane:{

b′(s) = k(s)t(s)
t′(s) = k(s)b(s)

Here we have σD ≡ 0 and the constant de Sitter evolute dγ(s) = nγ = e2 of γ
relative to M . It means that the D-slice is M = P (v, c) ∩M . Moreover, we do not
have hyperbolic evolutes. We observe that in [6] the authors study the evolute of γ in
R2
1. In all above cases the evolutes are given by the intersection of the focal surface, of

γ, in R3
1 (see [4], [5]) with the pseudo-spheres (de Sitter and Hyperbolic evolutes) and

with R2
1.

In the above example observe that kn ≡ 0, for this we have M = P (v, c) ∩M and
γ is not considered a model curve on M even with the constant de Sitter evolute.

Example 5.2. Suppose that M = S2
1 . In this case, we have nγ(s) = γ(s), t(s) = γ′(s)

with ‖ t(s) ‖= 1 and b(s) = nγ(s) ∧ t(s). Therefore, we have τg(s) = 0, kn(s) =
−ε(γ(s)), where ε(γ(s)) = 1 if γ is spacelike and ε(γ(s)) = −1 if γ is timelike. By the
Frenet-Serret type formulae, we have the following formulae (see [4], [5]): t′(s) = −ε(γ(s))γ(s)− ε(γ(s))kg(s)b(s)

γ′(s) = t(s)
b′(s) = −ε(γ(s))kg(s)t(s)

Here, we have σD = −εk′g, and σH = k′g, and we have the de Sitter evolute of γ relative
to M ,

dγ(s) =
kg(s)√

k2g(s)− ε(γ(s))
nγ(s) +

ε(γ(s))√
k2g(s)− ε(γ(s))

b(s)

for k2g(s) > ε(γ(s)). The hyperbolic evolute of γ relative to M , is defined only if γ is
spacelike as

hγ(s) = − kg(s)√
1− k2g(s)

nγ(s)− 1√
1− k2g(s)

b(s)
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for k2g(s) < 1. The study of the de Sitter evolute was made in [4] and [5], where we
conclude that the singular points of the de Sitter evolute are the points where k′g = 0.
By Theorem 4.4, the evolute at dγ(s0) is regular if σD = −εk′g 6= 0, and is a ordinary
cusp locally if σD = −εk′g = 0 and σ′D = −εk′′g 6= 0. Moreover the hyperbolic evolute
at hγ(s0) is regular if σH = k′g 6= 0, and is a ordinary cusp locally if σH = k′g = 0 and
σ′H = k′′g 6= 0. Therefore the cusps of the pseudo-spherical evolute corresponds to the
points γ(s) with k′g(s) = 0 and k′′g (s) 6= 0.

6. Lightlike surface in the Minkowski space along de Sitter spacelike
plane curves

In this section we investigate the relation of the de Sitter (hyperbolic) evolute of
a spacelike curve γ in S2

1 with the lightlike surface along γ. Let γ : I → S2
1 be a

parametrised by arc length spacelike curve, then we have that the Frenet-Serret type
formulae of γ is given by 

γ′(s) = t(s)

t′(s) = −γ(s)− kg(s)n(s)

n′(s) = −kg(s) t(s)
,

where kg(s) = 〈γ′′(s), n(s)〉 is the geodesic curvature of γ at s (see [5]). We say that a
surface is lightlike if each tangent plane at the regular points of the surface is lightlike.
Following the definition of lightlike hypersurface along spacelike submanifolds in [3],
the lightlike surfaces along γ are given by the maps LS±γ : I × R→ R3

1 defined by

LS±γ (s, µ) = γ(s) + µ(n(s)± γ(s)).

We only consider LS+γ , so that we denote that by LSγ .
We have the following:

∂LSγ
∂s

= (1− µkg(s) + µ)t(s)

∂LSγ
∂µ

= n(s) + γ(s).

Under the condition that kg(s) 6= 1,

{
∂LSγ
∂s

,
∂LSγ
∂µ

}
is linearly dependent if and only

if 1 − µkg(s) + µ = 0. Therefore, (s, µ) is a singular point of LSγ if and only if

µ =
1

kg(s)− 1
. In [3], the lightlike focal set of the submanifold is defined as being the

critical value set of the lightlike hypersurface along a spacelike submanifold, then the
lightlike focal set of γ is given by the curve

β(s) = LSγ(s, µ(s)) =

(
kg(s)

kg(s)− 1

)
γ(s) +

(
1

kg(s)− 1

)
n(s).

Since 〈β(s), β(s)〉 =
k2g(s)− 1

(kg(s)− 1)2
, we have
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β(s) is


spacelike if k2g(s)− 1 > 0
lightlike if k2g(s)− 1 = 0,
timelike if kg(s)

2 − 1 < 0.

We define a mapping

Φ : R3
1 \ LC∗ → H2(−1) ∪ S2

1

by Φ(x) =
x

‖ x ‖
. We have R3

1 \ LC∗ = S ∪ T , where S = {x ∈ R3
1 | 〈x, x〉 > 0} and

T = {x ∈ R3
1 | 〈x, x〉 < 0}. Therefore, we have projections ΦS = Φ|S : S → S2

1 and
ΦT = Φ|T : T → H2(−1). Suppose that k2g(s)− 1 > 0. Then

ΦS ◦ β(s) =
kg(s)√
k2g(s)− 1

γ(s) +
1√

k2g(s)− 1
n(s) = dγ(s).

On the other hand, suppose that k2g(s)− 1 < 0. Then

ΦT ◦ β(s) = − kg(s)√
1− k2g(s)

γ(s)− 1√
1− k2g(s)

n(s) = hγ(s).

We now define

βSγ = {β(s) | s ∈ I, k2g(s) > 1},

βTγ = {β(s) | s ∈ I, k2g(s) < 1}.

We call βSγ the spacelike part of the lightlike focal set of γ and βTγ the timelike part of

the lightlike focal set of γ. We show that the projection of βSγ (βTγ ) is the de Sitter
(hyperbolic) evolute. Then we have the following result.

Theorem 6.1. Let γ : I → S2
1 be a spacelike curve with the arc-length parameter s

and kg(s) 6= 1. Then we have

ΦS(βSγ ) = dγ(I>1) and ΦT (βTγ ) = hγ(I<1),

where I>1 = {s ∈ I | k2g(s) > 1} and I<1 = {s ∈ I | k2g(s) < 1}.

Now we consider a family of functions on spacelike curve in de Sitter space in order
have a relation with the lightlike surface of the spacelike curve. Let γ : I → S2

1 be
a parametrised by arc length spacelike curve. We define a family of distance squared
functions

D : I × R3
1 → R

by D(s, v) = 〈γ(s)− v, γ(s)− v〉 and denote Dv(s) = D(s, v).

Proposition 6.2. For a spacelike curve γ : I → S2
1 with the arc-length parameter s

and 〈t′(s), t′(s)〉 6= 0, we have the following:

(1) Dv(s) = D′v(s) = 0 if and only if there exists µ ∈ R such that v = γ(s) +
µ(n(s)± γ(s)).
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(2) Dv(s) = D′v(s) = D′′v(s) = 0 if and only if

v = γ(s) +
1

kg(s)∓ 1
(n(s)± γ(s)).

(3) Dv(s) = D′v(s) = D′′v(s) = D′′′v (s) = 0 if and only if

v = γ(s) +
1

kg(s)∓ 1
(n(s)± γ(s)) and k′g(s) = 0.

Proof. (1) We have D′v(s) = 〈γ(s) − v, t(s)〉 = 0 if and only if there exist µ̄, λ ∈ R
such that γ(s)− v = λγ(s) + µ̄n(s). Then, Dv(s) = D′v(s) = 0 if and only if λ = ±µ̄,
that is, v = γ(s) − µ̄(n(s) ± γ(s)). As µ̄ ∈ R, we can call µ = −µ̄ and then v =
γ(s) + µ(n(s)± γ(s)).

(2) Since
1

2
D′′v(s) = 1+〈γ(s)−v,−γ(s)−kg(s)n(s)〉, we have that Dv(s) = D′v(s) =

D′′v(s) = 0 if and only if µ =
1

kg(s)∓ 1
and therefore

v = γ(s) +
1

kg(s)∓ 1
(n(s)± γ(s)).

(3) Since
1

2
D′′′v (s) = 〈γ(s)−v,−γ′(s)−k′g(s)n(s)+k2g(s)t(s)〉, we have that Dv(s) =

D′v(s) = D′′v(s) = D′′′v (s) = 0 if and only if

v = γ(s) +
1

kg(s)∓ 1
(n(s)± γ(s)) and k′g(s) = 0.

�

Let F : R × Rr, (s0, v0) → R, be a function germ. We call F an r-parameter
unfolding of f , where f(s) = Fv0(s). We introduce an important set concerning the
unfolding. The discriminant set of F is

DF = {v ∈ Rr | F (s, v) =
∂F

∂s
(s, v) = 0 for some s ∈ R}.

By Proposition 6.2, the discriminant set of the distance squared function D(s, v) is
given by

DD = {γ(s) + µ(n(s)± γ(s)) | s ∈ I, µ ∈ R},
which is the image of the lightlike surfaces along a spacelike curve γ : I → S2

1 .
For a spacelike or timelike curve γ : I → R3

1 parametrised by arc length with
k(s) 6= 0, we have that the focal surface of γ is given by

B(s, µ) = γ(s) +
ε(γ(s))

δ(γ(s))k(s)
n(s) + µb(s),

with µ ∈ R. The cuspidal curve of the focal surface is given by

B(s) = γ(s) +
ε(γ(s))

δ(γ(s))k(s)
n(s) + µ(s)b(s),
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with µ(s) =
k′(s)

ε(γ(s))δ(γ(s))k2(s)τ(s)
, that is, where the distance squared function has

singularity A≥3. We denote the cuspidal curve B(s) by C. (For more details see [4]
and [5].)

So, if γ : I → R3
1 is a spacelike or timelike curve, by [2], [4] and [5] we know that:

(a) the focal surface B of a spacelike curve γ is a timelike surface in R3
1, and B is

a spacelike surface if γ is a timelike curve;
(b) the de Sitter evolute of γ is the curve B ∩ S2

1 ;
(c) the hyperbolic evolute of γ is the curve B ∩H2(−1);
(d) the singular curve of the focal surface B is the cuspidal curve C.

We observe that (a) to (d) is true for γ : I → S2
1 . Furthermore, for a spacelike curve

γ : I → S2
1 , by Theorem 6.1, we have the following:

(e) the projection of β to S2
1 is the de Sitter evolute of γ;

(f) the projection of β to H2(−1) is the hyperbolic evolute of γ, where β is the
lightlike focal curve of γ.

By the above calculations, we have the following result.

Proposition 6.3. For a spacelike curve γ : I → S2
1 with the arc-length parameter s

and 〈t′(s), t′(s)〉 6= 0. We have the following:

(i) the lightlike focal set β of γ is the curve B ∩DD;
(ii) the curve β is regular at s0 if and only if k′g(s0) 6= 0 and the regular part of β

is contained in the regular part of B;
(iii) the singular points of β are isolated points given by β∩C, that is, where k′g(s) =

0. More specifically, DD is locally diffeomorphic to the swallowtail (see [1]) that
intercepts the cuspidal curve of B exactly at the singular points of β (see Figure
1);

(iv) the singular points of the spacelike part βSγ , of β, are projected to the singular
points of the de Sitter evolute;

(v) the singular points of the timelike part βTγ , of β, are projected to the singular
points of the hyperbolic evolute, where B is the focal surface of γ and DD is the
discriminant set of the distance squared function D, that is, DD is the lightlike
surface LSγ.

Figure 1
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