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ABSTRACT. In this paper we introduce the notion of pseudo-spherical evolutes of
curves on a timelike surface in three dimensional Lorentz-Minkowski space. We
investigate the singularities and geometric properties of these pseudo-spherical evo-
lutes. Furthermore, we investigate the relation of the de Sitter (hyperbolic) evolute
of a spacelike curve in S} with the lightlike surface along this spacelike curve.

1. INTRODUCTION

We introduce the notion of pseudo-spherical evolutes of curves on a timelike surface
in the Minkowski space R} and investigate their geometric properties. The study of
submanifolds in Minkowski space is of interest in relativity theory. See [2] and [7] for
more on evolutes. The principal tools for the study of evolutes are the Frenet-Serret
formula and height functions along a curve on a timelike surface. We explain in §2 the
basic notions of Lorentz-Minkowski space and introduce Lorentzian Darboux frame
that will be used throughout the paper. In §3, we define two families of functions on a
curve, which are a spacelike height function H* and a timelike height function H”. By
differentiating these functions, we obtain new invariants op and og whose properties
are characterized by some conditions on the derivatives of H° and HT. We also define
two important curves d, in de Sitter space and /., in the hyperbolic space by observing
the conditions of first and second derivatives of HS and HT, respectively. We call dy
a de Sitter evolute of vy relative to M and h, a hyperbolic evolute of v relative to M.
We show that the de Sitter evolute d, is constant if and only if op = 0. In this case
the curve v is a special curve on the surface M, which is called a de Sitter-slice (or an
D-slice) of M. We also show that the hyperbolic evolute h, is constant if and only if
og = 0 and define a special curve on the surface M called a hyperbolic-slice (or an
H-slice) of M. The D-slice and H-slice on M can be consider as the model curve on
the surface M. We show that H-slice is always non-singular, but we have the case
that D-slice has a singular point (see §3). In §4, as an application of the theory of
unfoldings of functions in [1], we give a classification of singularities of both the de
Sitter evolute and the hiperbolic evolute in Theorems 4.4 and 4.5, which are some of
the main results in this paper. In §5, we consider curves on a timelike plane, R?, and
on the de Sitter space, as special cases of curves on timelike surface. Finally in §6,
we give a relation of the de Sitter evolute and of the hyperbolic evolute of a spacelike
curve v in S? with the lightlike surface along +.

1



2 S. IZUMIYA, A. C. NABARRO AND A. J. SACRAMENTO

2. PRELIMINARIES

The Minkowski space R} is the vector space R® endowed with the pseudo-scalar
product (z,y) = —xoyo + x1y1 + T2y2, for any =z = (xg,x1,22) and y = (yo,y1,y2)
in R$. We say that a non-zero vector x € R3 is spacelike if (x,z) > 0, lightlike if
(x,2) = 0 and timelike if (x,z) < 0. We say that v : I — R? is spacelike (resp.
timelike) if v'(t) is a spacelike (resp. timelike) vector for all ¢ € I. A point ~(t) is
called a lightlike point if 4'(t) is a lightlike vector. The norm of a vector z € Ri{’ is
defined by | z ||= /] (z,z) |. For a non-zero vector v € R and a real number ¢, we
define a plane with pseudo-normal v by

P(v,¢) = {z € R} | (z,v) = c}.

We call P(v,c) a spacelike plane, a timelike plane or lightlike plane if v is timelike,
spacelike or lightlike, respectively. We now define Hyperbolic plane by

H2(-1) = {z e R} | (z,2) = —1,20 > 0}
and de Sitter space by
St={z eR} | (z,z) =1}.

For any x = (20,71, 22), ¥ = (Y0,%1,%2) € R}, the pseudo vector product of x and
y is defined as follows:

—€) €1 €2
rTNy=| * 1 I2 |,
Yo Y1 Y2

where {eg, e1,es} is the canonical basis of R3.

We consider a timelike embedding X : U — R} from an open subset U C R%. We
write M = X (U) and identify M and U through the embedding X. We say that X is a
timelike embedding if the tangent space T, M is a timelike plane at any p = X (u). Let
7 : I — U be a regular curve and a curve v : I — M C R$ defined by v(s) = X (5(s)).
We say that v is a curve on the timelike surface M.

Observe that the curve v can be spacelike, timelike or the curve can have lightlike
points. In the case that ~ is spacelike or timelike, we can reparameterize it by the
arc-length s. So we have the unit tangent vector t(s) = 7/(s) of v(s). Since X is a
timelike embedding, we have a unit spacelike normal vector field n along M = X (U)
defined

n(p) = Xy () A Xy (u) :
| Xy (1) A X (w) |

for p = X(u). We define n,(s) = n o~(s), so that we have a unit spacelike normal
vector field n, along . Therefore we can construct the binormal vectors b(s) given by
b(s) = n,(s) Nt(s). We say that a vector v is future directed if (v,eg) < 0. We choose
the orientation of M such that b (resp. ¢ ) is future directed when + is spacelike (resp.
timelike). We have also that (t(s),t(s)) = e(7(s)), (ny(s),n(s)) = 1, (ny(s),b(s)) =0
and (b(s),b(s)) = —e(7y(s)), where £(y(s)) = sign(t(s)), that can be 1 if ~y is spacelike
or —1 if y is timelike. Then we have the pseudo-orthonormal frames {b(s), n(s),t(s)}
if v is spacelike and {t(s), b(s),n,(s)} if v is timelike, which are called the Lorentzian
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Darboux frames along . By standard arguments, we have the following Frenet-Serret
type formulae:

V'(s) = 74(8) ny(s) — e((5)) ky(s) t(s)
. (s) = e(v(s)) 4(s) b(s) — e((5)) kn(s) t(5)
t'(s) = —e(7(s)) kg(s) b(s) + kn(s) 1 (s)
where kn(s) = (n(5),1'(s)), kg(s) = (b(s),t'(s)), 74(s) = (n(s),b'(s)) and &(7(s)) =

sign(t(s)).
Here, we have the following properties of v characterized by the conditions of kg,
kn, 74.

a geodesic curve if and only if kg =0
v is an asymptotic curve if and only if k, =0
a principal curve if and only 74 =0

Observe that ¢'(s) = 0 means that k,(s) = 0 and k4(s) = 0. We suppose then
t'(s) # 0 to define, for example, the pseudo-spherical evolutes.

3. HEIGHT FUNCTIONS

In this section, we introduce two families of functions on a curve on a timelike surface
M: the timelike height function and the spacelike height function. Furthermore, we
define the pseudo-spherical evolutes.

We define the family of height functions on a curve, v: I — M C R}, on a timelike
surface M as follows:

HY:Tx 82 5 R; (s,0) = (v(s),0).

We call H® the spacelike height function of v on M. We denote h3(s) = H®(s,v) for
any fixed v € S%.
Proposition 3.1. Suppose that t'(s) # 0. Then for any (s,v) € I x S?, we have the
following:

(1) (h3)'(s) = 0 if and only if v = ub(s) + Any(s), where u, A € R such that

—e(y(s))p® + A* = 1.
(2) (B)(5) = (hS)"(s) = 0 if and only if
1

v==
VK3 (s) — ey ()R (s)

and kZ(s) > e(y(s))k2(s).
(3) (h3)'(s) = (h3)"(s) = (h3)"(s) = 0 if and only if

v==+ (kn(s)b(s) = kg(s)n(s)),
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(4) (h3)(s) = (h3)"(s) = (h3)"(s) = ()W (s) = 0 if and only if

! (kn(3)b(5) — kg(3)15(5)),
\/k2 — e(~(s))k2(s)

k;(s) > e(y(s))k2(s), op(s) = 0 and (op)'(s) = 0.

Proof. (1) In order to show the proposition, we use the Frenet-Serret type formulae.
Then,

(h3)'(s) = (+/(s),0) = (t(s),v) = 0,
that is, there are u, A € R such that v = pb(s) + An(s) and as v € S? we have that
—e(y(s))p® + X = 1.

(2) (h3)(s) = (h5)"(s) = 0if and only if (#'(s), ub(s)+An,(s)) = 0 with —e(y(s))p?+
A% = 1. This is equivalent to ky(s)u + kn(s)A = 0 with —e(vy(s))u? + A? = 1. This
means that p?(k7(s) — e(y(s))kz(s)) = ki(s). Therefore, considering the condition
that k2(s) > e(7(s))ka(s) we have

1
\/k:2 — (~(s))k2(s)
For (8), we have that (k) (s) = (h5)"(s) = (k)" (s) = 0 if and only if (kjk, +

ek21y — kgky, — k27y)(s) = 0. So, we define op(s) = (kpkn + ekaty — kgky, — ka1y)(s).
Therefore, (op)'(s) = (kijkn + 2ekgkTy + cklT) — kgk), — 2knkj, 7y — k27/)(s). But,
we have that (th)’(s) (R%,)"(s) = (h%, )’"( ) = (h%,)®(s) = 0 if and only if
(kikn 4 2ekghki g + ekl7) — kgk), — 2kn k), 79 — kn7))(s) = 0, i.e, the item (4) is proved.

O

(Fn(5)b(s) = kg (5)n4(s))-

The above proposition induces an invariant op. Motivated by the above calculations
we define a curve d., : I — S? by

kg (s) B kn(s)

§) = 1y (5)
VR () = () k3 (s) Vk3(s) — (1) k2 ()

We call d, a de Sitter evolute of y relative to M.

Lemma 3.2. d/(s) = 0 if and only if op(s) = 0.
Proof. We have

) - (k’k + knk!) + ek, — k27,

(k2 — ek2), /K2 — ek2
Therefore,

d(s) =0 if and only if op(s) = (—kpky + knkj + 51{:27'9 —k27))(s) = 0.

) (8) (kg (5)b(s) — ekn(s)ny(s))-
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We define also the family of height functions on a curve, v : I — M C R}, on a
timelike surface M as follows:

HT . I x H2(-1) - R; (s,0) = (7(s),v),

We call HT the timelike height function of 4 on M. We denote hl(s) = H” (s,v) for
any fixed v € H%(—1).

For any (s,v) € I x H%(—1), we have that (hI)(s) = 0 if and only if v = ub(s) +
Any(s) where p1, A € R such that —e(y(s))p? + A2 = —1.

Remark 3.3. In the case that ~y is a timelike curve, i.e, e(y(s)) = —1, there is no
v € H?(—1) such that (hL)(s) = 0 for some s € I. Thus, we have that the bifurcation
set of HT for a timelike curve is empty. Then, in this case we consider only a spacelike
curve vy on the timelike surface M.

We have the following proposition.

Proposition 3.4. Suppose that t'(s) # 0. Then for any (s,v) € I x H*(—1), we have
the following:

(1) (hL)Y(s) = 0 if and only if v = ub(s) + Any(s) where u, A\ € R such that
—p? A= 1.
(2) (BTY(5) = (WD)"(s) = 0 if and only if
1

v==+ (Fn(s)b(s) = kq(s)n4(s))
ki(s) — ki (s)

and k3 (s) > kZ(s).
(3) (hy)'(s) = (hy)"(s) = (k)" (s) = 0 if and only if
1

v==% kn(s)b(s) — ky(s)n~(s)),
kg(s)—kg(s)( (5)b(s) — kg(s)n+(s))

k2 (s) > k;(s) and op(s) =0, where o (s) = (kgk;, + k%Tg — k:;k‘n — kng)(s).
(4) (b)Y (s) = (B)"(s) = (B)"(s) = (hI) M) (s) = 0 if and only if
1

v== kn(s)b(s) — kq(s)n~(s)),
k%(s)—kg(s)( (5)b(s) — kg(s)n+(s))

k2(s) > k2(s), or(s) =0 and (o) (s) = 0.

Proof. (1) In order to show the proposition, we use the Frenet-Serret type formulae
in the case that ~ is spacelike. Then,

(hy)'(s) = (4/(5),v) = (t(s),v) = 0,
that is, there are u, A € R such that v = ub(s) + An,(s) and as v € H?(—1) we have
—u? 4+ A% = 1.
(2) (hL)'(s) = (RT)"(s) = 0 if and only if (#'(s), ub(s)+An(s)) = 0 with —p?+ A2 =
—1. This is equivalent to ky(s)p + kn(s)A = 0 with —p? + A2 = —1. This means that
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p2(k2(s) — k‘g(s)) = k2(s). Therefore, considering the condition that k2 (s) > k‘g(s) we
have

1
b=t (a ($)5(5) — k() (5)):
kii(s) — k3 (s)

For (8), we have that (hl)(s) = (h1)"(s) = (hI)"(s) = 0 if and only if (kyk] +
kitg — kjkn — k274)(s) = 0. Then we define o7 (s) = (kgkj, + katy — kjkn kQTg)(S)
Thus, follows that (o) (s) = (kghky, — kgkn + 2k kg + k:27" — 2k, k’ k2 2)(5).
But we have that (hT,)(s) = ( 0)"(5) = (hWT,)"(s) = (hT, )( )(s) = O 1f and only if
(kgki — kikn + 2knk), 7y + ki1 — 2kgk Ty — k27,)(s) = 0, i.e, the item (4) is proved.

g

Similar to Proposition 3.1, the above proposition induces an invariant o and mo-
tivated by the above calculations we define a curve hy : I — H2(—1) by
k kn,
o(5) nq(s) + (s) b(s).
ki (s) — kg (s) ki (s) — k3 (s)

hy(s) = —

We call h., a hyperbolic evolute of -y relative to M. Furthermore, we have the following
result analogous to Lemma 3.2.

Lemma 3.5. 1/\(s) = 0 if and only if op(s) = 0.
Proof. We have

—knkly + Ky kg — k27g + k2T

(k2 —k2)\/k2 — k2
Therefore,

h.(s) = 0 if and only if op(s) = (k,kg — knky — /6‘37'9 +k21,)(s) = 0.

I (s) = () (ehn()y () — kg(s)b(s)).

g

We also call d, and h, a pseudo-spherical evolute of «y relative to M. By Lemma
3.2, dy(s) = vg is constant if and only if op(s) = 0. In this case, by Proposition 3.1
(2), by is constant, that is, there is a real number ¢ € R such that (y(s),vo) = c. It
means that Imy = P(vg,c) N M. It suggests that curves of the form P(v,c) N M for
v € S? are the candidates of model curves on M. We call it a de Sitter-slice (or, a
D-slice) of M. Here we remark that we can consider the D-slice under the condition
kn # 0. If ky,(s9) = 0, we have dy(sg) = n,(so) and thus P(n-(sg),co) is the tangent
plane T, ;)M of M, where ¢y = hi(SO)(so) and P(n~(so),co) M has a singular point.

By the same way, by Lemma 3.5, we can also define hyperbolic-slice (or, an H-slice)
of M by P(v,c) N M for v € H2(—1). Since P(v,c) for v € H2(—1) is a spacelike
plane and M is a timelike surface, an H-slice is always a regular curve

Let us study the geometry of the invariants op and og. For this purpose, we define
the order of contact between curves and surfaces.
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Definition 3.6. Let F : R} — R (respectively, F |yr: M — R) be a submersion and
v : I — M be a regular curve. We say that v and F~1(0) (respectively F~1(0) N M)
have contact of order k at so if the function f(s) = F o~y(s) satisfies f(so) = f'(s0) =
o= fB)(s0) = 0 and fETD(tg) #0, i.e, f has Ap-type singularity at tg.

We now introduce the following another family of function:
HY R3x 82 5 R; (z,0) = (z,0).
We denote b5 (z) = H5(z, vp) for any fixed vy € S7, then, we have

higy(8) = (7(5), v0) = H>(4(5), v0) = b7, (7(5))-

Moreover, for any so € R and vy = d,(s0), (b3, [a) "' (c) is a D-slice of M.
Observe that by Proposition 3.1, (hfo)*l(co) = P(vo, cp) is tangent to v at y(so),
where o = hj (so). We denote TP

vo,y(s0)

plane of v at v(so) with respect to vo = d~(sp).

P (v, cp) which is called a timelike tangent

Lemma 3.7. If k,(so) # 0, i.e, the D-slice (hfo |ar) " (co) is mon-singular at (so),
and P(vy,co) is tangent to ~y at y(sq), where co = h3 (so). Then, the D-slice is a curve
of M, tangent to vy at v(so).

Proof. We suppose that the D-slice (hfo |a7) "1 (co) and 7 intersects transversely at
v(s0). As P(vg,cp) is tangent to v at y(sg) and the D-slice is contained in P(vg, cp),
follow that the 4/(sp) and the tangent vector to the D-slice at ~(sg) generate the
tangent plane to M at ~y(sg). Therefore, we conclude that P(vg,co) is precisely this
plane, i.e, the D-slice is singular and therefore we have a contradiction. O

We call the D-slice (b3 [ar) " (co) of a tangent D-slice of v at ¥(so) relative to M

and we denoted by T J\l/)j By Proposition 3.1, we conclude that v and TP

(s0)’ v0,7(s0)
have contact of order three at y(so) if and only if op(sg) = 0 and o/,(sp) # 0. Under
the assumption that k,(sg) # 0 the above conditions are equivalent to the condition
that v and T z\[/} ~(50) have contact of order three at 7(sgp). Therefore, we have the

following proposition:

Proposition 3.8. Let v : I — M be a regular curve on M. Then the following
conditions are equivalent:

(1) v and the timelike tangent plane TPg; ~(s0) tave contact of order three, where

Yo = d’Y(SO)7
(2) op(so) =0 and o', (s0) # 0.
If kn(so) # 0, then the tangent D-slice TJ\I/)I,y(sO) of v at y(so) is non-singular
and the above two conditions are equivalent to the following condition:
(3) v and the tangent D-slice T]\[}W(SO) have contact of order three.

Iz’oof. For vg = dy(so) and co = h (so), we define F = hAg) 'R} - R by F(z) =

b3 (x) = (2, v0) — ¢o and consider f = F o~. Thus the prove follows from Definition
3.6 and Proposition 3.1. O
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Remember that an H-slice is always a regular curve. We also define
HT R x H2(=1) - Ry (z,v) = (z,0).

By exactly the same arguments as the above case, we have the notions of spacelike
tangent plane of v at y(so) with respect to vo = h~(sg) and tangent H-slice of v at y(so)
relative to M. We respectively denote these as T Pqi A(s0) and Tﬁﬁ(sO). In this case
the tangent H-slice is always non-singular at y(sg). It also follows from Proposition
3.4 that v and Tﬁﬁ(SO) have contact of order three at y(sg) if and only if o (sg) =0

and o’ (so) # 0.
By the Remark 3.3, in the next result we only need to consider spacelike curve.

Proposition 3.9. Let v : I — M be a spacelike regular curve on M. The following
conditions are equivalent:

(1) 7 and the spacelike tangent plane TPU*% ~(50) have contact of order three, where
vo = h“/(SU)f

(2) O'H(So) =0 and O'}{(So) 75 O,

(3) v and the tangent H -slice Tﬁﬁ( y have contact of order three.

S0

As a consequence, we have that v is a model curve on M if and only if its pseudo-
spherical evolutes are constant, that is, hl, = 0 or d’, = 0, or equivalently the invariants
are zero functions.

4. UNFOLDING OF FUNCTIONS

In this section, we investigate the singularities of pseudo-spherical evolutes and we
use well known theorem in the unfolding theory for obtaining new results.

Let F': RxR", (s0,20) — R be a function germ. We call F' an r-parameter unfolding
of f, where f(s) = F,,(s). We denote the (k — 1)-jet of the partial derivative gTi at

so by jk_l(%(8,$o))(80) = Zf;ll aj;s’ for i =1,...,r. Then F is called a (p)-versal

unfolding if the (K — 1) x r matrix of coeflicients (a;) has rank k-1 (k—1 <r). The
bifurcation set of F is defined to be

F ’F
B ={x eR" | %—S(s,x) = %?(s,x) =0 at (s,x) for some s}.

Then we have the following fundamental result of the unfolding theory (see [1]).

Theorem 4.1. Let F : R x R", (s, x9) — R be an r-parameter unfolding of f which
has the type Ay at so. If F' is a (p)-versal unfolding and k = 3, then the germ of Bp
at g is diffeomorphic to (C' x R"72) as set germs, where C = {(x1,z2) | 23 = 23)}.

By Propositions 3.1 and 3.4, we have the following.

Proposition 4.2. (1) For a curve v : I — M with the arc-length parameter s and
t'(s) # 0, the bifurcation set of the height function H® is Bys = {d,(s) | s € I'}.

(2) For a timelike curve v : I — M, the bifurcation set of the height function H is
empty. Moreover, for a spacelike curve with the arc-length parameter s and t'(s) # 0,
the bifurcation set of H' is Byr = {h(s) | s € I}.
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We have the following proposition.

Proposition 4.3. Let v : I — M be a curve with the arc-length parameter s and
t'(so) # 0.

(1) If k3 (s) has type As at so, then H® is a (p)-versal unfolding of hy (s).
(2) If Bl (s) has type A at so, then HT is a (p)-versal unfolding of bl (s).

Proof. (1) We denote v(s) = (zo(s),z1(s),72(s)), v = (vo,v1,\/1+v3 —v?) € S%.

Therefore we have

HS(s,v) = —20(s)vo + x1(8)v1 + 22(5)1/1 + 02 — 02,

and
OHY () + —=20 o), 2 _ o o (s)
=— _— , —— =21(8) — —F———=22(s
vy 0 V14 vg —v? v ' V91+vg— v i

82HS ’ Vo ’ 82HS ’ U1 ’

= —20(8) + —————ah(s), = 21(s) — ————=25(s
asavo 0( ) /71_‘_,0%_,0% 2( ) 8581}1 1( ) /71_*_1}%_’0% 2( )
O*H s " o " OPH s " U1 1"

= —24(s) + ———=15(s), =27(8) — ———15(s
ooy = )+ e th(0), g = () — et ()

So, we have the following matrix

/ Yo / / U1 /
—20(8) + ———=—=125(5) 71(s5) — —F———=73(5)
A — \/1—1—1}%8—11% \/1—1—1}111(2)—0%

() 2"(s) — (s
e O (Ol om0

By Proposition 3.1, we have that 3 has type Az at s if and only if

—xz((s) +

1

v== (n(s)b(s) = kg(3)ns (5)).
VR () — e ()2 (5)

k2(s) > e((s))k2(s), op(s) = 0 and o7 (s) # 0.
For prove the assertion (1), we have to show that the matrix is non-singular, i.e,
det A # 0. Therefore we calculate the determinant of this matrix.
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_ Y%

L+vf —of

detA = ((-/L'E)a mlla J’JZ) A (1'6,7 w/1/7$/2/)) ——1

1+0vd—0?

-1
1 o
= (A (—e(3(5)) kg (8)B(5) + Fin(s)04(5))) v
1+UO_U1 1—’—1}8-7)%

_ /BE 0@k
T Vg4

By the same way, if we consider the timelike height function HT, we can prove
(2). O

£0.

As a consequence, we have the following theorems:

Theorem 4.4. Let v : I — M be a reqular curve such that t'(s) # 0. Then we have
the following assertions:
(1) The de Sitter evolute at d(so) is reqular if op(sg) # 0.
(2) The following conditions are equivalent:
(i) the germ of the de Sitter evolute at d(so) is diffeomorphic to the ordinary
cusp C, where C = {(z1,12) | 23 = 23};
(ii) op(so) =0 and o' (s0) # 0;

(iii) v and the timelike tangent plane TPE) ~(s0) have contact of order three;

(iv) if kn(so) # 0, then the tangent D-slice TAI?M(SO) of v at ~(sg) is non-

singular, and v and the tangent D-slice T]\lz ) have contact of order

(s0
three.

Proof. (1) By Lemma 3.2, we have d’ (s) = 0 if and only if op(s) = 0. It means that
the de Sitter evolute at dy(sg) is regular if op(sg) # 0.
(2) By Proposition 3.1, the bifurcation set of H is

=qv== !
Vk3(s) = e((s) k3 (s)

By Theorem 4.1 and Proposition 4.3, the germ of the bifurcation set is diffeomorphic
to the ordinary cusp if op(sg) = 0 and o/,(sp) # 0. Moreover we have the other
equivalences by Proposition 3.8. This complete the proof for (1) and (2). O

Bys (kn(s)b(s) = kg(s)ny(s)) | kg(s) > e((s))kn(s)

Theorem 4.5. Let v : I — M be a spacelike reqular curve such that t'(s) # 0. Then
we have the following assertions:

(1) The hyperbolic evolute at h~(sg) is reqular if o (sg) # 0.

(2) The following conditions are equivalent:
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(i) the germ of the hyperbolic evolute at h~(so) is diffeomorphic to the ordi-
nary cusp C;
(i) op(so) =0 and o'y (so) # 0;

(iii) v and the spacelike tangent plane TPlfw(so)

(iv) v and the tangent H-slice TﬁV(SO) have contact of order three.

have contact order three;

Proof. The prove of this proposition is analogous the prove of the above proposition.
O

5. EXAMPLES

Now, we consider two examples of curves on a timelike surface: curves on a timelike
plane, R%, and curves on the de Sitter space, S%.

Example 5.1. Suppose that M = R? = {z = (xg,21,72) | 2 = 0}. We consider a
plane curve vy : I — R3. In this case we have n~, = e, t(s) = 7/(s) and b(s) = ea At(s).
It follows that ky(s) = 14(s) =0 and kg = (b(s),t'(s)) = —e(v(s))k(s). Then we have
the following Frenet-Serret formulae on Minkowski plane:

b'(s) = k(s)i(s)
{ t'(s) = k(s)b(s)

Here we have op = 0 and the constant de Sitter evolute d(s) = n, = ez of v
relative to M. It means that the D-slice is M = P(v,c) N M. Moreover, we do not
have hyperbolic evolutes. We observe that in [6] the authors study the evolute of v in
R2. In all above cases the evolutes are given by the intersection of the focal surface, of
v, in R? (see [4], [5]) with the pseudo-spheres (de Sitter and Hyperbolic evolutes) and
with R?.

In the above example observe that k, = 0, for this we have M = P(v,c) N M and
~ is not considered a model curve on M even with the constant de Sitter evolute.

Example 5.2. Suppose that M = S?. In this case, we have n(s) = ~(s), t(s) = +'(s)
with || t(s) ||= 1 and b(s) = n,(s) At(s). Therefore, we have T4(s) = 0, ky(s) =
—e(y(s)), where e(y(s)) = 1 if v is spacelike and e(y(s)) = —1 if v is timelike. By the
Frenet-Serret type formulae, we have the following formulae (see [4], [5]):

U(s) = —e(v(s)1(s) — ((s))ky(s)b(s)
Y (s) = t(s)

V(s)= —e(v(s))kqg(s)t(s)
Here, we have op = —5]{:;, and o = k;, and we have the de Sitter evolute of v relative
to M,
k
d S) — 9(8) n (S) 4 8(’}/(8» b s

B(s)—c06s) k)~ ()

for k:g(s) > e(y(s)). The hyperbolic evolute of y relative to M, is defined only if vy is

spacelike as (5
kq(s 1
=——"r n.(5) - ——b(s
J1— k2(s) ) J1— k2(s) )

h(s)
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for k;(s) < 1. The study of the de Sitter evolute was made in [4] and [5], where we
conclude that the singular points of the de Sitter evolute are the points where k:; = 0.
By Theorem 4.4, the evolute at d(so) is reqular if op = —Ek; %0, and is a ordinary
cusp locally if op = —ekj = 0 and o'y = —ckj # 0. Moreover the hyperbolic evolute
at hy(so) is reqular if oy = k:; %0, and is a ordinary cusp locally if o = k; =0 and
oy = kg % 0. Therefore the cusps of the pseudo-spherical evolute corresponds to the
points ~(s) with ky(s) =0 and kj(s) # 0.

6. LIGHTLIKE SURFACE IN THE MINKOWSKI SPACE ALONG DE SITTER SPACELIKE
PLANE CURVES

In this section we investigate the relation of the de Sitter (hyperbolic) evolute of
a spacelike curve v in S? with the lightlike surface along 7. Let v : I — S? be a
parametrised by arc length spacelike curve, then we have that the Frenet-Serret type
formulae of v is given by

7'(s) = t(s)

t'(s) = =v(s) = kg(s) n(s) ,

n'(s) = —kg(s) t(s)
where kq(s) = (v"(s),n(s)) is the geodesic curvature of v at s (see [5]). We say that a
surface is lightlike if each tangent plane at the regular points of the surface is lightlike.

Following the definition of lightlike hypersurface along spacelike submanifolds in [3],
the lightlike surfaces along v are given by the maps LSiE : I x R — R3 defined by

LS5 (s, 1) = 7(s) + p(n(s) £7(s))-

We only consider ILS;r , so that we denote that by LS, .
We have the following:

20— (1 akys) + (s
LS,
o n(s) +v(s).

JOLS, OLS,
ds O
if 1 — pkg(s) + p = 0. Therefore, (s,p) is a singular point of LS, if and only if

. In [3], the lightlike focal set of the submanifold is defined as being the

Under the condition that k4(s) # 1, { } is linearly dependent if and only

ILL _

kg(s) —1
critical value set of the lightlike hypersurface along a spacelike submanifold, then the
lightlike focal set of v is given by the curve

o) =18, o) = (4577 ) 10+ (=) o
kg(s) -1
(ky(s) — 17

we have

Since (B(s), B(s)) =
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spacelike if (s) -1>0
B(s) is ¢ lightlike if ( ) —-1=0,
timelike if (s) -1<0.

We define a mapping
R} \ LC* — H*(—1)U S?
by ®(x) = H i We have R} \ LC* = SUT, where S = {z € R} | (z,z) > 0} and

= {z € R} | (x,z) < 0}. Therefore, we have projections ®° = ®|g : S — S? and
<I>T D|p: T — H%(-1). Suppose that k2(s) —1 > 0. Then

1
,/k2 —1 ,/kg(s)—ln(S):

On the other hand, suppose that kg(s) — 1< 0. Then

1
1/1_/{2 ,/1—kg<s>n(8):

B ={B(s) | s € Lky(s) > 1},

={5(s) | s €I, kg(s) <1}
We call 5*79 the spacelike part of the lightlike focal set of v and B%F the timelike part of

the lightlike focal set of v. We show that the projection of 53 (ﬁvT) is the de Sitter
(hyperbolic) evolute. Then we have the following result.

(I)S

o7 o f(s) =

‘We now define

Theorem 6.1. Let v : I — S? be a spacelike curve with the arc-length parameter s
and ky(s) # 1. Then we have

©%(6]) = dy(I>1) and ©7(8]) = hy(I<1),
where Iy = {s € I | k}(s) > 1} and Icy = {s € I | k3(s) < 1}.

Now we consider a family of functions on spacelike curve in de Sitter space in order
have a relation with the lightlike surface of the spacelike curve. Let v : I — S? be
a parametrised by arc length spacelike curve. We define a family of distance squared
functions

D:IxR} >R
by D(s,v) = (y(s) — v,7(s) — v) and denote D,(s) = D(s,v).

Proposition 6.2. For a spacelike curve v : I — S% with the arc-length parameter s
and (t'(s),t'(s)) # 0, we have the following:
(1) Dy(s) = D.(s) = 0 if and only if there exists p € R such that v = ~v(s) +
p(n(s) £7(s)).
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(2) Dy(s) = D.(s) = D.(s) =0 if and only if

1
W(”(S) +7(s)).

(3) Dy(s) = D.(s) = Dll(s) = DJ(s) =0 if and only if

v="(s)+

1
v="(s)+ W(n(s) +7(s)) and k;(s) =0.
Proof. (1) We have D/ (s) = (y(s) — v,t(s)) = 0 if and only if there exist g, A € R
such that y(s) — v = Ay(s) + an(s). Then, D,(s) = D, (s) = 0 if and only if A = £f,
that is, v = v(s) — a(n(s) £ v(s)). As i € R, we can call 4 = —p and then v =

v(s) + u(n(s) £ (s))-

(2) Since %D;’(s) =1+ (y(s) —v, —v(s) —kq(s)n(s)), we have that D,(s) = D, (s) =
PN I 1
D!(s) =0 if and only if u = m and therefore
V=16 + oy (08 £ 716

(3) Since %Dg’(s) = (v(s) —v, = (s) — ki (s)n(s) + k2 (s)t(s)), we have that D, (s) =
D! (s) = DJ(s) = DJ(s) =0 if and only if
1

W(n(s) +7(s)) and ky(s) = 0.

v="(s) +
0

Let FF : R x R",(sg,v0) — R, be a function germ. We call F' an r-parameter
unfolding of f, where f(s) = F,,(s). We introduce an important set concerning the
unfolding. The discriminant set of F is

Dp={veR"| F(s,v)ng(s,v) =0 for some s € R}.
s

By Proposition 6.2, the discriminant set of the distance squared function D(s,v) is
given by
Dp ={v(s) + u(n(s) £(s)) | s€ I, peR},
which is the image of the lightlike surfaces along a spacelike curve v : I — S3.

For a spacelike or timelike curve v : I — R} parametrised by arc length with
k(s) # 0, we have that the focal surface of v is given by

B (s, 1) = 4(s) + mn@ T ub(s),

with p € R. The cuspidal curve of the focal surface is given by

B(s) = () + 50

Wn(s) + 1(s)b(s),
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K'(s)
e(7(9))3(7(5))k*(s)7(s)

singularity A>3. We denote the cuspidal curve B(s) by C. (For more details see [4]
and [5].)
So, if v : I — R? is a spacelike or timelike curve, by [2], [4] and [5] we know that:

with p(s) =

, that is, where the distance squared function has

(a) the focal surface B of a spacelike curve v is a timelike surface in R}, and B is
a spacelike surface if v is a timelike curve;

(b) the de Sitter evolute of 7 is the curve B N S%;

(c) the hyperbolic evolute of 7 is the curve B N H2(—1);

(d) the singular curve of the focal surface 9B is the cuspidal curve C.

We observe that (a) to (d) is true for v : I — S%?. Furthermore, for a spacelike curve
v : I — S%, by Theorem 6.1, we have the following:

(e) the projection of B to S? is the de Sitter evolute of ~;
(f) the projection of 3 to H?(—1) is the hyperbolic evolute of v, where 3 is the
lightlike focal curve of ~.

By the above calculations, we have the following result.

Proposition 6.3. For a spacelike curve v : I — S? with the arc-length parameter s
and (t'(s),t'(s)) # 0. We have the following:

(i) the lightlike focal set B of 7y is the curve B NDp;

(ii) the curve [ is regular at sy if and only if k;(so) # 0 and the regular part of
is contained in the reqular part of B;

(iii) the singular points of B are isolated points given by BNC, that is, where kj(s) =
0. More specifically, ® p is locally diffeomorphic to the swallowtail (see [1]) that
intercepts the cuspidal curve of B exactly at the singular points of 5 (see Figure
1);

(iv) the singular points of the spacelike part Bf, of B, are projected to the singular
points of the de Sitter evolute;

(v) the singular points of the timelike part 53, of B, are projected to the singular
points of the hyperbolic evolute, where *B is the focal surface of v and ®p is the
discriminant set of the distance squared function D, that is, ® p is the lightlike
surface LS.

B

AvAN

FiGURE 1
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