Teste Estrutural e de Mutacao
no Contexto de Programas OO

Ellen Francine Barbosa
José Carlos Maldonado
Departamento de Ciéncias de Computagao
Instituto de Ciéncias Matematicas e de Computacio (ICMC)
Universidade de Sao Paulo — Campus de Sao Carlos
Caixa Postal 668
13560-970 Sao Carlos, SP
{francine, jcmaldon}@icmc.usp.br

Auri Marcelo Rizzo Vincenzi
Instituto de Informatica
Universidade Federal de Goias (UFG)
Caixa Postal 131
74001-970 Goiania, GO
auri@inf.ufg.br

Marcio Eduardo Delamaro
Faculdade de Informatica de Marilia
Fundacao de Ensino Euripides Soares da Rocha (UNIVEM)
Caixa Postal 2041
17525-901 Marilia, SP
delamaro @fundanet.br

Resumo

As exigéncias por software com maior qualidade t¢ém motivado a definicio de métodos e
técnicas para o desenvolvimento de software que atinjam os padrdes de qualidade impostos.
Com isso, o interesse pela atividade de teste de software vem aumentando nos tltimos anos.
Virios pesquisadores t€m investigado os diferentes critérios de teste, buscando obter uma
estratégia de teste com baixo custo de aplicag@o e, a0 mesmo tempo, com grande capacidade
em revelar erros. O objetivo deste minicurso € apresentar os aspectos tedricos e praticos
relacionados a atividade de teste de software, tanto no contexto do paradigma procedimental
quanto orientado a objeto. Em particular, énfase é dada aos critérios de teste baseados em
Fluxo de Dados e em Mutag@o, com o apoio das ferramentas PokeTool e Proteum (teste de
programas C), e JaBUTi (teste de programas Java em nivel de bytecode), desenvolvidas no
contexto do grupo de Engenharia de Software do ICMC/USP. Perspectivas e trabalhos de
pesquisa sendo realizados na drea de teste também sao brevemente discutidos.



1 Introducao: Terminologia e Conceitos Basicos

A crescente utilizacdo de sistemas baseados em computagdo em praticamente todas as dreas da
atividade humana tem provocado grande demanda por qualidade e produtividade, tanto do ponto
de vista do processo de produg@o como do ponto de vista dos produtos de software gerados. Nesse
contexto, a Engenharia de Software — disciplina que aplica os principios de engenharia com o
objetivo de produzir software de alta qualidade a baixo custo [73] — evoluiu significativamente nas
ultimas décadas. Por meio de um conjunto de etapas que envolvem o desenvolvimento e aplicacio
de métodos, técnicas, critérios e ferramentas, a Engenharia de Software busca oferecer meios para
que tais objetivos possam ser alcancados.

No entanto, apesar das técnicas, critérios, métodos e ferramentas empregados, erros' no pro-
duto ainda podem ocorrer. Atividades agregadas sob o nome de Garantia de Qualidade de Software
tém sido introduzidas ao longo de todo o processo de desenvolvimento, entre elas atividades de
VV&T (Verificagdo, Validagao e Teste), com o objetivo de minimizar a ocorréncia de erros e riscos
associados. A verificacdo visa a assegurar que o software, ou uma determinada fun¢do do mesmo,
esteja sendo implementado corretamente. Verifica-se, inclusive, se os métodos e processos de de-
senvolvimento foram adequadamente aplicados. A validacdo, por sua vez, procura assegurar que
o software sendo desenvolvido € o software correto, de acordo com os requisitos do usudrio.

Dentre as técnicas de verificagdo e validagao, a atividade de teste € uma das mais utilizadas,
constituindo-se em um dos elementos para fornecer evidéncias da confiabilidade do software em
complemento a outras atividades como, por exemplo, o uso de revisdes e de técnicas formais e
rigorosas de especificacdo e de verificagdo [57]. De fato, os testes sdo considerados elementos
criticos para a garantia da qualidade do software [14].

A atividade de teste consiste em uma andlise dindmica do produto, sendo relevante para a
identificacdo e eliminag@o dos erros que persistem, representando a dltima revisdo da especifi-
cacdo, projeto e codificacdo [38,57,73,100]. Segundo Myers [65], o objetivo principal do teste
de software € revelar a presenga de erros ou defeitos no produto. Nesse sentido, o teste bem su-
cedido é aquele que consegue determinar casos de teste para os quais o programa sendo testado
falhe. Salienta-se, entretanto, que a atividade de teste tem sido apontada entre as mais onerosas
no desenvolvimento de software, podendo, em alguns casos, consumir grande parte dos custos de
desenvolvimento [73].

Apesar de ndo ser possivel, por meio de testes, provar que um programa esta correto, estes
contribuem para aumentar a confianga de que o software desempenha as funcdes especificadas.
Além disso, apesar das limitagcdes proprias da atividade de teste, sua aplicagdo de maneira siste-
matica e bem planejada pode garantir ao software algumas caracteristicas minimas, importantes
tanto para o estabelecimento da qualidade do produto como para o seu processo de evolucao.

O teste de produtos de software envolve basicamente quatro etapas: planejamento de testes,
projeto de casos de teste, execucdo e avaliacdo dos resultados dos testes [4, 6, 14,65, 73]. Tais ati-
vidades devem ser desenvolvidas ao longo do préprio processo de desenvolvimento de software e,
em geral, concretizam-se em trés fases [73]: teste de unidade, teste de integracdo e teste de sistema.
O teste de unidade concentra esfor¢os na menor unidade do projeto de software, ou seja, procura

'A IEEE tem realizado vdrios esforcos de padronizacdo, entre eles a padronizacdo da terminologia utilizada no
contexto de Engenharia de Software. O padrdo IEEE 610.12-1990 [49] diferencia os termos: defeito (fault) — passo,
processo ou defini¢do de dados incorreto, como uma instru¢do ou comando incorreto; engano (mistake) — agdo humana
que produz um resultado incorreto, como uma ag¢ao incorreta tomada pelo programador; erro (error) — diferenga entre
o valor obtido e o valor esperado, ou seja, qualquer estado intermedidrio incorreto ou resultado inesperado na execucio
do programa constitui um erro; e falha (failure) — producéio de uma saida incorreta com relagdo a especificagdo. Neste
texto, os termos engano, defeito e erro serdo referenciados como erro (causa) e o termo falha (conseqii€ncia) a um
comportamento incorreto do programa.



identificar erros de légica e de implementacdo em cada médulo do software, separadamente. O
teste de integracdo é uma atividade sistemadtica aplicada durante a integracdo da estrutura do pro-
grama visando a descobrir erros associados as interfaces entre os médulos; o objetivo &, a partir
dos médulos testados no nivel de unidade, construir a estrutura de programa que foi determinada
pelo projeto. O teste de sistema, realizado apds a integracao do sistema, visa a identificar erros de
funcdes e caracteristicas de desempenho que ndo estejam de acordo com a especificacio.

Um ponto crucial da atividade de teste € o projeto e/ou avaliacido dos casos de teste a serem
utilizados. O programa, em principio, deveria ser exercitado com todos os valores do dominio de
entrada. Sabe-se, entretanto, que o teste exaustivo é impraticdvel por razdes de custo e tempo.
Dessa forma, por questdes de produtividade, o objetivo € utilizarem-se casos de teste que tenham
alta probabilidade de revelar a presenga da maioria dos erros existentes com o minimo de tempo e
esforgo, por questdes de produtividade.

Dentro dessa perspectiva, para que a atividade de teste possa ser conduzida de forma sis-
temadtica e teoricamente fundamentada, faz-se necessaria a aplicacio de técnicas e critérios que
indiquem como testar o software, quando parar os testes e que, se possivel, fornecam uma medida
objetiva do nivel de confianca e de qualidade alcancados com os testes realizados [20]. Em geral,
os critérios de teste de software sdo estabelecidos, basicamente, a partir das técnicas: funcional,
estrutural, baseada em erros e baseada em estados. Na técnica funcional, os requisitos de teste
sdo estabelecidos a partir da especificacdo do software. Na técnica estrutural, os requisitos sdo
derivados a partir dos aspectos de implementag@o do software. Na técnica baseada em erros, 0s
requisitos de teste sdo obtidos a partir do conhecimento sobre erros tipicos cometidos durante o
processo de desenvolvimento de software. Na técnica baseada em estados, os requisitos de teste
s@o derivados a partir da especificacdo representada por um modelo de estados como, por exemplo,
uma maquina de estado finito [12] ou um statechart [37].

E importante ressaltar que as técnicas de teste devem ser vistas como complementares e a
questdo que se coloca é como utiliz-las de forma que as vantagens de cada uma sejam melhor
exploradas em uma estratégia de teste que leve a uma atividade de teste de boa qualidade, eficaz e
de baixo custo [4,14,73,93]. De fato, dada a diversidade de critérios existentes para cada uma das
técnicas e reconhecido seu cardter complementar, o estabelecimento de estratégias de teste com
tais caracteristicas é fundamental. Estudos tedricos e empiricos, que proporcionem uma sintese do
conhecimento sobre vantagens, desvantagens e limitacdes de cada um dos critérios de teste, t€ém
sido conduzidos nessa direcao.

Outro aspecto relevante associado a atividade de teste refere-se ao desenvolvimento de fer-
ramentas que automatizem a aplicacdo das técnicas e critérios associados. Sem a utilizacdo de
ferramentas automatizadas como mecanismos de apoio, a atividade de teste tende a ser extrema-
mente trabalhosa, propensa a erros e limitada a programas muito simples [46]. Além de contribuir
para a qualidade e a produtividade dos testes, a existéncia de ferramentas automatizadas: (1) via-
biliza a realizagdo de estudos empiricos; (2) auxilia a condugao dos testes de regressao; e (3) apdia
o processo de ensino e aprendizado envolvendo a aplicacdo prética dos conceitos de teste.

Em linhas gerais, observa-se que os critérios baseados em Fluxo de Dados [44,53,66,75,76,
88] e o critério Andlise de Mutantes [10,21,22] tém sido fortemente investigados por diversos
pesquisadores, sob diferentes aspectos. Resultados desses estudos fornecem evidéncias de que
esses critérios, hoje investigados fundamentalmente no meio académico, as vezes em cooperacao
com a inddstria, podem, em médio prazo, constituir o estado da pratica em ambientes de producdo
de software.

O paradigma de desenvolvimento orientado a objetos (OO), o qual tem sido cada vez mais
utilizado, em grande parte devido ao seu potencial para reutilizacdo, constitui outro fator rele-
vante a ser considerado no contexto da atividade de teste. O teste de programas OO e o teste de



componentes devem lidar com novos problemas introduzidos pelas caracteristicas das linguagens
OO. Encapsulamento, heranga, polimorfismo e acoplamento dindmico, embora tragam beneficios
para o projeto e a codificacdo, oferecem novos desafios para as dreas de teste e manutencao [63].
Atualmente, a maioria das organizagdes desenvolvedoras de software ainda estdo no processo de
transicao para o paradigma OO e, a medida que mais e mais organizacdes adotarem tal paradigma,
maior serd a demanda por técnicas, critérios e ferramentas que apdiem o teste de sistemas desse
tipo [38,52,92]. Apesar de diversos trabalhos nessa dire¢do, ainda sdo poucas as evidéncias sobre
a eficacia das técnicas e critérios propostos. Como destacado por Offutt e Irvine [68], os critérios
de teste utilizados no paradigma procedimental precisam ser reavaliados e, quando necessério,
passar por adaptagdes que permitam sua utiliza¢do no teste de programas OO.

O grupo de Engenharia de Software do ICMC/USP, em colabora¢do com outros grupos de
pesquisa na area de teste, vem desenvolvendo atividades de pesquisa concentradas no estudo de
principios, estratégias, métodos e critérios de teste e validacdo de software, bem como na especi-
ficacdo e implementagdo de ferramentas de teste que apdiem a realizacdo das atividades de teste
e viabilizem a avaliagdo do aspecto complementar dos critérios de teste por meio de estudos em-
piricos. Dentre os critérios de teste investigados pelo grupo destacam-se os critérios baseados em
Fluxo de Dados e os critérios baseados em Mutagdo, explorados tanto no contexto do paradigma
procedimental como OO. No que se refere as ferramentas de teste desenvolvidas destacam-se:
PokeTool [11] (apoio a aplicagdo de critérios estruturais no teste de programas C); Proteum [15]
e Proteum/IM [17] (apoio a aplicacdo dos critérios Andlise de Mutantes e Mutacdo de Interface,
respectivamente, no teste de programas C); e JaBUTi [92, 94] (teste de bytecode Java). Além
disso, no contexto do teste de especificacdes, destaca-se o desenvolvimento de critérios baseados
em Mutacdo para o teste de Maquinas de Estado Finito (MEFs) [24, 27], Statecharts [25,29] e
Redes de Petri [28, 81], apoiados pelas ferramentas Proteum/FSM [24], Proteum/ST [29] e Pro-
teum/PN [28, 81, 82], respectivamente. Mais recentemente, também tem sido explorado o desen-
volvimento de critérios de teste baseados em Mutagdo para Estelle [84] e SDL [86].

O presente texto visa a abordar os aspectos tedricos e praticos relacionados a atividade de teste
de software, tanto no contexto do paradigma de desenvolvimento procedimental quanto orientado
a objeto. Com esse objetivo em mente, o texto estd organizado da seguinte forma”: nesta se¢io
foram introduzidos os conceitos bdsicos e a terminologia pertinentes ao teste de software. Na
Secdo 2 sdo apresentados os critérios de teste mais difundidos das técnicas funcional, estrutural,
baseada em erros e baseada em estados. Em particular, &nfase é dada as técnicas baseadas em
Fluxo de Dados e em Mutagdo, com o apoio das ferramentas de teste PokeTool e Proteum, respec-
tivamente. Na Secdo 3 sdo discutidas algumas das principais questdes relacionadas ao teste OO.
Inicialmente, as fases de teste para programas OO sdo caracterizadas, contrapondo-se com as fa-
ses de teste para programas procedimentais. Em seguida, € discutido o impacto das caracteristicas
de encapsulamento, heranca, polimorfismo e acoplamento dindmico na defini¢do e aplicacdo de
critérios de teste. Uma visdo geral sobre os principais critérios de teste investigados no contexto
de desenvolvimento OO também ¢é apresentada. Além disso, aspectos operacionais da ferramenta
JaBUTi sdo brevemente discutidos. Na Secao 4 s@o discutidos alguns aspectos referentes a estudos
tedricos e empiricos, conduzidos a fim de avaliar e comparar os diversos critérios de teste existen-
tes. Finalmente, na Secdo 5 sdo apresentadas as conclusdes e perspectivas de trabalhos futuros na
drea de teste de software.

20s aspectos discutidos neste texto foram extraidos essencialmente de [4,58,61,92,93].



2 Técnicas e Critérios de Teste

Conforme mencionado na Secdo 1, para se conduzir e avaliar a qualidade da atividade de
teste utilizam-se as técnicas de teste funcional, estrutural, baseada em erros e baseada em estados.
Tais técnicas diferenciam-se pela origem da informacéo utilizada na avaliacdo e constru¢do dos
conjuntos de casos de teste [57].

Além disso, segundo Howden [48], o teste pode ser classificado de duas maneiras: teste base-
ado em especificacdo (specification-based testing) e teste baseado em programa (program-based
testing). De acordo com tal classificacdo, t&€m-se que os critérios das técnicas funcional e baseada
em estado sdo baseados em especificacio, e os critérios das técnicas estrutural e baseada em erros
s@o considerados critérios baseados em programa.

No teste baseado em especificagdo, o objetivo é determinar se o programa satisfaz aos re-
quisitos funcionais e nao-funcionais especificados. O problema é que, em geral, a especificacio
existente ¢ informal e, desse modo, a determinagdo da cobertura total da especificacdo que foi
obtida por um dado conjunto de casos de teste também & informal [72]. Por outro lado, os critérios
de teste baseados em especificacdo podem ser utilizados em qualquer contexto (procedimental ou
00) e em qualquer fase de teste (unidade, integracao, sistema) sem a necessidade de modificacdo.

O teste baseado em programa requer a inspecdo do cddigo-fonte e a sele¢do de casos de teste
que exercitem partes do cédigo e ndo de sua especificacdo [72]. O objetivo ¢ identificar erros
na estrutura interna do programa. A desvantagem dessa abordagem é que a mesma pode ser
dependente da linguagem e requer o acesso ao codigo-fonte para ser aplicada.

Nesta secdo apresentam-se com mais detalhes as técnicas estrutural e baseada em erros, mais
especificamente os critérios baseados em Fluxo de Dados [57,76] e em Mutacdo [16, 22]. Por
meio desses critérios, ilustram-se os principais aspectos pertinentes a atividade de teste de soft-
ware. O programa identifier (Figura 1) serd utilizado para facilitar a ilustragdo dos conceitos
desenvolvidos no texto. Para propiciar uma visdo mais abrangente apresenta-se, primeiramente,
uma visdo geral das técnicas baseada em estados e funcional, bem como alguns de seus critérios
mais conhecidos.

2.1 Técnica Baseada em Estados

O teste baseado em estados utiliza uma representacio baseada em estados para modelar o com-
portamento do sistema ou unidade que sera testada. Com base nesse modelo, critérios de geracio
de seqiiéncias de teste podem ser utilizados de modo a garantir o seu correto funcionamento.

Um dos critérios de geracdo de seqiiéncias de teste, baseado em Méquinas de Estado Finito
(MEFs), € o critério W [12]. Além do critério W, podem ser encontrados na literatura outros
critérios, tais como DS [36], UIO [79] e Wp [33]. Critérios baseados em mutagdo também tém
sido investigados para a geracdo de conjuntos de casos de teste para MEFs [26,27].

Dada a prépria natureza dos objetos de englobarem estado e comportamento, os critérios base-
ados em MEFs também sdo bastante utilizados no contexto de OO, a fim de representar o aspecto
comportamental dos objetos [7,8,45,63,64,87]. Tal assunto serd brevemente retomado na Se¢do 3.

2.2 Técnica Funcional

O teste funcional, também conhecido como teste caixa preta, trata o software como uma caixa
cujo conteddo € desconhecido e da qual sé € possivel visualizar o lado externo, ou seja, os dados
de entrada fornecidos e as respostas produzidas como saida [6,65]. O testador utiliza, essencial-
mente, a especificacido de requisitos do programa para derivar os requisitos de testes, ou mesmo
os casos de teste que serdo empregados, sem se importar com os detalhes de implementacao [6].



/*~k~k~k******~k~k~k*******~k~k~k******~k********~k~k*******~k~k********~k~k************************
Identifier.c

ESPECIFICACAO: O programa deve determinar se um identificador eh ou nao valido em
’Silly Pascal’ (uma estranha variante do Pascal). Um identificador valido deve
comecar com uma letra e conter apenas letras ou digitos. Alem disso, deve ter no
minimo 1 caractere e no maximo 6 caracteres de comprimento
***********************************************************************************/

#include <stdio.h>
P Tal“ 0 int valid_s(char ch)
/x 1 %/ char achar; ;: 1 i; { i f(((ch >= 'A’) &&
/e 1 %/ int length, valid_id; ) (ch = 130y) ||
/e 1 %/ length = 0; ((ch o= rar) &6
/e 1 %/ valid_id = 1; (ch — ,a,)))
/x 1 %/ printf ("Identificador: "); ¢ -
. /x 2 */ {

/x 1 %/ achar = fgetc (stdin); /% 2 %/ t (1) ;
/v 1 «/ valid_id = valid_s (achar); I 2 ) reRnen !
Jx 1 %/ if (valid_id)

/* 3 %/ else
/x 2 %/ { /x 3 %/ {
;: 3 :; ) length = 1; /x 3 %/ return (0);
/x 3 %/ achar = fgetc (stdin); ;: j :j } )
/% 4 x/ while (achar != ’"\n’)
/x5 %/ { int valid_f (char ch)
/x 5 %/ if (! (valid_f (achar))) /e 1w/ ? varte-
/ * 6 */ { : — rnr
e 6 4y valid id = 0; /x 1 *x/ if(((ch >= ,A,) &&
T 6 ar ) (ch <= 7"2")) ||
/*x T %/ length++; ((CE Zi ,a,) “e
/x T */ achar = fgetc (stdin); (e ~ ,Z,)) .
T 7wy ) ((ch >="70") &&
/v 8 %/ if (valid_id && Jx 2 %) ‘ feh <= 7200
/u 5 x/ ( (length >= 1)&&(length < 6)) /x 2 *x/ return (1);
/% 9 x/ printf ("valido\n"); [x 2/ i

/*x 3 %/ else
/x 9 %/ }

/* 3 %/ {
/% 10 =/ else
e 10 47 { /*x 3 %/ return (0);
/% 10 */ printf ("Invalid\n"); ;: j i; } )
/x 10 =/ }
/x 11 =/ }

Figura 1: Programa exemplo: identifier (contém ao menos um erro).




Assim, uma especificagdo de qualidade e de acordo com os requisitos do usudrio é de fundamental
importancia para apoiar a aplica¢do dos critérios relacionados a essa técnica. Alguns exemplos de
critérios de teste funcional sdo [73]:

e Particionamento em Classes de Equivaléncia: A partir das condi¢cdes de entrada de dados
identificadas na especificacdo, o dominio de entrada de um programa € dividido em classes
de equivaléncia validas e invédlidas. Em seguida, seleciona-se o menor niimero possivel
de casos de teste, baseando-se na hipétese de que um elemento de uma dada classe seria
representativo da classe toda, sendo que para cada uma das classes invalidas deve ser gerado
um caso de teste distinto. O uso de particionamento permite examinar os requisitos de forma
mais sistemdtica e restringir o nimero de casos de teste existentes. Alguns autores também
consideram o dominio de saida do programa para estabelecer as classes de equivaléncia.

e Anilise do Valor Limite: E um complemento ao critério Particionamento em Classes de
Equivaléncia, sendo que os limites associados as condi¢des de entrada sdo exercitados de
forma mais rigorosa. Ao invés de selecionar-se qualquer elemento de uma classe, os casos
de teste sdo escolhidos nas fronteiras das classes, visto que sdo nesses pontos que se con-
centra um grande nimero de erros. O espaco de saida do programa também € particionado
e sdo exigidos casos de teste que produzam resultados nos limites dessas classes de saida.

e Grafo de Causa-Efeito: Os critérios anteriores ndo exploram combinacdes das condicdes
de entrada. Esse critério estabelece requisitos de teste baseados nas possiveis combinacdes
das condi¢des de entrada. Primeiramente, sdo levantadas as possiveis condicdes de entrada
(causas) e as possiveis agdes (efeitos) do programa. A seguir, constréi-se um grafo relaci-
onando as causas e efeitos levantados. Esse grafo é convertido em uma tabela de decisdo a
partir da qual sdo derivados os casos de teste.

Conforme discutido anteriormente, um dos problemas relacionados aos critérios funcionais é
que muitas vezes a especificacdo do programa é feita de modo descritivo e ndo formal. Dessa
maneira, os requisitos de teste derivados de tais especificacdes sao também, de certa forma, im-
precisos e informais. Como conseqiiéncia, tem-se dificuldade em automatizar a aplicacio de tais
critérios, que ficam, em geral, restritos a aplicacdo manual. Coloca-se, ainda, a dificuldade de
quantificar a atividade de teste, uma vez que ndo se pode garantir que partes essenciais ou criti-
cas do cédigo do programa foram executadas. Por outro lado, visto que os critérios funcionais
baseiam-se exclusivamente na especificacdo do software para derivar os requisitos de teste, tais
critérios podem ser aplicados praticamente em todas as fases de teste e em programas construidos
sob diferentes paradigmas de desenvolvimento [45,63,68,93].

A titulo de ilustrag@o, considere o programa identifier e o critério Particionamento em
Classes de Equivaléncia. Na Tabela 1 sao identificadas as condicdes de entrada e as classes de
equivaléncia validas e invélidas. A partir dessas classes, poderia ser elaborado o seguinte conjunto
de casos de teste : Ty = {(al, Vélido), (2B3, Invalido), (Z-12, Invélido), (A1b2C3d, Invalido)}. De
posse do conjunto Tp, seria natural indagar se esse conjunto exercita todos os comandos ou todos
os desvios de fluxo de controle de uma dada implementagdo. Usualmente, utilizam-se critérios
estruturais de teste, apresentados a seguir, como critérios de adequacio ou critérios de cobertura
para se analisar questdes como esta, propiciando a quantificacio e a qualificacdo da atividade de
teste de acordo com o critério escolhido. Assim, quanto mais rigoroso o critério utilizado e se
erros nao forem revelados, maior a confianga no produto em desenvolvimento.



Tabela 1: Classes de equivaléncia para o programa identifier.

| Restricdes de Entrada | Classes Validas | Classes Invilidas |
Tamanho (t) do identificador 1<t<6 t>6
(1 2
Primeiro caracter (c) € uma letra Sim Nao
3) 4
Contém somente caracteres validos Sim Nao
S) (6)

2.3 Técnica Estrutural

Na técnica de teste estrutural, também conhecida como teste caixa branca (em oposicio ao
nome caixa preta), os aspectos de implementagdo sao fundamentais na escolha dos casos de teste.
O teste estrutural baseia-se no conhecimento da estrutura interna da implementacdo. Em geral, a
maioria dos critérios dessa técnica utiliza uma representacdo de programa conhecida como grafo
de fluxo de controle (ou grafo de programa). Um programa P pode ser decomposto em um con-
junto de blocos disjuntos de comandos; a execucdo do primeiro comando de um bloco acarreta a
execugdo de todos os outros comandos desse bloco, na ordem dada. Todos os comandos de um
bloco, possivelmente com excecao do primeiro, tém um dnico predecessor e exatamente um tinico
sucessor, exceto possivelmente o dltimo comando.

A representagdo de um programa P como um grafo de fluxo de controle consiste em estabele-
cer uma correspondéncia entre nds e blocos e em indicar possiveis fluxos de controle entre blocos
através dos arcos. Um grafo de fluxo de controle € portanto um grafo orientado, com um unico
n6 de entrada e um tnico né de saida, no qual cada vértice representa um bloco indivisivel de
comandos e cada aresta representa um possivel desvio de um bloco para outro. Cada bloco tem as
seguintes caracteristicas: (1) uma vez que o primeiro comando do bloco é executado, todos os de-
mais sdo executados seqiiencialmente; e (2) ndo existe desvio de execugdo para nenhum comando
dentro do bloco. A partir do grafo de programa podem ser escolhidos os elementos que devem ser
executados, caracterizando assim o teste estrutural.

Considere o programa identifier. Na Figura 1 identifica-se a caracteriza¢do dos blocos
de comandos por meio dos niimeros a esquerda dos comandos. A Figura 2 ilustra o grafo de fluxo
de controle do programa identifier (funcdo main) gerado pela ferramenta ViewGraph [91].

Seja um grafo de fluxo de controle G = (N, E, s) onde N representa o conjunto de nés, F o
conjunto de arcos, e s 0 né de entrada. Um caminho é uma seqiiéncia finita de nés (n1, na, . .., ng),
k > 2, tal que existe um arco de n; paran;+1parat = 1,2, ..., k—1. Um caminho é um caminho
simples se todos os nds que compdem esse caminho, exceto possivelmente o primeiro e o dltimo,
s@o distintos. Se todos os nds sao distintos diz-se que esse caminho ¢ um caminho livre de laco.
Um caminho completo é um caminho no qual o primeiro né € o né de entrada e o dltimo nd é o
n6 de saida do grafo G. Seja IN (z) e OUT(x) o nimero de arcos que entram e que saem do né
x respectivamente. Se /N (z) = 0 = é uma n6 de entrada, e se OUT'(z) = 0, z é um n6 de saida.

Em relag@o ao programa identifier, (2,3,4,5,6,7) € um caminho simples e livre de lagos e
o caminho (1,2,3,4,5,7,4,8,9,11) é um caminho completo. Observe que o caminho (6,7,4,5,7,4,8,9)
é ndo executdvel e qualquer caminho completo que o inclua € também ndo executdvel, ou seja, ndo
existe um dado de entrada que leve a execucdo desse caminho.

Os critérios de teste estrutural baseiam-se em diferentes tipos de conceitos e elementos de
programa para determinar os requisitos de teste. Na Tabela 2 ilustram-se alguns desses elementos
e critérios associados.

Os critérios de teste estrutural sdo, em geral, classificados em:



=] View Graph —v. 2.0
File &) Editr) '-.-'iew) Props) Quit )

=

]

Figura 2: Grafo de fluxo de controle do programa identifier gerado pela ViewGraph.

Tabela 2: Elementos e critérios associados em relacdo ao programa identifier.

| Elemento I Exemplo (identifier) | Critério ‘
Né6 6 Todos-Nos
Arco (7,4) Todos-Arcos
Laco 4,5,6,7,4) Boundary-Interior
Caminho (1,2,3,4,8,9,11) Todos-Caminhos
Definicdo de varidveis length=0 Todas-Defs
Uso predicativo de varidveis achar != “\n’ Todos-P-Usos
Uso computacional de varidveis length++ Todos-C-Usos

o Critérios Baseados em Fluxo de Controle: Utilizam apenas caracteristicas de controle da
execucdo do programa, como comandos ou desvios, para determinar quais estruturas sao
necessdrias. Os critérios mais conhecidos dessa classe s@o [73]: Todos-Noés — exige que
a execugdo do programa passe, a0 menos uma vez, em cada vértice do grafo de fluxo, ou
seja, que cada comando do programa seja executado pelo menos uma vez; Todos-Arcos —
requer que cada aresta do grafo, ou seja, cada desvio de fluxo de controle do programa,
seja exercitada pelo menos uma vez; e Todos-Caminhos — requer que todos os caminhos
possiveis do programa sejam executados. Outros critérios dessa categoria sdo: Cobertura de
Decisdo; Cobertura de Condicao; Cobertura de Condi¢cdes Multiplas; LCSAJ (Linear Code
Sequence and Jump) [99]; o critério Boundary-Interior [47]; e a familia de critérios K-tuplas
requeridas, de Ntafos [66].

Critérios Baseados em Fluxo de Dados: Utilizam informacdes do fluxo de dados do pro-
grama para determinar os requisitos de teste. Esses critérios exploram as interacdes que
envolvem defini¢des de varidveis e referéncias a tais definicdes para estabelecerem os re-
quisitos de teste [76]. Exemplos dessa classe de critérios sdo os critérios de Rapps e Weyu-
ker [75,76] e os critérios Potenciais-Usos [57]. Tais critérios serdo descritos mais detalha-
damente nas préximas secdes.

Critérios Baseados na Complexidade: Utilizam informacdes sobre a complexidade do pro-
grama para derivar os requisitos de teste. Um critério bastante conhecido dessa classe é o



critério de McCabe, que utiliza a complexidade ciclomadtica do grafo de programa para deri-
var os requisitos de teste. Essencialmente, esse critério requer que um conjunto de caminhos
linearmente independentes do grafo de programa seja executado [73].

A técnica estrutural apresenta uma série de limitagdes e desvantagens. Um dos principais
problemas refere-se a impossibilidade, em geral, de se determinar automaticamente se um caminho
¢é executdvel ou ndo. Ou seja, ndo existe um algoritmo que dado um caminho completo qualquer,
decida se o caminho € executdvel e forneca o conjunto de valores que causam a execugdo desse
caminho [89]. Assim, € preciso a intervencdo do testador para determinar quais sdo os caminhos
ndo executdveis para o programa sendo testado.

Independentemente dessas desvantagens, essa técnica € vista como complementar a técnica
funcional [73]. De fato, é importante observar que os casos de teste obtidos durante a aplicagio
dos critérios funcionais podem corresponder ao conjunto inicial dos testes estruturais. Como, em
geral, o conjunto de casos de teste funcional ndo é suficiente para satisfazer totalmente um critério
de teste estrutural, novos casos de teste sdo gerados e adicionados ao conjunto até que se atinja
o grau de satisfacdo desejado, explorando-se, desse modo, os aspectos complementares das duas
técnicas [83]. Ainda, informacdes obtidas pela aplicacdo desses critérios tém sido consideradas
relevantes para as atividades de manutengéo, depuracio e confiabilidade de software [6,73].

2.3.1 Critérios Baseados em Fluxo de Dados

Os critérios baseados em Fluxo de Dados [44], propostos em meados da década de 70, utilizam
informacdes do fluxo de dados para derivar os requisitos de teste. Uma caracteristica comum de
tais critérios € que eles requerem que sejam testadas as intera¢des que envolvam defini¢des de
varidveis e subseqiientes referéncias a essas definicdes [44,53, 66,76, 88].

Uma motivagd@o para a introdug@o dos critérios baseados em Fluxo de Dados foi a indicagdo
de que, mesmo para programas pequenos, o teste baseado unicamente no Fluxo de Controle nio
era eficaz para revelar a presenca até mesmo de erros simples e triviais. A introducdo dessa classe
de critérios procurou fornecer uma hierarquia entre os critérios Todos-Arcos e Todos-Caminhos,
visando a tornar o teste mais rigoroso, ja que o teste de Todos-Caminhos é, em geral, impraticdvel.

Dentre os critérios de Fluxo de Dados, destacam-se os critérios de Rapps e Weyuker [76],
introduzidos nos anos 80. Rapps e Weyuker propuseram o Grafo Def-Uso (Def-Use Graph) que
consiste em uma extensio do grafo de programa [75,76]. Nele sdo adicionadas informacdes a
respeito do fluxo de dados do programa, caracterizando associacdes entre pontos do programa
nos quais € atribuido um valor a uma variavel (chamado de defini¢do da varidvel) e pontos em
que esse valor € utilizado (chamado de referéncia ou uso da varidvel). Os requisitos de teste sdo
determinados com base em tais associacdes.

A Figura 3 ilustra o Grafo-Def-Uso do programa ident i fier. Conforme o modelo de fluxo
de dados definido em [57], uma definicdo de varidvel ocorre quando um valor é armazenado em
uma posi¢ao de memoria. Em geral, em um programa, uma ocorréncia de varidvel ¢ uma defini¢cao
se ela estd: (i) no lado esquerdo de um comando de atribuicao; (ii) em um comando de entrada;
ou (iii) em chamadas de procedimentos como parametro de saida. A passagem de valores entre
procedimentos por meio de parametros pode ser por valor, referéncia ou por nome [34]. Se a
variavel for passada por referéncia ou por nome considera-se que seja um parametro de saida. As
defini¢des decorrentes de possiveis definicdes em chamadas de procedimentos s@o diferenciadas
das demais e sdo ditas definidas por referéncia. A ocorréncia de uma varidvel é um uso quando
a referéncia a essa varidvel ndo a estiver definindo. Dois tipos de usos sdo distinguidos: c-uso
e p-uso. O primeiro tipo afeta diretamente uma computacdo sendo realizada ou permite que o

10



resultado de uma defini¢@o anterior possa ser observado; o segundo tipo afeta diretamente o fluxo
de controle do programa.

d={length valid id achar}
ue = {achar}

d = {length) @ up = {valid id)
d= {achar}

wp = {valid id}

up = {achat}

d = {achar, lenzth}
ue = {length)

d= definicio
up = uso predicative

\A®M/ 2c = uso computacional

Figura 3: Grafo def-uso do programa identifier.

O critério mais basico da familia de critérios definidos por Rapps e Weyuker [76] € o critério
Todas-Defini¢cdes. Entre os critérios dessa familia, o critério Todos-Usos tem sido um dos mais
utilizados e investigados.

e Todas-Defini¢des: Requer que cada definicdo de varidvel seja exercitada pelo menos uma
vez, ndo importa se por um c-uso ou por um p-uso.

e Todos-Usos: Requer que todas as associagdes entre uma definicdo de varidvel e seus sub-
seqiientes usos (c-usos e p-usos) sejam exercitadas pelos casos de teste, através de pelo
menos um caminho livre de defini¢do, ou seja, um caminho onde a varidvel ndo € redefi-
nida.

Como exemplo, para exercitar a defini¢do da varidvel 1ength definida no né 1, de acordo com
o critério Todas-Defini¢des, poderiam ser executados um dos seguintes subcaminhos: (1,3,4,5,7);
(1,3,4,8,9); (1,3,4,8,10); e (1,3,4,5,6,7). O subcaminho (1,3,4,8,9) € ndo executavel, assim como
qualquer caminho completo que o inclua. Se qualquer um dos demais caminhos for exercitado,
o requisito de teste € satisfeito. Para satisfazer o critério Todas-Definigdes, esta andlise deve ser
feita para toda definicdo que ocorre no programa.

Em relacg@o ao critério Todos-Usos, com respeito 2 mesma defini¢c@o, sdo requeridas as seguin-
tes associagdes: (1,7, length); (1,(8,9),1ength) e (1,(8,10),1ength). As notagdes (i,7,var) e
(,(J, k),var) indicam que a varidvel var é definida no né 7 e existe um uso computacional de var
no né j ou um uso predicativo de var no arco (j, k), respectivamente, bem como pelo menos um
caminho livre de defini¢do do né i ao né j ou ao arco (7, k). Observe que a associacdo (1,(8,9),
length) € ndo executdvel pois o Unico caminho que livre de defini¢do possivel de exercita-la
seria um caminho que incluisse o subcaminho (1,3,4,8,9). J4 para a associacdo (1,7,1ength),

11



qualquer caminho completo executdvel incluindo um dos subcaminhos (1,3,4,5,6,7), (1,3,4,5,7)
é suficiente para exerciti-la. Esta mesma andlise deve ser feita para todas as demais varidveis e
associacdes pertinentes, a fim de satisfazer o critério Todos-Usos.

A maior parte dos critérios baseados em Fluxo de Dados, para requerer um determinado ele-
mento (caminho, associacdo, etc.), exige a ocorréncia explicita de um uso de varidvel e ndo ga-
rante, necessariamente, a inclusio dos critérios Todos-Arcos na presenca de caminhos nio execu-
tdveis, presentes na maioria dos programas [57]. Com a introdug¢@o do conceito de potencial-uso,
nos inicio dos anos 90, Maldonado [57] definiu a familia de critérios Potenciais-Usos e a cor-
respondente familia de critérios executdveis, obtida pela eliminacdo dos caminhos e associacdes
ndo executdveis. Em linhas gerais, os critérios Potenciais-Usos requerem associa¢des indepen-
dentemente da ocorréncia explicita de uma referéncia (um uso) a uma definicdo de varidvel, ou
seja, requerem que caminhos livres de defini¢do a partir da defini¢do de uma determinada varidvel
sejam executados, independentemente de ocorrer um uso dessa varidvel nesse caminho.

Os critérios basicos que fazem parte dessa familia de critérios sdo [57]:

e Todos-Potenciais-Usos: Requer que pelo menos um caminho livre de defini¢do de uma
varidvel definida em um n6 ¢ para todo né e todo arco possivel de ser alcangado a partir de
1 seja exercitado.

e Todos-Potenciais-Usos/Du: Requer que pelo menos um potencial-du-caminho® com relagio
a uma varidvel x definida em 7 para todo né e para todo arco possivel de ser alcancado a
partir de 7 seja exercitado.

e Todos-Potenciais-Du-Caminhos: Requer que todos os potenciais-du-caminhos com relacio
a todas as varidveis x definidas e todos 0s nds e arcos possiveis de serem alcancados a partir
dessa defini¢do sejam exercitados.

Da mesma forma como os demais critérios baseados em Fluxo de Dados, os critérios Potenciais-
Usos podem utilizar o Grafo Def-Uso como base para o estabelecimento dos requisitos de teste.
Na verdade, basta ter a extensao do grafo de programa associando a cada né do grafo informacdes
a respeito das defini¢des que ocorrem nesses nés. Tal grafo é denominado de Grafo Def [57].

Como exemplo, tem-se que as potenciais-associagdes (1,6,1ength) e (7,6,1ength) sdo re-
queridas pelo critério Todos-Potenciais-Usos [57], ndo sendo requeridas pelos demais critérios
de Fluxo de Dados que ndo fazem uso do conceito potencial-uso. Observe que, por definicéo,
toda associacdo € uma potencial-associacdo. Dessa forma, as associacdes requeridas pelo crité-
rio Todos-Usos sdo um subconjunto das potenciais-associagdes requeridas pelo critério Todos-
Potenciais-Usos.

A relacdo de inclusdo é uma importante propriedade dos critérios, sendo utilizada para avalid-
los, do ponto de vista tedrico. O critério Todos-Arcos, por exemplo, inclui o critério Todos-
Nés, ou seja, qualquer conjunto de casos de teste que satisfaz o critério Todos-Arcos também
satisfaz o critério Todos-Nos, necessariamente. Quando ndo é possivel estabelecer essa ordem de
inclusdo para dois critérios, como € o caso de Todas-Defini¢cdes e Todos-Arcos, diz-se que tais
critérios sdo incompardaveis [76]. Deve-se observar que os critérios Potenciais-Usos sdo os tinicos
critérios baseados em Fluxo de Dados que satisfazem, na presenca de caminhos nio executaveis,
as propriedades minimas esperadas de um critério de teste, e que nenhum outro critério baseado em
Fluxo de Dados os inclui. Um aspecto relevante é que alguns dos critérios Potenciais-Usos “bridge

3Um potencial-du-caminho em relagio a varidvel  é um caminho livre de defini¢do (n1, ..., n;, nx) com relagio a
z do nd my para o nd ny e para o arco (n;, ng), onde o caminho (n1,...,n;) é um caminho livre de laco e no né n;
ocorre uma defini¢do de x.

12



the gap” entre os critérios Todos-Arcos e Todos-Caminhos mesmo na presenca de caminhos nio
executdveis, o que nao ocorre para os demais critérios baseados em Fluxo de Dados.

Como ja citado, uma das desvantagens do teste estrutural € a existéncia de caminhos requeridos
ndo executdveis. Existe também o problema de caminhos ausentes, ou seja, quando uma certa
funcionalidade deixa de ser implementada no programa, nio existe um caminho que corresponda
aquela funcionalidade e, como conseqii€éncia, nenhum caso de teste serd requerido para exercité-
la. Mesmo assim, esses critérios estabelecem de forma rigorosa os requisitos de teste a serem
exercitados, em termos de caminhos, associacdes defini¢do-uso, ou outras estruturas do programa,
fornecendo medidas objetivas sobre a adequagdo de um conjunto de teste para o teste de um dado
programa P. Esse rigor na defini¢do dos requisitos favorece a automatizacdo desses critérios.

Os critérios estruturais t€ém sido utilizados principalmente no teste de unidade, visto que os re-
quisitos de teste por eles exigidos limitam-se ao escopo da unidade. Na tentativa de estender o uso
de tais critérios para diferentes contextos, alguns esfor¢os podem ser identificados. Observam-se
na literatura extensdes dos critérios baseados em Fluxo de Dados tanto para o teste de integracao
em programas procedimentais [42,43, 90], quanto para o teste de unidade e integracdo em pro-
gramas OO [41,92]. Vincenzi et al. [92, 93], por exemplo, t€ém investigado o uso de critérios de
Fluxo de Controle e de Dados no teste de programas OO e de componentes. Visando a desen-
volver uma solucdo aplicdvel tanto a programas OO quanto componentes de software (os quais,
em geral, sdo testados pelos clientes utilizando somente técnicas funcionais), investigou-se como
realizar andlise estatica de programas Java diretamente a partir do c6digo objeto (bytecode Java).
Com isso, independentemente da existéncia do cédigo-fonte da aplicagcdo sendo testada, é possivel
derivar requisitos de teste estruturais os quais podem ser utilizados tanto para avaliar a qualidade
de conjuntos de teste quanto para a propria geracao de casos de teste. Tais aspectos sao retomados
e discutidos mais detalhadamente na Se¢do 3.

2.3.2 A Ferramenta de Teste PokeTool

Para ilustrar os conceitos abordados sera utilizada a ferramenta PokeTool (Potential Uses Cri-
teria Tool for Program Testing) [11,59], desenvolvida na FEEC/UNICAMP, em colaboracao com
o ICMC/USP. Essa ferramenta apdia a aplicacdo dos critérios Potenciais-Usos e também de ou-
tros critérios estruturais, como Todos-Nés e Todos-Arcos, no teste de programas C. A Figura 4(a)
mostra a tela principal da ferramenta e as principais func¢des fornecidas.

A PokeTool é orientada a sessdo de trabalho. O termo sessio trabalho (ou sessdo de teste) é
utilizado para designar as atividades envolvendo um teste. O teste pode ser realizado em etapas
nas quais sao armazenados os estados intermedidrios da aplicac@o de teste a fim de que possam
ser recuperados posteriormente. Desse modo, é possivel ao usudrio iniciar e encerrar o teste de
um programa, bem como retomad-lo a partir de onde este foi interrompido. Basicamente, o usudrio
entra com o programa a ser testado, com o conjunto de casos de teste e seleciona todos ou alguns
dos critérios disponiveis (Todos-Potenciais-Usos, Todos-Potenciais-Usos/Du, Todos-Potenciais-
Du-Caminhos, Todos-N6s e Todos-Arcos). Como saida, a ferramenta fornece ao usuario o con-
junto de arcos primitivos* [13], o Grafo Def obtido do programa em teste, o programa instrumen-
tado para teste, o conjunto de associacdes necessdrias para satisfazer o critério selecionado e o
conjunto de associacdes ainda ndo exercitadas. A Figura 4(b) mostra a criacdo de uma sessdo de
teste para o programa identifier utilizando todos os critérios apoiados pela ferramenta.

40 conjunto de arcos primitivos consiste de arcos que uma vez executados garantem a execugdo de todos os demais
arcos do grafo de programa.

13



] POKE-TOOL - v, 1.1 = Create New Test Session

ProgramTest  TestCase  Evaluaton Visualizedon  Prgpertes Sratus Report it I Directory: I Jhome/aurifidentifier/poke
Y

Test Session Name: |Identifier

Source Program: !idan\iﬁar,c
Included Files: |
Used Defines: |

ProgramTest | IES(CGSEi Evaluation | Visualization | Functions: imam valid_s, walid £

Instrumenred Fil E
s seie Crlie b Compilatdon Command: |gcc <SOUTCE> —0 CEXEC> - W
Infeasible Elements Def Graph

Create new Test Session Viewr

Save As New Session Delere Control Flow Graph I pey = AL Node
IPOrt + proreum Required Blements gz S
POKE-TOOL allC ey + test
ASCI Criteria: ¥ Al Potental Uses Type:
I Al Potentiel Uses/DU

¥ Al Potentisel DU-paths
Confin |~ Caneel |

Load Test Session

~ research

(a) Opgodes disponiveis na ferramenta PokeTool. (b) Tela para criar uma sessdo de teste.

Figura 4: Ferramenta PokeTool.

Atualmente, a ferramenta encontra-se disponivel para os ambientes DOS e UNIX. A versdo
para DOS possui interface simples, baseada em menus. A versdo para UNIX possui médulos
funcionais cuja utilizagdo se d4 por meio de interface grafica ou linha de comando (shell scripts).

A titulo de ilustragcdo, considere o programa identifier e os critérios Todos-Arcos e
Todos-Potenciais-Usos. As tabelas 3 e 4 trazem os elementos requeridos por esses critérios, res-
pectivamente. Utilizando o conjunto de casos de teste Ty = {(al, Vélido), (2B3, Invélido), (Z-12,
Invélido), (A1b2C3d, Invélido)}, gerado anteriormente a fim de satisfazer o critério Particiona-
mento em Classes de Equivaléncia, é possivel observar qual a cobertura obtida em relacdo aos cri-
térios Todos-Arcos e Todos-Potenciais-Usos (Figura 5(a) e Figura 5(b), respectivamente). Ainda
na Figura 5(b), sdo ilustrados para o critério Todos-Potenciais-Usos os elementos requeridos e ndo
executados quando a cobertura € inferior a 100%.

Tabela 3: Elementos requeridos pelo critério Todos-Arcos.
| Arcos Primitivos |

[ Arco (1,2) | Arco(1,3) | Arco (5,6) | Arco(5,7) | Arco(8,9) | Arco (8,10) |

Tabela 4: Elementos requeridos pelo critério Todos-Potenciais-Usos.
[ Associacdes Requeridas |

D (1, (6,7), {length}) 17) (2, (6,7), {length})
2)(1,(1,3),{achar, length,valid_id}) 18) (2, (5,6), {length})
3)(1,(8,10), {length,valid_id}) 19) (3, (8,10), {achar})
4)(1,(8,10),{valid_id}) 20) (3,(8,9), {achar})
5)(1,(8,9),{length,valid_id}) 21) (3,(5,7),{achar})

6) (1,(8,9),{valid_id}) 22) (3,(6,7),{achar})

7 (1,(7,4),{valid_id}) 23) (3, (5,6),{achar})

8) (1,(5,7),{length,valid_id}) 24) (6, (8,10), {valid_id})

9 (1,(5,7),{valid_id}) 25) (6, (8,9),{valid_id})

10) (1, (5,6),{length,valid_id}) 26) (6, (5,7),{valid_id})

11 (1, (5,6),{valid_id}) 27) (6, (5,6),{valid_id})

12) (1, (2,3),{achar,valid_id}) 28) (7, (8,10),{achar, length})
13) (1, (1,2),{achar, length,valid_id}) | 29)(7,(8,9),{achar,length})
14) (2, (8,10),{length}) 30) (7,(5,7),{achar, length})
15) (2, (8,9),{length}) 31) (7,(6,7),{achar, length})
16) (2, (5,7),{length}) 32) (7, (5,6),{achar, length})

Observe que somente com os casos de teste funcionais foi possivel cobrir o critério Todos-

Arcos ao passo que para cobrir o critério Todos-Potenciais-Usos ainda é necessario anali-
sar as associagdes que ndo foram executadas. Deve-se ressaltar que o conjunto T é Todos-

14



ik
:ARCOS DO CRITERIQ TODOS- ARCOS executados:

Report — main

=]

Report — main

,{ length }»

4 length, valid_id b=
,{ length, valid_i id =
{ length, valid id }e

ASSOCTACOES DO CRITERIC TODOS POT- USOS nao executadas:

' Cobertura Total = 100.000000 .4 valid_id 3=
{ valid id ¥
.{ achar, length }>
,{ achar, length }>

Do AAA A A A AN A
B e e

A0 0 00 0 0o o LA 6 00 o8

”
a

| ARCOS DO CRITERIO TOLOE- ARCOS nao executados: Cobertura Total = 62.500000

Media da Cobertura dos Grafo(i) = 59.846153

|Cobertura Total = 100.000000 # T
[o]:4 I OK

(a) Todos-Arcos. (b) Todos-Potenciais-Usos.

Figura 5: Relatérios gerados pela ferramenta PokeTool em relacdo ao programa identifier.

Arcos-adequado, ou seja, o critério Todos-Arcos foi satisfeito e o erro presente no programa
identifier ndo foi revelado. Certamente, um conjunto adequado ao critério Todos-Arcos
que revelasse o erro poderia ter sido gerado; o que se ilustra aqui € que nao necessariamente a
presenca do erro € revelada.

Desejando-se melhorar a cobertura em relagdo ao critério Todos-Potenciais-Usos, novos casos
de teste devem ser inseridos visando a cobrir as associa¢des que ainda nio foram executadas.
Primeiramente, deve-se verificar, entre as associagdes ndo executadas, se existem associacdes nao
executdveis. No caso, as associacdes (1, (8,9),{length,valid_id}), (2,(8,10),{length})
e (6,(8,9),{valid_id}) sdo ndo executdveis. Na Tabela 5 esse processo ¢ ilustrado até que se
atinja a cobertura de 100% para o critério Todos-Potenciais-Usos. O simbolo v* indica quais
associacdes foram cobertas por quais conjuntos de casos de teste e o simbolo x mostra quais sdo
as associagdes nao-executaveis.

Tabela 5: ITlustracdo da evolugdo da sessdo de teste para cobrir o critério Todos-Potenciais-Usos.

| Associacdes Requeridas | To [ T1 | T> | Associacdes Requeridas [T [T | Tz ]

1) (1,(6,7),{length}) v 17) (2,(6,7),{length}) v
2)(1,(1,3),{achar, length,valid_id}) v 18) <2, (5, 6),{length}) v

3) (1,(8,10),{length,valid_id}) v 19) (3, (8,10), {achar}) v
4)(1,(8,10),{valid_id}) v 20) (3,(8,9), {achar}) v
5)(1,(8,9),{length,valid_id}) X X x | 21) (3,(5,7),{achar}) v
6)(1,(8,9),{valid_id}) v 22) (3,(6,7),{achar}) v

7 (1,(7,4),{valid_id}) v 23) (3,(5,6),{achar}) v

8) (1,(5,7),{length,valid_id}) v 24) (6, (8,10),{valid_id}) v
9)(1,(5,7),{valid_id}) v 25) (6, (8,9),{valid_id}) X X X
10) (1, (5,6),{length,valid_id}) v 26) (6, (5,7),{valid_id}) v

11) (1, (5,6), {valid_id}) v 27) (6, (5,6),{valid_id}) v
12) (1,(2,3),{achar,valid_id}) v 28) (7,(8,10),{achar, length}) | v

13) (1, (1,2),{achar, length,valid_id}) | v 29) (7, (8,9),{achar, length}) v

14) (2, (8,10), {length}) X X x | 30)(7,(5,7),{achar, length}) v

15) (2, (8,9), {length}) v 31) (7,(6,7),{achar, length}) v
16) (2,(5,7),{length}) v 32) (7,(5,6),{achar, length}) v

T, = {(al, Valido), (2B3, Invalido), (Z-12, Invalido), (A b2C3d, Invalido)}
Ty = ToU {(1#, Inv4lido), (%, Invalido), (c, V4lido)}
Ty = TyU {(#-%, Invdlido)}

15



Observe que mesmo tendo satisfeito um critério mais rigoroso como o critério Todos-
Potenciais-Usos, a presenca do erro ainda nio foi revelada. Assim, motiva-se a pesquisa de cri-
térios de teste que exercitem os elementos requeridos com maior probabilidade de revelar erros.
Outra perspectiva que se coloca € utilizar uma estratégia de teste incremental, que informalmente
procura-se ilustrar neste texto. Em primeiro lugar foram exercitados os requisitos de teste reque-
ridos pelo critério Todos-Arcos, em seguida os requeridos pelo critério Todos-Potenciais-Usos e,
posteriormente, poder-se-ia considerar o critério Andlise de Mutantes (descrito a seguir).

2.4 Técnica Baseada em Erros

A técnica de teste baseada em erros utiliza informacdes sobre os tipos de erros mais freqiientes
no processo de desenvolvimento de software para derivar os requisitos de teste. A énfase da
técnica estd nos erros que o programador ou projetista pode cometer durante o desenvolvimento e
nas abordagens que podem ser usadas para detectar a sua ocorréncia. Semeadura de Erros [10] e
Andlise de Mutantes [22] sdo critérios tipicos que se concentram em erros.

No critério Semeadura de Erros, introduzido nos anos 80, uma quantidade conhecida de de-
feitos é semeada artificialmente no programa. Apds o teste, do total de defeitos encontrados,
verificam-se quais sdo naturais e quais sdo artificiais. Usando estimativas de probabilidade, o nu-
mero de defeitos naturais ainda existentes no programa pode ser estimado. Entre os problemas
associados a aplicagdo do critério destacam-se: (1) os defeitos artificiais podem interagir com os
naturais fazendo com que os defeitos naturais sejam “mascarados” pelos defeitos semeados; (2)
para obter um resultado estatistico ndo questiondvel & necessdrio o uso de programas capazes de
conter 10.000 defeitos ou mais; (3) é preciso assumir que os defeitos estdo uniformemente dis-
tribuidos pelo programa, o que, em geral, ndo é verdade. Programas reais apresentam longos
trechos de cddigo simples e com poucos defeitos, e pequenos trechos de grande complexidade e
alta concentragdo de defeitos [10].

O critério Andlise de Mutantes surgiu na década de 70 na Yale University e Georgia Institute of
Technology, possuindo um forte relacionamento com um método classico para detec¢do de erros
16gicos em circuitos digitais — o modelo de teste de falha tnica [32]. Basicamente, o critério utiliza
um conjunto de programas ligeiramente modificados (mutantes) obtidos a partir de determinado
programa P para avaliar o quanto um conjunto de casos de teste 1" é adequado para o teste de P.
O objetivo é determinar um conjunto de casos de teste que consiga revelar, por meio da execucio
de P, as diferencas de comportamento existentes entre P e seus mutantes [21].

A seguir € apresentada uma visdo geral do critério Andlise de Mutantes. Também sdo dis-
cutidos aspectos referentes a ferramenta de apoio Proteum, desenvolvida no ICMC/USP [15].
Informagdes detalhadas sobre o critério e sobre a ferramenta podem ser obtidas em [15, 60].

2.5 O Critério Analise de Mutantes

Um dos primeiros artigos que descrevem a idéia de teste de mutantes foi publicado em
1978 [22]. A idéia basica da técnica apresentada por DeMillo, conhecida como “hipétese do
programador competente” (competent programmer hypothesis), assume que programadores expe-
rientes escrevem programas corretos ou muito préximos do correto. Assumindo a validade desta
hipétese, pode-se afirmar que erros sao introduzidos nos programas por meio de pequenos desvios
sintdticos que, embora ndo causem erros sintdticos, alteram a semantica do programa e, con-
seqiientemente, conduzem-no a um comportamento incorreto. Para revelar tais erros, a Andlise de
Mutantes identifica os desvios sintdticos mais comuns e, através da aplicacdo de pequenas trans-
formacgdes sobre o programa em teste, encoraja o testador a construir casos de testes que mostrem
que tais transformacgdes levam a um programa incorreto [2].

16



Outra hipétese explorada na aplicacdo do critério Andlise de Mutantes é o “efeito de aco-
plamento” (coupling effect) [22], a qual assume que erros complexos estdo relacionados a erros
simples. Assim sendo, espera-se, e alguns estudos empiricos ja confirmaram esta hipédtese [1, 9],
que conjuntos de casos de teste capazes de revelar erros simples sdo também capazes de revelar
erros complexos. Nesse sentido, aplica-se uma mutacdo de cada vez no programa P em teste, ou
seja, cada mutante contém apenas uma transformacao sintdtica. Um mutante com k transforma-
¢Oes sintdticas é referenciado por k-mutante; neste texto sio utilizados apenas 1-mutantes.

Partindo-se da hipétese do programador competente e do efeito de acoplamento, a principio,
o testador deve fornecer um programa P a ser testado e um conjunto de casos de teste 1" cuja
adequacdo deseja-se avaliar. O programa € executado com 7' e se apresentar resultados incorretos
entdo um erro foi encontrado e o teste termina. Caso contrério, o programa ainda pode conter erros
que o conjunto 7" ndo conseguiu revelar. O programa P sofre entdo pequenas alteragdes, dando
origem aos programas Pi, P, ..., P, denominados mutantes de P, diferindo de P apenas pela
ocorréncia de erros simples.

Com o objetivo de modelar os desvios sintdticos mais comuns, operadores de mutacio (mutant
operators) sao aplicados a um programa P, transformando-o em programas similares: mutantes
de P. Entende-se por operador de mutacio as regras que definem as alteracdes que devem ser
aplicadas no programa original P. Os operadores de mutagdo sio construidos para satisfazer a
um entre dois propdsitos: (1) induzir mudangas sintaticas simples com base nos erros tipicos
cometidos pelos programadores (como trocar o nome de uma varidvel); ou (2) forcar determinados
objetivos de teste (como executar cada arco do programa) [69].

Em seguida, os mutantes sdo executados com o mesmo conjunto de casos de teste 7. O
objetivo € obter casos de teste que resultem apenas em mutantes mortos (para algum caso de teste
o resultado do mutante e o do programa original diferem entre si) e equivalentes (0 mutante e o
programa original apresentam sempre o mesmo resultado, para qualquer d € D). Neste caso,
tem-se um conjunto de casos de teste 7" adequado ao programa P em teste, no sentido de que, ou
P estd correto, ou possui erros pouco provaveis de ocorrerem [22].

E preciso ressaltar que, em geral, a equivaléncia entre programas é uma questio indecidivel e
requer a intervencdo do testador. Essa limitagdo tedrica, no entanto, ndo significa que o problema
deva ser abandonado por ndo apresentar solu¢do. Na verdade, alguns métodos e heuristicas tém
sido propostos para determinar a equivaléncia de programas em uma grande porcentagem dos
casos de interesse [10].

Um ponto importante destacado por DeMillo [20] € que a Andlise de Mutantes fornece uma
medida objetiva do nivel de confianca da adequagdo dos casos de teste analisados por meio da
defini¢do de um escore de mutacio (mutation score), que relaciona o nimero de mutantes mortos
com o nimero de mutantes gerados. O escore de mutacio € calculado da seguinte forma:

DM(P,T)

ms(PT) = 3rpy — Ba(P)

sendo:
DM (P, T): nimero de mutantes mortos pelos casos de teste em 7.
M (P): nimero total de mutantes gerados.

EM (P): nimero de mutantes gerados equivalentes a P.

O escore de mutacao varia no intervalo entre O e 1 sendo que, quanto maior o escore mais ade-
quado € o conjunto de casos de teste para o programa sendo testado. Percebe-se com essa formula

17



que apenas DM (P, T') depende do conjunto de casos de teste utilizado e que, EM (P) é obtido
a medida que o testador, manualmente ou com o apoio de heuristicas, decide que determinado
mutante vivo € equivalente [83].

Um dos maiores problemas para a aplicagdo do critério estd relacionado ao seu alto custo,
uma vez que o nimero de mutantes gerados, mesmo para pequenos programas, pode ser muito
grande, exigindo um tempo de execu¢@o muito alto. Vdrias estratégias t€m sido propostas para
fazer com que a Andlise de Mutantes possa ser utilizada de modo mais eficiente, dentro de limites
economicamente vidveis. Uma solugdo bastante explorada pela comunidade de teste procura di-
minuir o custo de aplicacdo da Anélise de Mutantes por meio da redu¢do do nimero de mutantes
a serem executados e analisados. Nessa perspectiva, algumas abordagens derivadas da Andlise
de Mutantes foram propostas: Mutacdo Aleatoria (Randomly Selected Mutation) [1], Mutagdo
Restrita (Constrained Mutation) [62] e Mutacdo Seletiva (Selective Mutation) [70]. Tais aborda-
gens procuram selecionar apenas um subconjunto do total de mutantes gerados, reduzindo o custo
associado, mas com a expectativa de nao reduzir a eficcia do critério.

Assim como os critérios baseados em Fluxo de Dados, o critério Analise de Mutantes também
tem sido essencialmente utilizado no teste de unidade. Na tentativa de estender sua aplicacdo
para o teste de integracdo, Delamaro et al. [15, 16] propuseram o critério Mutacio de Interface
(Interface Mutation) — um critério para o teste de integracdo baseado no conceito de mutagao,
neste caso, mutacdo de interface entre os médulos componentes do software. A idéia bésica é
viabilizar o teste da interface entre as unidades que compdem o software, ao contrario da Andlise
de Mutantes, que explora somente as caracteristicas das unidades separadamente [16, 17]. As
abordagens de Mutacdo Aleatdria, Mutagdo Restrita e Mutagdo Seletiva também foram estendidas
de modo a permitir sua aplicacio no teste de integracao.

Outra linha de pesquisa investigada refere-se ao teste de especificacdes, com €nfase no teste
e validacdo de aspectos comportamentais de sistemas reativos e validacdo de protocolos. Nesse
sentido, extensdes ao critério Andlise de Mutantes tém sido propostas para o teste de especificagdes
em Redes de Petri [28,81], Statecharts [23,85], Maquinas de Estado Finito [26,27], Estelle [74,84],
SDL [86] e Especificacdes Algébricas [98].

Além disso, comecam a aparecer na literatura extensdes do teste de mutacdo para o teste de
programas OO [18, 35,50, 51, 56,92,93]. Tais extensdes sdo descritas mais detalhadamente na
Secdo 3.

2.5.1 A Ferramenta de Teste Proteum

Para ilustrar os conceitos referentes ao teste de mutagdo serd utilizada a ferramenta Proteum
(PROgram TEsting Using Mutants) [15], desenvolvida no ICMC/USP. A ferramenta apdia a apli-
cacdo do critério Andlise de Mutantes no teste de programas C, estando disponivel para os sistemas
operacionais SunOS, Solaris e Linux.

A Figura 6(a) apresenta a tela principal da ferramenta bem como as fun¢des disponiveis. Ba-
sicamente, a Proteum oferece ao testador recursos para, através da aplicacdo do critério Andlise
de Mutantes, avaliar a adequagdo ou gerar um conjunto de casos de teste 1" para determinado
programa P. Com base nas informacdes fornecidas pela Proteum, o testador pode melhorar a
qualidade de 7' até obter um conjunto adequado ao critério. Desse modo, a ferramenta pode ser
utilizada como instrumento de avaliacio bem como de selecdo de casos de teste.

A Proteum também trabalha com sessdo de teste, ou seja, conjunto de atividades envolvendo
um teste que podem ser realizadas em etapas, sendo possivel ao usudrio iniciar e encerrar o teste
de um programa, bem como retoma-lo a partir de onde este foi interrompido. Uma sessdo de teste
com o apoio da ferramenta Proteum pode ser conduzida por meio de uma interface grafica ou por

18



meio de scripts. O processo de criagdo de uma sessdo de teste utilizando a interface grafica é
ilustrado na Figura 6(b).

s PROTEUM - PROgram TEsting Using Mutants = V.1.4-C i Create New Program Test
ProgramTest TestCase Mutants Beports Properties  Status  GQuit | Directory: lfhnmefaur\f\demiﬂerfprmeurr] |
Program Test Name: |\demhﬁar
Source Program: |\demmer
Executable Program: |\dent\ﬂer
Compilation Command: |g|:|: idantifier.c - o identifiar -
ProgramTest TestCass | Mutants | Beports | Type: @ test - research
Load Add Generate Test Case Functions: . all @ select
New View View
Delete Equivalents B main Al
Import e Execute
Wi poye Seect . B valid_s
PORE-TOOL]  ECtECt - by Operator
ASCI by Block = walid_f
7
Confirm | Cancel J

(a) Opgoes disponiveis na ferramenta Proteum. (b) Tela para criar uma sessao de teste.

Figura 6: Ferramenta Proteum.

Os recursos oferecidos pela ferramenta permitem a execucao das seguintes operacdes: defi-
nicdo de casos de teste, execugdo do programa em teste, selecdo dos operadores de mutacio que
serdo utilizados para gerar os mutantes, geracdo dos mutantes, execucdo dos mutantes com 0s
casos de teste definidos, andlise dos mutantes vivos e calculo do escore de mutagdo. As fungdes
implementadas na Proteum possibilitam que alguns desses recursos sejam executados automatica-
mente (como a execucdo dos mutantes), enquanto que para outros sdo fornecidas facilidades para
que o testador possa realizd-los (como a andlise de mutantes equivalentes). Além disso, diversas
caracteristicas adicionais foram incorporadas de modo a facilitar a atividade de teste e/ou a condu-
¢do de experimentos. E o caso, por exemplo, da possibilidade de executar um mutante com todos
os casos de teste disponiveis, mesmo que algum deles ja o tenha matado. Com esse tipo de teste,
chamado research, conseguem-se dados a respeito da eficiéncia dos operadores de mutacdo ou
mesmo para a determinagao de estratégias de minimizacao dos conjuntos de casos de teste [15].

Um dos pontos essenciais para a aplicagdo do critério Andlise de Mutantes ¢ a defini¢do do
conjunto de operadores de mutacido. A Proteum conta com 71 operadores de mutacdo divididos
em quatro classes: mutacdo de comandos, mutacao de operadores, mutacdo de varidveis e mutacao
de constantes. E possivel escolher os operadores de acordo com a classe de erros que se deseja
enfatizar, permitindo que a geracdo de mutantes seja feita em etapas ou até mesmo dividida entre
vérios testadores trabalhando independentemente. Na Tabela 6 sdo ilustrados alguns operadores
de mutagdo para cada uma das classes de operadores.

A seguir, é avaliada a adequacdo do teste do programa identifier, realizado até este ponto
com o uso da ferramenta PokeTool, em relagdo ao critério Andlise de Mutantes, tendo como apoio
a ferramenta Proteum. Em outras palavras, é avaliada a adequagdo dos conjuntos Todos-Usos-
adequado e Todos-Potenciais-Usos-adequado em relagdo ao critério Anélise de Mutantes.

Inicialmente, somente os casos de teste do conjunto 7 foram importados. A Figura 7(a)
mostra o estado da sess@o de teste apds a execugdo dos mutantes. Em seguida, como o escore
de mutacdo ainda ndo € satisfatério, foram adicionados os casos de teste do conjunto 77 e 15
(Figura 7(b)). Observe que mesmo apds a adi¢do de todos os casos de teste do conjunto Todos-
Potenciais-Usos-adequado, 371 mutantes ainda permaneceram vivos.

Em uma primeira andlise dos mutantes vivos, 78 foram marcados como equivalentes e mais 13
casos de teste foram criados visando a matar os mutantes vivos ndo-equivalentes: T3 = ToU {(zzz,
Vilido), (aA, Vilido), (A1234, Valido), (ZZZ, Vilido), (AAA, Vilido), (aa09, Valido), ([, Inva-

19



Tabela 6: Exemplos de operadores de mutacio para programas C.

Operador | Descri¢io

SSDL Retira um comando de cada vez do programa.

ORRN Substitui um operador relacional por outro operador relacional.

VTWD Substitui a referéncia escalar pelo seu valor sucessor e predecessor.

Ccesr Substitui referéncias escalares por constantes.

SWDD Substitui o comando while por do-while.

SMTC Interrompe a execugdo do lago apds duas execugdes.

OLBN Substitui operador 16gico por operador bitwise.

Cceer Substitui uma constante por outra constante.

VDTR Forca cada referéncia escalar a possuir cada um dos valores: negativo, positivo e zero.

lido), ({, Invalido), (x/, Invalido), (x:, Invalido), (x18, Valido), (x[[, Invalido), (x{{, Invalido)}. A
Figura 8 ilustra dois dos mutantes vivos que foram analisados. O mutante da Figura 8 (a) ¢ um
mutante equivalente e o mutante da Figura 8 (b) é um mutante que morre com o caso de teste ([,
Invélido), presente em 73. Os pontos nos quais as mutagdes foram aplicadas estdo destacados em
negrito. A Figura 7(c) ilustra o resultado obtido apds T3 ter sido executado com todos os mutan-
tes vivos. Como pode ser observado, 64 mutantes ainda permaneceram vivos. Isto significa que
qualquer um desses 64 mutantes poderiam ser considerados “corretos” em relacdo a atividade de
teste atual, uma vez que ndo existe um caso de teste selecionado que seja capaz de distinguir entre

o comportamento dos mutantes e do programa original (Figura 7(c)).

Fi=] Status

=] Status

Directory: I/hume!aurifidenliﬂer/pruleum

Directory: |fh ome/aurifidentifier/proteum

Program Test Name:!\demmer

Program Test Name:lldentmer

Source Prngram:i\dem\ﬂer

Source Prngram:iidentiﬂer

Executable Program: i\uemmer

Executahle Program: ||uemmer

Compilation Cnmmand:!gcc identifier.c —o identifier —w

Type: l_Tat_ Test Cases: i_d_

Total Mutants; [ 833 Live Mutants: [ 403
Active Mulanls:[T Anomalous Mutants: ,U—
Equivalent Mutants:| 0 MUTATION SCORE:| 0568

‘ 0K

Compilation Cnmmanﬂ:!gcc identifier.c -o identifier —w

Type: I_TEt_ Test Cases: [T

Total Mutants: [ 833 live Mutants:| 371
Active Mutants: [T Anomalous Mutants: IT
Equivalent Mutants:| 0 MUTATION SCORE:| 0602

‘ oK

(a) Conjunto Tp.

(b) Conjuntos T4 e T5.

J=] Status

] Status

Directory: Ifhome:‘aurifidemiﬂerfproteum

Directory: |fhumefaurifidem\ﬂerﬂ‘proteum

Program Test Name:!\denhﬁer

Program Test Name:lldentiﬂer

Source Pruglam:i\uemmer

Source Prugram:imemmer

Executable Program: E\dem\ﬂer

Executable Program: [identiﬂer

Compilation Cummand:!gcc identifier.c -0 identifier —w

Type: '_Tgl_ Test Cases: i-_Z_W_

Total Mutants:| 933 live Mutants:| 64
Active Mutams:[? Anomalous Mutants: ,D_
Equivalent Mutants:| 78 MUTATION SCORE:| 0.925

‘ 0K

Compilation Cummand:!gcc identifier.c - o identifier —w

Type: E_'Iﬁt_ Test Cases: r_Z-E_

Total Mutants:| 933 live Mutants:| 2
Active Mutants: W Anomalous Mutants: IT
Equivalent Mutants: | 136 MUTATION SCORE:| 0,937

‘ oK

(c) Conjunto 75.

(d) Conjuntos T4.

Figura 7: Telas de status da sessdo de teste da ferramenta Proteum.

20




main () {

if(valid_id *
(length >= 1) &&
(length < 6))
{
printf ("valido\n");
}
else

{
printf ("Invalid\n");

int valid_s (char ch)

{
if(((ch >= 'A") &&

(ch <="72")) ||
((ch >= "a’") &&
(ch <= "2z")))

{

return (1);

}

else

{
return (0);

}

(a) Mutante equivalente.

(b) Mutante ndo-equivalente.

Figura 8: Exemplos de mutantes do programa identifier.

if(valid_id s&&

(length >= 1) &&
(PRED(length) < 6))

if(valid_id s&s&

(length >= 1) &&
(length <= 6))

{ {
printf ("valido\n"); printf ("valido\n");
} }

(a) Mutante error-revealing. (b) Mutante correto.

Figura 9: Mutantes vivos do programa identifier.

A fim de obter uma melhor cobertura do critério Andlise de Mutantes, o processo de andlise
dos mutantes vivos continuou até que todos os equivalentes fossem marcados. Ao término desse
processo, mais quatro casos de teste foram construidos (7 = 73U {(@, Invélido), (‘, Invélido),
(x@, Invélido), (x*, Invalido)}). A Figura 7(d) mostra o resultado final obtido. Observe que ainda
restaram dois mutantes vivos (Figura 9 (a) e (b)). Esses mutantes sdo chamados error-revealing e
um deles representa o programa correto: Figura 9 (b). Um mutante € dito ser error-revealing se
para qualquer caso de teste ¢ tal que P*(t) # M™*(t) pudermos concluir que P*(¢) ndo estd de
acordo com o resultado esperado, ou seja, revela a presenca de um erro.

Observe que os mutantes error-revealing, figuras 9(a) e 9(b), foram gerados pelos opera-
dores de mutacio ORRN e VITWD e que necessariamente o erro presente na versao do programa
identifier érevelado ao se elaborar qualquer caso de teste que seja capaz de distinguir o com-
portamento entre esses mutantes e a versdo do programa identifier em teste. Os mutantes da
Figura 9 morrem, por exemplo, com o caso de teste (ABCDEF, Valido).

O erro encontrado no programa original foi corrigido e, apds a sua corre¢do, o conjunto com-
pleto de casos de teste T foi reavaliado (15 = T,U {(ABCDEF, Vilido)}), resultando em um
conjunto 100% adequado ao critério Andlise de Mutantes para a versdo corrigida do programa
identifier (Figura 10). A parte corrigida estd destacada em negrito.

Para o programa identifier, utilizando-se todos os operadores de mutagdo, foram gerados
933 mutantes. Aplicando-se somente os operadores da Tabela 6 teriam sido gerados somente 340
mutantes, representando uma economia de aproximadamente 63%. De fato, os operadores de mu-
tacdo ilustrados nessa tabela constituem um conjunto de operadores essenciais para a linguagem
C [5]. Ou seja, um conjunto de casos de teste capaz de distinguir os mutantes gerados por esses

21



/***********************************************************************************
Identifier.c
ESPECIFICACAO: O programa deve determinar se um identificador eh ou nao valido em
"Silly Pascal’ (uma estranha variante do Pascal). Um identificador valido deve
comecar com uma letra e conter apenas letras ou digitos. Alem disso, deve ter no
minimo 1 caractere e no maximo 6 caracteres de comprimento
***********************************************************************************/
#include <stdio.h>
main () int valid_s(char ch)

/x 1 %/ { /% 1 %/ {

/*x 1 %/ char achar; /x 1 %/ if(((ch >= "A") &&

/x 1 %/ int length, valid_id; (ch <= "2")) ||

/% 1 %/ length = 0; ((ch >= "a’") &&

/*x 1 %/ valid_id = 1; (ch <= "2")))

/x 1 %/ printf ("Identificador: "); /% 2 %/ {

/x 1 %/ achar = fgetc (stdin); /x 2 %/ return (1);

/*x 1 %/ valid_id = valid_s (achar); /*x 2 %/ }

/% 1 %/ if(valid_id) /x 3 *x/ else

/x 2 %/ { /*x 3 %/ {

/x 2 %/ length = 1; /x 3 %/ return (0);

/x 2 %/ } /* 3 */ }

/x 3 %/ achar = fgetc (stdin); /x 4 %/ }

/x4 %/ while (achar != "\n’)

/% 5 x/ { int valid_f (char ch)

/x 5 %/ if (! (valid_f (achar))) /*x 1 %/ {

/* 6 x/ { /% 1 %/ if(((ch >= 'A") &&

/x 6 %/ valid_id = 0; (ch <=72")) ||

/*x 6 x/ } ((ch >= "a’) s&&

/x T x/ length++; (ch <= "z")) ||

/x T %/ achar = fgetc (stdin); ((ch >="'0") &&

/x T %/ } (ch <= 797)))

/x 8 %/ if(valid_id && /x 2 %/ {

Je 9w/ ( (length >= 1) && (length <= 6)) /v 2 %/ return (1);

/x 9 x/ printf ("valido\n"); /x 2 %/ }

/x 9 %/ } /% 3 */ else

/% 10 */ else /% 3 %/ {

/x 10 %/ { /x 3 %/ return (0);

/% 10 x/ printf ("Invalid\n"); /*x 3 %/ }

/% 10 / } /x4 x/ }

/x 11 =/ }

Figura 10: Versdo do programa identifier corrigida.

operadores, em geral, seria capaz de distinguir os mutantes ndo equivalentes gerados pelos demais
operadores de mutacdo, determinando um escore de mutacdo bem préximo de 1. Observe que os
operadores de mutacio ORRN e VTWD, que geraram os mutantes error-revealing, estdo entre 0s
operadores essenciais, 0 que neste caso, ndo comprometeria a eficdcia da atividade de teste.

3 Aplicacao de Critérios de Teste no Contexto de Programas OO

Nas secoes anteriores foram discutidos conceitos e aspectos bdsicos relacionados ao teste de
programas procedimentais. A seguir, sdo abordados alguns dos principais aspectos e direcoes de
pesquisa na drea de teste de programas OO, procurando-se mostrar que 0s conceitos € mecanismos
desenvolvidos originalmente para o teste de programas procedimentais também podem ser utiliza-
dos nesse contexto de desenvolvimento, com as devidas adaptacdes. Inicialmente sdo identificadas
as fases de teste para programas OO, as quais sdo comparadas as fases de teste para programas
procedimentais. O impacto das caracteristicas de encapsulamento, heranca, polimorfismo e aco-
plamento dindmico na defini¢c@o e aplicacdo de critérios de teste também ¢é discutido. Além disso,

22



¢ dada uma visdo geral dos principais trabalhos relacionados ao teste baseado em Fluxo de Dados
e ao teste de Mutagdo para programas OO. Algumas iniciativas de automatiza¢do no contexto de
teste OO, em especial a ferramenta JaBUTi, também sdo brevemente discutidas.

3.1 Fases de Teste OO

Assim como os métodos de desenvolvimento de software sdo divididos em vdrias fases de
modo a permitir que o engenheiro de sistemas implemente a solu¢do do problema passo a passo,
a atividade de teste também € dividida em fases. Com isso, o testador pode se concentrar em
diferentes aspectos do software e utilizar diferentes critérios de teste em cada uma delas [55].
Conforme discutido na Sec¢do 1, em nivel procedimental, a atividade de teste pode ser considerada
como uma atividade incremental realizada em trés fases [73]: teste de unidade, teste de integracdo
e teste de sistema. No contexto de programas OO, entretanto, algumas variacdes sdo identificadas,
conforme apresentado a seguir.

Na Figura 11, adaptada de [8], s@o ilustradas as trés fases de teste mencionadas acima, bem
como os elementos utilizados em cada uma das fases tanto para programas procedimentais como
para programas OO. Segundo o padrdo IEEE 610.12-1990 [49], uma unidade é um componente
de software que nio pode ser subdividido. Considerando que teste € uma atividade dindmica, em
programas procedimentais uma unidade F refere-se a uma sub-rotina ou um procedimento que €
a menor parte funcional de um programa que pode ser executada. Observa-se, ainda, que durante
os testes de unidade é necessdria a implementacdo de drivers e stubs. O driver ¢ uma unidade
que coordena o teste de F, sendo responsdvel por ler os dados de teste fornecidos pelo testador,
repassar esses dados na forma de parAmetros para F, coletar os resultados relevantes produzidos
por F, e apresentd-los para o testador. Um stub é uma unidade que substitui, no momento do teste,
uma unidade usada (chamada) por F. Na maior parte dos casos, um stub € uma unidade que simula
o comportamento da unidade chamada por ¥ com o minimo de computacdo ou manipulacio de
dados.

Com base em tais defini¢cdes, pode-se considerar que em programas OO a menor unidade a ser
testada € um método. A classe a qual o método pertence pode ser vista como o driver do método,
pois sem a classe ndo é possivel executar um método. No paradigma procedimental o teste de
unidade também € chamado de intraprocedimental; no paradigma OO ¢€ dito intra-método [41].

Por defini¢cdo, uma classe engloba um conjunto de atributos e métodos que manipulam esses
atributos. Assim sendo, considerando uma tnica classe ji € possivel pensar em teste de integra-
¢do. Métodos da mesma classe podem interagir entre si para desempenhar funcdes especificas
caracterizando uma integracao entre métodos que deve ser testada: € o teste inter-método [41]. No
paradigma procedimental essa fase de teste também pode ser chamada de teste interprocedimental.

Harrold e Rothermel [41] definem ainda outros dois tipos de teste para programas OQO: teste
intra-classe e teste inter-classe. No teste intra-classe s@o testadas interagdes entre métodos publi-
cos fazendo chamada a esses métodos em diferentes seqiiéncias. O objetivo ¢ identificar possiveis
seqiiéncias de ativacdo de métodos invalidas que levem o objeto a um estado inconsistente. Se-
gundo os autores, como o usudrio pode invocar seqiiéncias de métodos publicos em uma ordem
indeterminada, o teste intra-classe aumenta a confianca de que diferentes seqiiéncias de chama-
das interagem adequadamente. No teste inter-classe o0 mesmo conceito de invocagdo de métodos
publicos em diferentes seqiiéncias € utilizado. Entretanto, esses métodos publicos ndo necessitam
estar na mesma classe.

Finalmente, apds realizados os testes acima, o sistema todo € integrado e podem ser realizados
os testes de sistema que, por serem baseados em critérios funcionais, nao apresentam diferencas
fundamentais entre o teste procedimental e OO.

23



Fases de Teste

Teste Procedimental Teste de Unidade Teste Orientado a Objetos

Sub-rotina ou fungéo I Método

Teste de Integracéo

— —

— Classe
Duas ou mais unidades : I : I g(’)“ritpegnemes
Subsist

ubsistema — = Subsistemas
S |
—_—
Teste de Sistema
T . T .

Toda aplicagao - Toda aplicagao

oS

Figura 11: Relacionamento entre teste de unidade, de integracdo e de sistema: programas proce-
dimentais e OO [8].

Pequenas variacdes quanto a divisdo das fases de teste para programas OO sdo identificadas
na literatura. Alguns autores entendem que a menor unidade de um programa OO € a classe e ndo
o método [3, 8, 63,72]. Nessa direc¢do, o teste de unidade poderia envolver o teste intra-método,
inter-método e intra-classe, enquanto o teste de integracdo corresponderia ao teste inter-classe. Na
Tabela 7 sdo sintetizados os tipos de teste que podem ser aplicados em cada uma das fases, tanto
em programas procedimentais quanto em programas OO, considerando o método ou a classe como
sendo a menor unidade.

Tabela 7: Relacdo entre fases de teste de programas procedimentais e OO.

| Menor Unidade: Método |

| Fase | Teste Procedimental | Teste Orientado a Objetos |
Unidade Intraprocedimental Intra-método
Integragdo | Interprocedimental Inter-método, Intra-classe e Inter-classe
Sistema Toda Aplicagdo Toda Aplicagdo
| Menor Unidade: Classe |
| Fase Teste Procedimental Teste Orientado a Objetos ‘
Unidade Intraprocedimental | Intra-método, Inter-método e Intra-classe
Integracdo | Interprocedimental Inter-classe
Sistema Toda Aplicagdo Toda Aplicacdo

24



3.2 Impacto da Orientacio a Objetos na Testabilidade

O paradigma de programacgdo OO possui um conjunto de constru¢des que, apesar de podero-
sas, apresentam riscos de erros e problemas de teste. Nesta se¢c@o € discutido o quanto caracteris-
ticas como encapsulamento, heranga, polimorfismo e acoplamento dindmico podem impactar na
condugdo da atividade de teste.

3.2.1 Encapsulamento

O encapsulamento refere-se ao mecanismo de controle de acesso que determina a visibilidade
de atributos e métodos dentro de uma classe. Com o controle de acesso, previnem-se depen-
déncias indesejadas entre uma classe cliente e uma classe servidora, tornando visivel ao cliente
somente a interface da classe, ocultando detalhes de implementacdo. O encapsulamento auxilia
no ocultamento de informagao e na obten¢do da modularidade do sistema em desenvolvimento.

Embora o encapsulamento ndo contribua diretamente para a ocorréncia de erros, ele pode
constituir um obstdculo para a atividade de teste, limitando a controlabilidade e observabilidade.
Teste requer um relatério completo do estado concreto e abstrato de um objeto, bem como a
possibilidade de alterar esse estado facilmente [8]. As linguagens OO dificultam a atividade de se
obter (gef) ou alterar (sef) o estado de um objeto. No caso especifico de C++, as fungdes amigas
(friend functions) foram desenvolvidas para solucionar esses problemas. Entretanto, no caso de
linguagens que ndo possuem esse recurso, outras providéncias devem ser tomadas. Harrold [38],
referindo-se ao teste de componentes de software, diz que uma solucio seria a implementacdo de
métodos get e set para todos os atributos de uma classe. Outra alternativa seria utilizar recursos
de reflexdo computacional. No entanto, como destacam Rosa e Martins [77], algumas linguagens
ndo permitem que as caracteristicas de métodos privados sejam refletidas, somente a de métodos
protegidos e publicos. Esse é o caso, por exemplo, da linguagem OpenC++ 1.2, utilizada no
trabalho desenvolvido pelas mesmas [77].

3.2.2 Heranca

Herancga € essencial a programacdo OO pois permite a reusabilidade via o compartilhamento
de caracteristicas presentes em uma classe ja definida anteriormente. Entretanto, como destacado
por Binder [8], a heranga enfraquece o encapsulamento e pode ser responsével pela criagdo de um
risco de erro similar ao uso de varidveis globais em programas procedimentais. Quando se esta
implementando uma classe que faz uso de heranga, é de fundamental importancia compreender os
detalhes de implementacdo das classes ancestrais. Sem tomar esse cuidado, pode-se desenvolver
classes que aparentemente funcionam corretamente, mas violam condi¢des implicitas requeridas
para garantir a correcdo das classes ancestrais. Grandes encadeamentos de herangca podem di-
ficultar a compreensdo, aumentar a chance de ocorréncia de erros e reduzir a testabilidade das
classes.

Como comentado por Offutt e Irvine [68], a utilizacdo de heranca pode levar a uma falsa
conclusdo de que subclasses que herdam caracteristicas de superclasses ndo precisam ser testadas,
reduzindo assim o esfor¢o com os testes. Perry e Kaiser [72] observam que mesmo que um método
seja herdado integralmente de uma superclasse, sem nenhuma modificacdo, este deverd ser retes-
tado no contexto da subclasse. Harrold et al. [40] utilizaram os resultados de Perry e Kaiser [72]
e desenvolveram uma estratégia de teste incremental baseada na hierarquia de heranga das classes
— Estratégia Incremental Hierdrquica. A idéia ¢ identificar quais métodos herdados necessitam de
novos casos de teste para serem testados e quais métodos podem ser retestados aproveitando os
casos de teste elaborados para o teste da superclasse. Com essa estratégia, o esfor¢o requerido

25



para o teste é reduzido, visto que muitos casos de teste que ja foram elaborados podem ser reutili-
zados no teste das subclasses. Além disso, deve-se observar que a implementacdo do mecanismo
de heranca varia de linguagem para linguagem, influenciando a estratégia de teste a ser utilizada.

Herangca Multipla

A heranca multipla permite que uma subclasse herde caracteristicas de duas ou mais super-
classes as quais podem conter caracteristicas comuns (atributos com mesmo nome ¢ métodos com
mesmo nome e mesmo conjunto de atributos). Perry e Kaiser [72] destacam que, embora heranca
multipla leve a pequenas mudancas sintéticas, ela pode levar a grandes mudangas semanticas,
dificultando ainda mais a realizacao dos testes.

3.2.3 Polimorfismo

Polimorfismo refere-se a capacidade de se fazer referéncia a mais de um tipo de objeto por
meio de um mesmo nome ou varidvel. No polimorfismo estatico essa associa¢do ocorre em tempo
de compilacdo. Por exemplo, classes genéricas (templates do C++) permitem a realizacdo de poli-
morfismo estatico. J4 o polimorfismo dindmico permite que, em tempo de execugao, associacdes
com diferentes tipos de objetos sejam realizadas. Métodos polimérficos utilizam o recurso de aco-
plamento dindmico para determinar, em tempo de execucdo, qual método deve responder a uma
determinada mensagem, baseado no tipo do objeto e no conjunto de pardmetros que sao enviados
junto com a mensagem.

Embora o polimorfismo possa ser utilizado para produzir cédigo elegante e extensivel, alguns
aspectos problemadticos podem ser detectados na sua utilizagcdo. Suponha a existéncia de um mé-
todo x em uma superclasse, o qual precisa ser testado. Posteriormente, o método x € sobrescrito.
A correcido do método x na subclasse ndo € garantida pois as pré-condi¢des e pds-condi¢cdes na
subclasse para a execu¢do do método x podem nao ser as mesmas da superclasse [8].

Cada possibilidade de acoplamento de uma mensagem polimoérfica ¢ uma computagdo Unica.
O fato de diversos acoplamentos polimdrficos trabalharem corretamente nao garante que todos irdo
trabalhar. Objetos polimérficos com acoplamento dindmico podem facilmente resultar no envio
de mensagens para a classe errada e pode ser dificil identificar e executar todas as combinagdes de
associacoes [93].

3.24 Acoplamento Dinamico

O acoplamento dindmico faz com que, em tempo de execu¢do, uma mensagem seja envi-
ada para uma classe servidora que implemente aquela mensagem. Como classes servidoras sdo
freqiientemente desenvolvidas e revisadas sem levar em consideracdo as classes clientes, a utiliza-
¢ao de métodos que antes funcionavam adequadamente na classe cliente pode levar a resultados
inesperados. Uma classe cliente pode solicitar um método que ndo mais estd implementado na
classe servidora, usar incorretamente os métodos disponiveis ou invocar os métodos com parame-
tros incorretos [93].

Além dos problemas apresentados acima, Binder [8] descreve ainda erros relacionados com
seqiiéncias de mensagens e estados dos objetos. O empacotamento de métodos dentro de uma
classe é fundamental em OO. Como resultado, mensagens devem ser executadas em alguma
seqiiéncia, originando a questdo: “Quais seqiiéncias de envio de mensagens sdo corretas?”’. Obje-
tos sdo entidades criadas em tempo de execucao, ocupando espago na memoria da maquina. Cada
nova configuracio assumida por esse espaco de memoria caracteriza um novo estado do objeto.
Assim, além do comportamento encapsulado por um objeto por meio de seus métodos e atributos,
objetos também encapsulam estados.

26



Examinando como a execu¢do de um método pode alterar o estado de um objeto, quatro pos-
sibilidades sdo observadas [63]: (1) ele pode levar o objeto a um novo estado vélido; (2) ele pode
deixar o objeto no mesmo estado em que se encontra; (3) ele pode levar o objeto para um estado
indefinido; e (4) ele pode alterar o estado para um estado ndo apropriado. A terceira e a quarta
opgdes caracterizam estados de erro. A primeira op¢do pode caracterizar um erro se 0 método
executado comportar-se como na segunda opgdo, e vice-versa.

3.3 Critérios de Teste OO

Conforme discutido na Secdo 2, técnicas e critérios de teste t€ém sido investigados visando
a fornecer uma maneira sistemadtica e rigorosa para selecionar um subconjunto do dominio de
entrada e, ainda assim, ser eficaz para revelar a presenga dos erros existentes, respeitando as restri-
¢oes de tempo e custo associados a um projeto de software. Nesta secio sdo apresentados alguns
dos principais critérios de teste para programas OO identificados na literatura. Sdo brevemente
discutidos critérios funcionais, baseados em estados, estruturais e baseados em erros.

Critérios funcionais, conforme observado anteriormente, podem ser aplicados diretamente
tanto no teste de programas procedimentais como no teste de programas OO, visto que derivam
seus requisitos de teste somente com base na especificacdo do programa. Visando a avaliar a
adequacgdo de um critério funcional utilizado no teste procedimental para revelar defeitos em pro-
gramas OO, Offutt e Irvine [68] investigaram a utilizacdo do Método de Particdo-Categoria. O
método oferece um procedimento que € utilizado pelo testador para produzir casos de teste a partir
da especificagdo. Em linhas gerais, o trabalho do testador € definir categorias que representem as
principais caracteristicas do dominio de entrada da funcdo sendo testada e particionar cada cate-
goria em classes de equivaléncia de entradas, chamadas choices. Por definicdo, as choices dentro
de uma categoria devem ser disjuntas e, quando unidas, devem cobrir todo o dominio de entrada
de dada categoria. O estudo de caso investigando a eficicia do Método Parti¢do-Categoria na
detec¢do de falhas em programas OO € descrito em detalhes em [68].

Os critérios baseados em estado s@o bastante utilizados no contexto de OO para representar
o aspecto comportamental dos objetos [7, 8, 45, 63, 64, 87]. Segundo Binder, o grande desafio
do teste de software OO é projetar conjuntos de casos de teste que exercitem combinacdes de
seqiiéncias de mensagens e interacdes de estados dando confianga de que o software funciona
corretamente [7]. Em algumas situacdes, casos de teste baseados em seqii€éncia de mensagens ou
estados sdo suficientes. Entretanto, o teste baseado em estados ndo € capaz de detectar todos os
tipos de defeitos, exigindo que critérios de teste baseados em programa sejam utilizados, visando a
maximizar a deteccdo de defeitos [8]. Métodos de uma mesma classe tém acesso as mesmas varia-
veis de instincia e devem cooperar entre si para o correto funcionamento da classe, considerando
todas as seqiiéncias de ativacdo possiveis. A visibilidade das varidveis de instancia para todos os
métodos da classe cria um risco de erro semelhante ao uso de varidveis globais nas linguagens de
programacio procedimentais. Dado que os métodos da superclasse ndo estdo explicitos quando
uma subclasse € codificada, isso pode resultar no uso inconsistente das varidveis de instincia. Para
revelar esse tipo de defeito € necessdria a utilizagdo de critérios de teste de Fluxo de Controle e de
Fluxo de Dados que garantam a cobertura inter-método (ou intra-classe).

No caso de critérios estruturais, um dos principais trabalhos foi desenvolvido por Harrold e
Rothermel [41], que estenderam o teste de Fluxo de Dados para o teste de classes. Os autores
comentam que os critérios baseados em Fluxo de Dados destinados ao teste de programas proce-
dimentais podem ser utilizados tanto para o teste de métodos individuais quanto para o teste de
métodos que interagem entre si dentro de uma mesma classe [42,76]. Entretanto, tais critérios
nao consideram interacdes de fluxo de dados quando os usudrios de uma classe invocam seqiién-
cia de métodos em uma ordem arbitrdria. Para resolver esse problema, os autores apresentam

27



uma abordagem que permite testar diferentes tipos de interacdes de fluxo de dados entre classes.
A abordagem proposta usa as técnicas tradicionais de fluxo de dados para testar os métodos in-
dividuais e as interacdes entre os métodos dentro de mesma classe. Para testar os métodos que
s@o acessiveis fora da classe e podem ser utilizados por outras classes, uma nova representacao,
denominada Grafo de Fluxo de Controle de Classe (CCFG — Class Control Flow Graph), foi de-
senvolvida. A partir dessa representagdo novas associacdes inter-método e intra-classe podem ser
derivadas.

Vincenzi et al. [92,93] também t€m investigado o estabelecimento de critérios estruturais para
o teste de programas OO e teste de componentes. O objetivo principal é definir/adaptar critérios
estruturais tradicionais, tais como os critérios de fluxo de controle Todos-Nos e Todos-Arcos, € 0s
critérios de fluxo de dados Todos-Usos e Todos-Potenciais-Usos, para o teste de unidade (intra-
método) de programas OO e componentes de software.

Para avaliar a aplicabilidade dos critérios de teste definidos por Vincenzi [92] optou-se pela
linguagem Java. Tal escolha foi feita, sobretudo, em fungdo da grande gama de aplicagdes e com-
ponentes que vém sendo desenvolvidos utilizando essa linguagem. Mais precisamente, a idéia é
viabilizar o teste estrutural de programas Java a partir do bytecode’ Java, permitindo, com isso,
também o teste estrutural de componentes para os quais os cédigos-fonte nem sempre se encon-
tram disponiveis.

Apbs a escolha da linguagem alvo, um modelo de fluxo de dados subjacente é definido, carac-
terizando as instrugdes de bytecode responsaveis pela defini¢ao e/ou o uso de varidveis. De posse
de modelo de fluxo de dados, um modelo de representacdo de programa — o Grafo Definicdo-Uso
(DU) — € construido, considerando os mecanismos de tratamento de excecdo, em geral, presentes
nas linguagens OO. Desse modo, o grafo DU ¢ utilizado para representar o fluxo de controle e o
fluxo de dados intra-método, tanto durante a execucdo normal do programa quanto na presenca de
excecdes. Uma vez que o grafo DU de cada método tenha sido obtido, critérios de teste podem
ser definidos para derivar diferentes requisitos de teste, os quais podem ser utilizados tanto para
avaliar a qualidade de um determinado conjunto de teste quanto para a prépria geracao de dados
de teste [92].

Ao todo, oito critérios de teste estruturais foram definidos. Vincenzi [92] optou por separar os
requisitos de teste em dois conjuntos disjuntos: (1) os que podem ser cobertos durante a execugao
normal do programa, denominados independentes de exce¢do; e (2) os que para serem cober-
tos exigem, obrigatoriamente, que uma excecao tenha sido gerada, denominados dependentes de
exce¢do. Desse modo, foram estabelecidos os seguintes critérios:

e Todos-Nos: Todos-Noés-Independentes-de-Excecdo (Todos-Nbése;) e Todos-Nos-
Dependentes-de-Excecdo (Todos—Nds,q);

e Todas-Arestas: Todas-Arestas-Independentes-de-Excecdo (Todas—-Arestas,;) e Todas-
Arestas-Dependentes-de-Excecdo (Todas—Arestas.y);

e Todos-Usos: Todos-Usos-Independentes-de-Excecdo (Todos-Usose;) € Todos-Usos-
Dependentes-de-Excecdo (Todos-Uso0seq); €

e Todos-Potenciais-Usos: Todos-Potenciais-Usos-Independentes-de-Excegado
(Todos—-Pot-Usosg;) e Todos-Potenciais-Usos-Dependentes-de-Exce¢ao
(Todos—Pot-UsoSeg)-

SInstrugdes de byfecode lembram instrucdes em linguagem assembly, mas armazenam informacdes de alto nivel
sobre um programa, de modo que € possivel extrair informagdes de fluxo de controle e de dados a partir delas.

28



Um exemplo ilustrando a aplicacdo dos critérios estruturais definidos por Vincenzi [92] para
o teste intra-método, utilizando-se a ferramenta JaBUTi [92,94], € apresentado na proxima secdo.

Considerando os critérios baseados em erros, um ponto importante a ser destacado € a flexibi-
lidade de estender os conceitos do teste de mutacdo a diversas “entidades executdveis”. Conforme
discutido na Secdo 2, o teste de mutacdo, desenvolvido inicialmente para o teste de unidade de
programas procedimentais, ja foi estendido para o teste de integracdo de programas procedimen-
tais [15,16] e para o teste de especificacdes baseadas em Maquinas de Estado Finito [26,27], Redes
de Petri [28, 80], Statecharts [23, 85], Estelle [74,84], SDL [86] e Especificagdes Algébricas [98].

Especificamente no que diz respeito ao teste de programas OO, o teste de muta¢do vem sendo
utilizado para o teste de aspectos referentes a concorréncia, comunicagdo entre processos e teste
de programas Java e C++ em nivel de unidade e de integracdo: (1) Kim et al. [50] utilizaram uma
técnica denominada HAZOP (Hazzard and Operability Studies) para a definicdo de um conjunto
de operadores de mutacio para o teste de programas Java; (2) Ma et al. [56] propuseram um con-
junto mais abrangente de operadores de mutacdo para o teste de programas Java, os quais incluem
o conjunto de operadores definidos por Kim et al. [50]; (3) Gosh e Mathur [35] definiram um con-
junto de operadores de mutagdo visando ao teste de interfaces de comunicacio entre componentes
distribuidos (CORBA); (4) Delamaro et al. [18] definiram operadores especificos para o teste de
programas concorrentes implementados em Java; e (5) Vincenzi [92] definiu trés conjuntos distin-
tos de operadores de mutagao os quais podem ser utilizados no teste intra-método, inter-método e
inter-classe, considerando as linguagens Java e C++.

Finalmente, é importante ressaltar que além dos critérios de teste descritos nesta se¢do, outros
exemplos podem ser encontrados na literatura, dentre eles os trabalhos de Rosenblum [78] e Har-
rold et al. [39]. Além disso, destaca-se a importancia da realizacdo de estudos tedricos e empiricos
procurando avaliar e comparar os diversos critérios de teste OO existentes [92].

3.3.1 A Ferramenta JaBUTi

A ferramenta JaBUTi (Java Bytecode Understanding and Testing) [92,94], desenvolvida no
ICMC/USP em colaboracdo com a UNIVEM/Marilia, visa a ser um ambiente completo para o
entendimento e teste de programas e componentes Java. A idéia bésica da ferramenta é viabi-
lizar o teste de programas Java em nivel de bytecode, possibilitando, com isso, ndo somente o
teste de programas Java para os quais o cddigo-fonte esteja disponivel, mas também o teste de
componentes Java.

JaBUTi fornece ao testador diferentes critérios de teste estruturais para a andlise de cobertura,
um conjunto de métricas estdticas para se avaliar a complexidade das classes que compdem do
programa/componente, ¢ implementa, ainda, algumas heuristicas de particionamento de progra-
mas que visam a auxiliar a localizagdo de defeitos. Neste texto, € dada &énfase a parte responsavel
pela andlise de cobertura. Mais informagdes sobre as demais funcionalidades da ferramenta podem
ser obtidas em [92,94].

Considerando o suporte a andlise de cobertura de programas Java, a ferramenta im-
plementa atualmente seis dos oito critérios de teste intra-métodos definidos por Vin-
cenzi [92], sendo quatro critérios de Fluxo de Controle (Todos-Nésg;, Todos—-Nbsey,
Todas—Arestase;,Todas—Arestas,y) e dois critérios de Fluxo de Dados (Todos—-Usos,;
e Todos—-Uso0sgy). Os critérios Todos—Pot-Usose; € Todos—-Pot-Usos,.g ainda es-
tdo fase de implementacdo. Como descrito na Secdo 3, os pares de critérios Todos—N&s;,
Todos—Nbsege Todas—-Arestase;, Todas—Arestasey compdem os critérios Todos—-Ndos
e Todos—-Arcos, respectivamente. Da mesma forma, os pares de critérios Todos—-Uso0S;,
Todos-Usosey € Todos-Pot-Usose;, Todos-Pot-Usose compdem o0s critérios
Todos-Usos e Todos—Pot-Usos, respectivamente.

29



Para ilustrar os aspectos operacionais da JaBUTi, um exemplo simples, adaptado de Orso et
al. [71], € utilizado. O exemplo implementa o comportamento de uma miquina de venda (vending
machine) tipica e é composto de duas classes: uma que implementa um componente Dispenser
e outra, VendingMachine, que utiliza o componente Dispenser. O cddigo-fonte em Java de
ambas as classes € apresentado na Figura 12.

/*01*/ package vending; /*01*/ package vending;
/*02*/ /*02*/
/*03*/ public class VendingMachine { /*03*/ public class Dispenser {
/*04*/ /*04*/  final private int MINSEL = 1;
/*05*/  final private int COIN = 25; /*05*/  final private int MAXSEL = 20;
/*06*/  final private int VALUE = 50; /*06*/  final private int VAL = 50;
/*07*/  private int totValue; /*07*/
/*08*/  private int currValue; /*08*/  private int[] valSel =
/*09*/  private Dispenser d; /*09*/ {1,2,3,4,6,7,8,9, 10,
/*10%/ /*10%/ 11,12, 13, 14, 15,16, 17, 19};
/*11*/ public VendingMachine() { /11%/
/M2 totValue = 0; /*12*/  public int dispense(int credit, int sel) {
/*13*/ currValue = 0; /*13*/ intval = 0;
/*14*/ d = new Dispenser(); /*14*/
/15 } /*15%/ if (credit == 0)
116/ /*16*/ System.err.printin("No coins inserted");
/*17*/ public void insertCoin() { [17*/ else if ((sel < MINSEL) || (sel > MAXSEL))
/*18*/ currValue += COIN; /*18*/ System.err.printin("Wrong selection " + sel);
/*19%/ System.out.printin("Current value = " + currValue); /*19%/ else if (lavailable(sel))
/20%/ '} /*20*/ System.err.printin("Selection " + sel + " unavailable");
rr21*/ /*21*/ else {
/*22%/ public void returnCoin() { 22%/ val = VAL;
/23*/ if (currValue == 0) /*23*/ if (credit < val) {
/*24*/ System.err.printin("No coins to return”); /*24*/ System.err.printin("Enter " + (val - credit) + " coins");
125/ else { /*25*/ } else
/*26%/ System.out.printin("Take your coins"); /*26*/ System.out.printin("Take selection");
1*27*/ currValue = 0; /27 }
/+28%/ } /*28*/ return val;
29/ '} /*29*/ '}
/*30%/ /*30%/
/*31*/ public void vendltem(int selection) { /*31%/  private boolean available(int sel) {
/*32%/ int expense; /*32*/ boolean ans = false;
/*33%/ /*33%/ try {
/*34%/ expense = d.dispense(currValue, selection); /*34*/ for (inti=0;i < valSel.length && lans; i++)
/*35%/ totValue += expense; /*35%/ if (valSel[i] == sel)
/*36%/ currValue —= expense; /*36%/ ans = true;
/*37%/ System.out.printin("Current value = " + currValue); /*37%/ } catch (NullPointerException npe) {
/*38% '} /*38*/ ans = false;
/*39*/ } // class VendingMachine /*39%/ }
/*40%/ return ans;
/41* '}
/*42*/

/*43*/  public void setValSel(int[] v) {
/*44*/ valSel = v;

/*45%/

/*46*/ } // class Dispenser

Figura 12: Exemplo de uma aplicagdo Java (VendingMachine) e um componente
(Dispenser) [71].

O componente Dispenser € responsdvel por manter as informagdes sobre o preco de
cada item e quais deles sdo validos e estdo disponiveis. O método mais importante da classe
Dispenser é o método Dispenser.dispense (), o qual é responsdvel por receber como
pardmetros a quantia em dinheiro depositada na maquina e o nimero do item selecionado pelo
usudrio, e decidir se o item pode ou ndo ser entregue ao usudrio. Tal método realiza os seguintes
passos:

1. Verifica se pelo menos uma moeda foi depositada na maquina;

2. Verifica se um item valido foi selecionado;

30



3. Verifica se o item valido encontra-se disponivel (para isso utiliza o método
Dispenser.available ());

4. Verifica se o valor fornecido € suficiente para comprar o item vélido e disponivel selecio-
nado.

Se todos os pré-requisitos acima forem satisfeitos, o componente Di spenser entrega o item
desejado pelo usudrio. Do contrério, caso alguma das condi¢des acima ndo seja satisfeita, uma
mensagem de erro é emitida e nenhum item € entregue ao usudrio.

Considerando a utilizag@o da ferramenta JaBUTi via interface gréfica, o primeiro passo para
conduzir uma atividade de teste é a criacdo de um projeto de teste, o qual contém informacdes
sobre as classes a serem testadas. Para a criaco do projeto de teste o testador deve, primeiramente,
fornecer o nome de uma classe base, ou seja, 0o nome de uma classe tipo aplicacdo a partir da qual
as demais classes relacionadas serdo derivadas. Fornecido o nome da classe base, a ferramenta
exibe a janela do Gerenciador de Projeto (Project Manager), como ilustrado na Figura 13. Do
lado esquerdo dessa janela encontra-se o conjunto completo das classes que foram identificadas a
partir da classe base e que podem ser selecionadas para serem testadas. No exemplo, duas foram
as classes selecionadas — VendingMachine e Dispenser.

roject Manager

[ User Packages Avoided Packages Project Configuration

@ [ vending ul F =
D “endingMachine Project Name: |1
[} TestDriver m
[ Dispenser —J

0
Classes to Instrument

vending.Dispenser

vending. VendingMachine Base Class:

e a

[ [»]

Figura 13: Janela do gerenciador de projetos.

Pressionando o botdao Ok, JaBUTi cria um novo projeto (vending. jbt no exemplo), cons-
tréi o grafo Defini¢cdo-Uso (DU) para cada método de cada classe a ser testada, deriva os requisitos
de teste de cada critério, calcula o peso desses requisitos, e apresenta na tela o bytecode de uma
das classes sendo testadas, como ilustrado na Figura 14(a)®. Além da visualizacdo do bytecode,
a ferramenta oferece ainda a visualizacdo do grafo DU de cada método (Figura 14(b)), e tam-
bém do cédigo-fonte correspondente ao bytecode (Figura 14(c)), quando tal cédigo encontra-se
disponivel.

Uma vez que o conjunto de requisitos de teste de cada critério foi determinado, tais requisitos
podem ser utilizados para avaliar a qualidade de um conjunto de teste existente e/ou para desen-
volver novos casos de teste visando a melhorar a cobertura dos requisitos pelo conjunto de teste.
O testador pode, por exemplo, decidir criar um conjunto de teste com base em critérios de teste
funcionais ou mesmo gerar um conjunto de teste ad-hoc e avaliar a cobertura desse conjunto de
teste em relacfo a cada um dos critérios de teste estruturais da JaBUTi. Por outro lado, o testador
pode visualizar o conjunto de requisitos de teste de cada critério gerado para cada um dos métodos

®As telas apresentadas nesta seciio sio referentes a uma versdo da ferramenta na qual os critérios independentes
de excecdo eram denominados Critérios Primdrios e os critérios dependentes de exce¢do eram denominados Critérios
Secunddrios. Assim, o critério A11-Pri-Nodes que aparece nas telas corresponde ao critério Todos—Ndse; € 0
critério A11-Sec-Nodes corresponde ao critério Todos—-N&és.q. A mesma consideragdo é vélida para os demais
critérios de teste. No texto € utilizado o nome dos critérios conforme definido na Secéo 3.

31



Summary TestCase Reports Properties  Update

© ALPriEdges () AILPriUses () All.Sec-Nodes

) MISecEdges () All.Sec-Uses ‘ 0 1

iload 1
1load 3
1f_icmpge

nos

o ' 2 IR R O)
94:  goto #148
872 b. h 50 -
- Cobrirum né laranja garante a  Cobrir um no vermelho

cobertura de pelo menos seis

garante a cobertura de
pelo menos sete nos

= 1 5 6
node 17
Start PC: 17
End BC: 13

Varishle uses 182 17
Children 22 28

TSR Instruction: mull
Corresponding Source Lines:
17

Pt

Posicionando o cursor do
mouse sobre determinado
N6 faz com que informagées
mais especificas sejam
exibidas

3UTi: Coverage Tool|  » vending.Dispenser, | Line: 13501198 | lerage: All-Pri-Nodes|  ghting: All Priorized

Show D

¥l Show Hode Info itions

[¥ Show Primary Edges (¥ Show Secondary Edges

(a) Bytecode inicial.

(b) DU inicial.

perties  Update

+ o017 *
o018
o019
o020
o021
o022
0023

J* 0025 */

J* 00z7 %/
/* 0029 */ ¥
'+ nan

7

v 8, 9, 10,
11 12y 13, 14, 15, 16, 17, 15);

dispense (int credit, int sel] {
=0;

- . ere . printlal"lio coins ins ]
else if ((sel < MINSEL} || (sel > MARSEL))
System.err.println(“Wrong selection " + sel);
else if (lavailable(sel))
System.err.println(“Selection " + sel + *
else | :
wval = VAL;

if (credit < val) {

) else

unavailahle®) ;

3UTi: Coverage Tool|

1 vending.Dispenser, | Line: 6 of 47

| ‘erage: AllPri-Nodes | ghting: All Priorized

(c) Codigo-fonte inicial.

Figura 14: Tela da JaBUTi considerando ativo o critério Todos—Ndse;.

das classes sendo testadas, verificar quais deles ainda ndo foram cobertos por algum caso de teste
e entdo desenvolver um novo caso de teste que satisfaca tais requisitos. As figuras 15(a), 15(b),
e 15(c) ilustram parte dos requisitos de teste do método Dispenser.avaliable () gerados
pelos critérios Todos—Nds;, Todas—Arestas;, € Todos—-Usose;, respectivamente.

Figura 15:

[ AlLPriNodes Testing Requirements I AlLPri Edges Testing Requirements TN AlLPri Uses Testing Requirements
vending.Dispenser ~ | | vencing.ispenser ~ || | vencingDispenser -
dispense(iiy - v dispensedl v
| nctvatean || Doactivatesn || Feasibloan || infeasibloan | | Activatean || peactivate Al || Feasibiean || infeasibie an_| | Activatean || Deactivate || Feasivleall || infeasinle A
Covered | _active_|infeasibief Testing Requirement [ Covered|_Active |infeasible] i [ Covered | Active |infeasibie] [

5] B D o = = ] 0 |_ew = 5] El ER T =

=] v [0 105 ] (| i } 06 | (=] iri (=] <L@o, 0,056, 977> I

B ¥ = 140 | = il ] (105,148) | = v = <L@1, 000,17

5] i 5| 148 J = v ] (140,148) | = vl = <L@1,0,0,6/>

E v BB | Bl i 0 | arz =] vl 0| <L@t.07 105

= = Ei 2 | 5 v = arzs) = i B <L@1, 0,97, 140p

o @ = 28 I ] el ] (2228) o El o <L@1, 0,105

5] ] B = El El 0| ezss = | El 0 [ sezour2e =

METHOD COVERAGE | oo METHOD COVERAGE | ooris METHOD COVERAGE | our2s
TOTAL COVERAGE 0of30 TOTAL COVERAGE ! 00of 32 TOTAL COVERAGE I

(a) Todos—Nbse;.

(b) Todas—Arestase;.

32

(c) Todos-UsoOSe;.

Parte dos requisitos de teste de trés critérios estruturais para o método
Dispenser.dispense ().



Ainda, como pode ser observado na Figura 15, a ferramenta permite ao testador ativar/desativar
diferentes combinagdes de requisitos de teste, bem como marcar um determinado requisito de teste
como nao-executdvel quando ndo existir um caso de teste capaz de cobri-lo.

Estudos tém demonstrado que, para programas C, conjuntos de teste que determinam as mai-
ores coberturas tém uma maior probabilidade de detectar defeitos no programa em teste [97]. O
mesmo se aplica para Java sem perda de generalidade. Uma vez que, em geral, existe um grande
nimero de requisitos de teste para serem cobertos, a ferramenta JaBUTi utiliza cores diferentes
dando indicacdes ao testador para facilitar a geracdo de casos de teste que satisfacam um maior
nimero de requisitos em menor tempo. As diferentes cores representam diferentes pesos que sdo
associados aos requisitos de teste de cada critério. Informalmente, os pesos correspondem ao nu-
mero de requisitos de teste que s@o cobertos quando um requisito de teste particular € satisfeito.
Assim, cobrir os requisitos de teste de maior peso leva a um aumento na cobertura de forma mais
répida.

Observe que os pesos sao calculados considerando somente informagdes sobre cobertura e por
esse motivo devem ser vistos como “indica¢des” ao testador. No cédlculo do peso ndo € levado em
conta, por exemplo, a complexidade ou a criticalidade de uma determinada parte do programa.
Além disso, o célculo do peso por meio do uso de superblocos e de dominadores ndo é necessério
quando ndo se pode garantir a execucdo normal do método até um né de saida, o que pode ocorrer
em Java quando uma excecdo € levantada. O testador, baseado em sua experiéncia, pode decidir
cobrir outros requisitos de teste que estejam com trechos de cddigo que apresentam uma alta
complexidade e ndo tenham os maiores pesos. Posteriormente, apds os trechos de cédigo desejado
terem sido suficientemente testados, o testador pode entdo utilizar as indicacdes para melhorar a
cobertura do conjunto de teste de forma mais rapida.

A Figura 14 mostra parte do bytecode, do grafo DU e do cddigo-fonte do método
Dispenser.dispense () antes da execucdo de qualquer caso de teste. As cores correspon-
dem aos diferentes pesos dos requisitos do critério Todos—Nds,;. Observe que a barra de corres
vai do branco (peso 0) ao vermelho (peso 7 neste exemplo). O né 105 da Figura 14(b), com-
posto das instrucdes de bytecode que vao do pc 105 ao pc 112 (Figura 14(a)), ¢ um dos nés de
maior peso. Isso representa que um caso de teste que exercite o né 105 ird aumentar a cobertura
em relacdo ao critério Todos—-Nds,; em pelo menos 7 nds. Requisitos com peso zero indicam
requisitos que ja foram cobertos e sdo pintados em branco. Por exemplo, o caso de teste 0001,
desenvolvido para executar o comando localizado no né 105 da Figura 14(b), determina uma co-
bertura de 56% em relagdo ao critério Todos—Nds,;, 0 que corresponde a execugdo de 17 dos 30
nés independentes de excecdo requeridos pelo critério em relagdo aos métodos de todas as classes
sendo testadas (veja relatdrio da Figura 18(c)). Toda vez que um novo caso de teste € inserido, as
telas da ferramenta sdo atualizadas considerando as possiveis mudancas nos pesos dos requisitos
de teste.

A Figura 16(a) ilustra os novos pesos dos requisitos de teste do critério Todos—-Nbs,; para
o método Dispenser.dispense (). Nessa figura muitos blocos estdo pintados de branco
porque foram cobertos pelo caso de teste 0001. Observe, ainda, que o requisito de maior peso
passou para outra parte do c6digo, dando indicacdes a respeito de qual o préximo caso de teste que
deveria ser gerado visando a maximizar o nimero de requisitos cobertos. A diferenca no peso dos
requisitos apés a execugdo do caso de teste 0001 pode ser facilmente identificada comparando
as figuras 14(a) e 16(a). No exemplo, o requisito de maior peso foi reduzido de 7 para 1. Isso é
consistente com o entendimento dos critérios baseados em cobertura para os quais torna-se cada
vez mais dificil melhorar a cobertura apds alguns casos de teste terem sido executados.

A titulo de comparagdo, supondo que ao invés de utilizar as indica¢des fornecidas pela fer-
ramenta o testador gerasse um outro caso de teste, por exemplo, o caso de teste 0003 da Fi-

33



& JaBUTi v. 1.0 - E\auri\eus documentos\LaTeX-2003\unpublishediscp2003\example\no-call-node. jbt (A=)

Tools  Visualization Summary TestCase Reports Properties Update  Help

®) All-PriNodes ) All-Pri-Edges O AllPriUses ( All-Sec-Nodes O All-Sec-Edges ( All-Sec-Uses

0 "hot-spot” moveu-se
paraum no diferente

bipush
istore 3
100: iload 1
101: iload 3
102: if_icwpge

05 nos 97 e 105 foram cobertos e,
desse modo, seus pesos foram
reduzidos para zero

105:  getstatic java. lang.System.err Ljava/io/PrintStream; (6}
108: new <java.lang.StringBuffers (9)

111: dup

112: 1 1 Java. L eanit> [V (10)

115: lde "Eater " (18)

117:  invokevirtual Java. lang.StringBuffer.append

(Ljava/lang/String; ) Ljava/lang/stringBuffer; (12)

120: iload 3

121:  iload 1

122:  isub)

123 kevirtual java.lang.StringBuffer.append (I)Ljava/lang/StringBuffer; (13}
126 " coins" (139}

3UTi: Coverage Tool  :: vending.Dispenser Line: 131 of 198 erage: All PriNodes  ghting: All Priorized

(a) Bytecode atualizado. (b) Grafo DU atualizado.

Figura 16: Tela atualizada do método Dispenser.dispense () parao critério Todos—Ndosy;
apos a execugdo do caso de teste 0001.

gura 18(c), o niimero médximo de nés independentes de exce¢do que teria sido coberto seria 7. Com
isso, € possivel notar uma diferenca significativa entre a cobertura total do critério Todos—-Nd&s,;
determinada pelo caso de teste 0001, que foi de 56%, e aquela determinada pelo caso de teste
0003, que foi de 23%. Uma diferenca semelhante é também encontrada em relacdo aos demais
critérios de teste.

A ferramenta JaBUTi também permite que os requisitos de teste de cada um de seus critérios
possam ser visualizados no bytecode, cédigo-fonte e no grafo DU de cada método de cada uma das
classes em teste. Diferentes cores sdo associadas a esses requisitos para indicar os seus pesos. Por
exemplo, as figuras 14(a) e 14(b) ilustram os requisitos do critério Todos—Ndse;. Considerando
os critérios Todas—Arestase; € Todas—-Arestas,y, seus requisitos (arestas do grafo DU) sdao
coloridos em duas etapas. Para o critério Todas—Arestas;, somente 0s nds que apresentam
mais de uma aresta regular saindo, ou seja, nés de decisdo, aparecem pintados na primeira etapa
para indicar os pontos do c6digo onde os comandos de decisdo estdo localizados. Por exemplo, as
figuras 17(a) e 17(b) ilustram parte dos nés de decisdo do método Dispenser.dispense () e
como eles sdo coloridos na primeira etapa apds trés casos de teste terem sido executados.

Para cada n6 de decisdo, seu peso € o maior peso de seus arcos correspondentes. Assim,
supondo um né de decisdo ng com duas arestas saindo, uma com peso 0 e outra com peso 2, ng
terd peso 2. Este é o caso do né 0 no grafo DU do exemplo utilizado (Figura 17(b)). Os cinco
no6s de decisdo da figura (0, 17, 22, 56 e 97) estdo em diferentes cores porque possuem diferentes
pesos associados. Um né de decis@o tem peso zero se e somente se todos os arcos a ele associados
tiverem sido cobertos. Tal né € pintado de branco nesse caso. A selecdo de um n6 de decisdo faz
com que a segunda etapa seja realizada (figuras 17(c) e 17(d)), identificando-se todas as arestas
regulares associadas com o ponto de decisdo selecionado. No caso da Figura 17(d), sdo duas
as arestas regulares correspondentes: uma do né 0 para o n6 6 que ainda ndo foi coberta e estd
pintada de vermelho, e outra do n6 0 para o né 17 que ja foi coberta e aparece pintada de branco.
Os demais critérios de Fluxo de Dados também sdo pintados de forma similar, em duas etapas.
Mais informagdes podem ser obtidas em [92].

A ferramenta permite ainda a geracdo de diferentes relatérios de teste, em diferentes granula-
ridades, dependendo do nivel de detalhe desejado, para avaliar o andamento da atividade de teste.
Por exemplo, o testador pode estar interessado em avaliar a cobertura do critério Todos—-N&s;

34



C) All-PriNodes ® AllLPri-Edges () All-PriUses () All-Sec-Nodes () AllSec-Edges O All-Sec-Uses ‘l

int dispense(II}T 1=
: iconst O Né de decisio de maior peso (aresta VERDADEIRA
1: istore 3

afou aresta FALSA de maior peso)

iload 1

Os nos 0, 17, 22, 56
e 97 sdo nos de
decisdo

javaslang. System.err Ljava/io/PrintStream; (6]
inserted” (7)

getstatic
lde "o cod

invokewirtual java.io.PRapEsStrean. printin (Ljava/lang/String; | ¥ (8]
goto #149
iload Z Néos de decisio com diferentes pesos
iconst_1 Clicando no né 0
if_icmplt #28. Ao clicar sobre um né de decisdo, as arestas 3 faz com suas
iload 2 associadas sdo exibidas considerando seus arestas sejam
hipush 20 respectivos pesos . selecionadas
if_icuple #56. : -
getstatic java.lang.System.err Ljava/io/PrintStresm; (6) {108
new <java.lang.StringBuffer> (9}
(a) Bytecode — Etapa 1. (b) Grafo DU- Etapa 1.
0 1
(3 All-Pri-Modes @ AlILPri-Edges [ All-Pri-Uses 0 All-Sec-Nodes () All-Sec-Edges () All-Sec-Uses |
. :
int dispense(II}I =
: N {1
T )
i istore 3 No de decisdo /
: iload 1

0 no de decisio 0
tem duas arestas E
associadas: uma |
doné0aonobe |
outradon60ao |-
ne 17

(s6) {2
@ pload g Arestas associadas ao n6 de decisdo selecionado ‘\) ~
18:  iconst_1 »

19:  if diemplt PEEE -Aresta VERDADEIRA tem peso 2 1 g

2zi  iloed 2 \ | ! 5

23:  hipush 20 -Aresta FALSA ja foi coberta e tem peso 0 -

25:  if icmple #56
28: getstatic jawe. lang.System.err Ljave/io/PrintStream; (6}
31:  mew <java. lang.StringBuffers ()

(c) Bytecode — Etapa 2. (d) Grafo DU- Etapa 2.

Figura 17: Etapas da exibicdo dos requisitos do critério Todas—Arestas,; para o método
Dispenser.dispense ().

em relacdo a cada método para descobrir quais desses métodos ainda nio foi suficientemente tes-
tado. Esse tipo de relatério é fornecido pela JaBUTi como ilustrado na Figura 18(a).

|7 AllPri-Nodes Coverage per Method
Method Names Coverage Percentage
vending.Dispenser <init>(\ 20f2
vending.Dispenser availahle()Z 8oi8
wending.Dispenser dispense(ijl 9of 11
vending.Dispenser setValSel{[)V 0of 1
vending.VendingMachine <init>0V. 0of2
wvending.VendingMachine insertCoin()V Oof1
vending.VendingMachine returnCoin(v Dol 4
wvending. i i Oof1

(a) Cobertura de cada método: critério Todos—NOSe;.

Overall Coverage Summary by Criterion ‘ [ AllPri-Hodes Coverage per Test Case

Testing Criterion Coverage Percentage
All-Pri-Nodes 19.0f 30 ‘ Activate All | ‘ Deactivete All | ‘ Delete All | ‘ Undelete All
All-Sec-Nodes 0of1 Active Delete Test Case Total Coverage Percentage
All-Pri-Edges 200132 vl ] ooo1 17 of 30
All-Sec-Edges 0of6 ] = 0002 50f30
All-Pri-Uses 37 0f 63 ] = 0003 7 of 30
All-Sec-Uses Dof 14

(b) Cobertura obtida em relagdo a cada critério. (c) Cobertura de cada caso de teste: critério
Todos-N&se;.

Figura 18: Relatérios de teste da cobertura em relagcdo a cada método, critério e caso de teste.

Também pode ser importante avaliar a cobertura de todo o projeto em relagdo a cada um dos
critérios de teste. Essa informacgdo pode ajudar o testador a decidir se o “efeito de saturacdo”

35



de determinado critério de teste ja foi atingido. Em caso afirmativo, um critério de teste mais
forte pode ser utilizado para continuar a evolugdo do conjunto de teste; por exemplo, passar do
critério Todos—Ndse; para o critério Todas—Arestase;. A ferramenta JaBUTi gera esse tipo
de relatério considerando os seis critérios de teste estruturais implementados pela mesma. A
Figura 18(b) ilustra esse tipo de relatério.

Além disso, pode ser interessante identificar os slices de execugdo de cada caso de teste, onde
o slice pode ser definido em relagdo a um conjuntos de nés independentes/dependentes de exce-
¢80 (considerando o critério Todos—-Nb6s;//Todos—Nds,g), arestas independentes/dependentes
de excec¢do, associagdes independentes/dependentes de excegdo e potenciais-associagdes indepen-
dentes/dependentes de excecdo, obtidas a partir dos critérios de teste correspondentes. Tais slices
podem ser utilizados, por exemplo, de forma similar as metodologias desenvolvidas para pro-
gramas C, para auxiliar aos testadores em atividades de depuragdo e entendimento de progra-
mas/componentes Java. Para um dado caso de teste, seu slice de execugdo pode ser facilmente
construido se a cobertura determinada por tal caso de teste é conhecida, tal como o relatério mos-
trado na Figura 18(c). Observe que € possivel ativar/desativar diferentes combinagdes de casos de
teste de modo que o slice de execugdo de cada um, tanto no bytecode quando no grafo DU, possa
ser visualizado, como mostrado anteriormente na Figura 14(a), por exemplo.

E importante observar que a disponibilidade da ferramenta JaBUTi viabiliza a conducio de
diversos estudos empiricos, tanto no que diz respeito ao desenvolvimento de estratégias de teste
incrementais, quanto na utiliza¢do das informagdes obtidas durante os testes em atividades de
depuracdo e entendimento de programas OO. Além disso, JaBUTi € a tinica ferramenta que apdia
a aplicacdo do teste de Fluxo de Dados em programas e componentes Java, podendo ser utilizada
tanto na transferéncia tecnolégica de conceitos/critérios de teste para a indudstria como na atividade
de ensino/aprendizagem em disciplinas da 4rea de teste de software. Informacdes adicionais a
respeito da ferramenta JaBUTi podem ser obtidas em [92,94].

Cabe ressaltar, por fim, a existéncia de duas outras versdes da ferramenta JaBUTi: (1) Ja-
BUTi/AJ (Java Bytecode Understandilng and Testing / AspectJ) [54], para o teste de unidade de
programas orientados a aspectos (OA), baseados na linguagem Aspect]; e (2) JaBUTi/MA (Java
Bytecode Understandilng and Testing / Mobile Agents) [19], para o teste estrutural de agentes
moveis.

4 Estudos Teéricos e Empiricos

Em virtude da diversidade de critérios de teste existente, saber qual deles deve ser utilizado
ou como utilizd-los de forma complementar a fim de obter o melhor resultado com o menor custo
é uma questdo complicada. Nesse sentido, estudos teéricos e empiricos t€m sido conduzidos na
tentativa de avaliar as vantagens e desvantagens dos critérios de teste [14].

Os estudos tedricos t€m explorado, sobretudo, a relagdo de inclusdo entre os critérios e a
complexidade dos mesmos [67,76,95]. A relacdo de inclusdo estabelece uma ordem parcial e
caracteriza uma hierarquia entre eles. Assim, diz-se que um critério C'1 inclui um critério Cs se
para qualquer programa P e qualquer conjunto de casos de teste T C'1-adequado, 7T} for também
Cs-adequado e para algum programa P e um conjunto 75 Cy-adequado, T3 ndo for C'-adequado.
A complexidade € definida como o nimero maximo de casos de teste exigidos por um critério, no
pior caso. Além desses itens, também do ponto de vista tedrico, alguns autores t€ém abordado a
questdo de eficdcia dos critérios de teste, definindo outras relacdes de inclusdo entre eles, as quais
procurem captar a capacidade em revelar erros [30, 31,96, 100].

Os estudos empiricos, por sua vez, procuram comparar a adequacio dos critérios de teste a
partir de trés fatores bdsicos: custo, eficicia e dificuldade de satisfacdo (strength). O custo refere-

36



se ao esfor¢o necessdrio na utilizagdo de um critério. Pode ser medido pelo nimero de casos de
teste requeridos para satisfazer o critério ou por outras métricas dependentes do critério, tais como:
0 tempo necessario para executar todos os mutantes gerados ou o tempo gasto para identificar os
mutantes equivalentes, caminhos e associacdes ndo executdveis, construir manualmente os casos
de teste e aprender a utilizar as ferramentas de teste. A eficdcia refere-se a capacidade de um
critério em detectar um maior nimero de erros em relacdo a outro. Dificuldade de satisfacao
refere-se a probabilidade de satisfazer um critério tendo satisfeito outro.

Utilizando-se tais fatores comparativos, estudos teéricos e empiricos sdo conduzidos com o
objetivo de encontrar formas econdmicas e produtivas para a realizagdo dos testes. Uma visdo
geral a respeito dos principais estudos realizados pode ser encontrada em [58, 100]. Uma sintese
quanto a avaliacdo e comparagdo entre critérios de teste OO estd disponivel em [92].

5 Conclusoes e Direcoes na Area de Teste

O teste € uma atividade crucial no processo de desenvolvimento de software, tendo forte rela-
¢ao com aspectos relacionados a garantia da qualidade do produto em questdo [14]. Neste texto
foi dada uma visdo geral a respeito da atividade de teste, sendo apresentados alguns conceitos e
critérios pertinentes, com énfase naqueles considerados mais promissores a curto e médio prazo
— os critérios baseados em Fluxo de Dados e os critérios baseados em Mutagdo. Mostrou-se,
também, que os conceitos e mecanismos desenvolvidos originalmente para o teste de programas
procedimentais podem ser utilizados no contexto do paradigma de desenvolvimento de software
orientado a objetos, com as devidas adaptacdes. Extensdes de critérios de teste baseados em Fluxo
de Controle, Fluxo de Dados e em Mutacdo foram brevemente discutidas nesse contexto. Tam-
bém foram discutidas algumas iniciativas e esforcos de automatizac@o de critérios de teste. Em
especial, foram apresentadas as ferramentas PokeTool, Proteum e JaBUTI.

No que se refere a dire¢des futuras, Harrold [38] discute as perspectivas, as necessidades e as
tendéncias na drea de teste, visando ao desenvolvimento de métodos e ferramentas que permitam
a transferéncia de tecnologia para industria. Como ressalta Harrold, dentre as principais linhas
de pesquisa na drea destacam-se: (1) o teste de sistemas baseado em componentes de software
(o qual inclui o teste de programas OO); (2) o desenvolvimento de processos de teste efetivos; e
(3) a demonstracdo da eficdcia de critérios e estratégias de teste. De fato, um aspecto relevante é
dar subsidios para o desenvolvimento de software baseado em componentes. Com o aumento no
desenvolvimento de produtos desse tipo, é necessdria a definicdo de modos efetivos e eficientes de
testd-los. E necessario, ainda, entender e desenvolver técnicas e critérios de teste que exercitem
as vdrias questdes associadas, tais como seguranca e tolerancia a falhas. Além disso, os tépicos
de verificacdo, validacdo e teste de software também comegam a ser investigados e discutidos no
contexto de programacao orientada a aspectos (POA) [54].

Para finalizar, ressalta-se que o conhecimento e as contribui¢des na drea de teste — divididos
basicamente em conhecimento teorico, empirico e de ferramentas de suporte — devem ser cons-
tantemente atualizados, assim como nas demais dreas. Nessa perspectiva, a organizacdo de uma
base histérica sobre o custo € a eficicia das técnicas e critérios de teste, em diferentes dominios de
aplicacdo, em relacdo a diferentes classes de erros, certamente facilitaria o planejamento de futu-
ros desenvolvimentos de software. Facilitaria, ainda, o estabelecimento de estratégias de teste que
explorem os aspectos complementares das técnicas e critérios, viabilizando a detec¢do do maior
nimero de erros possivel e com o menor custo, o que contribuiria para a libera¢do de produtos de
software de maior qualidade a um menor custo [14].

37



Referéncias

[1] A.T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Mutation analysis.
Technical Report GIT-ICS-79/08, Georgia Institute of Technology, Atlanta, GA, September
1979.

[2] H. Agrawal, R. A. DeMillo, R. Hathaway, W. Hsu, W. Hsu, E. W. Krauser, R. J. Martin,
A. P. Mathur, and E. H. Spafford. Design of mutant operators for the C programming
language. Technical Report SERC-TR41-P, Software Engineering Research Center, Purdue
University, West Lafayette, IN, March 1989.

[3] T.R. Arnold and W. A. Fuson. In a perfect world. Communications of the ACM, 37(9):78—
86, September 1994.

[4] E. FE. Barbosa, J. C. Maldonado, A. M. R. Vincenzi, M. E. Delamaro, S. R. S. Souza, and
M. Jino. Introdugdo ao teste de software. Minicurso apresentado no XIV Simp6sio Brasi-
leiro de Engenharia de Software (SBES 2000), October 2000.

[5] E. F. Barbosa, A. M. R. Vincenzi, and J. C. Maldonado. Uma contribui¢do para a determi-
nacdo de um conjunto essencial de operadores de mutacdo no teste de programas C. In XII
Simposio Brasileiro de Engenharia de Software (SBES 98), pages 103-120, Maring4, PR,
October 1998.

[6] B. Beizer. Software Testing Techniques. Van Nostrand Reinhold Company, New York, 2nd
edition, 1990.

[7] R. V. Binder. Modal testing strategies for OO software. Computer, 29(11):97-99, Novem-
ber 1996.

[8] R. V. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools, volume 1.
Addison Wesley Longman, Inc., 1999.

[9] T. A. Budd. Mutation Analysis of Program Test Data. PhD thesis, Yale University, New
Haven, CT, 1980.

[10] T. A. Budd. Mutation Analysis: Ideas, Example, Problems and Prospects, chapter Compu-
ter Program Testing. North-Holand Publishing Company, 1981.

[11] M. L. Chaim. PokeTool — Uma ferramenta para suporte ao teste estrutural de programas
baseado em andlise de fluxo de dados. Master’s thesis, DCA/FEEC/UNICAMP, Campinas,
SP, April 1991.

[12] T.S. Chow. Testing software design modelled by finite-state machines. IEEE Transactions
on Software Engineering, 4(3):178-187, 1978.

[13] T. Chusho. Test data selection and quality estimation based on concept of essential branches
for path testing. IEEE Transactions on Software Engineering, 13(7):509-517, 1987.

[14] A.R. C. da Rocha, J. C. Maldonado, and K. C. Weber. Qualidade de Software: Teoria e
Prdtica. Prentice Hall, Sao Paulo, SP, 2001.

[15] M. E. Delamaro and J. C. Maldonado. Proteum — a tool for the assessment of test adequacy
for C programs. In Conference on Performability in Computing Systems (PCS 96), pages
79-95, Brunswick, NJ, July 1996.

38



[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

M. E. Delamaro, J. C. Maldonado, and A. P. Mathur. Interface mutation: An approach for
integration testing. IEEE Transactions on Software Engineering, 27(3):228-247, March
2001.

M. E. Delamaro, J. C. Maldonado, and A. M. R. Vincenzi. Proteum/IM 2.0: An integrated
mutation testing environment. In Mutation 2000 Symposium, pages 91-101, San Jose, CA,
October 2000. Kluwer Academic Publishers.

M. E. Delamaro, M. Pezze, A. M. R. Vincenzi, and J. C. Maldonado. Mutant operators for
testing concurrent Java programs. In XV Simpdsio Brasileiro de Engenharia de Software
(SBES 2001), Rio de Janeiro, RJ, October 2001.

M. E. Delamaro and A. M. R. Vincenzi. Structural Testing of Mobile Agents. In Egidio As-
tesiano Nicolas Guelfi and Gianna Reggio, editors, International Workshop on Scientific
Engineering of Java Distributed Applications (FIDJI 2003), volume 2952 of Lecture Notes
on Computer Science, pages 73—-85. Springer, November 2003.

R. A. Demillo. Mutation analysis as a tool for software quality assurance. In COMPSACS0,
Chicago, IL, October 1980.

R. A Demillo. Software Testing and Evaluation. The Benjamin/Cummings Publishing
Company Inc., 1987.

R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for the
practicing programmer. I[EEE Computer, 11(4):34-43, April 1978.

S. C. P F. Fabbri. A Andlise de Mutantes no Contexto de Sistemas Reativos: Uma Contri-
buicdo para o Estabelecimento de Estratégias de Teste e Validagdo. PhD thesis, IFSC-USP,
Sdo Carlos — SP, October 1996.

S. C. P. F. Fabbri, J. C. Maldonado, M. E. Delamaro, and P. C. Masiero. Proteum/FSM: A
tool to support finite state machine validation based on mutation testing. In XIX Internatio-
nal Conference of the Chilean Computer Science Society (SCCC 99), pages 96—104, Talca,
Chile, 1999.

S. C. P. F. Fabbri, J. C. Maldonado, and P. C. Masiero. Mutation analysis in the context
of reactive system specification and validation. In 5th Annual International Conference on
Software Quality Management, pages 247-258, Bath, UK, March 1997.

S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, and M. E. Delamaro. Andlise de mutantes
baseada em maquinas de estado finito. In XI Simpdsio Brasileiro de Redes de Computadores
(SBRC 93), pages 407-425, Campinas, SP, May 1993.

S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, and M. E. Delamaro. Mutation analysis
testing for finite state machines. In 5th International Symposium on Software Reliability
Engineering (ISSRE 94), pages 220-229, Monterey, CA, November 1994.

S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, and M. E. Delamaro. Mutation analysis
applied to validate specifications based on petri nets. In 8th IFIP Conference on Formal

Descriptions Techniques for Distribute Systems and Communication Protocols (FORTE
95), pages 329-337, Montreal, Canada, October 1995.

39



[29] S. C. P. E Fabbri, J. C. Maldonado, T. Sugeta, and P. C. Masiero. Mutation testing applied
to validate specifications based on statecharts. In ISSRE — International Symposium on
Software Reliability Systems, pages 210-219, November 1999.

[30] P. G. Frankl and E. J. Weyuker. An analytical comparison of the fault-detecting ability
of data flow testing techniques. In XV International Conference on Software Engineering,
pages 415-424, May 1993.

[31] P. G. Frankl and E. J. Weyuker. A formal analysis of the fault-detecting ability of testing
methods. IEEE Transactions on Software Engineering, 19(3):202-213, March 1993.

[32] A.D. Friedman. Logical Design of Digital Systems. Computer Science Press, 1975.

[33] S. Fujiwara, G. V. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi. Test selection
based on finite state models. IEEE Transactions on Software Engineering, 17(6), June 1991.

[34] C. Ghezzi and M. Jazayeri. Programming Languages Concepts. John Wiley and Sons, New
York, 2 edition, 1987.

[35] S. Ghosh and A. P. Mathur. Interface mutation. In Mutation 2000 Symposium, pages 227—
247, San Jose, CA, October 2000. Kluwer Academic Publishers.

[36] G. Goneng. A method for design of fault-detection experiments. IEEE Transactions on
Computers, 19(6):551-558, June 1970.

[37] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8:231-274, 1987.

[38] M. J. Harrold. Testing: A roadmap. In 22th International Conference on Software Engine-
ering, June 2000.

[39] M. J. Harrold, D. Liang, and S. Sinha. An approach to analyzing and testing component-
based systems. In First International ICSE Workshop on Testing Distributed Component-
Based Systems, Los Angeles, CA, May 1999.

[40] M. J. Harrold, J. D. McGregor, and K. J. Fitzpatrick. Incremental testing of object-oriented
class structures. In /4th International Conference on Software Engineering, pages 6880,
Los Alamitos, CA, May 1992. IEEE Computer Society Press.

[41] M. J. Harrold and G. Rothermel. Performing data flow testing on classes. In Second ACM
SIGSOFT Symposium on Foundations of Software Engineering, pages 154—163, New York,
December 1994. ACM Press.

[42] M.J. Harrold and M. L. Soffa. Interprocedural data flow testing. In Third Testing, Analysis,
and Verification Symposium, pages 158—167, December 1989.

[43] M.J. Harrold and M. L. Soffa. Selecting and using data for integration test. /[EEE Software,
8(2):58-65, March 1991.

[44] P. M. Herman. A data flow analysis approach to program testing. Australian Computer
Journal, 8(3), November 1976.

[45] D. Hoffman and P. Strooper. ClassBrench: A framework for automated class testing. Soft-
ware Practice and Experience, pages 573-597, May 1997.

40



[46] J. R. Horgan and P. Mathur. Assessing testing tools in research and education. [EEE
Software, 9(3):61-69, May 1992.

[47] W. E. Howden. Methodology for the generation of program test data. IEEE Computer,
C-24(5):554-559, May 1975.

[48] W. E. Howden. Software Engineering and Technology: Functional Program Testing and
Analysis. McGrall-Hill Book Co, New York, 1987.

[49] IEEE. IEEE Standard Glossary of Software Engineering Terminology. Standard 610.12,
IEEE Press, 1990.

[50] S. Kim, J. A. Clark, and J. A. Mcdermid. The rigorous generation of Java mutation ope-
rators using HAZOP. In [2th International Conference on Software & Systems Engine-
ering and their Applications (ICSSEA 99), December 1999. Disponivel em http://www-
users.cs.york.ac.uk/ jac/, Ultimo acesso: 12/2003.

[51] S. Kim, J. A. Clark, and J. A. Mcdermid. Class mutation: Mutation testing for object-
oriented programs. In FMES, 2000. Disponivel em http://www-users.cs.york.ac.uk/ jac/,
Ultimo acesso: 12/2003.

[52] D.C. Kung, P. Hsia, and J. Gao. Testing Object-Oriented Software. IEEE Computer Society
Press, Los Alamitos, CA, 1998.

[53] J. W. Laski and B. Korel. A data flow oriented program testing strategy. I[EEE Transactions
on Software Engineering, 9(3), May 1983.

[54] O. A. L. Lemos. Teste de programas orientados a aspectos: uma abordagem estrutural para
Aspect]. Master’s thesis, ICMC-USP, Sao Carlos, SP, 2005.

[55] U. Linnenkugel and M. Miillerburg. Test data selection criteria for (software) integration
testing. In First International Conference on Systems Integration, pages 709-717, Morris-
town, NJ, April 1990.

[56] Y. S. Ma, Y.-R. Kwon, and J. Offutt. Inter-class mutation operators for java. In /3th
International Symposium on Software Reliability Engineering (ISSRE 2002), pages 352—
366, Annapolis, MD, November 2002.

[57] J. C. Maldonado. Critérios Potenciais Usos: Uma Contribuicdo ao Teste Estrutural de
Software. PhD thesis, DCA/FEEC/UNICAMP, Campinas, SP, July 1991.

[58] J. C. Maldonado, E. FE. Barbosa, A. M. R. Vincenzi, M. E. Delamaro, S. R. S. Souza, and
M. Jino. Teste de software: Teoria e pratica. Minicursos — XVII Simpésio Brasileiro de
Engenharia de Software (SBES 2003), October 2003.

[59] J. C. Maldonado, M. L. Chaim, and M. Jino. Arquitetura de uma ferramenta de teste de
apoio aos critérios potenciais usos. In XXII Congresso Nacional de Informdtica, Sao Paulo,
SP, September 1989.

[60] J. C. Maldonado, M. E. Delamaro, S. C. P. F. Fabbri, A. S. Simao, T. Sugeta, A. M. R.
Vincenzi, and P. C. Masiero. Proteum: A family of tools to support specification and
program testing based on mutation. In Mutation 2000 Symposium — Tool Session, pages
113-116, San Jose, CA, October 2000. Kluwer Academic Publishers.

41



[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

J. C. Maldonado, A. M. R. Vincenzi, E. F. Barbosa, S. R. S. Souza, and M. E. Delamaro.
Aspectos tedricos e empiricos de teste de cobertura de software. Technical Report 31,
Instituto de Ciéncias Matematicas e de Computacdo — ICMC-USP, June 1998.

A. P. Mathur. On the relative strengths of data flow and mutation testing. In Ninth Annual
Pacific Northwest Software Quality Conference, pages 165-181, Portland, OR, October
1991.

R. McDaniel and J. D. McGregor. Testing polymorphic interactions between classes. Te-
chnical Report TR-94-103, Clemson University, March 1994.

J. D. McGregor. Functional testing of classes. In Proc. 7th International Quality Week, San
Francisco, CA, May 1994. Software Research Institute.

G. J. Myers, Corey Sandler, Tom Badgett, and Todd M. Thomas. The Art of Software
Testing. John Wiley & Sons, 2nd. edition, 2004.

S. C. Ntafos. On required element testing. IEEE Transactions on Software Engineering,
SE-10:795-803, November 1984.

S. C. Ntafos. A comparison of some structural testing strategies. IEEE Transactions on
Software Engineering, 14(6):868-873, July 1988.

A. J. Offutt and A. Irvine. Testing object-oriented software using the category-partition
method. In 17th International Conference on Technology of Object-Oriented Languages
and Systems, pages 293-304, Santa Barbara, CA, August 1995.

A.J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An experimental determina-
tion of sufficient mutant operators. ACM Transactions on Software Engineering Methodo-
logy, 5(2):99-118, April 1996.

A. J. Offutt, G. Rothermel, and C. Zapf. An experimental evaluation of selective muta-
tion. In 15th International Conference on Software Engineering (ICSE 93), pages 100-107,
Baltimore, MD, May 1993.

A. Orso, M. J. Harrold, D. Rosenblum, G. Rothermel, H. Do, and M. L. Soffa. Using
component metacontent to support the regression testing of component-based software. In
IEEE International Conference on Software Maintenance (ICSM 2001 ), 2001.

D. E. Perry and G. E. Kaiser. Adequate testing and object-oriented programming. Journal
on Object-Oriented Programming, pages 13—19, January/February 1990.

Roger S. Pressman. Software Engineering - A Practitioner’s Approach. McGraw-Hill, 5
edition, 2001.

R. L. Probert and F. Guo. Mutation testing of protocols: Principles and preliminary ex-
perimental results. In Third International Workshop on Protocol Test Systems (IFIP TC6),
pages 57-76. North-Holland, 1991.

S. Rapps and E. J. Weyuker. Data flow analysis techniques for program test data selection.
In 6th International Conference on Software Engineering, pages 272-278, Tokio, Japan,
September 1982.

42



[76] S.Rapps and E. J. Weyuker. Selecting software test data using data flow information. /EEE
Transactions on Software Engineering, SE-11(4):367-375, April 1985.

[77] A. C. A. Rosa and E. Martins. Using a reflexive architecture to validate object-oriented
applications by fault injection. In Workshop on Reflexive Programming in C++ and Java,
pages 76-80, Vancouver, Canada, 1998. (http://www.dc.unicamp.br/ eliane).

[78] D. S. Rosenblum. Adequate testing of component-based software. Technical Report UCI-
ICS-97-34, University of California, Irvine, CA, August 1997.

[79] K. K. Sabnani and A. Dahbura. Protocol test generation procedure. Computer Networks
and ISDN Systems, 15(4):285-297, April 1988.

[80] A.S. Simdo. Proteum-RS/PN: Uma ferramenta para a validacio de redes de petri baseada
na andlise de mutantes. Master’s thesis, ICMC-USP, Sao Carlos, SP, February 2000.

[81] A.S. Simao and J. C. Maldonado. Geragdo de seqiiéncias para redes de Petri baseadas em
mutacdo. In 11l Workshop de Métodos Formais, Jodo Pessoa, October 2000.

[82] A.S. Simdo, J. C. Maldonado, and S. C. P. F. Fabbri. Proteum-RS/PN: A tool to support
edition, simulation and validation of petri nets based on mutation testing. In X1V Simpdsio
Brasileiro de Engenharia de Software (SBES 2000), Jodo Pessoa, October 2000.

[83] S.R.S. Souza. Avaliagao do custo e eficicia do critério andlise de mutantes na atividade de
teste de programas. Master’s thesis, ICMC-USP, Sdo Carlos, SP, June 1996.

[84] S. R. S. Souza, J. C. Maldonado, S. C. P. FE. Fabbri, and W. Lopes de Souza. Mutation
testing applied to estelle specifications. Software Quality Journal, 8(4):285-302, April
2000. Kluwer Academic Publishers.

[85] T. Sugeta. Proteum-RS/ST : Uma ferramenta para apoiar a validagdo de especificagdes
statecharts baseada na analise de mutantes. Master’s thesis, ICMC-USP, Sao Carlos, SP,
November 1999.

[86] T. Sugeta, J. C. Maldonado, and W. E. Wong. Mutation testing applied to validate SDL
specifications. In 16th IFIP International Conference on Testing of Communicating Systems
(TestCom 2004 ), Oxford, United Kingdom.

[87] C. D. Turner and D. J. Robson. The state-based testing of object-oriented programs. In
IEEFE Conference on Software Maintenance, pages 302-310, 1993.

[88] H. Ural and B. Yang. A structural test selection criterion. Information Processing Letters,
28:157-163, 1988.

[89] S. R. Vergilio, J. C. Maldonado, and M. Jino. Uma estratégia para a geracdo de dados de
teste. In VII Simpdsio Brasileiro de Engenharia de Software (SBES 93), pages 307-319,
Rio de Janeiro, RJ, October 1993.

[90] P.R.S. Vilela. Critérios Potenciais Usos de Integragdo: Definicdo e Andlise. PhD thesis,
DCA/FEEC/UNICAMP, Campinas, SP, April 1998.

[91] P. R. S. Vilela, J. C. Maldonado, and M. Jino. Program graph visualization. Software
Practice and Experience, 27(11):1245-1262, November 1997.

43



[92] A.M.R. Vincenzi. Orientacdo a Objetos: Definicdo, Implementacdo e Andlise de Recursos
de Teste e Validagdo. PhD thesis, Instituto de Ciéncias Matemadticas e de Computacdo —
ICMC-USP, Sao Carlos, SP, March 2004.

[93] A.M.R. Vincenzi, J. C. Maldonado, M. E. Delamaro, E. S. Spoto, and E. Wong. Desenvol-
vimento Baseado em Componentes: Conceitos e Técnicas, chapter Software Baseado em
Componentes: Uma Revisdo sobre Teste. Editora Ciéncia Moderna Ltda., 2005.

[94] A.M.R. Vincenzi, W. E. Wong, M. E. Delamaro, and J. C. Maldonado. JaBUTi: A coverage
analysis tool for java programs. In XVII Simpdésio Brasileiro de Engenharia de Software
(SBES 2003), Manaus, AM, October 2003.

[95] E.J. Weyuker. The complexity of data flow for test data selection. Information Processing
Letters, 19(2):103-109, August 1984.

[96] E. J. Weyuker and B. Jeng. Analyzing partition testing strategies. IEEE Transactions on
Software Engineering, 17(7):703-711, July 1991.

[97] W.E. Wong, J. R. Horgan, S. London, and A. P. Mathur. Effect of test set size and block co-
verage on fault detection effectiveness. In Fifth IEEE International Symposium on Software
Reliability Engineering, pages 230-238, Monterey, CA, November 1994.

[98] M. R. Woodward. Mutation testing — its origin and evolution. Information and Software
Technology, 35(3):163-169, March 1993.

[99] M. R. Woodward, D. Heddley, and M. A. Hennel. Experience with path analysis and testing
of programs. IEEE Transactions on Software Engineering, SE-6:278-286, May 1980.

[100] H. Zhu. A formal analysis of the subsume relation between software test adequacy criteria.
IEEFE Transactions on Software Engineering, SE-22(4):248-255, April 1996.

44



