





two Poisson process with rates p and g respectively. An arrow pointing from z to r+1
is attached to each event of the process with parameter p and arrows pointing from z + 1
to z are attached to events of the process with parameter ¢. All these Poisson processcs
are independent and the null event “two arrows occur at the same time” is neglected.
When an arrow appears pointing from z to vy, if there is a particle at z and no particle
at y, then at that time the particle jumps to the empty site. For any other configuration
“nothing happens. This process was introduced by Spitzer (1970) and has reccived a great
deal of attention. The existence of the process and the ergodic properties were studied by
Liggett (1976, 1985). The set of invariant measures is the set of convex combinations of
the product measures ¥, and blocking measures. In the case p > g the blocking measures
concentrate on a denunicrable set of configurations and have asymptotic density 0 and
1 to the left and right of the ovigin, respectively. When p = ¢ there are no blockiug
invariant measures. The hydrodynamical limit was studied by Andjel and Vares (1987)
and extended by Benassi et al (1991) for monotone initial density profiles. Rezakhaulon
(1990) proposed a general approach to prove a law of large numbers for the density ficlds
of attractive particle systems that works for general initial density profiles. Landim (1992)
uses this law of large numbers to prove local equilibrium.

The current through ¢ at time ¢ is defined by Jr,¢ = number of particles to the left
of the origin at time zero and to the right of rt at time ¢ minus number of particles to the
right of the origin at time zero and to the left of rt at time t. Let X¥ be the position of a
tagged particle initially located at z. Then we define formally the current as the random
process depending on the initial configuration n given by

Jra(n) = Z z)1{ X7 > rt} - z () {XF < rt}.
<0 >0
We assume that the distribution of the initial configuration is the stationary measure v,,
the product measure with deusity p. Under this initial distribution,

(1.1) EJee = ((p - q)o(l - p) —rplt.
Our main result is the following. It holds for any p, ¢, p+¢=1.

Theorem 1. Law of large nuinbers:

(12) Jim 4 = ((p - )1 = p) = 7p).

Central limit theorem: Let G(0, D) be a centered normal random variable with variance
D. Then

(1.3) lim Jerw = Edri EJris

Jimg =4 = G(0, D),



in distribution, where D = lim;_.oo(V Jr14/t), where V is the variance. Furthermore

(1.4) lim icl

{—o0

2L = p(1 = p)l(p - g)(1 = 2p) — 1.

Dependence on the initial configuration.

(1 5) lim E(Jrl'.l - Nlh(r.p) - (P - Q)pzt)2

i—oco t

=0,

where h(r, p) = r~(1-2p)(p~q), No(n) = = T\ _on(z) forr > 0 and No(n) = T°__n(z)
for r < 0. N(n) depends only on the initial configuration 1.

Remark. Notice that for p =g and r =0 or for r = (p—¢)(1-2p), D; = 0. The first
fact can be proven using Arratia (1983) or a formula given in De Masi and Ferrari (1985).
Indeed, De Masi and Ferrari (1985b) showed tlmt for p=1/2 and all p,

(1.6) lim '”';‘ = 2/7p(1 - p)

t—a0
and that
,l_i_fgof-”‘ et = N(0,/2/xp(1 - p)).

The fact that D; = 0 for r = (p—¢)(1 - 2p) is more surprising. Forp = 1andr = (1-2p)
we show that

.7 VJi-2pm0 = p(1 - P)EIR? —(1-2p)t],

where RY is the position of a second class particle initially located at the origin. Forp =1,
a second class particle interacts with the other particles in the following way: it jumps to
empty sites to the right at rate 1 and interchange positions with (“first class”) particles to
its left at rate 1. Spohn (1991) gives heuristic arguments suggesting that VR? behave as
t4/3. This would imply that the variance of the current through (1 — 2p)¢ behaves as $2/3,

An important corollary of (1.4) is that it allows one to show that the equilibrium
fluctuations translate rigidly in time. More precisely, let £f be the fluctuations fields
defined by

(1.8) €(®) = €' Y B(ex)ne-14(z) — Ene-re(2)),
for smooth integrable functions ¢. We prove in Section 6 that calling 7 = {(r-q)1-2p),
(1.9) T B(E; — 7e-1ri€)? = 0,
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where the translation 7 is defined by r,£8(®) = £f(ry®) and 7,%(z) = ¢(x + y).

In Section 2 we give some results on the behavior of tagged and sccond class particles.
In Section 3 we compute the current fluctuations (1.4). The law of large numbers (1.2) is
shown in Section 4. The dependence of the initial configuration (1.5) and the central limit
theorem (1.3) are shown in Section 5. In Section 7 we discuss consequences of our results

on the motion of an interface model related to the simple exclusion process.

2. The motion of tagged and second class particles.

We recall briefly some results concerning the motion of a tagged particle and shaw
a lemma relating the tagged particle with a second class particle. We assume that the
initial distribution of 4 is the equilibrium measure v,. At time 0, a pasticle is put at
a fixed site z, regardless of the value of the configuration no(r). This particle is tagged
and followed. It interacts by exclusion with the other particles. Its position is denoted
XE. The joint process (1, X{) is Markov and the process Txsn: has as extremal invariant
measure v} = ¥,(.{n(0) = 1). Under this distribution,

(21) EX} =(1-p)p—qlt.

Kipnis (1986) proved the following law of large numbers

. X?
(22) Jim =5 =(1-p)p-9)
and central limit theorem:
iiei=y RV
(2.3) fim 0= (1=2e=0t _ g py,

t~c0 Vi
in distribution. The variance Dy is given by

-0
L =(1-p)p-9)-

t

(2.4) " Dy = lim
1~

The limit was computed by De Masi and Ferrari (1985). These results also follow from
a recent extension of Burke's theorem due to Ferrari and Fontes (1992) that states the
following. Assume that the initial distribution of 5 is given by v,. Then there exist random
variables K > 0 with a finite exponential moment (i.e.'for some positive 8, Eexp(6K) <
o) and K satisfying P(|[K¢| 2 k) < P(K 2 k) forallk 20 (i.e. |[K¢] £ K stochastically),
such that

X) =N+ K,
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for all £ > 0, where N is a Poisson process of parameter (1 — p)(p — ¢). This implies that
if r < (1~ p)(p—q), then

(2.6) lim EUX? - rt)'1{XP < rt)) =

t—o0 t

0.

Now we recall the definition of the so called “second class particle” and some results
concerning its asymptotic behavior. Let n* be the configuration 7 modified at z, i.e.
77(z) = 1 = n(z), n*(y) = n(y) for y # z. Let nf be the process with initial configura-
tion n*. Then, using the graphical construction, the processes n and 1§ can be realized
simultancously with the same arrows. In this way the number of sites where the two con-
figurations disagree is exactly one for all t. This is the basic coupling of Liggett (1976,
1985). Calling R} the site where the configurations disagree by time ¢, one can show that -
the process (¢, RY) is Markovian and that R¥ can be described as a second class particle:
it jumps over nearest neighbor empty sites at rates p and ¢ to the right and left respectively
and exchange positions with (first class) nearest neighbor particles at rates ¢ and p to the
right and left respectively. Details can be found in Ferrari (1992), as well as the following
law of large numbers:

(2.7) Jim ? =(p-g)l1-2p), as.

Since the absolute value of the position of a second class particle is dominated above by a
Poisson process of rate 1, RY/t is uniformly integrable. Then for p > 1/2

. ER}-r)* (o ifr>(p-q)1-2p)
L) Jim —— t 5 { (p-gq)X1-2p)—r otherwise.

We also have, for all p and p 2 g,

(2.9) lim E(Ry - X3)*

—nc f

=0.

Next we show a technical identity needed in the computation of the current fluctua-
tions. Fix a configuration 5 with infinitely mmany particles to the right and left of the origin
and with a particle at the origin. Let U} be the position at time ¢ of a tagged particle
initially at y for the configuration . Let Z} be the position at time ¢ of a tagged particle
initially at y for #°, the configuration 5 without the particle at the origin.

Lemma 2.10. For all r € IR it holds

(2.11) Z gy {2 >r U <r)=1{RP <, X? >} as

y<o



Proof. Let {y; : i € Z} be the ordered occupied sites of 7, such that yo = 0. Let
{2 : i € Z \ {0}} be the ordered occupied sites of 3°, in such a way that y; = 2 for
all i # 0. Let IT} denote the label of the 5] particle that at time ¢ is in the position
yi(t) = U¥, if there is such a particle. Assign to II} the symbol @ otherwise. In this
way, {(i.IIi) : i € Z} tells us how the particles of the processes 1, and n¢ are coupled.
Assuming vg = 0, Ty = 0, define for n > 1

To =inf{t > Toey :TI*"" # 0}, va =i, for i satisfying I2~" =1,

There is always a discrepancy of particles between 7, and n{, and #; has one more particle.
Initially the (only) discrepancy is located at 0 and II§ = @, but this location changes in
time. T, is the time of the n-th change while v, is the index of the new location. At
time  the discrepancy is located at y,(¢) if I} = . It holds by induction on n that if
t € [Ta,Ta41), then

(2.12.1) m- =40
- i [ if i € [0,vn)°
(2122) fva 20, then IT; {i+ 1 ifi€[0,va)
i _ i if i € [va,0)°
(2:12.3) If v, €0, then Iy = {,' ~1 ifi€ (va,0)
Now, we have
(213) el
and all (2.12) is saying is that for t € [T\, Tus1),
(2.14.1) R = U™
v _J2F if i € [0,va])°
(2.14.2) If va 2 0, then U = { Z¥+ ifie[0,vn)
. ZY ifi € [va,0)°
- . < ". = ‘ N y
(2.143) If va < 0. then U { Zy-t i i€ (va,0)

The exclusion interaction implies that, for j < i,
(2.15) Z) <2 and UY <UY.

So, fori <0, Z})* > r, Y <r, implies by (2.14.2-3) that t € [Ta, Ta41) for which v, < 0.
This, (2.14.3) and (2.15) imply that for all § # i either Z) <rand U} <ror 2} >r
and U} > r. Hence
S yzy >nUuf <r}=1{{J{2F > rUF < 1))
i<0 i<0
SR < XD > 1),
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where the inequality holds by (2.13-15). For the reverse inequality observe that if ¢t €
[Tn)Tl+l)l then
Uy > r, Ul < rimplies 27 >, U <r

for some i < 0, by taking i = min{k <0:U}* 2 r} — 1. This proves the lemma. &

3. Current fluctuations.

In this section we prove (1.4). Recall that X7 denotes the position of a tagged particle
that at time 0 is put at z. For a fixed initial configuration n we write Jete(n) = (Jrea(n))* -
(Jre.e(n))~, where

(31)  (Frea(m)* = Son@UXE > 7}, Jeela))™ = 3 n(21{X] S rt).

<o >0

By translation invariance,

E(Jus)* = E (Zj (=) {XF > rt}) = p Y P{XE > vt} = pE(X{ - 1)*,

(32) r<0 =<0
E(Jry)” =E (Z N {XF < rt}) =pY P{XF <rt) = pB(X] —rt)".
>0 z<0
Since J*J~ =0,
(33) Vth.t = V(Jr(,()+ + V(Jrl.!)_ + 2E(""")+E(‘,ﬂ.‘)—'

We compute now V(Jre)t = E((Jr)*) - (E(Jre0)t)?. We have

E((Jud)*) = pE(XY = r)* +2 Y E(n(=m()H{X] > rt}1{X] > rt})

y<r<0

= pE(X! - rt)* 420 Y P(XI >rt)
(3.4) y<z<0

+2 Y (Em(=mmX] > rt}) - g P(XT > 1)
p<c<0
= Ai(t) + Az(t) + As(t).
Reordering the sum in the second term of (3.4),

Ax(t) = PP E((X? — rt)*)? — PP E(X] —rt)*.
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The third term in (3.4) is
A()=2p Y [P(X! > rtiyly) = 1p(z) = 1) = P(X? > rt,n(y) = 1)].
p<s <Y

Let A, B and B¢, the complementary of B, be events with positive probability. Then
P(A|B) - P(A) = P(B°)(P(A|B) — P(A|B¢)). Hence we write

(3.5)
As(t) = =2p(1-p) Y [P(X! > rt.n(y) = Un(z) = 0) — P(X} > rt.n(y) = llp(z) = 1)]
y<r<0
=-20(1-p) ) E(YZ}" > rt.UF* <rt}),
y<r<o

where UY'" (respectively Z)'") is the position of the tagged particle starting at y for the
system where a particle is present at z (respectively, is not present at z). In order to
compute the last line of (3.53) we couple two processes that start with a configuration
chosen according to v, but one of them has a particle at site z while the other has a hole
at z. We choose the basic coupling for which the number of discrepancies is always one (zce
the discussion before (2.7)). Denote RY the position at time ¢ of the discrepancy initially
at z. By (2.11),

As(t) = -2p(1-p) ) P(X} > rt, R} <rt)

<0
= —2p(1 = p) 3 _ P(X}? >rt)+2p(1 - p) Y P(R > rt, X7 > rt)
(3-6) r<o <0
= —2p(1 = p)E(X] — rt)* +20(1 = p) Y P(R} =1t > 2,X{ —rt > 2)

<0
= =2p(1 — p)E(X] — rt)* +2p(1 — p}(E(R] - rty* — L},),

where LY, = 3,50 P(R} — rt > £, XD = rt < z). The identity of the first terms in the
second and the third line of (3.6) holds if rt is integer, which we assume without loss of
generality (if not, the difference is O(1)). For the identity of the second terms of these
lines we used translation invariance. From (3.4),
E((Juia)* ) = pE(X? = rt)* 4 g E((X? = rt)*)? = p? E(X? — rt)*
=2p(1 = p)E(XY — rt)* +2p(1 — pNE(R] - rt)* — L},

and using (3.2),

(3.7) V(Jr )t = 2 V(XD —rt)* — (1= p)E(X] —rt)* +2p(1 — p)(E(R] — rt}* — L},).



Now we compute the varinnee of (Jyr,)".

E((Jrta)" ) = pE(XP = 11)" +2 3 E(n(z)n(y)1{X} < rt})
0<z<y

=pE(X} —rt)” +2p" ) P(X]>rt)
(3.8) o<z <y

+2 ) (E((=n(y)1{X} < rt}) - *P(X] < 7))

0<se<y

= By(t) + Ba(t) + Bs(t).
The second term in the last line of {3.8) is, analogously to Az(¢),
By(t) = P E((X? — rt)")? - p*E(X] - rt)”
and in a similar way to the computation of A;(t) in (3.5),
By(t) = ~2o(1-p) ) PR} —rt > z,X] —rt <) = -2p(1 - p)L;,
<0

from where
(3.9) V(Jred)™ = P V(X? =)™ + p(1 - p)E(X? — rt)” —2p(1 — p)L .

Now
LY, +L; =) PR -rt>z,X] -rt <z)= E(R} - X7)*.

We can now put all together and compute the variance of the current. Substitute (3.2),
(3.7) and (3.9) in (3.3) to obtain

(3.10)
Vi = pPAV(X® — 1)t 4+ V(X? = rt)” +2E(X? — rt)* E(X? = rt)”)

- p(1 = p)E(X] - rt)* — E(X] - rt)7)
+2p(1 - p)E(R] - rt)* — E(R} - X2)*)
= p?VX{ ~ p(1 - p)E(X] — rt) 4 2p(1 - p)(E(R} — rt)* — E(R} - X0)*).
Taking the limit as ¢ — oo and using (2.1), (2.4), (2.8) and (2.9),

v e
It = g1~ pl(p ~ g1~ 20) 1]

lin

t—00

This shows (1.4). In order to show {1.7) we assume p = 1. In this case it is known that
X? is a Poisson process of rate (1 — p) (Spitzer (1970), Liggett (1985)) for which

E(X{)* =E(X])=V(X)t =V(X])=(1-p)t sad (R} -X{)*=0.



Using the fact that the current through —rt when the density is 1 - p hins the sanie lnw ns
Jet1y (3-10) reads

VJii~20n = p(1 — p)E|R] — (1 — 2p)t].
Observe that (3.10) works also for p = 1/2: from (3.10) and VX? = /2t/(1 - p)/p) +
o{v/1) (Arratia (1983)) one can deduce (1.6). The key point is that a second class particle

in symmetric exclusion hehaves just as a simple symmetric random walk.

4. Law of large numbers,
We prove now the law of large numbers. It holds

(4.1) ,l'glwi'tﬂ =(p—q)o(1~p)—rp.

The proof of (4.1) would be a consequence of the ergodic theorem if one knew that the
product measures #, are extremal invariant for the process 1.7, where [] is integer part
(see Kipnis (1986)). It is not clear to us how to show this extremality. To overcome the
difficulty consider a Poisson process U(t) at rate ), independent of 5. It is not Lard to
show that the invariant measures for the process ryy)n, are translation invariant. Then use
Liggett’s (1976, 1985) techniques to show that the the set of extremal invariant measures
for tyyme is {v, : 0 £ p £ 1}. Hence Jy(y) 1, the current through U(t) satisfies a law of
large numbers:

(4.2.) lim J(’;”" =(p—q)p(1 - p) - Ap.

t—oo

Now use that U(t)/t converges to A almost surely and the fact that the current is a
decreasing function of r to conclude the proof of (4.1). This argument was used by Ferrari
(1992) to show a law of large nunibers for a second class particle.

8. Dependence on the initial configuration.

Since Ny, is a sum of independent random variables, (1.5) implies the central limit
theorem (1.3). To show (1.5) for r < (p — q)(1 — p) write
Jrt,t = Ninirp) = (P — ¢)0%t

0
=) a@UXE > rt) =Y aeHXE <rt) = 3 n(e) - (p - 9Pt
£<0 20 r=th
(1]
(1) = a@{XF>rt}-1)+ (Z () HX{ > rt) = (p - q)p’t
z=th z<th

= ¥ men{x; < rt}) = Yo n@UXE Srt+ Y n@XE < rt))

2th 20 z2th
= C1(t) + Ca(t) + Ca{t) + Ca(t).
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It suffices to show that limy_o( EC{t)2/t) = 0. Now for 7 = (p — q)(1 — 2p),
ICH O] < T{XP < re}] X = vt + 1= 1{X] S FYXD - 7e] 41,

in distribution. Since F < (p — ¢)(1 — p), the above inequality and (2.6) imply that
limi—o( EC1(t)?/t) = 0. The same argument applies to Cy(t) and Cy(t) that has the same
law as C3(t) for r = . On the other hand, Cy(t) has the same distribution as Jyy, — EJay
whose limiting variance vanishes when divided by t in the limit ¢ — oo by (1.4). This
shows (1.5) for r < (p — ¢q)(1 — p). Changing the role of particles and holes J,, has the
same law as the current through —rt when the density is 1 — p. This shows (1.5) for all r.
6. Density fluctuations.

We define the fluctuations density fields by

(6.1) & =S @er)ne-r (1) = Ene-rd2)]-

Since we consider only the equilibrium case, the expected value is taken with respect to
the initial measure v,. Hence En,-1((r) = p. We prove that, as ¢ — 0 the fluctuations
fields converge to a Gaussian field that translates rigidly in time, as predicted by Spohn
(1991, Section 6.3). For t = 0,

(6.2) lim €5(#) = £(®),
where £(®) is Gaussian white noise with mean zero and covariance
(6.3) E(E(¥)E(®)) = p(1 ~ p) / dr¥(r)®(r).
Let &(r) = reéo and 7 = (p - ¢)(1 — 2p)
Theorem 6.4. As ¢ — 0, the equilibriuin fuctuation fields §§ defined in (6.1) converge
to the solution & of the linear equation
9 _0
(6.5) m{l(r) = "Efa(r)'
with initial condition £. the Gaussian ficld with zero mean and covariance given by (6.3).

Proof. The theorem says that the fluctuations in equilibrium just translate at velocity f,
the average velocity of a second class particle. To prove the result we consider indicator
functions of intervals. The extension to general functions is standard. Let

®(w0) = Ppo.uj(w) = {0 w<u}
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and 7,$(w) = &(r + w), be the translation by r. Since the variation of the number of

particles can occur only at the boundaries of the interval, we have
(6.6) eE(E5(Tre1 @) — ﬁ(‘l’))2 = EE(J:I.( = Tute? ]:M)?'

where J& ; = Je- 141~ Since the distribution of 7,4 J5 , is independent of r, by summing
and substracting EJ§ . we have that the right hand side of (6.6) is bounded above by
2e?V J§, which converges to zero as £ — 0, by (1.4). &

7. An interface model.

The one dimensional nearest neighbors simple exclusion process is isomorphic to a
two dimensional interface model. See for instance Rost (1982) and De Masi et al (1989).
We first define the model. Let & € {£ € Z% : |¢(z) — &(z + 1)] = 1} be the process with
generator

LAy =Y (ql{&lxr = 1)+ &(x + 1) — 26(2) > O}[F(£"+) - f(&)]

I1€EX

+ pUH{E(r = 1) + &(z + 1) - 26(z) < O}F(€*7) — £(E))»

where £5:%(z) = €(z) £ 2 and £7¥(y) = £(y) otherwise. In words, interpreting &(z) as the
height of a surface at z, the process can be described by saying that at rate g the surface
at z increases two units if both leights at z — 1 and z + 1 are bigger than the height at z.
Analogously, at rate p the swiface decreases two units if both neighbor heights are smaller
than the height at r. For a given configuration n € {0,1}% define{ =Ty € Z Z by

E(x) = (2n(y) - 1).

Denoting £§ and 7 the interface and the simple exclusion processes with initial configu-
ration £ and # respectively, it holds

&5(r) = (T )(x) + Jo.s.
Hence
&(0) = Jo .

The density in the simple exclusion process gives the general inclination of the surface.
Density 1/2 gives a surface parallel to the z axis (flat). Our results on the current mean

that the diffusion coefficient for a flat surface scales in a different way than the diffusion



coefficient for a inclined suiface, no matter for which inclination. For the flat surface the
correct normalization would be /3, Qur interpretation is that a flat surface has “more
memory” than an inclined surface. In this last one sees a flux of particles falling down the
hill and pick the space fluctuations of the initial configuration. This does not happen in
the flat case. ’

Alexander et al (1992) studicd a two diniensional asyminetric simple exclusion process.
For this process the transition function is given by p{(r.y),(z,y + 1)) = 1/2, p{(+,y), (s £
1,y)) = 1/4 and p{(r,y).(z,w)) = 0 otherwise (flat initial surface). The process starts
with a product measure with density 0 and p > 0 in the semiplanes {y < 0} and {y > 0}
respectively. Defining Y'(¢) as the first coordinate of the leftmost particle on the y axis,
they found via simulations that the variance of Y(t) behaves as #!/4. Is this normalization
correct for inclined surfaces? For which reason the normalization factor in the flat case
depends on the model?
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