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Summary. We compute the diffusion coefficient of the current of particles through a 
fixed point in the one dimensional nearest neighbors asymmetric simple exclusi9n process 
in equilibrium. We find D = IJJ- qlp( 1-p )11-2pl, where pis the rate at which-the particles 
jump to the right, q is thr jump rntr to tht' left and pis the density of particles. Notice 
that D cancels if p = q or p = 1/2. A law of large numbers and central limit theorems are 
also proven. Analogous rt•sults arc obtained for the rurrent of particles through a position 
travelling at a determinist.ic velocity, .. As a corollary we get that the equilibrium density 
811ct11ations at tiinr f 11r<' a trnnslation of the fluctuations at time O. We also show that 
the current fluctuations at time- t are given, in the scale t1l 2 , by the initial density of 
particles in an interval of length l(p - q)(l - 2p)jt. The process is isomorphic to a growth 
interface process. Our result lllCI\US that the growth fluctuations depend on the general 
inclination of the surface. In p11rticular they vanish for interfaces roughly perpendicular 
to the observed growth clirr<"tion. 

K eywonu. Asymmetric simplf' cxdu:i;ion. Current fluctuations. Driven interfac.e. 
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t. Introduction. 

The nearest neighbor one dimensional simple exclusion process is the Markov process 
r,1 e {O, l)z wit~ generator given by 

Lf(,/) = L L p(z, y-)r,(.r)(l - r,(y))(/(,t·') - /(q)), 
~ez,,..,2:, 

where / is a continuous func.-tion, 

p+q=land 

{ 

1' if I/ = z + l 
p(z,y)= q

0 
if11=z-l, 
otherwise 

{ 

q(z) if Z-/ Z,Jf 
,,., ., (.:) = 17( .r) if z = I/ 

'7(r,) jf Z = X 

A convenient way to describe the process is the so called graphical construction. At most 
one particle is admitted at each site z E tZ. Each pair of sites (z,z + 1) has associated 
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two Poisson process with rntcs p aud q respectively. An arrow pointing from x to x' + 1 

is attached to each t>,·ent oft.he proct>ss with parameter p and arrows pointing from x + 1 

to z are attached to events of the process with parameter q. All these Poisson processes 

are independent and thl' null en~nt "two arrows occur at the same time" is 111·µ;! .. rtt·,l. 

When an arrow appears pointing from :r to y, if there is a particle at x and no parti('lc 

at 1/, then at that time the particle jumps to the empty site. For any other configurnt.ion 

· nothing happens. This process was introduced by Spitzer ( 1070) and has received n gn•11L 

deal of attention. The existence of the process and the ergodic properties wert> stU<lic•d hy 

Liggett (1976, 1985). The set of invariant measures is the set of couvcx combiuations of 

the product measures 11, and blocking measures. In the case p > q the blocking nll'asurcs 

concentrate on a denumerable set of configurations and have asymptotic d«·nsit.y O 111ul 

1 to the left and right of tll<' origin, respectively. When I' = q tll<'rc ore 1111 hl11rki11g 

invariant measures. The hydmclynamical limit was studied by Andjel and Vares (1087) 

and extended by Bena:;si et al (1901) for monotone initial density profiles. fiezaklm11!011 

(1990) proposed a general approach to prove a law of large numbers for the density fic•lcls 

of attractive particle systems that works for general initial density profiles. Landim (1902) 

uses this law of large numbers to prove local equilibrium. 

The current through r·t ut t.i111e t is defined by Jr1,1 = number of particles to the !,,ft 

of the origin at time ze1·0 and to the right of rt at time t minus number of particles to the 

right of the origin at ti;ne zero a11d to the left of rt at time t. Let Xf be the position of a 

tagged particle initially located at :r.. Then we define formally the current as the random 

process depending on the initial configuration '7 given by 

Jr,,1(11) = L '7(:t)l{x: > rt} - L ,,(:r)l{X: s rt}. 
2$0 %>0 

We assume that the distribution of the initial configuration is the stationary measure 11,, 
the product measure with density p. Under this initial distribution, 

(1.1) Elr1,1 = ((p - q)p(l - p) - rp)t. 

Our main result is the following. It holds for any p, q, p + q = 1. 

Theorem 1. Law of Jarge uumbers: 

(1.2) lim Jr,,I = ((p - q)p(l - p) - rp). 
1-00 t 

Central limit theorem: Let G(0, D) be a centered normal random variable with variance 

D. Then 

(1.3) 1, Jr1,1 - EJr1,1 _ G(O D ) 
1111 r,. - 1 J, 

,-00 vt 
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in distribution, whel'f' Di= lim,-00 (l" lri,1/t), where Vis the variance. Furthermore 

(1.4) I. \' Jr,,I )I( ) ) I 1m - - = p( 1 - p p - q ( 1 - 2p - r . 1-00 f 

Dependence on the initial configuration. 

I
. E(Jr,.I - NrA(r,p) - (p - q)p2f)1 O 
1m = , 

1-00 f 

where h(r,p) = r-(1-2p)(p-q), Nr(T/) = - E:.0 71(z) torr> 0 and Nr('l) = E:.rrr{z) 
for r :5 0. N11a('1) depends only on the initial configuration T/· 

Remark. Notice that for p = q and r = 0 or for r = (p- q){l - 2p), Di= 0. The first 
fact can be proven using Arratia (1983) or a formula given in De Masi and Ferrari (1985). 
Indeed, De Masi and Ferrari (1985b) showed that for p = 1/2 and all p, 

(1.6) I. FJrll fii7:/ 
1n1 - .,~· = v21irp(l - p) ,_,,,, t • 

and that 

lim 1-•I~ Jr, 1 = N(O, /':f:j;p(l - p)). •-oo ' V ~/lf 

The fact that DJ = 0 for r = (p- q )( 1- 2p) is more surprising. For p = 1 and r = (1-2p) 
we show that 

(1.7) V J(l-2p)I.I = p(l - p)EIR'f - (1 - 2p)tl, 

where R'l is the position o( a secuu<l class particle initially located at the origin. For p = 1, 
a second class particle interacts with the other particles in the following way: it jumps to 
empty sites to the right 1tt rate 1 and interchange positions with ("first class") particles to 
its left at rate 1. Spohn (1991) gives heuristic arguments suggesting that V R? behave as 
t4l3 • This would imply that the variance o( the current through ( 1 - 2p )t behaves as t2/ 3• 

An important corulll\fy o( ( 1.4) is that it ,Jlows one to show that the equilibriwn 
fluctuatioDB translate rigidly in time. More predsely, let ei be the fluctuations fields 
defined by 

(1.8) eH~) = E112 E ~(E.r)(11.-,,(z) - E17.-,,(:r)), 
z 

(or 1D100th integrable functions ~. We prove in Section 6 that calling r = (p- 9)(1- 2j,), 
\ 

(1.9) 
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where the tra11slntio11 Tis d('fiJi<'d by r,{:(4>) = {t{r,<I>) nnd r,4>(.r) = 4>(.r + y). 

In Section 2 we give sonu• n•sults on the behavior of tagged and second class particle:1. 

In Section 3 we compute the rnrrPnt fluctuations (1.4). 'f.he law of large numbers (1.2) is 

shown in Section 4. The drprudeul·e of the initial rcmfigurntiou ( 1.5) and the ccutrnl limit 

theorem (1.3) are shown in Section 5. 111 S<'ctiou 7 we discuss consc<iueuccs of our results 

on the motion of an iuterface modr.l related to the simple exclusion process. 

2. The motion of tagged and second class particles. 

\Ve recall briefly some results concerning the motion of a tagged particle nod show 

a lemma relating the t11ggcd particle with a second class particle. We assume that the 

initial distribution of ,,, is the e<1uilihrium mea:;ure "P· At time 0, a partid<' is put nt 

a fixed site z, regardless of tlw ,·11l111• of thr <'onfiguration ']o(z ). This particle is tnggrd 

and followed. It int.ern.cts by <•xdusiou with th<' other particles. Its position is denoted 

x:. The joint prOC<.'SS (,,,.xn is l\farkov mid the process rx:'11 has as extremal invnrinnt 

measure v, = 11,(.lr,(0) = 1). Under this distribution, 

(2.1) EX~= (1 - p}(p- q)t. 

l{ipnis (1986) proved the following law of large numbers 

(2.2) 
ro 

lim :....!.. = (1 - p)(p - q) 
1-00 f 

and central limit theorem: 

(2.3) l. Xf - (1 - p)(p - q)t _ G(O D ) 
ma r. - , x, 

c-oo vt 

in distribution. The variance Dx i!I given by 

(2.4) D I
. VXf 

,'( = 1111 - - = ( 1 - p )(p - q ). 
1--x.· t 

The limit was computed by Dr Uasi and Ferrari (1985). These results also follow from 

a recent extension of Burke's theorem due to Fe1·rari and Fontes (1992) that states tht> 

following. Assume that the iuitiRl distribution of T/c is given by"~- Then there exist random 

variables K ~ 0 with a finite exponential moment (i.e. 'for some positive(}, Eexp((}J{) < 

00) and Kc satisfying P(II(,I ~ k) $ P(l( ~ k} for all k ~ 0 (i.e. IK,I $ K stochastically), 

811Ch that 
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for all t ~ 0, where N, is a Poisson process of pRnlmeter (1 - p)(p- q). This impµes that 

if r < (I - p)(p - qJ, then 

(2.6) l
. E((Xf - rt)2 I{Xf 5 rt}} O 
1111 - -~-----'-----'-----'"'- = , 

1-'XI f 

Now we recall the definition of the so called "second class particle" and some results 

concerning its asymptotic behavior. Let q• be the configuration '1 modified at :r, i.e. 

q"(x) = I - q(x), q"(y) = q(y) for y :/:- z. Let qf be the process with initial configura­

tion 'lz. Then, using the graphical construction, the processes r,1 and 'lf can be realized 
simultaneously with the snmc arrnws. In this way the number of sites where the two con-

. figurations disagree is exactly one for all t. This is the basic coupling of Liggett (1976, 

1985). Calling n: the site whel"f' the ronfigurntiom1 disagree by time t, one can show: that . 

the process (171, Rf) is Markovian and thnt Rf can be described as a second class particle: 

it jumps over nearest neighbor empty sites at rates p and q to the right and left respectively 

and exchange positions with (first class) nearest neighbor particles at rates q and p to the 

right and left respectively. Details can be found in Ferrari (1992), as well as the following 

law of large numbers: 

(2.7) lim R'f = (p - q)(l - 2p), 
1-00 t 

a . .9. 

Since the absolute value of the position of a second class particle is dominated above b_y a 
Poisson process of rate 1, R'f /ti" uniformly integrable. Then for p ~ 1/2 

(2.S) r E(Jll/-rt)+ {O ifr>(p-q)(l-2p} 
,~~ t = (p- q)(l - 2p)- r otherwise. 

We also have, for all p and p ~ q, 

(2.9) lim E(Jll/ - Xf)+ = O. ,_.,,, , 
Next we show a tttlmical identity needed in the computation of the current ftuctu~ 

lions. Fix a configuration 17 with infinitely many particles to the right and left of the origin 

and with a particle at the origin. Let Uf be the position at time t 0£ a tagged particle 

initially at II for the configuration '1· Let Zf J>e the position at time t of a tagged particle 

initially at II for 11°, the mnfignration '1 without the particle at the origin. 

Lemma 2.10. For all r E Dl it lwlds 

(2.11} L r,((f)l{Z! > r,u: $ r) = l{H,' s r,X~ > r} a.s. 
,<o 



Proof, Let {y; : i E ~} be the ordered occupied sites of f/, such that Vo = 0. Let 

{ z; : i E 2Z \ { 0}} be the ordrred occupied sites of ,,0 , in such a way that Vi = z; Cor 

all i 'I, 0. Let n; dc·110tl' thr. lnbd of the 11~ pal'ticle that at time t is in the po:;itiou 

s,;(t) = Uf1 , if ther<" is such n partkl<". Assign to llj the symbol 0 otherwise. In this 

way, {( i, nn : i € ~ l trlh. 115 how the particles of the processes ,,, nn<l ,,:1 nre coupled. 

Assuming Vo = 0, To = 0, define for 11 2: l 

T. = inf {t > Tn-t : n;•-• 'f' 0}, v. = i, for i satisfying n~:-• = i. 

There is always a discrepancy of particles between f/i and f/~, and f/l has one more particle. 

Initially the (only) discrepancy is located at O and ng = 0, but this location changes in 

time. T. is the time of the 11-th change while v,. is the index of the new location. At 

time I the discrepancy is .locate-cl Rt y,(t) if rr; = i. It holds by induction on n that· if 

CE (T.,T,.+1), then 

(2.12.1) 

(2.12.2) 

(2.12.3) 

Now, we have 

(2.13) 

nr• = 0 
. { i !f v .. 2: 0, then n: = i + l 
. { i If v,. s; 0, then n: = i _ l 

Xf =Ul', 

and all (2.12) is saying is that fort E (T., Tn+i ), 

(2.14.1) 

(2,!4,2) 

(2.14.3) 

~ = u:-· 
Ifv,. 2: _0, then Uf' = { ;f:., 
If Vn s; o. then vr = { :~:_, 

The exclusion interaction implies that, for j < i, 

(2.15) 

if i E jO, Vn]c 

if i E I0,vn) 
if i € [vn, O)c 
if i E (vn,0]. 

if i E (0, Vn)c 

if j E (0, Vn} 

if i E (vn,0)c 
iCi E (vn,0). 

So, for i < 0, Zt > r, Ufi ~ r, implies by (2.14.2-3) that t E (T .. , Tn+i) for which vn < 0. 

This, (2.14.3) and (2.15) imply that for all j 'Fi either z:; $ r and Uf' s; r or Zfi > r 

and Uf' > r. Hence 

L l{Zf' > r,Uf' $ r} = l{LJ{Zf' > r,Uf' s; r}} 
i<O i<O 

$ l{R: $ r,X~ > r}, 
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where the inequality holds by (2.13-15). For the reverse inequality observe that it t e 

(T11 ,T11+1), then 

for some i < 0, by taking i = min{k $ 0: ur ~ r} - l. This proves the lemma ... 

3. Current fluctuations. 

In this section we prove (1.4). Recall that x: denotes the position o( a tagged particle 

th~t at time O is put at r . For a fixed initial configuration '1 we write 1rr,,('1) = (Jrr,,('1))+ -

(Jr,,1('1))-, where 

By translation invariance, 

(3.2) 

E(Jr,,,)+ = E (E 11(z)l {Xf > rt}) = p E P{Xf > rt} = pE(X~ - rt)+, 
tSO tfO 

E(Jr,,,)- = E (E 11(.r)l{Xf $ rt}) = p L P{Xf $rt}= pE(X~ -rtr. 
r>O z~O 

Since J+ J- E 0, 

(3.3) 

(3.4) 
= pE(Xf - rt)++ 2p2 E P(Xf > rt) 

J<r~O 

+ 2 L (E(11(z)fj(y)l{Xf > rt}) - p" P(Xf > rt)) 

Reordering the sum in the second term o( (3.4), 
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The third tem1 in ( 3.-1) is 

A3(t) = 2p L IP(Xf > rt,,7(y) = lj17(x) = 1)- P(Xf > rt,17(y) = 1)). 
,<r:s;u 

Let A, B and Be, the complementary of D, be events with positive probability. Then 

P(.'11B)- P(A) = P(Dc)(P(A.ID) - P(.41Bc)). Hence we write 

(3.5) 
A3(t) = -2p(l - p) L IP(Xf > rt,17(y) = lj17(.r) = 0)- P(Xf > rt,q(y) = ll17(x) = l)] 

= -2p(l - p) E E(17(y)l{Zf"r > rt,u.•·r :5'. rt}), 
w<r:s;o 

where [Jf•r (respecth-cly ztr) is the position of the tagged particle starting at y for the 

system where a particle is pl'e:;l'llt at x (respectively, is not present at x). In o!'dcr to 

compute the last line of (3.5) we couple two processes that start with a configuratiou 

chosen according to Vp but om• of them has a particle at site x while the other ha~ a hole 

at x. \Ve choose the basic coupling for which the number of discrepancies is always one ( see 

the discussion before (2.7)). D<'nole Rf the position at time t of the discrepancy initially 

at x. By (2.11), 

A3(t) = -2p{l - p) L P(Xf > rt, n: :5 rt) 

(3.6) 
= -2p(] - p) L P(X,r >rt)+ 2p{l - p) L P(R: > rt,Xf > rt) 

= -2p(l - ,,)E(X~ - ,·t)+ + 2µ(1 - p) L P(R'l - rt> x,X~ - rt> x) 

= -2p(l - p)E(X~ - ,.t)+ + 2p(l - p)(E(R~ - rt)+ - L:,), 

where L:, = Lr~oP<m - rt > .r,xr - rt$ x). The identity of the first terms in the 

second and the third line of (3.6) holds if rt is integer, which we assume without loss of 

generality (if not, the difference is 0( 1) ). For the identity of the second terms of these 

lines we used translation invnl'innce. From (3.4), 

E((Jr1,d+)2 = pE(X~ - rt)++ p2 E((X~ -rt)+)2 -p2 E(Xr - rt)+ 

- 2p{l - ,,)E(Xr - rt)+ + 2p(l - p)(E(~ - rt)+ - Lt,) 

and using {3.2), 



Now we compute tlu~ v111-in111·«· oC IJr,,,l-, 

(3.8) 
= pE(X~ - rt)- + 2p2 L P(xr > rt) 

D<z<s 

+ 2 L (E(17(r)i,{u)l{Xf !: rt})-p2P(Xf !: rt)) 

The second term in the last line of (3.8) is, analogously to A2(t), 

and in a similar way to the computation of A3 (t) in (3.5), 

B,(t) = -2p(l - p) L P(R'/ - rt > z,x: - rt S z) = -2p{l - p)L;;, 
.r<D 

from where 

Now 

L-;, + L;, = L P(R'/ - rt> z,x: - rt s z) = E(R'f - x:)+. 
r 

We can now put all together and compute the variance of the current. Substitute (3.2), 

(3.7) and (3.9) in (3.3) lo obtain 

(3.10) 
V J,.1,1 = p2(V(X~ - rt)+ + 'V(.\"r - rt)- + 2E(X~ - rt)+ E(Xf - rtr) 

- p(l - p)(E(.Y~ - rt)+ - E(X~ - rt)-) 

+ 2p(l - p)(E(Jt: - rt)+ - E(R'/ - X~)+) 

= p2V X~ - p(l - p)E(X: - rt)+ 2p(l - p)(E(R'f - rt)• - E(R'f - Xft). 

Taking the limit as t --+ oo and using (2.1), (2.4), (2.8) and (2.9), 

l. VJr,,I I (1 2) I 1111 -- = p{l - p) (p- q) - p - r 
1-00 f 

Thia shows (1.4). In order to show (l.i) we assume p = 1. In this case it is known that · 

x: ia a Poisson process of ratt" (1 - p) (Spitzer {1970), Liggett (1985)) for which 



Using the fnd that the cum•ut through -rt whm the dcni.ity is 1 - p hns the same lawns 

Jr1,r, (3.10) reads 

V J(l-'lp)I = p(l - p)EI~ - (1 - 2p)tl, 

Observe that (3.10) works also for 1' = 1/2: from (3.10) and VXf = ,fitfi{l -p)/p) + 
o(v'i) (Arratia (19S3)) oue cau deduce {1.6). The key point is that a second class particle 

in symmetric exclusion hehaves just as a simple symmetric random walk. 

4, Law or large numbers. 

We prove now the law of large numbers. It holds 

( ) 1. Jrl,I ) ( ) 4.1 am - = (p - q p 1 - p - rp. 
1-00 f 

The proof of ( 4.1) would be a rnusequcuce of the ergodic theorem if one knew thal the 

product mensnrl's ,,, m·" rxh·Pmnl invnainnt for the procl'ss T'(ri]'l" where {.j is i11frgc·1· part 

(see Kipnis (1986)). IL is not cil'ar to us liow to show this extremality. To overcome the 

difficulty consider a Poisson Jll'IIC"C'Ss [T( t) Rl rate .\, independent of ,,, . It is not hard to 

show that the innriant mrMures for thf' proc<'Ss Tu11111, are translation invariant. Then nse 

Liggett'• (1976, 1985) techniques lo show that the the set of extremal invariant measures 
for T<J(l)'ll is {1111 : 0 Sp S l} . . HenC"e Ju(,i,c, the current through U(C) satisfies a law of 
large numbers: 

(4.2) . Jl'(l),I 
lam -- = (p - q)p(l - p) - >.p. 
1-00 f 

Now use that U(t)/t con,·C'rg,-s lo ..\ almost surely and the fact that the current is a 

dec_reasing function of r to conduclc the proof of ( 4.1 ). This argument was used by Ferrari 
(1992) to show a law of large 1111mb,•rs for a second class particle. 

5. Dependence on the initial configuration. 

Since N,,. is a sum of independent random variables, (1.5) implies the central limit 
theorem (1.3). To show (1.~) for r < (p ~ q)(l - p) wri\e 

Jr1,1 - N,1t1r,pl -: (11 - q )p2t 
0 

= L 17(x)l{Xf > rt} - L 'l(;r)l{Xf ~ rt} - L 11(x) - (p- q)p2 t 
•<0 r,?;O _..,..,,. 

(5.1) • t 'l(x)(l{Xf > rt} - 1) + ( L 71(.r)l{Xf > rt} - (p- q)p2t 
.s•l/t z<l#t 

- L 17(x)l{X: < rt})- L'l(z)l{X: :5 rt+ L 71(z)l{Xf < rt}} 
... ;;::,, .r,?;0 .r;;::111 

... C1(t) + C:i(t) + C:i(t) + c.(t). 



It suffices to show that lim,-oc.( EC;{ I )2 / t) = 0. Now for f = (p - q )() - 2p ), 

in distribution. Since i' < (p - q)(l - p), the above inequality and (2.6) imply that 

lim1-00(EC1(t)2 /t) = 0. The same ru·gument applies to C3(t) and C~(t) that has the same 

law as C3(t) for r = f. On the othc1· hnud, C2(t) has the same distribution as J,,,1 -EJ,,,1 

whose limiting variance vanishes when divided by t in the limit t -+ oo by (1.4). This 

shows (1.5) for r < (p - q)( 1 - p). Changing the role of particles and holes lrr,r has the 

same law as the current through -,·t when the density is 1 - p. This shows (1.5) for all r. 

O. Density fluctuations. 

We define the ftuctuntions clm~ity fields by 

(6.1) {: = c: 1l 1 L ~(u)l11r-,,(x) - Er1c-•1(.:r)]. 
r 

Since we consider only the equilihrium case, the expected value is taken with respect to 

the initial measure Vp- Hencr Er1r• 1(.r) = p. We prove that, as£-+ 0 the fluctuations 

fields converge to a Gaussian field that translates rigidly in time, as predicted by Spohn 

(1991, Section 6.3). For t = 0, 

(6.2) 

where{(~) is Gaussian whit<• uoisr with mean zero and covariance 

(6.3) E({(IJI){(~)) = p(l - p) / drlJ!(r)~(r). 

Let {,(r) = Tr{, and i' = (p - ,,)( 1 - 2p) 

Theorem 6.4. As£ -+ O. tht> ec111ilibrimn 8uctuation fields {t defined in (6.J) coo~e 

to the solution {1 of the liue11r l'<Jllalion 

(6.5) 

with initial condition {0 • the G1w~-..inu tic-Id n·ith zero mean and cova11ance given by (6.3). 

Proof, The theorem says thRt the fluctuations in equilibrium just translate at velocity f, 

the average velocity of a second class particle. To prove the result we cousider indicator 

functions of intervals. The extension to general functions is standard. Let 
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and T,.<J(w) = <J(r + w), he the translation by r. Since the variation of the number of 

pnrlides can occur only nt the honndari<'s of the intcrvnl, we hnve 

(6.6) 

where 1:,., = 1.-•ri.,-••· Since the distribution of T,.,J:,,, is independent ofr, by summing 

and substracting EJf,.,. we have that the right hand side of (6.6) is bounded above by 

2t:2V 1;,, which conYerg<'s to 1..cro as e -+ 0, by ( 1.4). 4 

1. An interface model. 

The one dimensional nearest neighbors simple exclusion process is isomorphic to a 

two dimensional interface model. See for instance Rost (1982) and De Masi ct al (198!>). 

We first define the model. Let 6 E {{ E ;zz: l{(.:r)- {(.:r + 1)1 = I} be the process with 

generator 

lf(e) = L (ql{!(.r -1) + e(.r + l)-2e(.r) > O}(/({r,+)- /(0) 
rEZ 

+ IJl{{(.r -1) + {(x + 1) - 2{(.r) < 0}1/(C·-) - /({))), 

where {r•*(z) = {(.r) ± 2 and {'·:t:(y) = {(y) otherwise. In words, interpreting {(.r) ns the 

height of a surface at z, the prnl'ess ran be described by saying that at rate q the surfn<'e 

at z increases two units if both heights nt z - 1 and z + 1 are bigger than the height al z. 

Analogously, at rate p the :m1·focc cl<'n1:•11SC'll two units if both neighbor heights are s11111ller 

than the height at :r. For a given configurntion 17 E {O, l}z define { = T11 E ;zz by 

:t: 

e<x> = I:<211(11> - 1). 
,-o 

Denoting e: and,,: the interface and the simple exclusion processes with initial configu­

ration ( and r, respectively, it holds 

Hence 

The density in the simple exclusion process gives the general inclination of the surface. 

Pensity 1/2 gives a surface parallel to the x axis (flat). Our results on the current mean 

that the diffusion coefficii>nt for a flat surface scales in a different way than the diffusion 



coefficient for a inrlin<'<I sui-farc•, no mntt<·r for whirh inrliimtion. For th<' flat surface the 

correct nomialization would be (113 • Our interpretation is that a flat surface has "more 

memory" than an inclined surface. In this last one secs a flux of particles falling down the 

hill and pick the space fluctuations of the initial configuration. This does not happen in 

the flat case. 

Alexander et al ( 1002) studied a two dimensional asymmetric simple exclusion process. 

For this process the trnnsit iou fuut"tiou is giv1•11 by p( ( r, y ), ( x, y + 1)) = 1 /2, p( ( r, y ), ( x ± 
l,11)) = 1/4 and p((.r,y),(.::,111)) = 0 otherwise (flat initial surface). The process starts 

with a product measure with density 0 and p > 0 in the semiplanes {y < 0} and {11 ~ 0} 

respectively. Defining Y(t) as the first coordinate of the leftmost particle on the If axis, 

they found via simulations that the variance of Y(t) behaves as t•/4 • Is this normalization 

correct for inclined surCat"es? For which reason the normalization factor in the Rat case 

depends on the model? 
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