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1. Introduction

The Standard Model (SM) is the well established and extremely successfull theory of the elementary particles and their
interactions [1]. According to the SM, matter is constituted by quarks and leptons and their interactions are due to the ex-
change of gauge bosons. The part of the SM which describes the strong interactions at the fundamental level is called Quan-
tum Chromodynamics, or QCD [2]. In QCD the quarks of six types, or flavors, (up, down, strange, charm, bottom and top)
interact exchanging gluons. Quarks and gluons have a special charge called color, responsible for the strong interaction.
Quarks and gluons do not exist as individual particles. Due to the property of color confinement, quarks and gluons form
clusters called hadrons, which can be grouped in baryons and mesons. The former are made of three quarks, as the proton,
and the latter are made of a quark and an antiquark, as the pion. The quarks carry a fraction of the fundamental electric
charge and a fraction of the baryon number. The electric and color charges and the baryon number are conserved quantities
in QCD.

Under extreme conditions of very large temperatures and/or very large densities, the normal hadronic matter undergoes a
phase transition to a deconfined phase, a new state of matter called the quark gluon plasma, or QGP. Together with the
deconfinement phase transition, a second phase transition takes place: the chiral phase transition, during which chiral sym-
metry is restored and the light quarks (up and down) become massless. The hot QGP is produced in relativistic heavy ion
collisions in the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory (BNL) and even more in the
Large Hadron Collider (LHC) at CERN. The cold QGP may exist in the core of compact stars.

The discovery of QGP revealed also that it behaves as an almost perfect fluid and its space–time evolution can be very well
described by relativistic hydrodynamics. After the discovery of this new fluid, more sophisticated measurements made pos-
sible to study the propagation of perturbations in the form of waves in the QGP. We may, for example, study the effect of a
fast quark traversing the hot QGP medium. As is moves supersonically throughout the fluid, it generates waves of energy
density (or baryon density in the non relativistic case). In some works it was even claimed that these waves may pile up
and form Mach cones [3], which would affect the angular distribution of the produced particles, fluid fragments which
are experimentally observed.

The study of waves in the quark-gluon fluid has been mostly performed with the assumption that the amplitude of
the perturbations is small enough to justify the linearization of the Euler and continuity equations [4]. As explained in
the appendix, the analysis of perturbations with the linearized relativistic hydrodynamics leads to the standard second
order wave equations and their travelling wave solutions, such as acoustic waves in the QGP. While linearization is
justified in many cases, in others it should be replaced by another technique to treat perturbations keeping the nonlin-
earities of the theory. This is where a physical theory, in this case hydrodynamics, may benefit from developments
in applied mathematics. Indeed, since long ago there is a technique which preserves nonlinearities in the derivation
of the differential equations which govern the evolution of perturbations. This is the reductive perturbation method
(RPM) [5].

In previous works we have applied the RPM to hydrodynamics and we have shown that the nonlinearities may lead, as
they do in other domains of physics, to new and interesting phenomena. In the case of the cold QGP we have shown [6] that
it is possible to derive a Korteweg-de Vries (KdV) equation for the baryon density, which has analytic solitonic solutions.
Perturbations in fluids with different equations of state (EOS) generate different nonlinear wave equations: the breaking
wave equation, KdV, Burgers. . .etc. Among these equations we find the Kadomtsev–Petviashvili (KP) equation [7], which
is a nonlinear wave equation in three spatial and one temporal coordinate. It is the generalization of the Korteweg-de Vries
(KdV) equation to higher dimensions. The KP equation describes the evolution of long waves of small amplitudes with weak
dependence on the transverse coordinates. This equation has been found with the application of the reductive perturbation
method [8] to several different problems such as the propagation of solitons in multicomponent plasmas, dust acoustic
waves in hot dust plasmas and dense electro-positron-ion plasma [9–21].

The main goal of this work is to apply the RPM [8–20] to relativistic fluid dynamics [22,23] in cylindrical and cartesian
coordinates to obtain the KP equation. We find that the transverse perturbations in relativistic fluid dynamics may generate
three dimensional solitary waves.

In the present study of relativistic hydrodynamics we shall consider an equation of state derived from QCD [24]. The ob-
tained energy density and pressure contain derivative terms and a wave equation with a dispersive term such as KdV or KP
emerges from the formalism. In [6], we have performed a similar study in one dimension and found a KdV equation. The
present work is an extension of [6] to three dimensions.

Previous studies on one-dimensional nonlinear waves in cold and warm nuclear matter can be found in [25–31].
This text is organized as follows. In the next section we review the basic formulas of relativistic hydrodynamics. In Section

3 we derive the KP equation in detail. In Section 4 we solve the KP equation analytically and in Section 5 we present some
conclusions.
2. Relativistic fluid dynamics

For a detailed study in relativistic hydrodynamics we suggest the references [22,23].
The relativistic version of the Euler equation [22,23,29,6] is given by:
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@~v
@t
þ ð~v � ~rÞ~v ¼ � 1

ðeþ pÞc2
~rpþ~v @p

@t

� �
ð1Þ
and the relativistic version of the continuity equation for the baryon density is [22]:
@mjmB ¼ 0 ð2Þ
Since jmB ¼ umqB the above equation can be rewritten as [6,29]:
@qB

@t
þ c2vqB

@v
@t
þ~v � ~rv

� �
þ ~r � ðqB~vÞ ¼ 0 ð3Þ
where c ¼ ð1� v2Þ�1=2 is the Lorentz factor. In this work we employ the natural units �h ¼ 1; c ¼ 1.
Recently [24] we have obtained an EOS for the strongly interacting quark gluon plasma (sQGP) at zero temperature. We

performed a gluon field separation in ‘‘soft’’ and ‘‘hard’’ components, which correspond to low and high momentum compo-
nents, respectively. In this approach the soft gluon fields are replaced by the in-medium gluon condensates. The hard gluon
fields are treated in a mean field approximation and contribute with derivative terms in the equations of motion. Such equa-
tions solved properly may provide the time and space dependence of the quark (or baryon) density [24,32].

Due to the chiral phase transition, it is natural to assume that the quarks are massless and hence the system is highly
relativistic. In relativistic theories, perturbations in pressure can propagate also in systems of massless particles. In the
Appendix, starting from the equations of relativistic hydrodynamics, we derive a wave equation for a perturbation in the
pressure, i.e., an equation for an acoustic wave.

The energy density is given by [24,32]:
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and the pressure is:
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In (4) and (5) cQ is the quark degeneracy factor cQ ¼ 2ðspinÞ � 3ðflavorÞ ¼ 6 and kF is the Fermi momentum defined by the
baryon number density:
qB ¼
cQ

6p2 k3
F ð6Þ
The other parameters g; mG and BQCD are the coupling of the hard gluons, the dynamical gluon mass and the bag constant
in terms of the gluon condensate, respectively.

Inserting (4) and (5) into (1) we can see that higher order derivatives in qB will appear. As it will be seen, the terms with
these derivatives will generate the dispersive terms in the final KP equations. The terms with derivatives in (4) and (5) exist
because of the coupling (through the coupling constant g) between the quarks and the massive gluons (mG). As explained in
detail in Ref. [6], the gluon field is coupled to the quark baryon density through a Klein–Gordon equation of motion with a
source term. The gluons can thus be eliminated in favor of the quark (or baryon) density, their inhomogeneities (expressed
by non-vanishing Laplacians) are tranferred to the quarks and terms proportional to ~r2qB appear. In short: dispersion comes
ultimately from the interaction between quarks and gluons and their inhomogeneous distribution in space.

3. The KP equation

We now combine the Eqs. (1) and (3) to obtain the KP equation which governs the space–time evolution of the pertur-
bation in the baryon density using the EOS given by (4) and (5). As mentioned in the introduction, we will use the RPM to
obtain the nonlinear wave equations [33]. Essentially, this formalism consists in expanding both (1) and (3) in powers of a
small parameter r. In the following subsections we present the application of this formalism to relativistic hydrodynamics.

We start with the cylindrical KP (cKP). Similar radially expanding perturbations have been studied in one of our previous
works [34] in a simplified two-dimensional approach and with a simpler equation of state.

3.1. Three-dimensional cylindrical coordinates

The field velocity of the relativistic fluid is:
~v ¼ ~vðr;u; z; tÞ ¼ ~v rðr;u; z; tÞ þ ~vuðr;u; z; tÞ þ ~vzðr;u; z; tÞ
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and so j~v j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

r þ v2
u þ v2

z

q
. We rewrite the Eqs. (1) and (3) in dimensionless variables. The perturbations in baryon density

occur upon a background of density q0 (the reference baryon density). It is convenient to write the baryon density as the
dimensionless quantity:
q̂ðr;u; z; tÞ ¼ qBðr;u; z; tÞ
q0

ð7Þ
and similarly the velocity field as:
v̂ ¼ v
cs

ð8Þ
where cs is the speed of sound. The components of the velocity are:
v̂ rðr;u; z; tÞ ¼
v rðr;u; z; tÞ

cs
; v̂uðr;u; z; tÞ ¼
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We next change variables from the space ðr;u; z; tÞ to the space ðR;U; Z; TÞ using the ‘‘stretched coordinates’’:
R ¼ r1=2

L
ðr � cstÞ; U ¼ r�1=2u; Z ¼ r

L
z; T ¼ r3=2

L
cst ð10Þ
where L is a typical scale of the problem which renders the stretched coordinates dimensionless. As it will be seen, the final
wave equations in the three-dimensional cylindrical or cartesian coordinates do not depend on L.

The next step is the expansion of the dimensionless variables in powers of the small parameter r:
q̂ ¼ 1þ rq1 þ r2q2 þ r3q3 þ � � � ð11Þ
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Finally we neglect terms proportional to rn for n > 2 and organize the equations as series in powers of r; r3=2 and r2.
From the Euler Eq. (1) we find for the radial component:
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For the angular component:
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and for the component in the z direction:
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Performing the same calculations for the continuity Eq. (3) we find:
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In the last four equations each bracket must vanish independently and so � � �f g ¼ 0. From the terms proportional to r we
obtain the identity:
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which defines the constant A and from which we obtain the speed of sound for a given background density q0:
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and also
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From the terms proportional to r3=2 using the A constant we find:
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Inserting the results (21),23,24 25 into the terms proportional to r2 in (17) and (20), we find after some algebra, the cylin-
drical Kadomtsev–Petviashvili (cKP) equation [17]:
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From the second identity of (21) we may write
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Inserting (27) in the coefficient of the nonlinear term in (26) the cKP becomes:
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Returning this cKP equation to the three dimension cylindrical space yields:
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which is the cKP equation for the second term of the expansion (11), the small perturbation given by q̂1 � rq1.
3.2. Three-dimensional cartesian coordinates

We now write the field velocity of the relativistic fluid as:
~v ¼ ~vðx; y; tÞ ¼ ~vxðx; y; tÞ þ ~vyðx; y; tÞ þ ~vzðx; y; tÞ
and so j~v j ¼
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y þ v2
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q
.

We follow the same steps described in the cylindrical case to obtain the KP equation:
(1) Rewrite the Eqs. (1) and (3) in dimensionless variables:
q̂ðx; y; z; tÞ ¼ qBðx; y; z; tÞ
q0

ð30Þ

v̂ ¼ v
cs

ð31Þ
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The components of the velocity are given by:
v̂xðx; y; z; tÞ ¼
vxðx; y; z; tÞ

cs
; v̂yðx; y; z; tÞ ¼

vyðx; y; z; tÞ
cs
and
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cs
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(2) Transform the Eqs. (1) and (3) (now in dimensionless variables) from the space ðx; y; z; tÞ to the space ðX;Y; Z; TÞ using the
‘‘stretched coordinates’’:
X ¼ r1=2

L
ðx� cstÞ; Y ¼ r

L
y; Z ¼ r

L
z; T ¼ r3=2

L
cst ð33Þ
(3) Perform the expansions of the dimensionless variables:
q̂ ¼ 1þ rq1 þ r2q2 þ r3q3 þ � � � ð34Þ
v̂x ¼ rvx1 þ r2vx2 þ r3vx3 þ � � � ð35Þ
v̂y ¼ r3=2vy1

þ r2vy2
þ r5=2vy3

þ � � � ð36Þ
v̂z ¼ r3=2vz1 þ r2vz2 þ r5=2vz3 þ � � � ð37Þ

q̂4=3 ffi 1þ 4
3
rq1 þ

4
3
r2q2 þ � � � ð38Þ

q̂1=3 ffi 1þ 1
3
rq1 þ

1
3
r2q2 þ � � � ð39Þ
(4) Neglect terms proportional to rn for n > 2 and organize the equations as series in powers of r; r3=2 and r2.
After these manipulations the x; y and z components of the Euler equation become:
r � 27g2q2
0

8m2
G

� �
c2

s þ 3p2=3q4=3
0 c2

s

� �
@vx1

@X
þ 27g2q2

0

8m2
G

� �
þ p2=3q4=3

0

� �
@q1

@X

	 


þ r2 27g2q2
0

8m2
G

� �
þ p2=3q4=3

0

� �
@q2

@X
� 27g2q2

0

8m2
G

� �
c2

s þ 3p2=3q4=3
0 c2

s

� �
@vx2

@X

	

þ 27g2q2
0

8m2
G

� �
c2

s þ 3p2=3q4=3
0 c2

s

� �
@vx1

@T
þ vx1

@vx1

@X

� �
þ 27g2q2

0

8m2
G

� �
q1
@q1

@X
þ p2=3q4=3

0
q1

3
@q1

@X

� 27g2q2
0

8m2
G

� �
2c2

s þ 4p2=3q4=3
0 c2

s

� �
q1
@vx1

@X
� 27g2q2

0

8m2
G

� �
c2

s þ p2=3q4=3
0 c2

s

� �
vx1

@q1

@X
þ 9g2q2

0

4m4
GL2

 !
@3q1

@X3

)
¼ 0 ð40Þ

r3=2 � 27g2q2
0

8m2
G

� �
c2

s þ 3p2=3q4=3
0 c2

s

� �
@vy1

@X
þ 27g2q2

0

8m2
G

� �
þ p2=3q4=3

0

� �
@q1

@Y

	 


þ r2 � 27g2q2
0

8m2
G

� �
c2

s þ 3p2=3q4=3
0 c2

s

� �
@vy2

@X

	 

¼ 0 ð41Þ
and
r3=2 � 27g2q2
0

8m2
G

� �
c2

s þ 3p2=3q4=3
0 c2

s

� �
@vz1

@X
þ 27g2q2

0

8m2
G

� �
þ p2=3q4=3

0

� �
@q1

@Z

	 


þ r2 � 27g2q2
0

8m2
G

� �
c2

s þ 3p2=3q4=3
0 c2

s

� �
@vz2

@X

	 

¼ 0 ð42Þ
For the continuity equation we obtain:
r @vx1

@X
� @q1

@X

	 

þ r2 @vx2

@X
� @q2

@X
þ @q1

@T
þ q1

@vx1

@X
þ vx1

@q1

@X
� c2

s vx1

@vx1

@X
þ @vy1

@Y
þ @vz1

@Y

	 

¼ 0 ð43Þ
Again, in the last four equations each bracket must vanish independently. From the terms proportional to r we obtain the
same A constant as in the cylindrical case given by (21), the same expression for the speed of sound (22) and
q1 ¼ vx1 ð44Þ
From the terms proportional to r3=2 we find
@vy1

@X
¼ @q1

@Y
ð45Þ
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and
@vz1

@X
¼ @q1

@Z
ð46Þ
In (41) and (42) we have from the terms proportional to r2:
@vy2

@X
¼ @vz2

@X
¼ 0 ð47Þ
Inserting the results (21), (44), (45), (46) and (47) into the terms proportional to r2 in (40) and (43), we find after some alge-
bra, the Kadomtsev–Petviashvili (KP) equation [12,20]:
@

@X
@q1

@T
þ ð2� c2

s Þ
2

� 27g2q2
0

8m2
G

� �
ð2c2

s � 1Þ
2A

� p2=3q4=3
0

A
c2

s �
1
6

� �" #
q1
@q1

@X
þ 9g2q2

0

8m4
GL2A

" #
@3q1

@X3

( )
þ 1

2
@2q1

@Y2 þ
1
2
@2q1

@Z2 ¼ 0

ð48Þ

Inserting (27) in (48), the KP with simplified coefficient for the nonlinear term is given by:
@

@X
@q1

@T
þ 3

2
ð1� c2

s Þ �
p2=3q4=3

0

3A

" #
q1
@q1

@X
þ 9g2q2

0

8m4
GL2A

" #
@3q1

@X3

( )
þ 1

2
@2q1

@Y2 þ
1
2
@2q1

@Z2 ¼ 0 ð49Þ
Rewriting this KP equation back in the three dimensional cartesian space we find:
@

@x
@q̂1

@t
þ cs

@q̂1

@x
þ 3

2
ð1� c2

s Þ �
p2=3q4=3

0

3A

" #
csq̂1

@q̂1

@x
þ 9g2q2

0cs

8m4
GA

� �
@3q̂1

@x3

( )
þ cs

2
@2q̂1

@y2 þ
cs

2
@2q̂1

@z2 ¼ 0 ð50Þ
which is the KP equation for the small perturbation q̂1 � rq1, the second term of the expansion (34).
The techniques employed in this section are well suited to treat problems where a long wave approximation can be made.

Having derived the relevant differential equation, we can check whether the obtained equation is consistent with the phys-
ical picture of a small amplitude and long wave length perturbation propagating over large distances. We shall follow the
analysis performed in Ref. [5]. Let us assume that the above equation has a solitary wave solution with a typical large length
L ’ 1=rðr� 1Þ. The dispersion term is about @4q̂1

@x4 ’ r4q̂1. It must arise at a propagation distance (or equivalently propaga-
tion time T) D, accounted for in the equation by the term @2q̂1

@x@t ’ r q̂1
T . If both the dispersion and propagation terms have the

same size, then T ’ D ’ 1=r3. Regarding the nonlinear term, if it has the form @
@x ðq̂1

@q̂1
@x Þ its order of magnitude is q̂2

1r2. The
formation of the soliton requires that the nonlinear effect balances the dispersion. Hence it must have the same order of
magnitude and q̂2

1r2 ¼ q̂1r4. Hence q̂1 ’ r2. We can then conclude that q̂1 � L� D and the above equation describes
the propagation of a wave with small amplitude ðq̂1Þ and large wave length ðLÞ which travels large distances ðDÞ.
The last two terms in (50) describe the transverse evolution of the wave. We can estimate their sizes only if we make
assumptions about the transverse length scales. In most cases the resulting flow is one-dimensional along the x direction
with some ‘‘leakage’’ to the transverse directions. In view of these estimates, we believe that the use of the RPM in this
context is justified.

3.3. Some particular cases

In the one dimensional cartesian relativistic fluid dynamics we have~v ¼ ~vðx; tÞ and qB ¼ qBðx; tÞ. Repeating all the steps of
the last subsection for one dimension, the reductive perturbation method reduces to the formalism previously used in
[29,25–28,30,31] and we find the following particular cases of (50):

(I) Neglecting the y and z dependence, the (50) becomes the Korteweg-de Vries equation (KdV) similar to the KdV found in
[6]:
@q̂1

@t
þ cs

@q̂1

@x
þ ð2� c2

s Þ
2

� 27g2q2
0

8m2
G

� �
ð2c2

s � 1Þ
2A

� p2=3q4=3
0

A
c2

s �
1
6

� �" #
csq̂1

@q̂1

@x
þ 9g2q2

0cs

8m4
GA

� �
@3q̂1

@x3 ¼ 0 ð51Þ
Taking the limit mG !1 we obtain from (21) and (22):
A ¼ p2=3q4=3
0 ; c2

s ¼
1
3

and (51) becomes:
@q̂1

@t
þ cs

@q̂1

@x
þ 2

3
csq̂1

@q̂1

@x
¼ 0 ð52Þ
and we recover exactly the result found in [29], the so called breaking wave equation for q̂1 at zero temperature in the QGP
with the MIT equation of state.
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(II) Neglecting the spatial derivatives in (4) and (5), Eq. (51) reduces to:
@q̂1

@t
þ cs

@q̂1

@x
þ ð2� c2

s Þ
2

� 27g2q2
0

8m2
G

� �
ð2c2

s � 1Þ
2A

� p2=3q4=3
0

A
c2

s �
1
6

� �" #
csq̂1

@q̂1

@x
¼ 0 ð53Þ
which is also a breaking wave equation for q̂1 with the q0;mG and g dependence in its coefficients.

4. Non-relativistic limit

The non-relativistic version of the continuity Eq. (1) is given by [23,22]:
@qB

@t
þ ~r � ðqB~vÞ ¼ 0 ð54Þ
and for the Euler equation we have (3) [23,22]:
@~v
@t
þ ð~v � ~rÞ~v ¼ � 1

q

� �
~rp ð55Þ
where q is the volumetric density of fluid matter. In this work we study perturbations for baryon density in the sQGP fluid, so
we define the ‘‘ effective baryon mass M in sQGP ’’:
q ¼MqB ð56Þ
which will be determined latter. Substituting (56) in (55) we find the non-relativistic version for the Euler equation in the
sQGP:
@~v
@t
þ ð~v � ~rÞ~v ¼ � 1

MqB

� �
~rp ð57Þ
Performing all the calculations described in the last section for the combination of (54) and (57) we find the cKP equation
in non-relativistic hydrodynamics:
@

@r
@q̂1

@t
þ cs

@q̂1

@r
þ 3

2
� p2=3q1=3

0

3Mc2
s

" #
csq̂1

@q̂1

@r
þ 9g2q0

8Mm4
Gcs

� �
@3q̂1

@x3 þ
q̂1

2t

( )
þ 1

2cst2

@2q̂1

@u2 þ
cs

2
@2q̂1

@z2 ¼ 0 ð58Þ
and the KP equation in three-dimensional cartesian coordinates:
@

@x
@q̂1

@t
þ cs

@q̂1

@x
þ 3

2
� p2=3q1=3

0

3Mc2
s

" #
csq̂1

@q̂1

@x
þ 9g2q0

8Mm4
Gcs

� �
@3q̂1

@x3

( )
þ cs

2
@2q̂1

@y2 þ
cs

2
@2q̂1

@z2 ¼ 0 ð59Þ
which are the non-relativistic versions of (29) and (50) respectively. During the derivation in both cases we find from the
terms proportional to r in the Euler equation that:
M¼ 27g2q0

8m2
Gc2

s

� �
þ p2=3q1=3

0

c2
s

ð60Þ
We end this section mentioning that it is possible to obtain (58) and (59) directly from (29) and (50) respectively, per-
forming the two non-relativistic approximations:
ðaÞc2
s ! 0 ð61Þ
and
ðbÞA ¼Mq0c2
s ð62Þ
where A is given by (21) and M by (60).

5. Analytical solutions

5.1. Soliton-like solutions

There are several methods to solve the KP equation such as the generalized expansion method [20,21], inverse scattering
transform (IST) [35,36] and others. The KP is also tractable by the Riemann theta functions, as it was shown in [37], where
other solution techniques are discussed. In this work we are only interested in the particular case of the solitonic solution.

In this section we present the analytical soliton-like solution of the cKP and KP equation given by (29) and (50) respec-
tively. The KP equation is an integrable system in three dimensions in the same way as the KdV is in one dimension. We
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introduce a set of coordinates that transforms (29) in an ordinary KdV, which is a solvable equation, and we also present the
analytical solution of (50). In order to simplify the notation in Eqs. (29) and (50) we define the constants:
a � 3
2
ð1� c2

s Þ �
p2=3q4=3

0

3A

" #
cs ð63Þ
and
b � 9g2q2
0cs

8m4
GA

� �
ð64Þ
In order to solve (29) analytically we introduce the following coordinates [11,15,17,38]:
n ¼ ar þ bz� d
csu2t

2
and s ¼ t ð65Þ
where a; b and d are constants. Without loss of generality we choose a > 0. Hence:
@

@r
! a

@

@n
;

@3

@r3 ! a3 @3

@n3 ;
@2

@z2 ! b2 @2

@n2 ;
@2

@u2 ! d2c2
s u

2t2 @2

@n2 � dcst
@

@n
;

@

@t
! @

@s
� d

csu2

2
@

@n
ð66Þ
As a consequence we have:
q̂1ðr;u; z; tÞ ! q̂1ðn; sÞ ð67Þ
Using (66) and (67) in (29), since a ¼ d, we find the KdV equation in the ðn; sÞ space:
@q̂1

@s
þ acs þ

b2

2a
cs

 !
@q̂1

@n
þ aaq̂1

@q̂1

@n
þ a3b

@3q̂1

@n3 ¼ 0 ð68Þ
which has the analytical soliton solution given by:
q̂1ðn; sÞ ¼
h1

h2
sech2

ffiffiffiffiffi
h1

p
2

n� usð Þ
" #

ð69Þ
where the constants are defined as:
h1 ¼
u� acs � b2cs=2a

a3b
and h2 ¼

a
3a2b

ð70Þ
The exact analytical soliton solution of (29) in three cylindrical coordinates is obtained substituting (65) in (69):
q̂1ðr;u; z; tÞ ¼
h1

h2
sech2

ffiffiffiffiffi
h1

p
2

ar þ bz� uþ a
csu2

2

� �
t

� �( )
ð71Þ
where u is a parameter which satisfies u > acs þ b2cs=2a and the phase velocity given by uþ a csu2

2 is angle dependent.
The exact analytical soliton solution of the KP Eq. (50) is given by [12,39,40]:
q̂1ðx; y; z; tÞ ¼
3ðU �wÞ
Aa

sech2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU �wÞ

4A3b

s
Axþ Byþ Cz� Utð Þ

" #
ð72Þ
where A; B; C are real constants and w is given by:
w ¼ Acs þ
B2cs

2
þ C

2cs

2
ð73Þ
We consider A > 0 and we have a parameter U such that U > w .

5.2. Conditions for the existence of localized pulses

5.2.1. Cylindrical coordinates
The solution (71) must be real and therefore the constant h1 must be positive. Moreover, following Refs. [20,21] we as-

sume that a2 þ b2 ¼ 1 and hence:
u� acs �
ð1� a2Þcs

2a
> 0 ð74Þ
Since q̂1 is a normalized perturbation the following condition must hold:
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h1

h2
¼ 3

aa
u� acs �

ð1� a2Þcs

2a

� �
< 1 ð75Þ
Within the region (in the u� a plane) where the conditions (74) and (75) are simultaneously satisfied, (71) is well defined
and we can have solitons. This is illustrated in Fig. 1, where we have chosen q0 ¼ 1 fm�3, g ¼ 1:15 and mG ¼ 460 MeV, which
imply cs ’ 0:64. The stability analysis can be made more rigorous with the introduction of the Sagdeev potential [20,21]
which also provides (74) by using g ¼ n� ut ¼ ar þ bz� d csu2t

2 � ut to rewrite Eq. (29) as an energy balance equation. For
our present purposes the requirements (74) and (75) are sufficient.

An example of soliton evolution is presented in Fig. 2. We show a plot of (71) with fixed u ¼ 0o; a ¼
0:6; b ¼ 0:8; u ¼ 0:73 and z varying in the range 0 fm 6 z 6 30 fm. This choice of parameters satisfies the soliton conditions
(74) and (75). The pulse is observed at two times: t ¼ 18 fm in Fig. 2 and at t ¼ 28 fm in Fig. 2(b). From the figure we can see
that the cylindrical pulse expands outwards in the radial direction. The regions with larger z expand with a delay with re-
spect to the central (z ¼ 0) region.

Keeping z ¼ 1 fm fixed, we show the time evolution of (71) from t ¼ 10 fm (Fig. 2(c)) to t ¼ 22 fm (Fig. 2(d)). The azi-
muthal angle varies in the range 20o

6 u 6 150o. From the parenthesis in (71) we can see that the expansion velocity grows
with the angle. This asymmetry can be clearly seen in the figure, where the large angle ‘‘backward’’ region moves faster the
small angle ‘‘forward’’ region. The breaking of z invariance and azimuthal symmetry is entangled with the soliton stability
and with the physical properties of the system (contained in the parameters h1; h2 and cs).
5.2.2. Cartesian coordinates
We perform the study of the existence condition for the solution (72), which must be real and therefore the constant

U �w must be positive. Again we have chosen q0 ¼ 1 fm�3, g ¼ 1:15 and mG ¼ 460 MeV, which imply cs ’ 0:64. We also
set C ¼ 0:5 and extend the condition in Refs. [20,21] to A2 þ B2 þ C2 ¼ 1. As mentioned, U > w and from (73):
U �Acs �
½1�A2 � ð0:5Þ2�cs

2
� ð0:5Þ

2cs

2
> 0 ð76Þ
Again, q̂1 is a normalized perturbation, so the amplitude condition must hold:
3ðU �wÞ
Aa

¼ 3
Aa

U �Acs �
½1�A2 � ð0:5Þ2�cs

2
� ð0:5Þ

2cs

2

 !
< 1 ð77Þ
Within the region (in the U �A plane) where the conditions (76) and (77) are simultaneously satisfied, (72) is well defined
and we can have solitons as it can be seen in Fig. 3. Again, the stability analysis can be performed more rigorously with
the introduction of the Sagdeev potential [20,21], which also provides (76) by using Axþ Byþ Cz� Ut, to rewrite Eq. (50)
as an energy balance equation. The requirements (76) and (77) are sufficient to provide a soliton propagation in the present
case.

A simple example of soliton evolution is presented in Fig. 4. We show a plot of (72) with fixed z ¼ 1 fm,
A ¼ 0:6; B ffi 0:62; U ¼ 0:66 and y varying in the range 0 fm 6 y 6 50 fm. This choice of parameters satisfies the soliton con-
ditions (76) and (77). The pulse is observed at four times: t ¼ 30 fm (Fig. 4(a)) to t ¼ 120 fm (Fig. 4(d)). From the figure we
can see that the cartesian pulse expands outwards in the x direction keeping its shape and form.
Fig. 1. Graphical representation of (74) (dashed line) and (75) (solid line).



Fig. 3. Graphical representation of (76) (dashed line) and (77) (solid line).

Fig. 2. Graphical representation of (71) for different times, increasing from the left to the right. Upper and lower plots are for different parameter choices
(see text).
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Fig. 4. Graphical representation of (72) for different times, increasing from the left to the right and from upper to the lower. The plots are for the same
parameter choices (see text).
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6. Conclusions

We have described in detail how to obtain a KP equation in three dimensions in cylindrical and cartesian coordinates in
the context of relativistic fluid dynamics of a cold quark gluon plasma. To this end, we have used the equation of state de-
rived from QCD in [24]. The resulting nonlinear relativistic wave equations are for small perturbations in the baryon density.

For the cartesian KP the exact soliton solution is a supersonic bump keeping its shape without deformation. The cartesian
KP contains some particular cases such as KdV and the breaking wave equation already encountered in our previous works
[29,6]. For the cylindrical KP (cKP) we also have an exact supersonic soliton solution which deforms slightly as time goes on
due to the angular dependence in the phase.

We conclude that relativistic fluid dynamics supports nonlinear solitary waves even with the inclusion of transverse per-
turbations in cylindrical and cartesian geometry.

Acknowledgments

We are deeply grateful to R. A. Kraenkel for useful discussions. This work was partially financed by the Brazilian funding
agencies CAPES, CNPq and FAPESP.

Appendix A

In this appendix we start from the equations of relativistic hydrodynamics and, using the linearization approximation, we
derive a wave equation for perturbations in the pressure. This equation has travelling wave solutions which represent acous-
tic waves. In the derivation presented here we follow closely Ref. [41]. The energy density and pressure for the relativistic
fluid are written as:
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eð~r; tÞ ¼ e0 þ deð~r; tÞ ð78Þ
and
pð~r; tÞ ¼ p0 þ dpð~r; tÞ ð79Þ
respectively. The uniform relativistic fluid is defined by e0 and p0, while de and dp correspond to perturbations in this fluid.
Energy–momentum conservation implies that:
@lTlm ¼ 0 ð80Þ
where Tlm is the energy–momentum tensor given by:
Tlm ¼ ðeþ pÞulum � pglm ð81Þ
Linearization consists in keeping only first order terms such as de; dP and ~v and neglect terms proportional to:
v2; vde; vdP; ~v � ~rv ; ð~v � ~rÞ~v ð82Þ
and also neglect higher powers of these products or other combinations of them. Naturally we have:
c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2
p 	 1 ð83Þ
From (80) we have:
ul@m½ðeþ pÞum� þ ðeþ pÞum@mul � @mðpgmlÞ ¼ 0 ð84Þ
The temporal component (l ¼ 0) of the above equation is given by:
c@0½ðeþ pÞc� þ c@ i½ðeþ pÞui� þ ðeþ pÞu0@0cþ ðeþ pÞui@ic� @0p ¼ 0 ð85Þ
which, after using (82) and (83), becomes:
@0ðeþ pÞ þ @ i½ðeþ pÞv i� � @0p ¼ 0
or
@e
@t
þ ~r � ½ðeþ pÞ~v� ¼ 0 ð86Þ
For the j-th spatial component (l ¼ j) in (84) we have:
uj@0½ðeþ pÞu0� þ uj@ i½ðeþ pÞui� þ ðeþ pÞu0@0uj þ ðeþ pÞui@iuj � @jp ¼ 0
which, with the use of (82), becomes:
@

@t
½ðeþ pÞ~v � þ ~rp ¼ 0 ð87Þ
Substituting the expansions (78) and (79) in (86) and (87) we find:
@

@t
½e0 þ de� þ ~r � ½ðe0 þ deþ p0 þ dpÞ~v� ¼ 0 ð88Þ
and
@

@t
½ðe0 þ deþ p0 þ dpÞ~v� þ ~r½p0 þ dp� ¼ 0 ð89Þ
Using the linearization (82) and (83) in (88) and (89) they become:
@ðdeÞ
@t
þ ðe0 þ p0Þ~r �~v ¼ 0 ð90Þ
and
ðe0 þ p0Þ
@~v
@t
þ ~rðdpÞ ¼ 0 ð91Þ
Eq. (90) expresses energy conservation and Eq. (91) is Newton’s second law. Integrating (91) with respect to the time and
setting the integration constant to zero we find:
~v ¼ � 1
ðe0 þ p0Þ

Z
~rðdpÞdt ð92Þ
which inserted in (90) yields:
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@ðdeÞ
@t
�
Z

~r2ðdpÞdt ¼ 0 ð93Þ
Performing the time derivative we obtain:
@2ðdeÞ
@t2 � ~r2ðdpÞ ¼ 0 ð94Þ
Assuming that
de ¼ @e
@p

dp ð95Þ
with @e=@p being a constant, we have (94) rewritten as:
@e
@p

@2ðdpÞ
@t2 � ~r2ðdpÞ ¼ 0 ð96Þ
The above equation is a wave equation from where we can identify the velocity of propagation as:
cs ¼
@p
@e

� �1=2

ð97Þ
where cs is the speed of sound. Eq. (96) can then be finally written as:
~r2ðdpÞ � 1
c2

s

@2ðdpÞ
@t2 ¼ 0 ð98Þ
which describes the propagation of a pressure wave in the fluid.
The derivation presented above shows that the existence of sound waves in a relativistic perfect fluid depends only on the

equation of state p ¼ pðeÞ. In particular, these formulas show that we can have acoustic waves in a medium made of massless
particles. As a simple example, let us consider the equation of state given by (4) and (5) in the case where we have no gluons
(g ¼ 0) and only massless quarks. In this case (4) and (5) reduce to:
e ¼ BQCD þ 3
cQ

2p2

k4
F

4
ð99Þ
and
p ¼ �BQCD þ
cQ

2p2

k4
F

4
ð100Þ
which can be combined to give:
p ¼ 1
3
e� 4

3
BQCD ð101Þ
with the speed of sound cs given by (97):
c2
s ¼

@p
@e
¼ 1

3
ð102Þ
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