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Abstract

Let f be a C'*¢ diffeomorphism of the closed annulus
A that preserves orientation and the boundary compo-
nents, and f be a lift of f to its universal covering space.
Assume that A is a Birkhoff region of instability for f,
and the rotation set of f is a nondegenerate interval.
Then there exists an open f-invariant essential annulus
A* whose frontier intersects both boundary components
of A, and points zt and z~ in A*, such that the positive
(resp., negative) orbit of z* converges to a set contained

Number: 303969/2018-0 in the upper (resp., lower) boundary component of A*

and the positive (resp., negative) orbit of z~ converges
to a set contained in the lower (resp., upper) boundary
component of A*. This extends a celebrated result origi-
nally proved by Mather in the context of area-preserving
twist diffeomorphisms.
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1 | INTRODUCTION AND STATEMENTS OF THE RESULTS

When studying the dynamics of C!-area-preserving twist diffeomorphisms of the closed annulus
A = S!x[0,1], a celebrated theorem due to Mather [17] states that if f is such a diffeomorphism
and A contains no essential f -invariant continuum apart from each boundary component of A,
except for continua containing both boundary components, (in other words, A is minimal with
respect to the inclusion: its interior contains no proper essential f-invariant open annulus), then
there are points z*, z~ in A such that the a-limit set of z* is contained in S 1% {0}, the w-limit set
of z* is contained in S! x {1}, the a-limit set of z~ is contained in S! x {1} and the w-limit set of
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z~ is contained in S! x {0}. Mather’s theorem was proved using an intricate variational argument,
which gave a lot of insight about what happens in the C"-generic situation, for all » > 1. Later
on, Le Calvez developed a completely topological proof [13], extending Mather’s result to twist
area-preserving homeomorphisms.

In this paper, our main objective is to prove a version of this result in the C'*¢ world, without
the twist and area-preservation hypotheses and under the weaker condition of the annulus being
a Birkhoff region of instability, a situation that was widely considered for twist homeomorphisms,
see, for instance, [5, 13, 17] and [8]. Namely, we consider C'*¢ diffeomorphisms f : A — A that
preserve orientation and the boundary components, whose rotation sets are nondegenerate inter-
vals and as explained above, we assume that A is a Birkhoff region of instability for f (see below
for the precise definition). The nondegeneracy condition on the rotation set is always satisfied by
twist maps.

One last remark is that, in the area-preserving world, if A is minimal as explained above, then
it is also a Birkhoff region of instability (this was originally proved by Birkhoff for twist maps in
[5]), but the two definitions are not equivalent.

To state our main theorems properly, below we present some definitions.

Definitions.

(1) Let DiffB(A) be the subset of C" (for any r > 0) diffeomorphisms f : A - A (whenr =0, f
is just a homeomorphism) that preserve orientation and the boundary components of A =
S % [0,1]. A lift of f to the universal cover of the annulus A = R x [0,1], is denoted f a
homeomorphism that satisfies f(2+ 1,0)) = f(E) +(1,0) for all Z € A.

(2) Whenr =1 + ¢ for some 0 < ¢ < 1 in the above definition, we mean that D f is e-Holder.

(3) The annulus A is said to be a Birkhoff region of instability for some f € Diffg(A) if, for
all € > 0, there exist integers N, M > 0 such that fN(S'x]0,¢[) intersects S'x]1 — ¢, 1[ and
f~M(S'x]0, ¢[) also intersects S'x]1 — ¢, 1[. We say that A is a Mather region of instability for
f if there are points z*,z~ in A, such that the a-limit set of z* is contained in the lower
boundary component of A and its w-limit set is contained in the upper boundary component
of A. Similarly, the a-limit set of z™ is contained in the upper boundary component of A and
its w-limit set is contained in the lower boundary component of A.

(4) Letp; : A — IR be the projection on the horizontal coordinate and as usual, let p : A — A be
the covering mapping. Fixed f € Diffg(A) and a lift f, the displacement function ¢ : A—» R
is defined as

$(z) = p1of(®) - p, (@),

forany z € p~1(2).

(5) Given any f € Diffg(A) and fixed some lift f, a point z € A is said to have rotation number
Py if the limit lim,,_, % Zf’:_ol ¢(fi(2)) exists and is equal to p,. We say that p, is realized by
the compact set K C A if K is f-invariant, and all points in K have rotation number p,,.

(6) Givenany f € Diffg(A) and fixed some lift f, the rotation set of f is defined as

o(f) = {w € R : there exists a Borel probability f-invariant

measure y such that w = / P(z)du }
A
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Clearly, from the convexity of the subset of Borel probability f-invariant measures, p(f) is a
closed interval, maybe a single point. Moreover, its extremes are realized by ergodic measures,
see [18]. In this generality, not much more can be said. There are well-known examples with a
nondegenerate interval as a rotation set, for which only the extremes are the rotation numbers
of some orbits.

(7) Given f € Diffg(A), we say that it satisfies the curve intersection property, if for any homo-
topically nontrivial simple closed curve y C A, we have f(y) Ny # @. Itis not hard to see that
if some f € Diffg(A) satisfies the curve intersection property, then f” also satisfies it, for all
integers n # 0. Also, it is immediate that, in case A is a Birkhoff region of instability for some
fe Diffg(A), then f satisfies the curve intersection property.

(8) Let f € Diffg(A) and y contained in the interior of A be a homotopically nontrivial simple
closed curve. Denote by y~ the connected component of ¢ that contains S' x {0} and analo-
gously, let y* be the connected component of ¥ that contains S* x {1}. Denote by £~(y) the
connected component of the maximal invariant set in the closure of y~ that contains S* x {0}
and by £*(y) the connected component of the maximal invariant set in the closure of y*
that contains S' x {1}. Finally, for all integers n > 1, denote by & 1_/” =& (S' x{1-1/n}) and

L = §1(ST x{1/n}).

Note that, in case A is a Birkhoff region of instability,
3(E~(1))° N S' x {0} # ¥ and B(EF (1)) N S* x {1} # 0.

We are ready to state our main theorem.

Theorem 1. Let f € Diff é“(A) forsome e > 0 be such that A is a Birkhoff region of instability and
forsome fixed lift f, p(f) has interior. Then there exists a homotopically nontrivial simple closed curve
y C Aand an f-invariant minimal open annulus A* C A containing y such that 0A* intersects both
S! x {0} and S x {1} and A* is a Mather region of instability.

Remark. Clearly, if A is itself minimal as in the hypothesis of Mather’s original theorem, then
A = A* and so, the whole annulus is a Mather region of instability.

Note that, in [6, Proposition 2.19], a result in the same direction was obtained. There, f was
an area-preserving homeomorphism, instead of a C'*¢ diffeomorphism, and the thesis obtained
was that A* is a mixed SN region of instability, a condition weaker than being a Mather region
of instability.

Let us comment on the hypothesis and thesis of Theorem 1. First, we point out that the result
does not hold in case the rotation set of f is a single point. There are known examples (see, for
instance, [4]) of smooth maps f : A — A having a single rotation number that are both weak-
mixing (therefore A is a Birkhoff region of instability), but also rigid (meaning that there is a
sequence of positive iterates of f that converges to the identity). So, no subannulus of f can be a
Mather region of instability.

A natural question is also to understand, under our hypotheses, if A itself is always a Mather
region of instability. But this is false, and we sketch an example of a C* area-preserving dif-
feomorphism. Take f : A — A, which extends to a smooth area-preserving diffeomorphism g :
S!x R — S! x R such that the restriction of f to the upper boundary has a single degenerate
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FIGURE 1 Sketch of the smooth diffeomorphism for which A (obtained by gluing the two lateral sides
together) is not a Mather region of instability.

topological saddle fixed point p,, that is, p; is a fixed point such that the differential of g at p;
is the identity, and such that there exists a local topological conjugation between the dynamics
of ¢ at p; and a linear hyperbolic saddle at the origin. Likewise, we assume that f has a sin-
gle degenerate topological saddle fixed point p, in the lower boundary, so that each boundary
of A consists of a single fixed point and a saddle connection. Furthermore, we assume that f
has two hyperbolic saddle points, g, and g, and that there exists saddle connections between
a branch of the unstable manifold of g, and a branch of the stable manifold of p,, as well as a
connection between a branch of the stable manifold of g, and a branch of the unstable manifold
of p,, so that there exists an essential invariant closed curve y,, that intersects the lower bound-
ary just at the point p,. One can do a similar picture, with two saddle connections between p;
and q;, and an invariant essential closed curve y; made by these connections and the points p;
and g, which intersects the upper boundary just at p;. Finally, one can assume that there are
transversal heteroclinic intersections between the “free” branches of the unstable manifold of g,
and the stable manifold of g;, and between the unstable manifold of q; and the stable manifold
of q,, see Figure 1. Finally, we may assume that, for a given lift f of f, Do and p; have different
rotation numbers.

In this picture, from the A-lemma one would get that the unstable manifold of q; accumulates
on p, and as the unstable manifold of g, is contained in the closure of the future orbit of any
neighborhood of p;, one gets that there exists points arbitrarily close to p; whose future orbit
lie arbitrarily close to p,. A similar argument shows that there exists points arbitrarily close to
Do Whose future orbit lie arbitrarily close to p;, and so A is a Birkhoff region of instability. But
we claim A cannot be a Mather region of instability for f. Indeed, if the w-limit of a point z in
the included in S' x {1}, then either z lies in a stable branch of p;, in which case the a-limit of
z is either {p,} or {q;}, or z must lie above the graph determined by y; U {p;}. As the closure of
the later region is invariant and disjoint from S* x {0}, this implies that the a-limit of z is disjoint
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from S! x {0}. This shows that there does not exist a point whose a-limit lies in S x {0} and whose
w-limit lies in ST x {1}.

The next lemma is a crucial step in the proof of Theorem 1. It also explains how the annulus A*
is constructed.

Lemma 1. Under the hypotheses of Theorem 1, there exists a homotopically nontrivial closed curve
y contained in the interior of A such that £~ (8) Ny = @ and £+ (B) ny = @ for any homotopically
nontrivial simple closed curve 8 C A. So, there exist f-invariant continua K~ D S* x {0} and K+ D
S x {1} such that K~ N K* = @ and for all sufficiently large integers n > 1, %’1_/” =K~ and §Ir/n =
K*. Moreover, if A* is the f-invariant open annulus between K~ and K, then  A* intersects both
St x{0}and S* x {1}.

When A is minimal, in the sense that its interior contains no f-invariant proper essential open
sub-annulus, then 51‘/H =S x {0}and §1+/n = S' x {1}, for all integers n > 1, but when A is just
a Birkhoff region of instability, we cannot avoid considering the sets K~ and K* from Lemma 1.

‘We also provide the following result, which is fundamental in the proof of Theorem 1, but whose
interest stands alone for its possible applications:

Theorem 2. Again, under the hypotheses of Theorem I, there exists E, an open and dense subset of
p(f), such that for any rational number p/q € E, there exists a hyperbolic periodic saddle point z
contained in the interior of A whose rotation number is p/q and a homotopically nontrivial closed
curvey, , 3 z, contained in the union of the stable and unstable manifolds of z.

Finally, we remark that part of the interest in regions of instability comes from the fact that
the dynamics in these regions is usually very rich. For instance, a classical result says that, if
f € Diff g(A) has the curve intqsection property (a condition that is satisfied when A is a Birkhoff
region of instability), and if p(f) = [a, b], then for any rational number a < p/q < b, f4 — (p,0)
has a fixed point. In other words, all rationals in the interior of the rotation set are realized by
periodic orbits. To prove this statement, note that in [18] it was proved that a and b are real-
ized by ergodic Borel f -invariant probability measures, that is, a and b are equal to the rotation
numbers of actual points in A. So, if for some a < p/q < b, f2 — (p,0) does not have a fixed
point, then the version of Brouwer’s translation theorem applied to the annulus that appears
in a 1928-1929 paper of Kerekjarto [11] implies the existence of a homotopically nontrivial sim-
ple closed curve disjoint from its image under f, a contradiction with the curve intersection
property.

Moreover, if the twist condition is present, even for any irrational number p, in the rotation set,
one can find an f-invariant compact set K, that realizes p,, such that the restriction of f to K,
is semiconjugated to the irrational rotation of the circle with the same rotation number. The fact
that the full rotation set is realized by compact f-invariant sets was also proved in the absence of
the twist condition, for area preserving homeomorphisms [6, 14].

Our final result, a direct consequence of Theorems 1, 2 and [6, Theorem C], says that:

Theorem 3. Let f € Diff é”(A) forsome € > 0 be such that A is a Birkhoff region of instability and
let f be a lift of f to its universal covering space. Then there are at most two numbers in p(f) that are
not realized by compact f-invariant sets.
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The paper is organized as follows. In the next section, we present all the necessary preliminary
results, with a brief overview and remainder of the tools needed in this work. Section 3 is dedicated
to the proofs of our main results.

2 | PRELIMINARIES

In this section, we describe some theories we use and quote some results.

2.1 | Prime ends compactification of open disks

If D is an open topological disk of an oriented surface S potentially with boundary, such that
0D is a Jordan curve and f is an orientation preserving homeomorphism of that surface which
satisfies f(D) = D, then f : 0D — dD is conjugate to a homeomorphism of the circle, and so a
real number p(D), the rotation number of f |55 can be associated to this problem. By the classical
properties of rotation numbers, if p(D) is rational, then there exists a periodic point in dD and if
it is not, then there are no such points. This is known since Poincaré. The difficulties arise when
we do not assume 0D to be a Jordan curve.

The prime ends compactification is a way to attach to D a circle called the circle of prime ends of
D, obtaining a space D LI S! with a topology that makes it homeomorphic to the closed unit disk. If,
as above, we assume the existence of an orientation preserving homeomorphism f of S such that
f(D) =D, then f |, extends to D LI S'. The prime ends rotation number of f in D, still denoted
p(D), is the usual rotation number of the orientation preserving homeomorphism induced on S*
by the extension of f |,. But things may be quite different in this setting. In full generality, it is
not true that when p(D) is rational, there are periodic points in D and for some examples, p(D)
is irrational and 0D is not periodic point free. Anyway, the only result on this subject we need
is the following classical lemma (as usual, a point z € 8D is said to be accessible if there exists
asimple arc y : [0,1] - D U dD such that y([0,1[) € D and y(1) = z) whose proof, for instance,
can be found in [9, Theorem 16].

Lemma 2. Let f € Diffg(A) and let D C A be an f -invariant open annulus given by the com-
plement of some f-invariant continuum K that contains S* x {0} and avoids S* x {1}. Then the
boundary of D has two connected components, one is S' x {1} and the other one is some continuum
M C K. Moreover, if z,,z, € M are periodic points, both accessible from D, then they have the same
rotation number.

Remark. As D is not a disk, by prime ends rotation number of D (denoted p(D)), we mean the
following: Contract S' x {1} to a point N in order to turn A into a closed disk. Clearly, f : A —» A
induces a homeomorphism of this closed disk that fixes N. Now, D becomes an open topological
disk and p(D) is the prime ends rotation number of this disk.

Some interesting facts related to the previous result, but not necessary for us are the following:
p(D) is equal to the rotation number (in A) of any accessible periodic point in M. More generally,
the main result of [9] says that for any accessible point in M = 9D, either its forward or backward
annulus rotation number is equal to p(D).

For more information on the theory of prime ends, see, for instance, [12, 17] and [9].
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2.2 | Topologically transverse intersections

Let S be a compact orientable surface. We say that a closed topological disk R C S is a topological
rectangle if its boundary, which is a Jordan curve, is given by the union of four C! oriented arcs,
¥1,¥2, 73,74 such that: the end point of y, is the first point of y,, the end point of y, is the first
point of y5, the end point of y; is the first point of y, and the end point of y, is the first point of y;.
We also assume that for i, j € {1, 2, 3,4}, i # j, the intersection between y; and y j is either empty
or C!-transversal.

Suppose f is a diffeomorphism of S and assume it has a hyperbolic n -periodic saddle point p
contained in the interior of S.

Definition of topological transversality: We say that some continuum K C S has a topolog-
ically transverse intersection with a branch « at p (stable or unstable), if there exists a topological
rectangle R C S, whose boundary is given by arcs 1, ¥,, ¥3, ¥4 as explained above, and there exists
an arc a’ C a, whose interior is contained in the interior of R and its extreme points belong, one
to the interior of y; and the other one to the interior of y; (the intersections between y; and &’ and
v, and o’ are both C!-transverse), such that K contains a subcontinuum K* C R that intersects
both y, and y,, and avoids y; and y;.

Such intersections are important because of the following result:

Proposition 1. In the above setting, if K is a continuum that has a topologically transverse intersec-
tion with a stable branch « at p (the unstable case is analogous), then given any u > 0 and a compact
arc 6 C W¥(p), there exists M > 0 such that forallm > M, fm'Z”(K) contains a continuum 6,, that
is u-close to 6 for the Hausdorff distance.

Proof. By considering f2" instead of f, we can assume that p is fixed and all branches at p are
f-invariant. From the Hartman-Grobman theorem, there exists V, an open neighborhood of p,
W c R?, an open neighborhood of the origin and a homeomorphism ¢ : V' — W that conjugates
f |y to the linear model H(x,y) = (x/2,2y) restricted to W. Suppose, without loss of generality,
that, locally, ¢(a) corresponds to the positive x-axis in W.

Consider the rectangle R, ; = [—c,c] X [—d,d] for ¢,d > 0 such that H(R. ;) ) UR.; C W.AsK
is topologically transverse to «, there exists a topological rectangle R, such that K* C R is a subcon-
tinuum of K that intersects both y, and y,, and avoids y; and y; (see the definition of topological
transversality above). It is clearly possible to modify R by choosing y; and y; much closer (in a Cl-
way) to a’ (the connected arc contained in a whose interior is contained in R and whose extreme
points are contained, one in the interior of y; and the other, in the interior of y;), and choosing
y; and y; subarcs of y; and y;, respectively, in a way that y,y5,y5,y, form the boundary of a
new rectangle R*, such that for some integer N > 0, fNV(R*) C V and the corresponding rectangle
R’ = o(fN(R*)) belongs to 10, c[x] —d,d[C R. 4. Furthermore, there exists some subcontinuum
K** of K* that is disjoint from y| and y3, intersects both y; and y, and is contained in R*. Related to
K** letuschooserealnumbersa, b,§ > Osuchthat0 <a < b <¢,0< 8 <d,R' Cla,b[x] —d,d|
and[—c,c] X [-6,d8] N go(fN(ﬁ Uy = @. Clearly, both [a, b] x {6} and [a, b] x {—&} intersect R’.

LetT C [a,b] X [—8, 8] be a connected component of

[a,b] x [-6, 8] no(fY(K*))

which intersects both [a, b] x {—&} and [a, b] x {8}. Clearly, I n {a, b} x [-6, ] = .
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8 | ADDAS-ZANATA and TAL

Claim. For any € > 0, there exists M > 0 such that for all integers m > M, there is a subcontin-
uum I C T, depending on € and m, such that H"(I") C [0, ¢[x[—d, d] and H™(I") intersects both
[0, e[x{—d} and [0, e[ x{d}.

Let us, before proving the claim, show that it implies the proposition. Indeed, if it holds, then
ase — 0, p L(H™(I")) C f™N(K**) converges in the Hausdorff topology to ¢~ ({0} x [—d, d]), a
local unstable manifold at p.

For 0 as in the statement of the proposition, there exists some integer J > 0 such that 6 C
@ {0} x [=d,d])). As € = 0, f/ (e~ L(H™(I"))) C f/+m*+N(K**) converges in the Hausdorff
topology to f7(¢~1({0} x [-d,d])), which contains 6. So, there exists a subcontinuum 0,, of
f7HmHN(K**) that converges to 6 in the Hausdorff topology as ¢ — 0.

Therefore, to conclude the proof of Proposition 1, we have to show that the above claim holds.
For this, given € > 0, let M > 0 be an integer such that:

« b/2M < ¢
. d/oM <6,

Clearly, M — oo as ¢ — 0. Moreover, for all m > M, let I be a connected component of I' N
[a,b] x [-d/2™,d/2™] thatintersects both [a, b] X {—d/2™}and [a, b] X {d/2"}. From the choice
of M > 0, I is not empty and it clearly satisfies H™(I'"") C [0, e[x[—d, d] and H™(I") intersects
both [0, e[x{—d} and [0, e[x{d}.

This proves the claim and concludes the proof of the proposition. O

Still in the above setting, if 8, the compact subarc of a branch, has a topologically transverse
intersection with some other continuum T, then f?*(K) also intersects T provided m > 0 is
large enough. For more about topologically transverse intersections, see, for instance, [2] and [3].

The next result will be used in the proof of Theorem 1.

Lemma 3. In the above setting, assume K is a continuum that does not have a topologically trans-
verse intersection with the stable branch o at a saddle p. Then, for every € > 0 and any 6, subarc of
a such that K is disjoint from the endpoints of 6, there exists a simple arc 6, that is contained in the
e-neighborhood of 6, has the same endpoints as 6, and is disjoint from K.

Proof. Fix ¢ > 0 and 6 as in the statement of the lemma. Let f,(t), t € [0, 1] be a parameteri-
zation of 6. One can find an e-neighborhood V of 6, a neighborhood W of [0, 1] X {0} and a C!
diffeomorphism ¢ : V' — W such that ¢(f(¢)) = (¢,0). Also, if § > 0 is sufficiently small, then
R =[0,1] X [-4, 8] is a subset of W and ¢(K N V) is disjoint from {0, 1} X [—6, 5] and not con-
tained in R. Consider the subset of R, denoted F := ¢(K N'V) N R. If it separates {0} X [—J, ]
from {1} x [-8, 8], then, as F is closed, there is a connected component of F that separates the
former two sets in R. So, this component intersects both [0, 1] X {—&} and [0, 1] X {8}, something
that contradicts the assumption that K does not have a topologically transverse intersection with
a.

In this way, there is a connected component B of R \ F that contains {0} X [-6, 5] and {1} x
[-6, 6]. And it is open. So if we pick 8 : [0,1] — B, a simple arc joining (0, 0) and (1, 0), it suffices
to take 6, = ¢~1(B). O
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MATHER’S REGIONS OF INSTABILITY FOR ANNULUS DIFFEOMORPHISMS 9

2.3 | Some Pesin theory

In this subsection, assume that f : A - Aisa cl+te diffeomorphism, for some € > 0. Recall that
an f-invariant Borel probability measure u is hyperbolic if all the Lyapunov exponents of f are
nonzero at u -almost every point (for instance, see the supplement of [10]). Remember that for
u-almost every z € A, there are two Lyapunov exponents A, (z) > 1_(z) defined as follows:

.1 .1 _
A.(2) = V}I_)IIOIO - log||Df"(2)|| and 2_(2) = —r}l_)rrog - log | Df"(2)||

The next paragraphs were taken from [7]. They consist of an informal description of the theory
of nonuniformly hyperbolic systems, together with some definitions and lemmas from [7].

Let u be a nonatomic hyperbolic ergodic f-invariant Borel probability measure. Given 0 < § <
1, there exists a compact set A5 (called Pesin set) with u(As) > 1 — 8, having the following proper-
ties: for every p € As, there exists an open neighborhood U, a compact neighborhood vV, C U,
and a diffeomorphism F : (-1,1)* - U, with F(0,0) = p and F([-1/10,1/10]*) =V, such
that:

* The local unstable manifolds W} (q), ¢ € As NV, given by the connected component of the
setofz € U, sucht thatdist(f"(z), f"(q)) — 0Oasn — —oo that contains g, are the images under
F of graphs of the form {(x, F,(x)) : x € (—1,1)}, F, a function with k-Lipschitz constant, for
some 0 < k < 1. Any two such local unstable manifolds are either disjoint or equal and they
depend continuously (in the Hausdorff topology) on the point g € AsN'V,.

* Similarly, local stable manifolds W}, (q), ¢ € As NV, given by the connected component of
the set of z € U, such that dist(f"(z), f"(q)) — 0 as n — oo that contains g, are the images
under F of graphs of the form {(F;(y),y) : ¥ € (-1, 1)}, F; afunction with k-Lipschitz constant,
for some 0 < k < 1. Any two such local stable manifolds are either disjoint or equal and they
depend continuously (again in the Hausdorff topology) on the pointg € Asn'V,.

These are the properties that characterize a Pesin set.

It follows that there exists a continuous product structure in As NV, : given any r,r’ € As N
Vo, the intersection WZ)C(V) N Wlsoc(r’ ) is transversal and consists of exactly one point, which will
be denoted [r,r’]. This intersection varies continuously with the two points and may not be in
As. Hence, we can define maps P; tAsNV, - Wlsoc(p) and PZ ANV, > Wll(‘)c(p) as P;(q) =
[g. p] and P}(q) = [p.q].

Let R* denote the set of all points in A that are both forward and backward recurrent. By the
Poincaré recurrence theorem, u(R*) is equal to 1.

Definition (Accessible and inaccessible points). A point p € A; NV, N R* is inaccessible if
it is accumulated on both sides of Wfoc(p) by points in P;(A(; nv,n R*) and also accumulated
on both sides of W}’ (p) by points in P;(Aa NV, N R*). Otherwise, p is accessible.

After this definition, we can state two lemmas from [7] about accessible and inaccessible points
and the relation between these points and nearby hyperbolic periodic points.

Lemma 4. Let g € As NV, N R* be an inaccessible point. Then there exist rectangles enclosing g,
having sides along the invariant manifolds of two hyperbolic periodic saddle points in V , (which are
corners of the rectangles) and having arbitrarily small diameter.
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10 | ADDAS-ZANATA and TAL

The boundary of such a rectangle is a Jordan curve made up of alternating segments of stable
and unstable manifolds, two of each. The segments forming the boundary are its sides and the
intersection points of the sides are the corners. As explained above, two of the corners are hyper-
bolic periodic saddle points and the other two corners are C!-transverse heteroclinic intersections.
A rectangle is said to enclose p if its interior, which is an open topological disk, contains p.

Lemma 5. The subset of accessible points in As NV, N R* has u measure equal to zero.

Another concept that will be a crucial hypothesis for us is positive topological entropy. In the
following, we describe why.

When the topological entropy h(f|x) is positive, for some compact f-invariant set K, by the
variational principle, there exists an f -invariant Borel probability measure u, with supp(u)
(the topological support of ) contained in K and positive metric entropy h,, (f). Using the
ergodic decomposition of , we find an extremal point u of the set of Borel probability f-invariant
measures, such that supp(u) is also contained in K and h,(f) > 0. As the extremal points of
this set are ergodic measures, u is ergodic. The ergodicity and the positiveness of the entropy
imply that u has no atoms and applying the Ruelle inequality (which, in our case, says that
A,(z) = 2, (1) 2 h,(f) > 0 for u-almost every z € A), we get that  has a positive Lyapunov
exponent, see [10]. Working with f~! and using the fact that h,(f 1= h,(f) > 0, we see that
f~! must also have a positive Lyapunov exponent with respect to u, which is the opposite of the
negative Lyapunov exponent for f.

Hence, when K is a compact f-invariant set and the topological entropy of f| is positive,
there always exists an ergodic, nonatomic, invariant measure supported in K, with nonzero Lya-
punov exponents, one positive and one negative, the measure having positive entropy: That is, an
hyperbolic measure.

The existence of this kind of measure will be important for us because of Lemmas 4 and 5.

2.4 | Some forcing results

This subsection is mostly based on the work of Le Calvez and the second author [15, 16] on forcing
theory for surface homeomorphisms, which we restrain to explain in more detail as not to sub-
stantially increase the length of this paper. We refer the interested reader to the above works, as
well as [6].

Given f € Diffg(A) and a lift f, we say that f has a rotational topological horseshoe if there
exists, for some power g = f" of f:

« aliftg = fr —(s,0) to A, where s is an integer,

* acompact g-invariant subset A C A,

* acompact subset A C A such that p(A) = A and the restriction of p to A is a homeomorphism
onto its image,

* aninteger M,, acompact metric space Y, a homeomorphism T of Y, and a surjective continuous
map 7; : Y — A semiconjugating T and g, such that for each x € A, the cardinality of ﬂl_l(x)
is not larger than M,,

* a continuous surjective map 7, : Y — %, := {0, 1}%, semiconjugating T to the shift map o :
3, — %, defined so that (o(u))j = (u)j+1, U€eEZ,

e also,ifyeY,x=m(y), x=p (x)n A, then §(%) € A if (m,(¥))p =0and §(X) € A+(1,0)
if (1,3, = 1.
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MATHER’S REGIONS OF INSTABILITY FOR ANNULUS DIFFEOMORPHISMS | 11

In general terms, if f has a rotational topological horseshoe, then modulo some finite extension
and taking a power of the dynamics, we obtain a compact invariant set where the displacement of
points in the lift can be estimated by a symbolic coding, and for which every possible coding with
two symbols is admitted. We remark that it follows directly from the definition, that the rotation
set of § contains the interval [0, 1], and so the rotation set of f contains the interval [s /r,(s+1)/r].
We also say that the f-rotation set of the horseshoe contains the interval [s/r, (s + 1)/r]. But we
can obtain a little more, which will be useful:

Lemma 6. Let f € Diffg(A) and let fbe a lift of f. Let A, A, 9,9, Y, T, 7, and m, be as above.
Then there exists a compact g-invariant set Ay C A, such that the restriction of g to A is transitive
and such that, for every rational 0 < p/q <1, one can find a g4-invariant compact set K, ;, C Ay
satisfying:

(1) the restriction of g% to K, has strictly positive topological entropy;

(2) ifﬁp/q = ﬂ_l(Kp/q) N K, then Eq(fp/q) = Ep/q + (p,O)

Proof. Let u, € X, be a point whose future o orbit is dense, and for notation sake denote L, =
Ty Y(u,). We claim that there exists some y, € L, that is recurrent for T. Indeed, let us consider
the set 7 of all closed and T-invariant subsets of Y that have nonempty intersection with L,, which
is naturally ordered by inclusion, that is, where for F|, F, € T we denote F; < F, if F; C F,. Note
that 7 is not empty as Y belongs to it. Consider a chain (F;);c; with each F; in 7 and such that
for all i, j in I, either F; < F; or F; < F;. We claim that F = [);,; F; also belongs to 7. Indeed,
F is compact as it is the intersection of compact sets. We will show that F N L, is nonempty. If
not, by compactness of L, as the complements of F; would form an open covering of L, there
would be finitely many indices {i;, i, ..., i,,} such that L, C U;‘:1 Y\ Fi.ButasF is a chain and
we chose finitely many indices, there must exists some smallest element F; € {F i e ,F i, }. Note
that F; N L, is not empty and F), is disjoint from U;l:1 Y\F ij» @ contradiction. Therefore, F is
nonempty and belongs to 7. One verifies trivially that F < F; for all i € I and so we can apply
Zorn’s lemma to obtain that 7 has an element F that is minimal for inclusion. Let y, be a point in
Fn L,. Note that, if w(y,) is the w-limit of y, by T, then it is also a compact invariant subset of Y,
and as u,, is recurrent, w(y,) must also intersect L. One deduces that w(y,) is also an element of
7 which is contained in F, and thus is equal to F by minimality. But this implies y, € w(y,) and
the claim is proved.

Let then Y’ be the closure of the forward orbit of y, by T, which is a compact T-invariant set such
that the restriction of T to Y’ is both transitive and an extension of the shift o. Let Ay = 7, (Y’),
a compact g-invariant set for which the restriction of g is also transitive. Given p/q as in the
statement, consider

Jgrh)-1
Apjg = {“ €0, forall j € Z,( 2 u;> =P}
i=jq
which is invariant by o9, and let Y

p/q =75 (A )NnY', and K, ;o = m,(Y,,). Note that the
restriction of 09 to A, has strictly positive topological entropy (as it is conjugated to the full shift

on (g) symbols). This implies that the restriction of T9 to Y, ,, has positive topological entropy
and, as the cardinality of the fibers of 7; is uniformly bounded, the same holds for the restric-
tion of g7 to K, ;. The second assertion from the lemma follows directly from noticing that, if
y€eY',x =m(y)and X € p~1(x) N A, then F¥(X) lies in A + (Zf:‘(}(nz(y))i,o), concluding the

proof. Ll
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12 | ADDAS-ZANATA and TAL

The following result is basically contained in [6, subsection 6.1.2]:

Proposition 2. Let A be a Birkhoff region of instability for some f € Diffg(A) with a lift f whose
rotation set is a nondegenerate interval. Then f has a rotational topological horseshoe. Moreover, for
any nonempty open interval J C p(f), there exists a rotational topological horseshoe whose rotation
set intersects J.

Let usjust explain how to perform the necessary modifications to that subsection, so as to obtain
this result. Using the same language and definitions of [6], the main idea in order to show that
f has a rotational topological horseshoe is to apply [16, Theorem M]. For this, consider an open
interval J C p(f) and choose some rational s/r in J such that s/r is not the rotation number for f
of any point in the boundary of A. Let g = f . Then there exists a maximal isotopy I " joining g to
the identity, that lifts to a maximal isotopy I’ joining the identity in A to a lift § = f" — (s, 0) of g.
This can be done in such a way that the rotation set of g is an interval containing the origin, and
such that the rotation number of points in the upper boundary of A is not null. For such maps,
one can find a Brouwer-Le Calvez foliation F for I’ that is lifted to a Brouwer-Le Calvez foliation
F for I’ and one can consider the set of admissible F-transverse paths, as defined in [15]. To show
the existence of a rotational topological horseshoe, it is then sufficient to show that there exists an
n-admissible 7-transverse path 77’ such that f’ has a F-transverse intersection with }7’ + (p, 0) for
some nonnull integer p. This implies that there exists n > 0 such that g has a rotational topological
horseshoe whose g-rotation set contains [0, p/n] if p > 0, or contains [p/n, 0] if p is negative. In
any case, this implies that f has a rotational topological horseshoe whose rotation set contains an
interval having s/r as an endpoint, and thus intersecting J.

Most of the work contained in [6, subsection 6.1.2] is concerned with estimating the size of
the rotation set contained in the rotational topological horseshoe for f, and for such a reason a
stronger hypothesis than just asking A to be a Birkhoff region of instability was assumed. But in
what concerns us here, which is to show that a rotational topological horseshoe exists without
requiring its rotation set to be of any specific length, that extra hypothesis is unnecessary. The
curve yA’ we need is obtained much in the same way as in the quoted subsection: One shows that,
assuming without loss of generality that the rotation number of the upper boundary is strictly
positive for g, any point Z in IR x {1} has a full 7-transverse trajectory that is equivalent to a -
transverse simple curve 7 : IR — A satisfying 7(t + 1) = 7(t) + (1, 0). In particular, using that A is
a Birkhoff region of instability, there exist positive integers N, N, a point ZOJ that is sufficiently
close to the lower boundary of A with §No (20,1) sufficiently close to the upper boundary of A, so
that its transverse path up to time N, contains a subpath equivalent to ¥ || 5 that starts at a leaf
not intersected by ¥, and another point Z1,o that is sufficiently close to the upper boundary of A
with g1 (PZVLO) sufficiently close to the lower boundary of A, and such that its transverse path up
to time N, contains a subpath equivalent to ¥ | ), which ends at a leaf not intersected by 7. The
construction of )7’ then follows exactly as in [6, subsection 6.1.2].

A direct consequence of the two previous results is the following:

Corollary 1. Let A be a Birkhoff region of instability for some f € Diffg(A) and assume p(f) is a

nondegenerate interval for some fixed lift f. Then there exists an open and dense subset E of p(f)

such that for any p/q € E, there exists:

« integers s,r,L depending on p/q and a rotational topological horseshoe for f whose rotation
set contains an interval [s/r, (s + 1) /r]with s/r < p/q < p,/q, < (s + 1)/r, where p; = pr.L +
1,9, =q.r.L;
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MATHER’S REGIONS OF INSTABILITY FOR ANNULUS DIFFEOMORPHISMS | 13

* a compact and transitive f-invariant set A' = N'(p/q);

* two compact f-invariant sets G° = G°(p/q) and G' = G'(p/q), both contained in A/, such that
the restriction of f to each of them has strictly positive topological entropy;

* two compact sets GY,Glin A projecting Sur]ectwely onto G° and G, respectively, and such that
F(G% = (pr.L,0) = G° and f(G1) - (p,,0) =

Proof. Let E be the union of the interior of the rotation sets of all rotational topological horseshoes
of f. Proposition 2 shows that E is dense, and as it is the union of open intervals, it is also open. If
p/q is arational point in E, then by definition one can find a rotational horseshoe whose rotation
set contains p/q in its interior, and let then s, r be integers such that s/r < p/q < (s +1)/r and
such that [s/r,(s + 1)/r] is also contained in the interior of the rotation set of this topological
horseshoe. If we then choose L sufficiently large, than taking p; = p.r.L +1,q, = q.r.L, we get
that p; /q; < (s + 1)/r. This shows the first item.

To get the other items of the proposition, note first that, by setting p* = rp — sq, p] = % -(rp; —
sqy) = p; —sqL, then p*/q =r(p/q) — s, p;/(Lq) =r(p,/q;) —sandso 0 < p*/q < p;/(Lq) <
1. We apply Lemma 6 with g = f7,§ = f" — (s,0), giving us a set A in A which is transitive for

g, as well as two sets K p*/q> p~~ /(Lg) both contained in A, such that the former is invariant by g4

and the latter is invariant by qu and such that the topological entropy of the I'eStI'ICtIOIl of qu

to either K./, or K« /(Lq) is strictly positive. Furthermore, there exists sets K . p*/q> p “/(Lg) I A
projecting onto K .. /q, p * /(Lq)» Tespectively, and such that g7 (K p/q) = ¢ T (p*,0) and such
that gEOK - 1.9) = K pi/ta) +(py, 0).

Define now A’ = [JI_, f '(Ay), and note that, as A, was an invariant set for ¢ = f” and the
restriction of g to this set was transitive, then A’ is invariant for f and the restriction of f to it is
also transitive. This gives us the second item of the corollary. Define also

r—1 q:1—1
Ufl<U gj(Kp /q)> and Gl Ufl< U gJ(Kp /(Lq))>

which are both subsets of A’ as they are each contained in the f-orbit of K and Kpf J/(Lg)>

p*/q
respectively, and K./, and K« */(Lg) AT€ contained in A’ which is invariant. One also observes

that G and G! are f invariant by construction, and the restriction of f to both this sets has strictly
positive topological entropy. This gives us the third item of the proposition.
Finally, set

— — r—1 q1—1
@ -Ur(Ur ) moe - Ur( U e )
im j=0 i=0 j=0
Note that, as fand g commute, we get that

F79(G% = F9(GP) + (sq,0)

- q-1
U (wammw>ﬂmm
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14 ADDAS-ZANATA and TAL
r—1 qg-1
= U fl<U EJ(KP*/q)> + (quo) + (P*,O)
i=0 j=0
=G0+ (rp.0)

and so fql (56) = fl"q (@) =GO+ (L - rp,0). A similar computation shows that fql (51) =Gl +

~

(sqL + p;,0) = G! + (p;,0) ending the claim. O

We remark that from the corollary, every point in the set G°(p/q) has rotation number p/q for
f,and every point in G'(p/q) has rotation number p, /q, for f.

2.5 | On maximal invariant sets

Lety C S'x]0, 1] be a homotopically nontrivial simple closed curve and, as we defined before, let
y~ be the connected component of ¥ that contains S x {0} (similarly for y* and S* x {1}).
If we consider the sets

B(S),}’ = ﬂnsOfn(F)’ Bg,}/ = ﬂnzOfn(F)’
Bis}’ = ﬂnsOfn(F) and Bll{}’ = ﬂnzofn(y_ﬂ’

we get that

fBy)CB, fT(B),)CB,,

fB;,)cB] and f'(Bj,) C By .

Denote by ﬁg’y the connected component of B(S)’y that contains S' x {0} and define similarly
ﬁg’y. Analogously, let B\i’y be the connected component of Bi,y that contains S* x {1} and define
similarly ]/3\;‘,7.

The next result appears in Le Calvez [13] and even in Birkhoff’s paper [5].

Lemma 7. Let f : A — A be an orientation and boundary components preserving homeomor-
phism, which has the curve intersection property. Then, for any y as above, ﬁg ” ﬁi y,ﬁgy and ﬁluy
intersect y.

As f(ﬁgy) c Egy, f(Bs ) C BS " f—l(ﬁgy) c Euy, and f—l(ﬁ';y) C Euy, we get that the
maximal invariant sets £ ~(y) and £*(y) satisfy the following conditions:

nnzof_"(ﬁg,y) = nnzof"(ﬁ(s)’y) =§(y)
and

Nusof "(BY) = Mo f"(B} ) = £X(1)
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MATHER’S REGIONS OF INSTABILITY FOR ANNULUS DIFFEOMORPHISMS 15

3 | PROOFS
3.1 | Proofof Theorem 2

Let us remember our set of hypotheses: f € Diff(l)“(A) for some € > 0, A is a Birkhoff region of
instability and for some fixed lift £, o(f) has interior.

Let E be the set from Corollary 1, which we further assume does not contain the rotation number
of the boundaries. Fix some p/q € E and consider, as in Corollary 1, the sets A’, G°(p/q), G*(p/q)
as well as the integersr, 5, L, p; and q;, all depending on p/q. As h(flgo) > 0 and h(f|;1) > 0, there
exist two hyperbolic ergodic Borel nonatomic f-invariant measures u,,, and u, /, , such that
supp(i,,/4) € G%(p/q) and supp(u,, /4.) C G'(p/q). Note that, by the choice of G%(p/q) (respec-
tively, G'(p/q)), every point in it has rotation number p/q (respectively, p; /q;). From Lemma 5,
pick inaccessible points z, € supp(u, /) and z; € supp(u,, /4, )-

Lemma 4 implies that there are four hyperbolic periodic saddle points, y, and y(’), y; and y{,
such that z, is enclosed by the rectangle determined by compact subarcs of stable and unstable
branches at y, and at y(’), an analogous statement holding for z; and y; and y{. The corners of
each rectangle are either the saddles, or C!-transverse intersections between stable branches at
one saddle and unstable branches at the other. In particular, the 1-lemma implies that for each of
these four periodic points y,, y(’), y; and y;, there are C!-transverse homoclinic intersections.

As the rectangles can be chosen in an arbitrarily small way, the rotation numbers of y, and y(’J
are both equal to p/q (but their periods might be larger than gq) and the rotation numbers of y,

and y; are both equal to p, /q,, which is different from p/q. So, as W4(y,) = W”(y(’)), wu(y,) =

WH(y)), Wi(ye) = Wi(y,) and W5(y;) = W3(y,), and there is a dense orbit in A’, arbitrarily large
positive iterates of the interior of the rectangle enclosing z intersect the interior of the rectangle
enclosing z; and vice versa. And this implies (see [2, Lemma 24]) that for some integer i, there
exists an unstable branch at y,, that has a topologically transverse intersection with a stable branch
at f'(y,) and an unstable branch at f!(y,) has a topologically transverse intersection with a stable
branch at y,. As the rotation number of y, is p/q and the rotation number of f(y,) is not p/q,
the theorem follows from the C°-1 -lemma that holds for topologically transverse intersections,
see Proposition 1.

3.2 | Proofof Lemmal

Under the lemma hypotheses, Theorem 2 implies that for any rational point p/q in the set E,
we can find a hyperbolic periodic saddle z,, ,, with rotation number p/q and unstable and stable

branches, /1]’; /4 and /1; Jo both at Zp/gs which intersect at a point w such that if we concatenate

s U in 7S
the arc in /1p/q from Zp/q OWp /g tO the arc in Ap/q from w

pr/q’

toz,,,, then we get a homotopically

p/q p/e
nontrivial closed curve y, ,, contained in the interior of A (because the rotation numbers on the
boundary components do not lie in E).

Proposition 3. Foreach p/q € E, /1; and A

N ; 1 1
I /4 intersect St x {0} and S* x {1}.

Proof. Fixed some p/q € E, let q.k, ,
instability, U,,5o f n-q-kpq p /q) accumulates on both boundary components, S' x {0} and S* x {1}.

be twice the period of z, . As A is a Birkhoff region of
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An analogous statement holds for U, f “nakp/g (¥ p/q)- The proposition follows from the f @Kp/q-

positive invariance of the arcin 2’/ from z,,, to w,,, and the f @%p/4-negative invariance of the

p/q
arc in ﬂ';/q from z,, , tow, /- [l

The curve y,,, may not be simple, but in any case, (y,/,)° still has one connected compo-
nent that contains S' x {0}, denoted y; I another connected component that contains S* x {1},

denoted y; /4 and maybe other contractible components.
Proposition 4. Forany p/q € E and any integer n > 1,

51—/ y and é:1/n c yp/q

In particular, there exist f-invariant continua K~ D S' x {0}and K+ D S* x {1} such that §1_/n =K~
and § 1+/n = K for all sufficiently large n.

Proof. First, note that Proposition 3 implies that §1‘/n cannot contain /1;‘) /g OF /1; /q because both
branches accumulate on S x {1}. Moreover, if forsomen > 1, N /n isnot contained in y; /o then as
13 1‘/” is f-invariant, connected and contains S* x {0}, 5 - In would contain two sequences of points,

one in Yo/ and one in (y_, o/d )¢, both converging to z,,,. At least one of them converges to z

r/a p/q
through the local quadrant at z,, ,, adjacent to /1; /4 and /1; e So, [1, Proposition 6, item 2] (which
says that any f-invariant continuum that contains a hyperbolic saddle periodic point p and accu-
mulates on p through a certain local quadrant Q at p, must contain at least one branch at p

adjacent to Q) implies that £ l_/n contains either 1* /g °F A8 plg a contradiction as explained above.

One shows by a similar argument that £ '1* /n is contained in yp /q

The above argument implies that, for any homotopically nontrivial simple closed curve y
contained in the interior of A, such that y; /q C y~, £ (y) must be equal to the connected com-

ponent of the maximal invariant set contained in the closure of y; /q that contains S x {0}. A
similar statement holds for £*(y). Therefore, if N > 0 is such that S' x {1 —1/N} C y; /q and

1 - - — gt
S ><{1/N}cyp/q,thenforallnzN,gl/ =K~ and§ = 1/N.—K. O

= é’1/N :
Note that the intersection between K~ and K™ must be empty because otherwise one could
apply as before, [1, Proposition 6, item 2] and get that either K~ or K* (maybe both), contains

/1; /q OF /1; e As explained above, this is a contradiction.

So, as (K™)° and (K™)¢ are both connected, (K~ U K*)¢ := A* is an open f-invariant essential
annulus contained in A. As A is a Birkhoff region of instability, JA* intersects both S x {0} and
Stx {1}

We finish with the following proposition.

Proposition 5. Forall rationals p/q € E, with the exception of at most two points, y , 4 is contained
in A*.

Proof. If, forsome p/qinE,y, , intersects K™, then as K~ is compact and f-invariant, z, ,, € K™,

and it is clearly accessible from (K~)°. This happens because K~ C y; 10 and every point in the
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upper boundary of y~, (which contains z is the endpoint of a C* end cut contained in the
bound fp/q(hh p/q) 1s the end faC! end d in th

complement of m. This is a trivial consequence of the fact that y,, ,, is a piecewise C! curve.
So, Lemma 2 implies that all accessible periodic points in K~ have p/q as rotation number (the
rotation number of the prime ends compactification of (K~)* is equal to p/q). A similar argument
holds for K*, and so, with the exception of at most two rational numbers in E, for all other rationals
p/q €E, Yp/q avoids K~ U K™, in other words, Yp/q is contained in A*.

As E is an infinite set, this concludes the proof of the lemma. O

3.3 | Proofof Theorem 1

From Proposition 5, there exists p/q € E such that y, /q € A*. Moreover, ¥, o = Zp/q U /lg‘omp U
Agomp, where Agomp is the closed arc in /1;‘7 /q from Zp/q toWw, /g and lgomp is the closed arc in /1; /q

fromw), , to z,, ,, Where w, ,, is a point in the intersection between /lz . and A*

/e r/q :

Denote the lower (resp., upper) connected component of the boun/dary of EZZ by K** c K~
(resp., K*! ¢ K*). For y C A a homotopically nontrivial simple closed curve, which is also con-
tained in A*, we can define £*~(y) as the connected component of the maximal invariant set
contained in 7= N A* that contains K*. Analogously for £**(y). From the construction of K~
and K* in Lemma 1, we get that

£ (=K and () =K. ey)

Now consider homotopically nontrivial simple closed curves a; and «, both contained in A*,

h that * and e
such thata, Cy, an icocyip/q ) R

Also consider the sets B;’)‘S ,B™ B andBi* defined in Subsection 2.5, but now with respect

,01 0,a¢ Loy 1,

to A*.

Clearly,

ﬁn>0fn <Bg,soc1 ) = nnZOf_n <B$}:761 ) = K"
and (2)

Nsof" (B, ) = Nusof " (B, ) = K.

The above equalities imply that for any z € §3‘fal , its w-limit set is contained in K*° and for any
we E{’;}fxl ,its a-limit set is also contained in K*°. And analogously, forany z € Eis%, its w-limit set
is contained in K*! and for any w € ]§§le, its ct-limit set is also contained in K*!. As K*0 and K*!
are, respectively, the lower and the upper connected components of the boundary of A*, we will
conclude the proof of the theorem by showing that for some integer n > 0, f ”(ﬁg"’él) Nnf _”(ﬁi"fao

and f n(ﬁmo) nf _”(B\:)‘Sal) are both nonempty.

Lemma 8. The sets ﬁa“ and B*S_intersect A%, _in a topologically transverse way, and analogously,
Ay Lag p

/q

B** and B* intersect 1 , also in a topologically transverse way.

0,01 La, p/q poLog y Y.

Proof. The proof is analogous in all four cases, for E\;S B B* and B*“ . So, without loss of
Nost Loy 0,aq Loy

generality, let us only analyze ]§6"Sa -
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Let © be a connected component of the intersection between B\(’;Sa ) and the closed annulus
bounded by «, and «; that intersects «; (see Lemma 7). As © intersects «;, as ]§6"Sa X is connected

and contains K*°, and as each connected component of §§fal is entirely contained in the closed
annulus bounded by «; and the lower boundary of A, one obtains that ® must also intersect «,.
From expression (2), B\gfa] does not intersect /1; e Assume, for a contradiction, that ® does not
intersect /1; /q in a topologically transverse way. Let ¢> 0 be sufficiently small in a way that the
e-neighborhood of /lg‘omp, denoted V/, is contractible in A* and disjoint from «, and «;. Then, as
the endpoints of Agomp do not belong to §3‘fal, by Lemma 3, one can find a curve y, contained in
V, with the same endpoints as A%, which is disjoint from ®. But as V' is contractible, u, U 47

omp’ comp
is a homotopically nontrivial closed curve separating ¢, and a; and disjoint from ®. And this is a
contradiction because © is connected and intersects ¢, and «;. O

Thus, from the above lemma and Proposition 1, f ”(B\gléﬁ) and f "(ﬁi‘”&o) both contain subcon-
tinua that accumulate on compact sub arcs of W*(z,, ;) in the Hausdorff topology as n — oo, and
analogously, f _”(ﬁgsa 1) and f _”(ﬁfz 0) both contain subcontinua that accumulate on compact

sub arcs of W*(z, ;) in the Hausdorff topology as n — co. And this means that, for a sufficiently
large n > 0,

ik (/B\;,’;tl ) intersects both f~" (ﬁ;fal > and f~" ( Aisao ),
and

f7(Byx, ) intersects both £~ (Bzs, ) and £~ (873, ).

Denoting a point in f"(ﬁgj;l) n f—"(ﬁf% ) by z* and a point in f"(ﬁ;‘;‘xo) n f—”(ﬁgfal) by z~, the
theorem is proved.

3.4 | Proof of Theorem 3

If the rotation set of f is the singleton {a}, there is nothing to be done, as it follows easily that each
point in the boundary of A has rotation number a (and one can even show that every point in A
has rotation number a). So we can assume that the rotation set of f has nonempty interior and
therefore we are in the hypotheses of Theorem 1. Let A* be given by this result, which is obtained
as in Lemma 1. Note that, from Theorem 2 we know that there exists E that is open and dense in
p(f) such that for any rational p/q in E we find the homotopically nontrivial closed curve Yp/q
as described there, and from the end of the proof of Lemma 1, we know that all but at most two of
these curves are contained in A*.

As is done for the disk, one can consider the prime ends compactification of A*, by adding two
circles in order to obtain A’ = A* U S' L1 S?, so that A’ is homeomorphic to A, and the restric-
tion of f to A* extends continuously to a homeomorphism & of A’, with a lift h to the universal
covering of A’. The rotation number of the lower boundary component of A’ is the prime ends
rotation number of K* and the rotation number of the upper boundary component of A’ is
the prime ends rotation number of K*1. Note that A’ is a Mather region of instability for h.
Note also that, as every rational in E is the h-rotation number of a point in E, then the rota-
tion set of 4 must be the same as that of f as rotation sets are closed. Now, [6, Theorem C]
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shows that every point in the rotation set of /4 is realized by a compact h-invariant set, which
implies that, except maybe for the two prime ends rotation numbers of the boundary compo-
nents of A*, every point in the rotation set of f is realized by a compact f-invariant subset in
A*.
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