
Teste Estrutural e de Mutação
no Contexto de Programas OO

Ellen Francine Barbosa
José Carlos Maldonado

Departamento de Ciências de Computação
Instituto de Ciências Matemáticas e de Computação (ICMC)

Universidade de São Paulo – Campus de São Carlos
Caixa Postal 668

13560-970 São Carlos, SP
{francine, jcmaldon}@icmc.usp.br

Auri Marcelo Rizzo Vincenzi
Instituto de Informática

Universidade Federal de Goiás (UFG)
Caixa Postal 131

74001-970 Goiânia, GO
auri@inf.ufg.br

Márcio Eduardo Delamaro
Faculdade de Informática de Marília

Fundação de Ensino Eurípides Soares da Rocha (UNIVEM)
Caixa Postal 2041

17525-901 Marília, SP
delamaro@fundanet.br

Resumo

As exigências por software com maior qualidade têm motivado a definição de métodos e
técnicas para o desenvolvimento de software que atinjam os padrões de qualidade impostos.
Com isso, o interesse pela atividade de teste de software vem aumentando nos últimos anos.
Vários pesquisadores têm investigado os diferentes critérios de teste, buscando obter uma
estratégia de teste com baixo custo de aplicação e, ao mesmo tempo, com grande capacidade
em revelar erros. O objetivo deste minicurso é apresentar os aspectos teóricos e práticos
relacionados à atividade de teste de software, tanto no contexto do paradigma procedimental
quanto orientado a objeto. Em particular, ênfase é dada aos critérios de teste baseados em
Fluxo de Dados e em Mutação, com o apoio das ferramentas PokeTool e Proteum (teste de
programas C), e JaBUTi (teste de programas Java em nível de bytecode), desenvolvidas no
contexto do grupo de Engenharia de Software do ICMC/USP. Perspectivas e trabalhos de
pesquisa sendo realizados na área de teste também são brevemente discutidos.

1 Introdução: Terminologia e Conceitos Básicos

A crescente utilização de sistemas baseados em computação em praticamente todas as áreas da
atividade humana tem provocado grande demanda por qualidade e produtividade, tanto do ponto
de vista do processo de produção como do ponto de vista dos produtos de software gerados. Nesse
contexto, a Engenharia de Software – disciplina que aplica os princípios de engenharia com o
objetivo de produzir software de alta qualidade a baixo custo [73] – evoluiu significativamente nas
últimas décadas. Por meio de um conjunto de etapas que envolvem o desenvolvimento e aplicação
de métodos, técnicas, critérios e ferramentas, a Engenharia de Software busca oferecer meios para
que tais objetivos possam ser alcançados.

No entanto, apesar das técnicas, critérios, métodos e ferramentas empregados, erros1 no pro-
duto ainda podem ocorrer. Atividades agregadas sob o nome de Garantia de Qualidade de Software
têm sido introduzidas ao longo de todo o processo de desenvolvimento, entre elas atividades de
VV&T (Verificação, Validação e Teste), com o objetivo de minimizar a ocorrência de erros e riscos
associados. A verificação visa a assegurar que o software, ou uma determinada função do mesmo,
esteja sendo implementado corretamente. Verifica-se, inclusive, se os métodos e processos de de-
senvolvimento foram adequadamente aplicados. A validação, por sua vez, procura assegurar que
o software sendo desenvolvido é o software correto, de acordo com os requisitos do usuário.

Dentre as técnicas de verificação e validação, a atividade de teste é uma das mais utilizadas,
constituindo-se em um dos elementos para fornecer evidências da confiabilidade do software em
complemento a outras atividades como, por exemplo, o uso de revisões e de técnicas formais e
rigorosas de especificação e de verificação [57]. De fato, os testes são considerados elementos
críticos para a garantia da qualidade do software [14].

A atividade de teste consiste em uma análise dinâmica do produto, sendo relevante para a
identificação e eliminação dos erros que persistem, representando a última revisão da especifi-
cação, projeto e codificação [38, 57, 73, 100]. Segundo Myers [65], o objetivo principal do teste
de software é revelar a presença de erros ou defeitos no produto. Nesse sentido, o teste bem su-
cedido é aquele que consegue determinar casos de teste para os quais o programa sendo testado
falhe. Salienta-se, entretanto, que a atividade de teste tem sido apontada entre as mais onerosas
no desenvolvimento de software, podendo, em alguns casos, consumir grande parte dos custos de
desenvolvimento [73].

Apesar de não ser possível, por meio de testes, provar que um programa está correto, estes
contribuem para aumentar a confiança de que o software desempenha as funções especificadas.
Além disso, apesar das limitações próprias da atividade de teste, sua aplicação de maneira siste-
mática e bem planejada pode garantir ao software algumas características mínimas, importantes
tanto para o estabelecimento da qualidade do produto como para o seu processo de evolução.

O teste de produtos de software envolve basicamente quatro etapas: planejamento de testes,
projeto de casos de teste, execução e avaliação dos resultados dos testes [4, 6, 14, 65, 73]. Tais ati-
vidades devem ser desenvolvidas ao longo do próprio processo de desenvolvimento de software e,
em geral, concretizam-se em três fases [73]: teste de unidade, teste de integração e teste de sistema.
O teste de unidade concentra esforços na menor unidade do projeto de software, ou seja, procura

1A IEEE tem realizado vários esforços de padronização, entre eles a padronização da terminologia utilizada no
contexto de Engenharia de Software. O padrão IEEE 610.12-1990 [49] diferencia os termos: defeito (fault) – passo,
processo ou definição de dados incorreto, como uma instrução ou comando incorreto; engano (mistake) – ação humana
que produz um resultado incorreto, como uma ação incorreta tomada pelo programador; erro (error) – diferença entre
o valor obtido e o valor esperado, ou seja, qualquer estado intermediário incorreto ou resultado inesperado na execução
do programa constitui um erro; e falha (failure) – produção de uma saída incorreta com relação à especificação. Neste
texto, os termos engano, defeito e erro serão referenciados como erro (causa) e o termo falha (conseqüência) a um
comportamento incorreto do programa.

2

identificar erros de lógica e de implementação em cada módulo do software, separadamente. O
teste de integração é uma atividade sistemática aplicada durante a integração da estrutura do pro-
grama visando a descobrir erros associados às interfaces entre os módulos; o objetivo é, a partir
dos módulos testados no nível de unidade, construir a estrutura de programa que foi determinada
pelo projeto. O teste de sistema, realizado após a integração do sistema, visa a identificar erros de
funções e características de desempenho que não estejam de acordo com a especificação.

Um ponto crucial da atividade de teste é o projeto e/ou avaliação dos casos de teste a serem
utilizados. O programa, em princípio, deveria ser exercitado com todos os valores do domínio de
entrada. Sabe-se, entretanto, que o teste exaustivo é impraticável por razões de custo e tempo.
Dessa forma, por questões de produtividade, o objetivo é utilizarem-se casos de teste que tenham
alta probabilidade de revelar a presença da maioria dos erros existentes com o mínimo de tempo e
esforço, por questões de produtividade.

Dentro dessa perspectiva, para que a atividade de teste possa ser conduzida de forma sis-
temática e teoricamente fundamentada, faz-se necessária a aplicação de técnicas e critérios que
indiquem como testar o software, quando parar os testes e que, se possível, forneçam uma medida
objetiva do nível de confiança e de qualidade alcançados com os testes realizados [20]. Em geral,
os critérios de teste de software são estabelecidos, basicamente, a partir das técnicas: funcional,
estrutural, baseada em erros e baseada em estados. Na técnica funcional, os requisitos de teste
são estabelecidos a partir da especificação do software. Na técnica estrutural, os requisitos são
derivados a partir dos aspectos de implementação do software. Na técnica baseada em erros, os
requisitos de teste são obtidos a partir do conhecimento sobre erros típicos cometidos durante o
processo de desenvolvimento de software. Na técnica baseada em estados, os requisitos de teste
são derivados a partir da especificação representada por um modelo de estados como, por exemplo,
uma máquina de estado finito [12] ou um statechart [37].

É importante ressaltar que as técnicas de teste devem ser vistas como complementares e a
questão que se coloca é como utilizá-las de forma que as vantagens de cada uma sejam melhor
exploradas em uma estratégia de teste que leve a uma atividade de teste de boa qualidade, eficaz e
de baixo custo [4,14,73,93]. De fato, dada a diversidade de critérios existentes para cada uma das
técnicas e reconhecido seu caráter complementar, o estabelecimento de estratégias de teste com
tais características é fundamental. Estudos teóricos e empíricos, que proporcionem uma síntese do
conhecimento sobre vantagens, desvantagens e limitações de cada um dos critérios de teste, têm
sido conduzidos nessa direção.

Outro aspecto relevante associado à atividade de teste refere-se ao desenvolvimento de fer-
ramentas que automatizem a aplicação das técnicas e critérios associados. Sem a utilização de
ferramentas automatizadas como mecanismos de apoio, a atividade de teste tende a ser extrema-
mente trabalhosa, propensa a erros e limitada a programas muito simples [46]. Além de contribuir
para a qualidade e a produtividade dos testes, a existência de ferramentas automatizadas: (1) via-
biliza a realização de estudos empíricos; (2) auxilia a condução dos testes de regressão; e (3) apóia
o processo de ensino e aprendizado envolvendo a aplicação prática dos conceitos de teste.

Em linhas gerais, observa-se que os critérios baseados em Fluxo de Dados [44, 53, 66, 75, 76,
88] e o critério Análise de Mutantes [10, 21, 22] têm sido fortemente investigados por diversos
pesquisadores, sob diferentes aspectos. Resultados desses estudos fornecem evidências de que
esses critérios, hoje investigados fundamentalmente no meio acadêmico, às vezes em cooperação
com a indústria, podem, em médio prazo, constituir o estado da prática em ambientes de produção
de software.

O paradigma de desenvolvimento orientado a objetos (OO), o qual tem sido cada vez mais
utilizado, em grande parte devido ao seu potencial para reutilização, constitui outro fator rele-
vante a ser considerado no contexto da atividade de teste. O teste de programas OO e o teste de

3

componentes devem lidar com novos problemas introduzidos pelas características das linguagens
OO. Encapsulamento, herança, polimorfismo e acoplamento dinâmico, embora tragam benefícios
para o projeto e a codificação, oferecem novos desafios para as áreas de teste e manutenção [63].
Atualmente, a maioria das organizações desenvolvedoras de software ainda estão no processo de
transição para o paradigma OO e, à medida que mais e mais organizações adotarem tal paradigma,
maior será a demanda por técnicas, critérios e ferramentas que apóiem o teste de sistemas desse
tipo [38,52,92]. Apesar de diversos trabalhos nessa direção, ainda são poucas as evidências sobre
a eficácia das técnicas e critérios propostos. Como destacado por Offutt e Irvine [68], os critérios
de teste utilizados no paradigma procedimental precisam ser reavaliados e, quando necessário,
passar por adaptações que permitam sua utilização no teste de programas OO.

O grupo de Engenharia de Software do ICMC/USP, em colaboração com outros grupos de
pesquisa na área de teste, vem desenvolvendo atividades de pesquisa concentradas no estudo de
princípios, estratégias, métodos e critérios de teste e validação de software, bem como na especi-
ficação e implementação de ferramentas de teste que apóiem a realização das atividades de teste
e viabilizem a avaliação do aspecto complementar dos critérios de teste por meio de estudos em-
píricos. Dentre os critérios de teste investigados pelo grupo destacam-se os critérios baseados em
Fluxo de Dados e os critérios baseados em Mutação, explorados tanto no contexto do paradigma
procedimental como OO. No que se refere às ferramentas de teste desenvolvidas destacam-se:
PokeTool [11] (apoio à aplicação de critérios estruturais no teste de programas C); Proteum [15]
e Proteum/IM [17] (apoio à aplicação dos critérios Análise de Mutantes e Mutação de Interface,
respectivamente, no teste de programas C); e JaBUTi [92, 94] (teste de bytecode Java). Além
disso, no contexto do teste de especificações, destaca-se o desenvolvimento de critérios baseados
em Mutação para o teste de Máquinas de Estado Finito (MEFs) [24, 27], Statecharts [25, 29] e
Redes de Petri [28, 81], apoiados pelas ferramentas Proteum/FSM [24], Proteum/ST [29] e Pro-
teum/PN [28, 81, 82], respectivamente. Mais recentemente, também tem sido explorado o desen-
volvimento de critérios de teste baseados em Mutação para Estelle [84] e SDL [86].

O presente texto visa a abordar os aspectos teóricos e práticos relacionados à atividade de teste
de software, tanto no contexto do paradigma de desenvolvimento procedimental quanto orientado
a objeto. Com esse objetivo em mente, o texto está organizado da seguinte forma2: nesta seção
foram introduzidos os conceitos básicos e a terminologia pertinentes ao teste de software. Na
Seção 2 são apresentados os critérios de teste mais difundidos das técnicas funcional, estrutural,
baseada em erros e baseada em estados. Em particular, ênfase é dada às técnicas baseadas em
Fluxo de Dados e em Mutação, com o apoio das ferramentas de teste PokeTool e Proteum, respec-
tivamente. Na Seção 3 são discutidas algumas das principais questões relacionadas ao teste OO.
Inicialmente, as fases de teste para programas OO são caracterizadas, contrapondo-se com as fa-
ses de teste para programas procedimentais. Em seguida, é discutido o impacto das características
de encapsulamento, herança, polimorfismo e acoplamento dinâmico na definição e aplicação de
critérios de teste. Uma visão geral sobre os principais critérios de teste investigados no contexto
de desenvolvimento OO também é apresentada. Além disso, aspectos operacionais da ferramenta
JaBUTi são brevemente discutidos. Na Seção 4 são discutidos alguns aspectos referentes a estudos
teóricos e empíricos, conduzidos a fim de avaliar e comparar os diversos critérios de teste existen-
tes. Finalmente, na Seção 5 são apresentadas as conclusões e perspectivas de trabalhos futuros na
área de teste de software.

2Os aspectos discutidos neste texto foram extraídos essencialmente de [4, 58, 61, 92, 93].

4

2 Técnicas e Critérios de Teste

Conforme mencionado na Seção 1, para se conduzir e avaliar a qualidade da atividade de
teste utilizam-se as técnicas de teste funcional, estrutural, baseada em erros e baseada em estados.
Tais técnicas diferenciam-se pela origem da informação utilizada na avaliação e construção dos
conjuntos de casos de teste [57].

Além disso, segundo Howden [48], o teste pode ser classificado de duas maneiras: teste base-
ado em especificação (specification-based testing) e teste baseado em programa (program-based
testing). De acordo com tal classificação, têm-se que os critérios das técnicas funcional e baseada
em estado são baseados em especificação, e os critérios das técnicas estrutural e baseada em erros
são considerados critérios baseados em programa.

No teste baseado em especificação, o objetivo é determinar se o programa satisfaz aos re-
quisitos funcionais e não-funcionais especificados. O problema é que, em geral, a especificação
existente é informal e, desse modo, a determinação da cobertura total da especificação que foi
obtida por um dado conjunto de casos de teste também é informal [72]. Por outro lado, os critérios
de teste baseados em especificação podem ser utilizados em qualquer contexto (procedimental ou
OO) e em qualquer fase de teste (unidade, integração, sistema) sem a necessidade de modificação.

O teste baseado em programa requer a inspeção do código-fonte e a seleção de casos de teste
que exercitem partes do código e não de sua especificação [72]. O objetivo é identificar erros
na estrutura interna do programa. A desvantagem dessa abordagem é que a mesma pode ser
dependente da linguagem e requer o acesso ao código-fonte para ser aplicada.

Nesta seção apresentam-se com mais detalhes as técnicas estrutural e baseada em erros, mais
especificamente os critérios baseados em Fluxo de Dados [57, 76] e em Mutação [16, 22]. Por
meio desses critérios, ilustram-se os principais aspectos pertinentes à atividade de teste de soft-
ware. O programa identifier (Figura 1) será utilizado para facilitar a ilustração dos conceitos
desenvolvidos no texto. Para propiciar uma visão mais abrangente apresenta-se, primeiramente,
uma visão geral das técnicas baseada em estados e funcional, bem como alguns de seus critérios
mais conhecidos.

2.1 Técnica Baseada em Estados

O teste baseado em estados utiliza uma representação baseada em estados para modelar o com-
portamento do sistema ou unidade que será testada. Com base nesse modelo, critérios de geração
de seqüências de teste podem ser utilizados de modo a garantir o seu correto funcionamento.

Um dos critérios de geração de seqüências de teste, baseado em Máquinas de Estado Finito
(MEFs), é o critério W [12]. Além do critério W , podem ser encontrados na literatura outros
critérios, tais como DS [36], UIO [79] e Wp [33]. Critérios baseados em mutação também têm
sido investigados para a geração de conjuntos de casos de teste para MEFs [26, 27].

Dada a própria natureza dos objetos de englobarem estado e comportamento, os critérios base-
ados em MEFs também são bastante utilizados no contexto de OO, a fim de representar o aspecto
comportamental dos objetos [7,8,45,63,64,87]. Tal assunto será brevemente retomado na Seção 3.

2.2 Técnica Funcional

O teste funcional, também conhecido como teste caixa preta, trata o software como uma caixa
cujo conteúdo é desconhecido e da qual só é possível visualizar o lado externo, ou seja, os dados
de entrada fornecidos e as respostas produzidas como saída [6, 65]. O testador utiliza, essencial-
mente, a especificação de requisitos do programa para derivar os requisitos de testes, ou mesmo
os casos de teste que serão empregados, sem se importar com os detalhes de implementação [6].

5

/***
Identifier.c
ESPECIFICACAO: O programa deve determinar se um identificador eh ou nao valido em
’Silly Pascal’ (uma estranha variante do Pascal). Um identificador valido deve
comecar com uma letra e conter apenas letras ou digitos. Alem disso, deve ter no
minimo 1 caractere e no maximo 6 caracteres de comprimento

***/

#include <stdio.h>
main ()

/* 1 */ {
/* 1 */ char achar;
/* 1 */ int length, valid_id;
/* 1 */ length = 0;
/* 1 */ valid_id = 1;
/* 1 */ printf ("Identificador: ");
/* 1 */ achar = fgetc (stdin);
/* 1 */ valid_id = valid_s(achar);
/* 1 */ if(valid_id)
/* 2 */ {
/* 2 */ length = 1;
/* 2 */ }
/* 3 */ achar = fgetc (stdin);
/* 4 */ while(achar != ’\n’)
/* 5 */ {
/* 5 */ if(!(valid_f(achar)))
/* 6 */ {
/* 6 */ valid_id = 0;
/* 6 */ }
/* 7 */ length++;
/* 7 */ achar = fgetc (stdin);
/* 7 */ }
/* 8 */ if(valid_id &&

(length >= 1)&&(length < 6))
/* 9 */ {
/* 9 */ printf ("Valido\n");
/* 9 */ }
/* 10 */ else
/* 10 */ {
/* 10 */ printf ("Invalid\n");
/* 10 */ }
/* 11 */ }

int valid_s(char ch)
/* 1 */ {
/* 1 */ if(((ch >= ’A’) &&

(ch <= ’Z’)) ||
((ch >= ’a’) &&
(ch <= ’z’)))

/* 2 */ {
/* 2 */ return (1);
/* 2 */ }
/* 3 */ else
/* 3 */ {
/* 3 */ return (0);
/* 3 */ }
/* 4 */ }

int valid_f(char ch)
/* 1 */ {
/* 1 */ if(((ch >= ’A’) &&

(ch <= ’Z’)) ||
((ch >= ’a’) &&
(ch <= ’z’)) ||
((ch >= ’0’) &&
(ch <= ’9’)))

/* 2 */ {
/* 2 */ return (1);
/* 2 */ }
/* 3 */ else
/* 3 */ {
/* 3 */ return (0);
/* 3 */ }
/* 4 */ }

Figura 1: Programa exemplo: identifier (contém ao menos um erro).

6

Assim, uma especificação de qualidade e de acordo com os requisitos do usuário é de fundamental
importância para apoiar a aplicação dos critérios relacionados a essa técnica. Alguns exemplos de
critérios de teste funcional são [73]:

• Particionamento em Classes de Equivalência: A partir das condições de entrada de dados
identificadas na especificação, o domínio de entrada de um programa é dividido em classes
de equivalência válidas e inválidas. Em seguida, seleciona-se o menor número possível
de casos de teste, baseando-se na hipótese de que um elemento de uma dada classe seria
representativo da classe toda, sendo que para cada uma das classes inválidas deve ser gerado
um caso de teste distinto. O uso de particionamento permite examinar os requisitos de forma
mais sistemática e restringir o número de casos de teste existentes. Alguns autores também
consideram o domínio de saída do programa para estabelecer as classes de equivalência.

• Análise do Valor Limite: É um complemento ao critério Particionamento em Classes de
Equivalência, sendo que os limites associados às condições de entrada são exercitados de
forma mais rigorosa. Ao invés de selecionar-se qualquer elemento de uma classe, os casos
de teste são escolhidos nas fronteiras das classes, visto que são nesses pontos que se con-
centra um grande número de erros. O espaço de saída do programa também é particionado
e são exigidos casos de teste que produzam resultados nos limites dessas classes de saída.

• Grafo de Causa-Efeito: Os critérios anteriores não exploram combinações das condições
de entrada. Esse critério estabelece requisitos de teste baseados nas possíveis combinações
das condições de entrada. Primeiramente, são levantadas as possíveis condições de entrada
(causas) e as possíveis ações (efeitos) do programa. A seguir, constrói-se um grafo relaci-
onando as causas e efeitos levantados. Esse grafo é convertido em uma tabela de decisão a
partir da qual são derivados os casos de teste.

Conforme discutido anteriormente, um dos problemas relacionados aos critérios funcionais é
que muitas vezes a especificação do programa é feita de modo descritivo e não formal. Dessa
maneira, os requisitos de teste derivados de tais especificações são também, de certa forma, im-
precisos e informais. Como conseqüência, tem-se dificuldade em automatizar a aplicação de tais
critérios, que ficam, em geral, restritos à aplicação manual. Coloca-se, ainda, a dificuldade de
quantificar a atividade de teste, uma vez que não se pode garantir que partes essenciais ou críti-
cas do código do programa foram executadas. Por outro lado, visto que os critérios funcionais
baseiam-se exclusivamente na especificação do software para derivar os requisitos de teste, tais
critérios podem ser aplicados praticamente em todas as fases de teste e em programas construídos
sob diferentes paradigmas de desenvolvimento [45, 63, 68, 93].

A título de ilustração, considere o programa identifier e o critério Particionamento em
Classes de Equivalência. Na Tabela 1 são identificadas as condições de entrada e as classes de
equivalência válidas e inválidas. A partir dessas classes, poderia ser elaborado o seguinte conjunto
de casos de teste : T0 = {(a1, Válido), (2B3, Inválido), (Z-12, Inválido), (A1b2C3d, Inválido)}. De
posse do conjunto T0, seria natural indagar se esse conjunto exercita todos os comandos ou todos
os desvios de fluxo de controle de uma dada implementação. Usualmente, utilizam-se critérios
estruturais de teste, apresentados a seguir, como critérios de adequação ou critérios de cobertura
para se analisar questões como esta, propiciando a quantificação e a qualificação da atividade de
teste de acordo com o critério escolhido. Assim, quanto mais rigoroso o critério utilizado e se
erros não forem revelados, maior a confiança no produto em desenvolvimento.

7

Tabela 1: Classes de equivalência para o programa identifier.
Restrições de Entrada Classes Válidas Classes Inválidas
Tamanho (t) do identificador 1 ≤ t ≤ 6 t > 6

(1) (2)
Primeiro caracter (c) é uma letra Sim Não

(3) (4)
Contém somente caracteres válidos Sim Não

(5) (6)

2.3 Técnica Estrutural

Na técnica de teste estrutural, também conhecida como teste caixa branca (em oposição ao
nome caixa preta), os aspectos de implementação são fundamentais na escolha dos casos de teste.
O teste estrutural baseia-se no conhecimento da estrutura interna da implementação. Em geral, a
maioria dos critérios dessa técnica utiliza uma representação de programa conhecida como grafo
de fluxo de controle (ou grafo de programa). Um programa P pode ser decomposto em um con-
junto de blocos disjuntos de comandos; a execução do primeiro comando de um bloco acarreta a
execução de todos os outros comandos desse bloco, na ordem dada. Todos os comandos de um
bloco, possivelmente com exceção do primeiro, têm um único predecessor e exatamente um único
sucessor, exceto possivelmente o último comando.

A representação de um programa P como um grafo de fluxo de controle consiste em estabele-
cer uma correspondência entre nós e blocos e em indicar possíveis fluxos de controle entre blocos
através dos arcos. Um grafo de fluxo de controle é portanto um grafo orientado, com um único
nó de entrada e um único nó de saída, no qual cada vértice representa um bloco indivisível de
comandos e cada aresta representa um possível desvio de um bloco para outro. Cada bloco tem as
seguintes características: (1) uma vez que o primeiro comando do bloco é executado, todos os de-
mais são executados seqüencialmente; e (2) não existe desvio de execução para nenhum comando
dentro do bloco. A partir do grafo de programa podem ser escolhidos os elementos que devem ser
executados, caracterizando assim o teste estrutural.

Considere o programa identifier. Na Figura 1 identifica-se a caracterização dos blocos
de comandos por meio dos números à esquerda dos comandos. A Figura 2 ilustra o grafo de fluxo
de controle do programa identifier (função main) gerado pela ferramenta ViewGraph [91].

Seja um grafo de fluxo de controle G = (N, E, s) onde N representa o conjunto de nós, E o
conjunto de arcos, e s o nó de entrada. Um caminho é uma seqüência finita de nós (n1, n2, . . . , nk),
k ≥ 2, tal que existe um arco de ni para ni+1 para i = 1, 2, . . . , k−1. Um caminho é um caminho
simples se todos os nós que compõem esse caminho, exceto possivelmente o primeiro e o último,
são distintos. Se todos os nós são distintos diz-se que esse caminho é um caminho livre de laço.
Um caminho completo é um caminho no qual o primeiro nó é o nó de entrada e o último nó é o
nó de saída do grafo G. Seja IN(x) e OUT (x) o número de arcos que entram e que saem do nó
x respectivamente. Se IN(x) = 0 x é uma nó de entrada, e se OUT (x) = 0, x é um nó de saída.

Em relação ao programa identifier, (2,3,4,5,6,7) é um caminho simples e livre de laços e
o caminho (1,2,3,4,5,7,4,8,9,11) é um caminho completo. Observe que o caminho (6,7,4,5,7,4,8,9)
é não executável e qualquer caminho completo que o inclua é também não executável, ou seja, não
existe um dado de entrada que leve à execução desse caminho.

Os critérios de teste estrutural baseiam-se em diferentes tipos de conceitos e elementos de
programa para determinar os requisitos de teste. Na Tabela 2 ilustram-se alguns desses elementos
e critérios associados.

Os critérios de teste estrutural são, em geral, classificados em:

8

Figura 2: Grafo de fluxo de controle do programa identifier gerado pela ViewGraph.

Tabela 2: Elementos e critérios associados em relação ao programa identifier.
Elemento Exemplo (identifier) Critério
Nó 6 Todos-Nós
Arco (7,4) Todos-Arcos
Laço (4,5,6,7,4) Boundary-Interior
Caminho (1,2,3,4,8,9,11) Todos-Caminhos
Definição de variáveis length=0 Todas-Defs
Uso predicativo de variáveis achar != ‘\n’ Todos-P-Usos
Uso computacional de variáveis length++ Todos-C-Usos

• Critérios Baseados em Fluxo de Controle: Utilizam apenas características de controle da
execução do programa, como comandos ou desvios, para determinar quais estruturas são
necessárias. Os critérios mais conhecidos dessa classe são [73]: Todos-Nós – exige que
a execução do programa passe, ao menos uma vez, em cada vértice do grafo de fluxo, ou
seja, que cada comando do programa seja executado pelo menos uma vez; Todos-Arcos –
requer que cada aresta do grafo, ou seja, cada desvio de fluxo de controle do programa,
seja exercitada pelo menos uma vez; e Todos-Caminhos – requer que todos os caminhos
possíveis do programa sejam executados. Outros critérios dessa categoria são: Cobertura de
Decisão; Cobertura de Condição; Cobertura de Condições Múltiplas; LCSAJ (Linear Code
Sequence and Jump) [99]; o critério Boundary-Interior [47]; e a família de critérios K-tuplas
requeridas, de Ntafos [66].

• Critérios Baseados em Fluxo de Dados: Utilizam informações do fluxo de dados do pro-
grama para determinar os requisitos de teste. Esses critérios exploram as interações que
envolvem definições de variáveis e referências a tais definições para estabelecerem os re-
quisitos de teste [76]. Exemplos dessa classe de critérios são os critérios de Rapps e Weyu-
ker [75, 76] e os critérios Potenciais-Usos [57]. Tais critérios serão descritos mais detalha-
damente nas próximas seções.

• Critérios Baseados na Complexidade: Utilizam informações sobre a complexidade do pro-
grama para derivar os requisitos de teste. Um critério bastante conhecido dessa classe é o

9

critério de McCabe, que utiliza a complexidade ciclomática do grafo de programa para deri-
var os requisitos de teste. Essencialmente, esse critério requer que um conjunto de caminhos
linearmente independentes do grafo de programa seja executado [73].

A técnica estrutural apresenta uma série de limitações e desvantagens. Um dos principais
problemas refere-se à impossibilidade, em geral, de se determinar automaticamente se um caminho
é executável ou não. Ou seja, não existe um algoritmo que dado um caminho completo qualquer,
decida se o caminho é executável e forneça o conjunto de valores que causam a execução desse
caminho [89]. Assim, é preciso a intervenção do testador para determinar quais são os caminhos
não executáveis para o programa sendo testado.

Independentemente dessas desvantagens, essa técnica é vista como complementar à técnica
funcional [73]. De fato, é importante observar que os casos de teste obtidos durante a aplicação
dos critérios funcionais podem corresponder ao conjunto inicial dos testes estruturais. Como, em
geral, o conjunto de casos de teste funcional não é suficiente para satisfazer totalmente um critério
de teste estrutural, novos casos de teste são gerados e adicionados ao conjunto até que se atinja
o grau de satisfação desejado, explorando-se, desse modo, os aspectos complementares das duas
técnicas [83]. Ainda, informações obtidas pela aplicação desses critérios têm sido consideradas
relevantes para as atividades de manutenção, depuração e confiabilidade de software [6, 73].

2.3.1 Critérios Baseados em Fluxo de Dados

Os critérios baseados em Fluxo de Dados [44], propostos em meados da década de 70, utilizam
informações do fluxo de dados para derivar os requisitos de teste. Uma característica comum de
tais critérios é que eles requerem que sejam testadas as interações que envolvam definições de
variáveis e subseqüentes referências a essas definições [44, 53, 66, 76, 88].

Uma motivação para a introdução dos critérios baseados em Fluxo de Dados foi a indicação
de que, mesmo para programas pequenos, o teste baseado unicamente no Fluxo de Controle não
era eficaz para revelar a presença até mesmo de erros simples e triviais. A introdução dessa classe
de critérios procurou fornecer uma hierarquia entre os critérios Todos-Arcos e Todos-Caminhos,
visando a tornar o teste mais rigoroso, já que o teste de Todos-Caminhos é, em geral, impraticável.

Dentre os critérios de Fluxo de Dados, destacam-se os critérios de Rapps e Weyuker [76],
introduzidos nos anos 80. Rapps e Weyuker propuseram o Grafo Def-Uso (Def-Use Graph) que
consiste em uma extensão do grafo de programa [75, 76]. Nele são adicionadas informações a
respeito do fluxo de dados do programa, caracterizando associações entre pontos do programa
nos quais é atribuído um valor a uma variável (chamado de definição da variável) e pontos em
que esse valor é utilizado (chamado de referência ou uso da variável). Os requisitos de teste são
determinados com base em tais associações.

A Figura 3 ilustra o Grafo-Def-Uso do programa identifier. Conforme o modelo de fluxo
de dados definido em [57], uma definição de variável ocorre quando um valor é armazenado em
uma posição de memória. Em geral, em um programa, uma ocorrência de variável é uma definição
se ela está: (i) no lado esquerdo de um comando de atribuição; (ii) em um comando de entrada;
ou (iii) em chamadas de procedimentos como parâmetro de saída. A passagem de valores entre
procedimentos por meio de parâmetros pode ser por valor, referência ou por nome [34]. Se a
variável for passada por referência ou por nome considera-se que seja um parâmetro de saída. As
definições decorrentes de possíveis definições em chamadas de procedimentos são diferenciadas
das demais e são ditas definidas por referência. A ocorrência de uma variável é um uso quando
a referência a essa variável não a estiver definindo. Dois tipos de usos são distinguidos: c-uso
e p-uso. O primeiro tipo afeta diretamente uma computação sendo realizada ou permite que o

10

resultado de uma definição anterior possa ser observado; o segundo tipo afeta diretamente o fluxo
de controle do programa.

Figura 3: Grafo def-uso do programa identifier.

O critério mais básico da família de critérios definidos por Rapps e Weyuker [76] é o critério
Todas-Definições. Entre os critérios dessa família, o critério Todos-Usos tem sido um dos mais
utilizados e investigados.

• Todas-Definições: Requer que cada definição de variável seja exercitada pelo menos uma
vez, não importa se por um c-uso ou por um p-uso.

• Todos-Usos: Requer que todas as associações entre uma definição de variável e seus sub-
seqüentes usos (c-usos e p-usos) sejam exercitadas pelos casos de teste, através de pelo
menos um caminho livre de definição, ou seja, um caminho onde a variável não é redefi-
nida.

Como exemplo, para exercitar a definição da variável length definida no nó 1, de acordo com
o critério Todas-Definições, poderiam ser executados um dos seguintes subcaminhos: (1,3,4,5,7);
(1,3,4,8,9); (1,3,4,8,10); e (1,3,4,5,6,7). O subcaminho (1,3,4,8,9) é não executável, assim como
qualquer caminho completo que o inclua. Se qualquer um dos demais caminhos for exercitado,
o requisito de teste é satisfeito. Para satisfazer o critério Todas-Definições, esta análise deve ser
feita para toda definição que ocorre no programa.

Em relação ao critério Todos-Usos, com respeito à mesma definição, são requeridas as seguin-
tes associações: (1,7, length); (1,(8,9),length) e (1,(8,10),length). As notações (i,j,var) e
(i,(j, k),var) indicam que a variável var é definida no nó i e existe um uso computacional de var

no nó j ou um uso predicativo de var no arco (j, k), respectivamente, bem como pelo menos um
caminho livre de definição do nó i ao nó j ou ao arco (j, k). Observe que a associação (1,(8,9),
length) é não executável pois o único caminho que livre de definição possível de exercitá-la
seria um caminho que incluísse o subcaminho (1,3,4,8,9). Já para a associação (1,7,length),

11

qualquer caminho completo executável incluindo um dos subcaminhos (1,3,4,5,6,7), (1,3,4,5,7)
é suficiente para exercitá-la. Esta mesma análise deve ser feita para todas as demais variáveis e
associações pertinentes, a fim de satisfazer o critério Todos-Usos.

A maior parte dos critérios baseados em Fluxo de Dados, para requerer um determinado ele-
mento (caminho, associação, etc.), exige a ocorrência explícita de um uso de variável e não ga-
rante, necessariamente, a inclusão dos critérios Todos-Arcos na presença de caminhos não execu-
táveis, presentes na maioria dos programas [57]. Com a introdução do conceito de potencial-uso,
nos início dos anos 90, Maldonado [57] definiu a família de critérios Potenciais-Usos e a cor-
respondente família de critérios executáveis, obtida pela eliminação dos caminhos e associações
não executáveis. Em linhas gerais, os critérios Potenciais-Usos requerem associações indepen-
dentemente da ocorrência explícita de uma referência (um uso) a uma definição de variável, ou
seja, requerem que caminhos livres de definição a partir da definição de uma determinada variável
sejam executados, independentemente de ocorrer um uso dessa variável nesse caminho.

Os critérios básicos que fazem parte dessa família de critérios são [57]:

• Todos-Potenciais-Usos: Requer que pelo menos um caminho livre de definição de uma
variável definida em um nó i para todo nó e todo arco possível de ser alcançado a partir de
i seja exercitado.

• Todos-Potenciais-Usos/Du: Requer que pelo menos um potencial-du-caminho3 com relação
a uma variável x definida em i para todo nó e para todo arco possível de ser alcançado a
partir de i seja exercitado.

• Todos-Potenciais-Du-Caminhos: Requer que todos os potenciais-du-caminhos com relação
a todas as variáveis x definidas e todos os nós e arcos possíveis de serem alcançados a partir
dessa definição sejam exercitados.

Da mesma forma como os demais critérios baseados em Fluxo de Dados, os critérios Potenciais-
Usos podem utilizar o Grafo Def-Uso como base para o estabelecimento dos requisitos de teste.
Na verdade, basta ter a extensão do grafo de programa associando a cada nó do grafo informações
a respeito das definições que ocorrem nesses nós. Tal grafo é denominado de Grafo Def [57].

Como exemplo, tem-se que as potenciais-associações (1,6,length) e (7,6,length) são re-
queridas pelo critério Todos-Potenciais-Usos [57], não sendo requeridas pelos demais critérios
de Fluxo de Dados que não fazem uso do conceito potencial-uso. Observe que, por definição,
toda associação é uma potencial-associação. Dessa forma, as associações requeridas pelo crité-
rio Todos-Usos são um subconjunto das potenciais-associações requeridas pelo critério Todos-
Potenciais-Usos.

A relação de inclusão é uma importante propriedade dos critérios, sendo utilizada para avaliá-
los, do ponto de vista teórico. O critério Todos-Arcos, por exemplo, inclui o critério Todos-
Nós, ou seja, qualquer conjunto de casos de teste que satisfaz o critério Todos-Arcos também
satisfaz o critério Todos-Nós, necessariamente. Quando não é possível estabelecer essa ordem de
inclusão para dois critérios, como é o caso de Todas-Definições e Todos-Arcos, diz-se que tais
critérios são incomparáveis [76]. Deve-se observar que os critérios Potenciais-Usos são os únicos
critérios baseados em Fluxo de Dados que satisfazem, na presença de caminhos não executáveis,
as propriedades mínimas esperadas de um critério de teste, e que nenhum outro critério baseado em
Fluxo de Dados os inclui. Um aspecto relevante é que alguns dos critérios Potenciais-Usos “bridge

3Um potencial-du-caminho em relação à variável x é um caminho livre de definição (n1, ..., nj , nk) com relação a
x do nó n1 para o nó nk e para o arco (nj , nk), onde o caminho (n1, ..., nj) é um caminho livre de laço e no nó n1

ocorre uma definição de x.

12

the gap” entre os critérios Todos-Arcos e Todos-Caminhos mesmo na presença de caminhos não
executáveis, o que não ocorre para os demais critérios baseados em Fluxo de Dados.

Como já citado, uma das desvantagens do teste estrutural é a existência de caminhos requeridos
não executáveis. Existe também o problema de caminhos ausentes, ou seja, quando uma certa
funcionalidade deixa de ser implementada no programa, não existe um caminho que corresponda
àquela funcionalidade e, como conseqüência, nenhum caso de teste será requerido para exercitá-
la. Mesmo assim, esses critérios estabelecem de forma rigorosa os requisitos de teste a serem
exercitados, em termos de caminhos, associações definição-uso, ou outras estruturas do programa,
fornecendo medidas objetivas sobre a adequação de um conjunto de teste para o teste de um dado
programa P . Esse rigor na definição dos requisitos favorece a automatização desses critérios.

Os critérios estruturais têm sido utilizados principalmente no teste de unidade, visto que os re-
quisitos de teste por eles exigidos limitam-se ao escopo da unidade. Na tentativa de estender o uso
de tais critérios para diferentes contextos, alguns esforços podem ser identificados. Observam-se
na literatura extensões dos critérios baseados em Fluxo de Dados tanto para o teste de integração
em programas procedimentais [42, 43, 90], quanto para o teste de unidade e integração em pro-
gramas OO [41, 92]. Vincenzi et al. [92, 93], por exemplo, têm investigado o uso de critérios de
Fluxo de Controle e de Dados no teste de programas OO e de componentes. Visando a desen-
volver uma solução aplicável tanto a programas OO quanto componentes de software (os quais,
em geral, são testados pelos clientes utilizando somente técnicas funcionais), investigou-se como
realizar análise estática de programas Java diretamente a partir do código objeto (bytecode Java).
Com isso, independentemente da existência do código-fonte da aplicação sendo testada, é possível
derivar requisitos de teste estruturais os quais podem ser utilizados tanto para avaliar a qualidade
de conjuntos de teste quanto para a própria geração de casos de teste. Tais aspectos são retomados
e discutidos mais detalhadamente na Seção 3.

2.3.2 A Ferramenta de Teste PokeTool

Para ilustrar os conceitos abordados será utilizada a ferramenta PokeTool (Potential Uses Cri-
teria Tool for Program Testing) [11, 59], desenvolvida na FEEC/UNICAMP, em colaboração com
o ICMC/USP. Essa ferramenta apóia a aplicação dos critérios Potenciais-Usos e também de ou-
tros critérios estruturais, como Todos-Nós e Todos-Arcos, no teste de programas C. A Figura 4(a)
mostra a tela principal da ferramenta e as principais funções fornecidas.

A PokeTool é orientada à sessão de trabalho. O termo sessão trabalho (ou sessão de teste) é
utilizado para designar as atividades envolvendo um teste. O teste pode ser realizado em etapas
nas quais são armazenados os estados intermediários da aplicação de teste a fim de que possam
ser recuperados posteriormente. Desse modo, é possível ao usuário iniciar e encerrar o teste de
um programa, bem como retomá-lo a partir de onde este foi interrompido. Basicamente, o usuário
entra com o programa a ser testado, com o conjunto de casos de teste e seleciona todos ou alguns
dos critérios disponíveis (Todos-Potenciais-Usos, Todos-Potenciais-Usos/Du, Todos-Potenciais-
Du-Caminhos, Todos-Nós e Todos-Arcos). Como saída, a ferramenta fornece ao usuário o con-
junto de arcos primitivos4 [13], o Grafo Def obtido do programa em teste, o programa instrumen-
tado para teste, o conjunto de associações necessárias para satisfazer o critério selecionado e o
conjunto de associações ainda não exercitadas. A Figura 4(b) mostra a criação de uma sessão de
teste para o programa identifier utilizando todos os critérios apoiados pela ferramenta.

4O conjunto de arcos primitivos consiste de arcos que uma vez executados garantem a execução de todos os demais
arcos do grafo de programa.

13

(a) Opções disponíveis na ferramenta PokeTool. (b) Tela para criar uma sessão de teste.

Figura 4: Ferramenta PokeTool.

Atualmente, a ferramenta encontra-se disponível para os ambientes DOS e UNIX. A versão
para DOS possui interface simples, baseada em menus. A versão para UNIX possui módulos
funcionais cuja utilização se dá por meio de interface gráfica ou linha de comando (shell scripts).

A título de ilustração, considere o programa identifier e os critérios Todos-Arcos e
Todos-Potenciais-Usos. As tabelas 3 e 4 trazem os elementos requeridos por esses critérios, res-
pectivamente. Utilizando o conjunto de casos de teste T0 = {(a1, Válido), (2B3, Inválido), (Z-12,
Inválido), (A1b2C3d, Inválido)}, gerado anteriormente a fim de satisfazer o critério Particiona-
mento em Classes de Equivalência, é possível observar qual a cobertura obtida em relação aos cri-
térios Todos-Arcos e Todos-Potenciais-Usos (Figura 5(a) e Figura 5(b), respectivamente). Ainda
na Figura 5(b), são ilustrados para o critério Todos-Potenciais-Usos os elementos requeridos e não
executados quando a cobertura é inferior a 100%.

Tabela 3: Elementos requeridos pelo critério Todos-Arcos.
Arcos Primitivos

Arco (1,2) Arco (1,3) Arco (5,6) Arco (5,7) Arco (8,9) Arco (8,10)

Tabela 4: Elementos requeridos pelo critério Todos-Potenciais-Usos.
Associações Requeridas

1) 〈1, (6, 7), {length}〉 17) 〈2, (6, 7), {length}〉
2) 〈1, (1, 3), {achar,length,valid_id}〉 18) 〈2, (5, 6), {length}〉
3) 〈1, (8, 10), {length,valid_id}〉 19) 〈3, (8, 10), {achar}〉
4) 〈1, (8, 10), {valid_id}〉 20) 〈3, (8, 9), {achar}〉
5) 〈1, (8, 9), {length,valid_id}〉 21) 〈3, (5, 7), {achar}〉
6) 〈1, (8, 9), {valid_id}〉 22) 〈3, (6, 7), {achar}〉
7) 〈1, (7, 4), {valid_id}〉 23) 〈3, (5, 6), {achar}〉
8) 〈1, (5, 7), {length,valid_id}〉 24) 〈6, (8, 10), {valid_id}〉
9) 〈1, (5, 7), {valid_id}〉 25) 〈6, (8, 9), {valid_id}〉
10) 〈1, (5, 6), {length,valid_id}〉 26) 〈6, (5, 7), {valid_id}〉
11) 〈1, (5, 6), {valid_id}〉 27) 〈6, (5, 6), {valid_id}〉
12) 〈1, (2, 3), {achar,valid_id}〉 28) 〈7, (8, 10), {achar,length}〉
13) 〈1, (1, 2), {achar,length,valid_id}〉 29) 〈7, (8, 9), {achar,length}〉
14) 〈2, (8, 10), {length}〉 30) 〈7, (5, 7), {achar,length}〉
15) 〈2, (8, 9), {length}〉 31) 〈7, (6, 7), {achar,length}〉
16) 〈2, (5, 7), {length}〉 32) 〈7, (5, 6), {achar,length}〉

Observe que somente com os casos de teste funcionais foi possível cobrir o critério Todos-
Arcos ao passo que para cobrir o critério Todos-Potenciais-Usos ainda é necessário anali-
sar as associações que não foram executadas. Deve-se ressaltar que o conjunto T0 é Todos-

14

(a) Todos-Arcos. (b) Todos-Potenciais-Usos.

Figura 5: Relatórios gerados pela ferramenta PokeTool em relação ao programa identifier.

Arcos-adequado, ou seja, o critério Todos-Arcos foi satisfeito e o erro presente no programa
identifier não foi revelado. Certamente, um conjunto adequado ao critério Todos-Arcos
que revelasse o erro poderia ter sido gerado; o que se ilustra aqui é que não necessariamente a
presença do erro é revelada.

Desejando-se melhorar a cobertura em relação ao critério Todos-Potenciais-Usos, novos casos
de teste devem ser inseridos visando a cobrir as associações que ainda não foram executadas.
Primeiramente, deve-se verificar, entre as associações não executadas, se existem associações não
executáveis. No caso, as associações 〈1, (8, 9), {length,valid_id}〉, 〈2, (8, 10), {length}〉
e 〈6, (8, 9), {valid_id}〉 são não executáveis. Na Tabela 5 esse processo é ilustrado até que se
atinja a cobertura de 100% para o critério Todos-Potenciais-Usos. O símbolo X indica quais
associações foram cobertas por quais conjuntos de casos de teste e o símbolo × mostra quais são
as associações não-executáveis.

Tabela 5: Ilustração da evolução da sessão de teste para cobrir o critério Todos-Potenciais-Usos.

Associações Requeridas T0 T1 T2 Associações Requeridas T0 T1 T2

1) 〈1, (6, 7), {length}〉 X 17) 〈2, (6, 7), {length}〉 X

2) 〈1, (1, 3), {achar,length,valid_id}〉 X 18) 〈2, (5, 6), {length}〉 X

3) 〈1, (8, 10), {length,valid_id}〉 X 19) 〈3, (8, 10), {achar}〉 X

4) 〈1, (8, 10), {valid_id}〉 X 20) 〈3, (8, 9), {achar}〉 X

5) 〈1, (8, 9), {length,valid_id}〉 × × × 21) 〈3, (5, 7), {achar}〉 X

6) 〈1, (8, 9), {valid_id}〉 X 22) 〈3, (6, 7), {achar}〉 X

7) 〈1, (7, 4), {valid_id}〉 X 23) 〈3, (5, 6), {achar}〉 X

8) 〈1, (5, 7), {length,valid_id}〉 X 24) 〈6, (8, 10), {valid_id}〉 X

9) 〈1, (5, 7), {valid_id}〉 X 25) 〈6, (8, 9), {valid_id}〉 × × ×
10) 〈1, (5, 6), {length,valid_id}〉 X 26) 〈6, (5, 7), {valid_id}〉 X

11) 〈1, (5, 6), {valid_id}〉 X 27) 〈6, (5, 6), {valid_id}〉 X

12) 〈1, (2, 3), {achar,valid_id}〉 X 28) 〈7, (8, 10), {achar,length}〉 X

13) 〈1, (1, 2), {achar,length,valid_id}〉 X 29) 〈7, (8, 9), {achar,length}〉 X

14) 〈2, (8, 10), {length}〉 × × × 30) 〈7, (5, 7), {achar,length}〉 X

15) 〈2, (8, 9), {length}〉 X 31) 〈7, (6, 7), {achar,length}〉 X

16) 〈2, (5, 7), {length}〉 X 32) 〈7, (5, 6), {achar,length}〉 X

T0 = {(a1, Válido), (2B3, Inválido), (Z-12, Inválido), (A1b2C3d, Inválido)}
T1 = T0∪ {(1#, Inválido), (%, Inválido), (c, Válido)}
T2 = T1∪ {(#-%, Inválido)}

15

Observe que mesmo tendo satisfeito um critério mais rigoroso como o critério Todos-
Potenciais-Usos, a presença do erro ainda não foi revelada. Assim, motiva-se a pesquisa de cri-
térios de teste que exercitem os elementos requeridos com maior probabilidade de revelar erros.
Outra perspectiva que se coloca é utilizar uma estratégia de teste incremental, que informalmente
procura-se ilustrar neste texto. Em primeiro lugar foram exercitados os requisitos de teste reque-
ridos pelo critério Todos-Arcos, em seguida os requeridos pelo critério Todos-Potenciais-Usos e,
posteriormente, poder-se-ia considerar o critério Análise de Mutantes (descrito a seguir).

2.4 Técnica Baseada em Erros

A técnica de teste baseada em erros utiliza informações sobre os tipos de erros mais freqüentes
no processo de desenvolvimento de software para derivar os requisitos de teste. A ênfase da
técnica está nos erros que o programador ou projetista pode cometer durante o desenvolvimento e
nas abordagens que podem ser usadas para detectar a sua ocorrência. Semeadura de Erros [10] e
Análise de Mutantes [22] são critérios típicos que se concentram em erros.

No critério Semeadura de Erros, introduzido nos anos 80, uma quantidade conhecida de de-
feitos é semeada artificialmente no programa. Após o teste, do total de defeitos encontrados,
verificam-se quais são naturais e quais são artificiais. Usando estimativas de probabilidade, o nú-
mero de defeitos naturais ainda existentes no programa pode ser estimado. Entre os problemas
associados à aplicação do critério destacam-se: (1) os defeitos artificiais podem interagir com os
naturais fazendo com que os defeitos naturais sejam “mascarados” pelos defeitos semeados; (2)
para obter um resultado estatístico não questionável é necessário o uso de programas capazes de
conter 10.000 defeitos ou mais; (3) é preciso assumir que os defeitos estão uniformemente dis-
tribuídos pelo programa, o que, em geral, não é verdade. Programas reais apresentam longos
trechos de código simples e com poucos defeitos, e pequenos trechos de grande complexidade e
alta concentração de defeitos [10].

O critério Análise de Mutantes surgiu na década de 70 na Yale University e Georgia Institute of
Technology, possuindo um forte relacionamento com um método clássico para detecção de erros
lógicos em circuitos digitais – o modelo de teste de falha única [32]. Basicamente, o critério utiliza
um conjunto de programas ligeiramente modificados (mutantes) obtidos a partir de determinado
programa P para avaliar o quanto um conjunto de casos de teste T é adequado para o teste de P .
O objetivo é determinar um conjunto de casos de teste que consiga revelar, por meio da execução
de P , as diferenças de comportamento existentes entre P e seus mutantes [21].

A seguir é apresentada uma visão geral do critério Análise de Mutantes. Também são dis-
cutidos aspectos referentes à ferramenta de apoio Proteum, desenvolvida no ICMC/USP [15].
Informações detalhadas sobre o critério e sobre a ferramenta podem ser obtidas em [15, 60].

2.5 O Critério Análise de Mutantes

Um dos primeiros artigos que descrevem a idéia de teste de mutantes foi publicado em
1978 [22]. A idéia básica da técnica apresentada por DeMillo, conhecida como “hipótese do
programador competente” (competent programmer hypothesis), assume que programadores expe-
rientes escrevem programas corretos ou muito próximos do correto. Assumindo a validade desta
hipótese, pode-se afirmar que erros são introduzidos nos programas por meio de pequenos desvios
sintáticos que, embora não causem erros sintáticos, alteram a semântica do programa e, con-
seqüentemente, conduzem-no a um comportamento incorreto. Para revelar tais erros, a Análise de
Mutantes identifica os desvios sintáticos mais comuns e, através da aplicação de pequenas trans-
formações sobre o programa em teste, encoraja o testador a construir casos de testes que mostrem
que tais transformações levam a um programa incorreto [2].

16

Outra hipótese explorada na aplicação do critério Análise de Mutantes é o “efeito de aco-
plamento” (coupling effect) [22], a qual assume que erros complexos estão relacionados a erros
simples. Assim sendo, espera-se, e alguns estudos empíricos já confirmaram esta hipótese [1, 9],
que conjuntos de casos de teste capazes de revelar erros simples são também capazes de revelar
erros complexos. Nesse sentido, aplica-se uma mutação de cada vez no programa P em teste, ou
seja, cada mutante contém apenas uma transformação sintática. Um mutante com k transforma-
ções sintáticas é referenciado por k-mutante; neste texto são utilizados apenas 1-mutantes.

Partindo-se da hipótese do programador competente e do efeito de acoplamento, a princípio,
o testador deve fornecer um programa P a ser testado e um conjunto de casos de teste T cuja
adequação deseja-se avaliar. O programa é executado com T e se apresentar resultados incorretos
então um erro foi encontrado e o teste termina. Caso contrário, o programa ainda pode conter erros
que o conjunto T não conseguiu revelar. O programa P sofre então pequenas alterações, dando
origem aos programas P1, P2, . . . , Pn denominados mutantes de P , diferindo de P apenas pela
ocorrência de erros simples.

Com o objetivo de modelar os desvios sintáticos mais comuns, operadores de mutação (mutant
operators) são aplicados a um programa P , transformando-o em programas similares: mutantes
de P . Entende-se por operador de mutação as regras que definem as alterações que devem ser
aplicadas no programa original P . Os operadores de mutação são construídos para satisfazer a
um entre dois propósitos: (1) induzir mudanças sintáticas simples com base nos erros típicos
cometidos pelos programadores (como trocar o nome de uma variável); ou (2) forçar determinados
objetivos de teste (como executar cada arco do programa) [69].

Em seguida, os mutantes são executados com o mesmo conjunto de casos de teste T . O
objetivo é obter casos de teste que resultem apenas em mutantes mortos (para algum caso de teste
o resultado do mutante e o do programa original diferem entre si) e equivalentes (o mutante e o
programa original apresentam sempre o mesmo resultado, para qualquer d ∈ D). Neste caso,
tem-se um conjunto de casos de teste T adequado ao programa P em teste, no sentido de que, ou
P está correto, ou possui erros pouco prováveis de ocorrerem [22].

É preciso ressaltar que, em geral, a equivalência entre programas é uma questão indecidível e
requer a intervenção do testador. Essa limitação teórica, no entanto, não significa que o problema
deva ser abandonado por não apresentar solução. Na verdade, alguns métodos e heurísticas têm
sido propostos para determinar a equivalência de programas em uma grande porcentagem dos
casos de interesse [10].

Um ponto importante destacado por DeMillo [20] é que a Análise de Mutantes fornece uma
medida objetiva do nível de confiança da adequação dos casos de teste analisados por meio da
definição de um escore de mutação (mutation score), que relaciona o número de mutantes mortos
com o número de mutantes gerados. O escore de mutação é calculado da seguinte forma:

ms(P, T) =
DM(P, T)

M(P)− EM(P)

sendo:

DM(P, T): número de mutantes mortos pelos casos de teste em T .

M(P): número total de mutantes gerados.

EM(P): número de mutantes gerados equivalentes a P .

O escore de mutação varia no intervalo entre 0 e 1 sendo que, quanto maior o escore mais ade-
quado é o conjunto de casos de teste para o programa sendo testado. Percebe-se com essa fórmula

17

que apenas DM(P, T) depende do conjunto de casos de teste utilizado e que, EM(P) é obtido
à medida que o testador, manualmente ou com o apoio de heurísticas, decide que determinado
mutante vivo é equivalente [83].

Um dos maiores problemas para a aplicação do critério está relacionado ao seu alto custo,
uma vez que o número de mutantes gerados, mesmo para pequenos programas, pode ser muito
grande, exigindo um tempo de execução muito alto. Várias estratégias têm sido propostas para
fazer com que a Análise de Mutantes possa ser utilizada de modo mais eficiente, dentro de limites
economicamente viáveis. Uma solução bastante explorada pela comunidade de teste procura di-
minuir o custo de aplicação da Análise de Mutantes por meio da redução do número de mutantes
a serem executados e analisados. Nessa perspectiva, algumas abordagens derivadas da Análise
de Mutantes foram propostas: Mutação Aleatória (Randomly Selected Mutation) [1], Mutação
Restrita (Constrained Mutation) [62] e Mutação Seletiva (Selective Mutation) [70]. Tais aborda-
gens procuram selecionar apenas um subconjunto do total de mutantes gerados, reduzindo o custo
associado, mas com a expectativa de não reduzir a eficácia do critério.

Assim como os critérios baseados em Fluxo de Dados, o critério Análise de Mutantes também
tem sido essencialmente utilizado no teste de unidade. Na tentativa de estender sua aplicação
para o teste de integração, Delamaro et al. [15, 16] propuseram o critério Mutação de Interface
(Interface Mutation) – um critério para o teste de integração baseado no conceito de mutação,
neste caso, mutação de interface entre os módulos componentes do software. A idéia básica é
viabilizar o teste da interface entre as unidades que compõem o software, ao contrário da Análise
de Mutantes, que explora somente as características das unidades separadamente [16, 17]. As
abordagens de Mutação Aleatória, Mutação Restrita e Mutação Seletiva também foram estendidas
de modo a permitir sua aplicação no teste de integração.

Outra linha de pesquisa investigada refere-se ao teste de especificações, com ênfase no teste
e validação de aspectos comportamentais de sistemas reativos e validação de protocolos. Nesse
sentido, extensões ao critério Análise de Mutantes têm sido propostas para o teste de especificações
em Redes de Petri [28,81], Statecharts [23,85], Máquinas de Estado Finito [26,27], Estelle [74,84],
SDL [86] e Especificações Algébricas [98].

Além disso, começam a aparecer na literatura extensões do teste de mutação para o teste de
programas OO [18, 35, 50, 51, 56, 92, 93]. Tais extensões são descritas mais detalhadamente na
Seção 3.

2.5.1 A Ferramenta de Teste Proteum

Para ilustrar os conceitos referentes ao teste de mutação será utilizada a ferramenta Proteum
(PROgram TEsting Using Mutants) [15], desenvolvida no ICMC/USP. A ferramenta apóia a apli-
cação do critério Análise de Mutantes no teste de programas C, estando disponível para os sistemas
operacionais SunOS, Solaris e Linux.

A Figura 6(a) apresenta a tela principal da ferramenta bem como as funções disponíveis. Ba-
sicamente, a Proteum oferece ao testador recursos para, através da aplicação do critério Análise
de Mutantes, avaliar a adequação ou gerar um conjunto de casos de teste T para determinado
programa P . Com base nas informações fornecidas pela Proteum, o testador pode melhorar a
qualidade de T até obter um conjunto adequado ao critério. Desse modo, a ferramenta pode ser
utilizada como instrumento de avaliação bem como de seleção de casos de teste.

A Proteum também trabalha com sessão de teste, ou seja, conjunto de atividades envolvendo
um teste que podem ser realizadas em etapas, sendo possível ao usuário iniciar e encerrar o teste
de um programa, bem como retomá-lo a partir de onde este foi interrompido. Uma sessão de teste
com o apoio da ferramenta Proteum pode ser conduzida por meio de uma interface gráfica ou por

18

meio de scripts. O processo de criação de uma sessão de teste utilizando a interface gráfica é
ilustrado na Figura 6(b).

(a) Opções disponíveis na ferramenta Proteum. (b) Tela para criar uma sessão de teste.

Figura 6: Ferramenta Proteum.

Os recursos oferecidos pela ferramenta permitem a execução das seguintes operações: defi-
nição de casos de teste, execução do programa em teste, seleção dos operadores de mutação que
serão utilizados para gerar os mutantes, geração dos mutantes, execução dos mutantes com os
casos de teste definidos, análise dos mutantes vivos e cálculo do escore de mutação. As funções
implementadas na Proteum possibilitam que alguns desses recursos sejam executados automatica-
mente (como a execução dos mutantes), enquanto que para outros são fornecidas facilidades para
que o testador possa realizá-los (como a análise de mutantes equivalentes). Além disso, diversas
características adicionais foram incorporadas de modo a facilitar a atividade de teste e/ou a condu-
ção de experimentos. É o caso, por exemplo, da possibilidade de executar um mutante com todos
os casos de teste disponíveis, mesmo que algum deles já o tenha matado. Com esse tipo de teste,
chamado research, conseguem-se dados a respeito da eficiência dos operadores de mutação ou
mesmo para a determinação de estratégias de minimização dos conjuntos de casos de teste [15].

Um dos pontos essenciais para a aplicação do critério Análise de Mutantes é a definição do
conjunto de operadores de mutação. A Proteum conta com 71 operadores de mutação divididos
em quatro classes: mutação de comandos, mutação de operadores, mutação de variáveis e mutação
de constantes. É possível escolher os operadores de acordo com a classe de erros que se deseja
enfatizar, permitindo que a geração de mutantes seja feita em etapas ou até mesmo dividida entre
vários testadores trabalhando independentemente. Na Tabela 6 são ilustrados alguns operadores
de mutação para cada uma das classes de operadores.

A seguir, é avaliada a adequação do teste do programa identifier, realizado até este ponto
com o uso da ferramenta PokeTool, em relação ao critério Análise de Mutantes, tendo como apoio
a ferramenta Proteum. Em outras palavras, é avaliada a adequação dos conjuntos Todos-Usos-
adequado e Todos-Potenciais-Usos-adequado em relação ao critério Análise de Mutantes.

Inicialmente, somente os casos de teste do conjunto T0 foram importados. A Figura 7(a)
mostra o estado da sessão de teste após a execução dos mutantes. Em seguida, como o escore
de mutação ainda não é satisfatório, foram adicionados os casos de teste do conjunto T1 e T2

(Figura 7(b)). Observe que mesmo após a adição de todos os casos de teste do conjunto Todos-
Potenciais-Usos-adequado, 371 mutantes ainda permaneceram vivos.

Em uma primeira análise dos mutantes vivos, 78 foram marcados como equivalentes e mais 13
casos de teste foram criados visando a matar os mutantes vivos não-equivalentes: T3 = T2∪ {(zzz,
Válido), (aA, Válido), (A1234, Válido), (ZZZ, Válido), (AAA, Válido), (aa09, Válido), ([, Invá-

19

Tabela 6: Exemplos de operadores de mutação para programas C.
Operador Descrição
SSDL Retira um comando de cada vez do programa.
ORRN Substitui um operador relacional por outro operador relacional.
VTWD Substitui a referência escalar pelo seu valor sucessor e predecessor.
Ccsr Substitui referências escalares por constantes.
SWDD Substitui o comando while por do-while.
SMTC Interrompe a execução do laço após duas execuções.
OLBN Substitui operador lógico por operador bitwise.
Cccr Substitui uma constante por outra constante.
VDTR Força cada referência escalar a possuir cada um dos valores: negativo, positivo e zero.

lido), ({, Inválido), (x/, Inválido), (x:, Inválido), (x18, Válido), (x[[, Inválido), (x{{, Inválido)}. A
Figura 8 ilustra dois dos mutantes vivos que foram analisados. O mutante da Figura 8 (a) é um
mutante equivalente e o mutante da Figura 8 (b) é um mutante que morre com o caso de teste ([,
Inválido), presente em T3. Os pontos nos quais as mutações foram aplicadas estão destacados em
negrito. A Figura 7(c) ilustra o resultado obtido após T3 ter sido executado com todos os mutan-
tes vivos. Como pode ser observado, 64 mutantes ainda permaneceram vivos. Isto significa que
qualquer um desses 64 mutantes poderiam ser considerados “corretos” em relação à atividade de
teste atual, uma vez que não existe um caso de teste selecionado que seja capaz de distinguir entre
o comportamento dos mutantes e do programa original (Figura 7(c)).

(a) Conjunto T0. (b) Conjuntos T1 e T2.

(c) Conjunto T3. (d) Conjuntos T4.

Figura 7: Telas de status da sessão de teste da ferramenta Proteum.

20

...
...

main() {
...
if(valid_id *

(length >= 1) &&
(length < 6))

{
printf ("Valido\n");

}
else
{

printf ("Invalid\n");
}

int valid_s(char ch)
{

if(((ch >= ’A’) &&
(ch <= ’z’)) ||
((ch >= ’a’) &&
(ch <= ’z’)))

{
return (1);

}
else
{

return (0);
}

}
...

...
(a) Mutante equivalente. (b) Mutante não-equivalente.

Figura 8: Exemplos de mutantes do programa identifier.
...

...
if(valid_id &&

(length >= 1) &&
(PRED(length) < 6))

{
printf ("Valido\n");

}

if(valid_id &&
(length >= 1) &&
(length <= 6))

{
printf ("Valido\n");

}
...

...
(a) Mutante error-revealing. (b) Mutante correto.

Figura 9: Mutantes vivos do programa identifier.

A fim de obter uma melhor cobertura do critério Análise de Mutantes, o processo de análise
dos mutantes vivos continuou até que todos os equivalentes fossem marcados. Ao término desse
processo, mais quatro casos de teste foram construídos (T4 = T3∪ {(@, Inválido), (‘, Inválido),
(x@, Inválido), (x‘, Inválido)}). A Figura 7(d) mostra o resultado final obtido. Observe que ainda
restaram dois mutantes vivos (Figura 9 (a) e (b)). Esses mutantes são chamados error-revealing e
um deles representa o programa correto: Figura 9 (b). Um mutante é dito ser error-revealing se
para qualquer caso de teste t tal que P ∗(t) 6= M∗(t) pudermos concluir que P ∗(t) não está de
acordo com o resultado esperado, ou seja, revela a presença de um erro.

Observe que os mutantes error-revealing, figuras 9(a) e 9(b), foram gerados pelos opera-
dores de mutação ORRN e VTWD e que necessariamente o erro presente na versão do programa
identifier é revelado ao se elaborar qualquer caso de teste que seja capaz de distinguir o com-
portamento entre esses mutantes e a versão do programa identifier em teste. Os mutantes da
Figura 9 morrem, por exemplo, com o caso de teste (ABCDEF, Válido).

O erro encontrado no programa original foi corrigido e, após a sua correção, o conjunto com-
pleto de casos de teste T5 foi reavaliado (T5 = T4∪ {(ABCDEF, Válido)}), resultando em um
conjunto 100% adequado ao critério Análise de Mutantes para a versão corrigida do programa
identifier (Figura 10). A parte corrigida está destacada em negrito.

Para o programa identifier, utilizando-se todos os operadores de mutação, foram gerados
933 mutantes. Aplicando-se somente os operadores da Tabela 6 teriam sido gerados somente 340
mutantes, representando uma economia de aproximadamente 63%. De fato, os operadores de mu-
tação ilustrados nessa tabela constituem um conjunto de operadores essenciais para a linguagem
C [5]. Ou seja, um conjunto de casos de teste capaz de distinguir os mutantes gerados por esses

21

/***
Identifier.c
ESPECIFICACAO: O programa deve determinar se um identificador eh ou nao valido em
’Silly Pascal’ (uma estranha variante do Pascal). Um identificador valido deve
comecar com uma letra e conter apenas letras ou digitos. Alem disso, deve ter no
minimo 1 caractere e no maximo 6 caracteres de comprimento

***/

#include <stdio.h>
main ()

/* 1 */ {
/* 1 */ char achar;
/* 1 */ int length, valid_id;
/* 1 */ length = 0;
/* 1 */ valid_id = 1;
/* 1 */ printf ("Identificador: ");
/* 1 */ achar = fgetc (stdin);
/* 1 */ valid_id = valid_s(achar);
/* 1 */ if(valid_id)
/* 2 */ {
/* 2 */ length = 1;
/* 2 */ }
/* 3 */ achar = fgetc (stdin);
/* 4 */ while(achar != ’\n’)
/* 5 */ {
/* 5 */ if(!(valid_f(achar)))
/* 6 */ {
/* 6 */ valid_id = 0;
/* 6 */ }
/* 7 */ length++;
/* 7 */ achar = fgetc (stdin);
/* 7 */ }
/* 8 */ if(valid_id &&

(length >= 1) && (length <= 6))
/* 9 */ {
/* 9 */ printf ("Valido\n");
/* 9 */ }
/* 10 */ else
/* 10 */ {
/* 10 */ printf ("Invalid\n");
/* 10 */ }
/* 11 */ }

int valid_s(char ch)
/* 1 */ {
/* 1 */ if(((ch >= ’A’) &&

(ch <= ’Z’)) ||
((ch >= ’a’) &&
(ch <= ’z’)))

/* 2 */ {
/* 2 */ return (1);
/* 2 */ }
/* 3 */ else
/* 3 */ {
/* 3 */ return (0);
/* 3 */ }
/* 4 */ }

int valid_f(char ch)
/* 1 */ {
/* 1 */ if(((ch >= ’A’) &&

(ch <= ’Z’)) ||
((ch >= ’a’) &&
(ch <= ’z’)) ||
((ch >= ’0’) &&
(ch <= ’9’)))

/* 2 */ {
/* 2 */ return (1);
/* 2 */ }
/* 3 */ else
/* 3 */ {
/* 3 */ return (0);
/* 3 */ }
/* 4 */ }

Figura 10: Versão do programa identifier corrigida.

operadores, em geral, seria capaz de distinguir os mutantes não equivalentes gerados pelos demais
operadores de mutação, determinando um escore de mutação bem próximo de 1. Observe que os
operadores de mutação ORRN e VTWD, que geraram os mutantes error-revealing, estão entre os
operadores essenciais, o que neste caso, não comprometeria a eficácia da atividade de teste.

3 Aplicação de Critérios de Teste no Contexto de Programas OO

Nas seções anteriores foram discutidos conceitos e aspectos básicos relacionados ao teste de
programas procedimentais. A seguir, são abordados alguns dos principais aspectos e direções de
pesquisa na área de teste de programas OO, procurando-se mostrar que os conceitos e mecanismos
desenvolvidos originalmente para o teste de programas procedimentais também podem ser utiliza-
dos nesse contexto de desenvolvimento, com as devidas adaptações. Inicialmente são identificadas
as fases de teste para programas OO, as quais são comparadas às fases de teste para programas
procedimentais. O impacto das características de encapsulamento, herança, polimorfismo e aco-
plamento dinâmico na definição e aplicação de critérios de teste também é discutido. Além disso,

22

é dada uma visão geral dos principais trabalhos relacionados ao teste baseado em Fluxo de Dados
e ao teste de Mutação para programas OO. Algumas iniciativas de automatização no contexto de
teste OO, em especial a ferramenta JaBUTi, também são brevemente discutidas.

3.1 Fases de Teste OO

Assim como os métodos de desenvolvimento de software são divididos em várias fases de
modo a permitir que o engenheiro de sistemas implemente a solução do problema passo a passo,
a atividade de teste também é dividida em fases. Com isso, o testador pode se concentrar em
diferentes aspectos do software e utilizar diferentes critérios de teste em cada uma delas [55].
Conforme discutido na Seção 1, em nível procedimental, a atividade de teste pode ser considerada
como uma atividade incremental realizada em três fases [73]: teste de unidade, teste de integração
e teste de sistema. No contexto de programas OO, entretanto, algumas variações são identificadas,
conforme apresentado a seguir.

Na Figura 11, adaptada de [8], são ilustradas as três fases de teste mencionadas acima, bem
como os elementos utilizados em cada uma das fases tanto para programas procedimentais como
para programas OO. Segundo o padrão IEEE 610.12-1990 [49], uma unidade é um componente
de software que não pode ser subdividido. Considerando que teste é uma atividade dinâmica, em
programas procedimentais uma unidade F refere-se a uma sub-rotina ou um procedimento que é
a menor parte funcional de um programa que pode ser executada. Observa-se, ainda, que durante
os testes de unidade é necessária a implementação de drivers e stubs. O driver é uma unidade
que coordena o teste de F, sendo responsável por ler os dados de teste fornecidos pelo testador,
repassar esses dados na forma de parâmetros para F, coletar os resultados relevantes produzidos
por F, e apresentá-los para o testador. Um stub é uma unidade que substitui, no momento do teste,
uma unidade usada (chamada) por F. Na maior parte dos casos, um stub é uma unidade que simula
o comportamento da unidade chamada por F com o mínimo de computação ou manipulação de
dados.

Com base em tais definições, pode-se considerar que em programas OO a menor unidade a ser
testada é um método. A classe à qual o método pertence pode ser vista como o driver do método,
pois sem a classe não é possível executar um método. No paradigma procedimental o teste de
unidade também é chamado de intraprocedimental; no paradigma OO é dito intra-método [41].

Por definição, uma classe engloba um conjunto de atributos e métodos que manipulam esses
atributos. Assim sendo, considerando uma única classe já é possível pensar em teste de integra-
ção. Métodos da mesma classe podem interagir entre si para desempenhar funções específicas
caracterizando uma integração entre métodos que deve ser testada: é o teste inter-método [41]. No
paradigma procedimental essa fase de teste também pode ser chamada de teste interprocedimental.

Harrold e Rothermel [41] definem ainda outros dois tipos de teste para programas OO: teste
intra-classe e teste inter-classe. No teste intra-classe são testadas interações entre métodos públi-
cos fazendo chamada a esses métodos em diferentes seqüências. O objetivo é identificar possíveis
seqüências de ativação de métodos inválidas que levem o objeto a um estado inconsistente. Se-
gundo os autores, como o usuário pode invocar seqüências de métodos públicos em uma ordem
indeterminada, o teste intra-classe aumenta a confiança de que diferentes seqüências de chama-
das interagem adequadamente. No teste inter-classe o mesmo conceito de invocação de métodos
públicos em diferentes seqüências é utilizado. Entretanto, esses métodos públicos não necessitam
estar na mesma classe.

Finalmente, após realizados os testes acima, o sistema todo é integrado e podem ser realizados
os testes de sistema que, por serem baseados em critérios funcionais, não apresentam diferenças
fundamentais entre o teste procedimental e OO.

23

�������������������������
�������������������������

���������
���������

�����������������������������������
�����������������������������������

�������������������������
	�	�		�	�		�	�		�	�		�	�	

�
�

�
�

�
�

���������������

���������������

�
�

�
�

�
�

���������������������
���������������������

���������������������
��

�����������������������������������

���
���
���
���

�������������������������
�������������������������

���������������
��������������� ��

���������������������������������������
���������������������������������

 � � � � � � � � � � � � � � �
!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!

"�"�""�"�""�"�""�"�""�"�"
#�#�##�#�##�#�##�#�##�#�#

$�$�$$�$�$$�$�$
%�%�%%�%�%%�%�% &�&�&&�&�&&�&�&'�'�''�'�''�'�'

(�(�(�((�(�(�((�(�(�(
)�)�)�))�)�)�))�)�)�)

��*�**�*�*�**�*�*�*
+�+�+�++�+�+�++�+�+�+,�,�,�,,�,�,�,,�,�,�,,�,�,�,,�,�,�,

-�-�-�--�-�-�--�-�-�--�-�-�--�-�-�-

.�.
.�.
/�/
/�/

0�0�00�0�00�0�00�0�00�0�0
1�1�11�1�11�1�11�1�11�1�1

2�2�22�2�22�2�2
3�3�33�3�33�3�3 4�4�44�4�44�4�44�4�44�4�45�5�55�5�55�5�55�5�55�5�5

6�6�6�6�6�6�66�6�6�6�6�6�66�6�6�6�6�6�6
7�7�7�7�7�77�7�7�7�7�77�7�7�7�7�7

8�8
8�8
9�9
9�9

:�:�:�::�:�:�::�:�:�::�:�:�::�:�:�:
;�;�;;�;�;;�;�;;�;�;;�;�;

<�<�<<�<�<<�<�<
=�=�==�=�==�=�= >�>�>�>>�>�>�>>�>�>�>?�?�??�?�??�?�?

@�@�@�@@�@�@�@@�@�@�@@�@�@�@@�@�@�@
A�A�AA�A�AA�A�AA�A�AA�A�A

B�B�BB�B�BB�B�B
C�C�CC�C�CC�C�C

D�D�DD�D�DD�D�D
E�E�EE�E�EE�E�E

F�F�F�F�F�FF�F�F�F�F�FF�F�F�F�F�F
G�G�G�G�G�GG�G�G�G�G�GG�G�G�G�G�GTeste de Integração

Fases de Teste

Teste de Unidade

Teste de Sistema

Toda aplicaçãoToda aplicação

Sub−rotina ou função

Teste Procedimental

Classe

Componentes
Subsistemas

Subsistema

H�H�HH�H�HH�H�HH�H�HH�H�H
I�I�II�I�II�I�II�I�II�I�I

J�J�JJ�J�JJ�J�JJ�J�JJ�J�J
K�K�KK�K�KK�K�KK�K�KK�K�K

Teste Orientado a Objetos

ClusterDuas ou mais unidades

Método

Figura 11: Relacionamento entre teste de unidade, de integração e de sistema: programas proce-
dimentais e OO [8].

Pequenas variações quanto à divisão das fases de teste para programas OO são identificadas
na literatura. Alguns autores entendem que a menor unidade de um programa OO é a classe e não
o método [3, 8, 63, 72]. Nessa direção, o teste de unidade poderia envolver o teste intra-método,
inter-método e intra-classe, enquanto o teste de integração corresponderia ao teste inter-classe. Na
Tabela 7 são sintetizados os tipos de teste que podem ser aplicados em cada uma das fases, tanto
em programas procedimentais quanto em programas OO, considerando o método ou a classe como
sendo a menor unidade.

Tabela 7: Relação entre fases de teste de programas procedimentais e OO.

Menor Unidade: Método
Fase Teste Procedimental Teste Orientado a Objetos

Unidade Intraprocedimental Intra-método
Integração Interprocedimental Inter-método, Intra-classe e Inter-classe

Sistema Toda Aplicação Toda Aplicação
Menor Unidade: Classe

Fase Teste Procedimental Teste Orientado a Objetos
Unidade Intraprocedimental Intra-método, Inter-método e Intra-classe

Integração Interprocedimental Inter-classe
Sistema Toda Aplicação Toda Aplicação

24

3.2 Impacto da Orientação a Objetos na Testabilidade

O paradigma de programação OO possui um conjunto de construções que, apesar de podero-
sas, apresentam riscos de erros e problemas de teste. Nesta seção é discutido o quanto caracterís-
ticas como encapsulamento, herança, polimorfismo e acoplamento dinâmico podem impactar na
condução da atividade de teste.

3.2.1 Encapsulamento

O encapsulamento refere-se ao mecanismo de controle de acesso que determina a visibilidade
de atributos e métodos dentro de uma classe. Com o controle de acesso, previnem-se depen-
dências indesejadas entre uma classe cliente e uma classe servidora, tornando visível ao cliente
somente a interface da classe, ocultando detalhes de implementação. O encapsulamento auxilia
no ocultamento de informação e na obtenção da modularidade do sistema em desenvolvimento.

Embora o encapsulamento não contribua diretamente para a ocorrência de erros, ele pode
constituir um obstáculo para a atividade de teste, limitando a controlabilidade e observabilidade.
Teste requer um relatório completo do estado concreto e abstrato de um objeto, bem como a
possibilidade de alterar esse estado facilmente [8]. As linguagens OO dificultam a atividade de se
obter (get) ou alterar (set) o estado de um objeto. No caso específico de C++, as funções amigas
(friend functions) foram desenvolvidas para solucionar esses problemas. Entretanto, no caso de
linguagens que não possuem esse recurso, outras providências devem ser tomadas. Harrold [38],
referindo-se ao teste de componentes de software, diz que uma solução seria a implementação de
métodos get e set para todos os atributos de uma classe. Outra alternativa seria utilizar recursos
de reflexão computacional. No entanto, como destacam Rosa e Martins [77], algumas linguagens
não permitem que as características de métodos privados sejam refletidas, somente a de métodos
protegidos e públicos. Esse é o caso, por exemplo, da linguagem OpenC++ 1.2, utilizada no
trabalho desenvolvido pelas mesmas [77].

3.2.2 Herança

Herança é essencial à programação OO pois permite a reusabilidade via o compartilhamento
de características presentes em uma classe já definida anteriormente. Entretanto, como destacado
por Binder [8], a herança enfraquece o encapsulamento e pode ser responsável pela criação de um
risco de erro similar ao uso de variáveis globais em programas procedimentais. Quando se está
implementando uma classe que faz uso de herança, é de fundamental importância compreender os
detalhes de implementação das classes ancestrais. Sem tomar esse cuidado, pode-se desenvolver
classes que aparentemente funcionam corretamente, mas violam condições implícitas requeridas
para garantir a correção das classes ancestrais. Grandes encadeamentos de herança podem di-
ficultar a compreensão, aumentar a chance de ocorrência de erros e reduzir a testabilidade das
classes.

Como comentado por Offutt e Irvine [68], a utilização de herança pode levar a uma falsa
conclusão de que subclasses que herdam características de superclasses não precisam ser testadas,
reduzindo assim o esforço com os testes. Perry e Kaiser [72] observam que mesmo que um método
seja herdado integralmente de uma superclasse, sem nenhuma modificação, este deverá ser retes-
tado no contexto da subclasse. Harrold et al. [40] utilizaram os resultados de Perry e Kaiser [72]
e desenvolveram uma estratégia de teste incremental baseada na hierarquia de herança das classes
– Estratégia Incremental Hierárquica. A idéia é identificar quais métodos herdados necessitam de
novos casos de teste para serem testados e quais métodos podem ser retestados aproveitando os
casos de teste elaborados para o teste da superclasse. Com essa estratégia, o esforço requerido

25

para o teste é reduzido, visto que muitos casos de teste que já foram elaborados podem ser reutili-
zados no teste das subclasses. Além disso, deve-se observar que a implementação do mecanismo
de herança varia de linguagem para linguagem, influenciando a estratégia de teste a ser utilizada.

Herança Múltipla

A herança múltipla permite que uma subclasse herde características de duas ou mais super-
classes as quais podem conter características comuns (atributos com mesmo nome e métodos com
mesmo nome e mesmo conjunto de atributos). Perry e Kaiser [72] destacam que, embora herança
múltipla leve a pequenas mudanças sintáticas, ela pode levar a grandes mudanças semânticas,
dificultando ainda mais a realização dos testes.

3.2.3 Polimorfismo

Polimorfismo refere-se à capacidade de se fazer referência a mais de um tipo de objeto por
meio de um mesmo nome ou variável. No polimorfismo estático essa associação ocorre em tempo
de compilação. Por exemplo, classes genéricas (templates do C++) permitem a realização de poli-
morfismo estático. Já o polimorfismo dinâmico permite que, em tempo de execução, associações
com diferentes tipos de objetos sejam realizadas. Métodos polimórficos utilizam o recurso de aco-
plamento dinâmico para determinar, em tempo de execução, qual método deve responder a uma
determinada mensagem, baseado no tipo do objeto e no conjunto de parâmetros que são enviados
junto com a mensagem.

Embora o polimorfismo possa ser utilizado para produzir código elegante e extensível, alguns
aspectos problemáticos podem ser detectados na sua utilização. Suponha a existência de um mé-
todo x em uma superclasse, o qual precisa ser testado. Posteriormente, o método x é sobrescrito.
A correção do método x na subclasse não é garantida pois as pré-condições e pós-condições na
subclasse para a execução do método x podem não ser as mesmas da superclasse [8].

Cada possibilidade de acoplamento de uma mensagem polimórfica é uma computação única.
O fato de diversos acoplamentos polimórficos trabalharem corretamente não garante que todos irão
trabalhar. Objetos polimórficos com acoplamento dinâmico podem facilmente resultar no envio
de mensagens para a classe errada e pode ser difícil identificar e executar todas as combinações de
associações [93].

3.2.4 Acoplamento Dinâmico

O acoplamento dinâmico faz com que, em tempo de execução, uma mensagem seja envi-
ada para uma classe servidora que implemente aquela mensagem. Como classes servidoras são
freqüentemente desenvolvidas e revisadas sem levar em consideração as classes clientes, a utiliza-
ção de métodos que antes funcionavam adequadamente na classe cliente pode levar a resultados
inesperados. Uma classe cliente pode solicitar um método que não mais está implementado na
classe servidora, usar incorretamente os métodos disponíveis ou invocar os métodos com parâme-
tros incorretos [93].

Além dos problemas apresentados acima, Binder [8] descreve ainda erros relacionados com
seqüências de mensagens e estados dos objetos. O empacotamento de métodos dentro de uma
classe é fundamental em OO. Como resultado, mensagens devem ser executadas em alguma
seqüência, originando a questão: “Quais seqüências de envio de mensagens são corretas?”. Obje-
tos são entidades criadas em tempo de execução, ocupando espaço na memória da máquina. Cada
nova configuração assumida por esse espaço de memória caracteriza um novo estado do objeto.
Assim, além do comportamento encapsulado por um objeto por meio de seus métodos e atributos,
objetos também encapsulam estados.

26

Examinando como a execução de um método pode alterar o estado de um objeto, quatro pos-
sibilidades são observadas [63]: (1) ele pode levar o objeto a um novo estado válido; (2) ele pode
deixar o objeto no mesmo estado em que se encontra; (3) ele pode levar o objeto para um estado
indefinido; e (4) ele pode alterar o estado para um estado não apropriado. A terceira e a quarta
opções caracterizam estados de erro. A primeira opção pode caracterizar um erro se o método
executado comportar-se como na segunda opção, e vice-versa.

3.3 Critérios de Teste OO

Conforme discutido na Seção 2, técnicas e critérios de teste têm sido investigados visando
a fornecer uma maneira sistemática e rigorosa para selecionar um subconjunto do domínio de
entrada e, ainda assim, ser eficaz para revelar a presença dos erros existentes, respeitando as restri-
ções de tempo e custo associados a um projeto de software. Nesta seção são apresentados alguns
dos principais critérios de teste para programas OO identificados na literatura. São brevemente
discutidos critérios funcionais, baseados em estados, estruturais e baseados em erros.

Critérios funcionais, conforme observado anteriormente, podem ser aplicados diretamente
tanto no teste de programas procedimentais como no teste de programas OO, visto que derivam
seus requisitos de teste somente com base na especificação do programa. Visando a avaliar a
adequação de um critério funcional utilizado no teste procedimental para revelar defeitos em pro-
gramas OO, Offutt e Irvine [68] investigaram a utilização do Método de Partição-Categoria. O
método oferece um procedimento que é utilizado pelo testador para produzir casos de teste a partir
da especificação. Em linhas gerais, o trabalho do testador é definir categorias que representem as
principais características do domínio de entrada da função sendo testada e particionar cada cate-
goria em classes de equivalência de entradas, chamadas choices. Por definição, as choices dentro
de uma categoria devem ser disjuntas e, quando unidas, devem cobrir todo o domínio de entrada
de dada categoria. O estudo de caso investigando a eficácia do Método Partição-Categoria na
detecção de falhas em programas OO é descrito em detalhes em [68].

Os critérios baseados em estado são bastante utilizados no contexto de OO para representar
o aspecto comportamental dos objetos [7, 8, 45, 63, 64, 87]. Segundo Binder, o grande desafio
do teste de software OO é projetar conjuntos de casos de teste que exercitem combinações de
seqüências de mensagens e interações de estados dando confiança de que o software funciona
corretamente [7]. Em algumas situações, casos de teste baseados em seqüência de mensagens ou
estados são suficientes. Entretanto, o teste baseado em estados não é capaz de detectar todos os
tipos de defeitos, exigindo que critérios de teste baseados em programa sejam utilizados, visando a
maximizar a detecção de defeitos [8]. Métodos de uma mesma classe têm acesso às mesmas variá-
veis de instância e devem cooperar entre si para o correto funcionamento da classe, considerando
todas as seqüências de ativação possíveis. A visibilidade das variáveis de instância para todos os
métodos da classe cria um risco de erro semelhante ao uso de variáveis globais nas linguagens de
programação procedimentais. Dado que os métodos da superclasse não estão explícitos quando
uma subclasse é codificada, isso pode resultar no uso inconsistente das variáveis de instância. Para
revelar esse tipo de defeito é necessária a utilização de critérios de teste de Fluxo de Controle e de
Fluxo de Dados que garantam a cobertura inter-método (ou intra-classe).

No caso de critérios estruturais, um dos principais trabalhos foi desenvolvido por Harrold e
Rothermel [41], que estenderam o teste de Fluxo de Dados para o teste de classes. Os autores
comentam que os critérios baseados em Fluxo de Dados destinados ao teste de programas proce-
dimentais podem ser utilizados tanto para o teste de métodos individuais quanto para o teste de
métodos que interagem entre si dentro de uma mesma classe [42, 76]. Entretanto, tais critérios
não consideram interações de fluxo de dados quando os usuários de uma classe invocam seqüên-
cia de métodos em uma ordem arbitrária. Para resolver esse problema, os autores apresentam

27

uma abordagem que permite testar diferentes tipos de interações de fluxo de dados entre classes.
A abordagem proposta usa as técnicas tradicionais de fluxo de dados para testar os métodos in-
dividuais e as interações entre os métodos dentro de mesma classe. Para testar os métodos que
são acessíveis fora da classe e podem ser utilizados por outras classes, uma nova representação,
denominada Grafo de Fluxo de Controle de Classe (CCFG – Class Control Flow Graph), foi de-
senvolvida. A partir dessa representação novas associações inter-método e intra-classe podem ser
derivadas.

Vincenzi et al. [92,93] também têm investigado o estabelecimento de critérios estruturais para
o teste de programas OO e teste de componentes. O objetivo principal é definir/adaptar critérios
estruturais tradicionais, tais como os critérios de fluxo de controle Todos-Nós e Todos-Arcos, e os
critérios de fluxo de dados Todos-Usos e Todos-Potenciais-Usos, para o teste de unidade (intra-
método) de programas OO e componentes de software.

Para avaliar a aplicabilidade dos critérios de teste definidos por Vincenzi [92] optou-se pela
linguagem Java. Tal escolha foi feita, sobretudo, em função da grande gama de aplicações e com-
ponentes que vêm sendo desenvolvidos utilizando essa linguagem. Mais precisamente, a idéia é
viabilizar o teste estrutural de programas Java a partir do bytecode5 Java, permitindo, com isso,
também o teste estrutural de componentes para os quais os códigos-fonte nem sempre se encon-
tram disponíveis.

Após a escolha da linguagem alvo, um modelo de fluxo de dados subjacente é definido, carac-
terizando as instruções de bytecode responsáveis pela definição e/ou o uso de variáveis. De posse
de modelo de fluxo de dados, um modelo de representação de programa – o Grafo Definição-Uso
(DU) – é construído, considerando os mecanismos de tratamento de exceção, em geral, presentes
nas linguagens OO. Desse modo, o grafo DU é utilizado para representar o fluxo de controle e o
fluxo de dados intra-método, tanto durante a execução normal do programa quanto na presença de
exceções. Uma vez que o grafo DU de cada método tenha sido obtido, critérios de teste podem
ser definidos para derivar diferentes requisitos de teste, os quais podem ser utilizados tanto para
avaliar a qualidade de um determinado conjunto de teste quanto para a própria geração de dados
de teste [92].

Ao todo, oito critérios de teste estruturais foram definidos. Vincenzi [92] optou por separar os
requisitos de teste em dois conjuntos disjuntos: (1) os que podem ser cobertos durante a execução
normal do programa, denominados independentes de exceção; e (2) os que para serem cober-
tos exigem, obrigatoriamente, que uma exceção tenha sido gerada, denominados dependentes de
exceção. Desse modo, foram estabelecidos os seguintes critérios:

• Todos-Nós: Todos-Nós-Independentes-de-Exceção (Todos-Nósei) e Todos-Nós-
Dependentes-de-Exceção (Todos-Nósed);

• Todas-Arestas: Todas-Arestas-Independentes-de-Exceção (Todas-Arestasei) e Todas-
Arestas-Dependentes-de-Exceção (Todas-Arestased);

• Todos-Usos: Todos-Usos-Independentes-de-Exceção (Todos-Usosei) e Todos-Usos-
Dependentes-de-Exceção (Todos-Usosed); e

• Todos-Potenciais-Usos: Todos-Potenciais-Usos-Independentes-de-Exceção
(Todos-Pot-Usosei) e Todos-Potenciais-Usos-Dependentes-de-Exceção
(Todos-Pot-Usosed).

5Instruções de bytecode lembram instruções em linguagem assembly, mas armazenam informações de alto nível
sobre um programa, de modo que é possível extrair informações de fluxo de controle e de dados a partir delas.

28

Um exemplo ilustrando a aplicação dos critérios estruturais definidos por Vincenzi [92] para
o teste intra-método, utilizando-se a ferramenta JaBUTi [92, 94], é apresentado na próxima seção.

Considerando os critérios baseados em erros, um ponto importante a ser destacado é a flexibi-
lidade de estender os conceitos do teste de mutação a diversas “entidades executáveis”. Conforme
discutido na Seção 2, o teste de mutação, desenvolvido inicialmente para o teste de unidade de
programas procedimentais, já foi estendido para o teste de integração de programas procedimen-
tais [15,16] e para o teste de especificações baseadas em Máquinas de Estado Finito [26,27], Redes
de Petri [28, 80], Statecharts [23, 85], Estelle [74, 84], SDL [86] e Especificações Algébricas [98].

Especificamente no que diz respeito ao teste de programas OO, o teste de mutação vem sendo
utilizado para o teste de aspectos referentes a concorrência, comunicação entre processos e teste
de programas Java e C++ em nível de unidade e de integração: (1) Kim et al. [50] utilizaram uma
técnica denominada HAZOP (Hazzard and Operability Studies) para a definição de um conjunto
de operadores de mutação para o teste de programas Java; (2) Ma et al. [56] propuseram um con-
junto mais abrangente de operadores de mutação para o teste de programas Java, os quais incluem
o conjunto de operadores definidos por Kim et al. [50]; (3) Gosh e Mathur [35] definiram um con-
junto de operadores de mutação visando ao teste de interfaces de comunicação entre componentes
distribuídos (CORBA); (4) Delamaro et al. [18] definiram operadores específicos para o teste de
programas concorrentes implementados em Java; e (5) Vincenzi [92] definiu três conjuntos distin-
tos de operadores de mutação os quais podem ser utilizados no teste intra-método, inter-método e
inter-classe, considerando as linguagens Java e C++.

Finalmente, é importante ressaltar que além dos critérios de teste descritos nesta seção, outros
exemplos podem ser encontrados na literatura, dentre eles os trabalhos de Rosenblum [78] e Har-
rold et al. [39]. Além disso, destaca-se a importância da realização de estudos teóricos e empíricos
procurando avaliar e comparar os diversos critérios de teste OO existentes [92].

3.3.1 A Ferramenta JaBUTi

A ferramenta JaBUTi (Java Bytecode Understanding and Testing) [92, 94], desenvolvida no
ICMC/USP em colaboração com a UNIVEM/Marília, visa a ser um ambiente completo para o
entendimento e teste de programas e componentes Java. A idéia básica da ferramenta é viabi-
lizar o teste de programas Java em nível de bytecode, possibilitando, com isso, não somente o
teste de programas Java para os quais o código-fonte esteja disponível, mas também o teste de
componentes Java.

JaBUTi fornece ao testador diferentes critérios de teste estruturais para a análise de cobertura,
um conjunto de métricas estáticas para se avaliar a complexidade das classes que compõem do
programa/componente, e implementa, ainda, algumas heurísticas de particionamento de progra-
mas que visam a auxiliar a localização de defeitos. Neste texto, é dada ênfase à parte responsável
pela análise de cobertura. Mais informações sobre as demais funcionalidades da ferramenta podem
ser obtidas em [92, 94].

Considerando o suporte à análise de cobertura de programas Java, a ferramenta im-
plementa atualmente seis dos oito critérios de teste intra-métodos definidos por Vin-
cenzi [92], sendo quatro critérios de Fluxo de Controle (Todos-Nósei, Todos-Nósed,
Todas-Arestasei,Todas-Arestased) e dois critérios de Fluxo de Dados (Todos-Usosei

e Todos-Usosed). Os critérios Todos-Pot-Usosei e Todos-Pot-Usosed ainda es-
tão fase de implementação. Como descrito na Seção 3, os pares de critérios Todos-Nósei,
Todos-Nósed e Todas-Arestasei, Todas-Arestased compõem os critérios Todos-Nós
e Todos-Arcos, respectivamente. Da mesma forma, os pares de critérios Todos-Usosei,
Todos-Usosed e Todos-Pot-Usosei, Todos-Pot-Usosed compõem os critérios
Todos-Usos e Todos-Pot-Usos, respectivamente.

29

Para ilustrar os aspectos operacionais da JaBUTi, um exemplo simples, adaptado de Orso et
al. [71], é utilizado. O exemplo implementa o comportamento de uma máquina de venda (vending
machine) típica e é composto de duas classes: uma que implementa um componente Dispenser
e outra, VendingMachine, que utiliza o componente Dispenser. O código-fonte em Java de
ambas as classes é apresentado na Figura 12.

/*46*/ } // class Dispenser

/*02*/
/*03*/ public class VendingMachine {
/*04*/
/*05*/ final private int COIN = 25;
/*06*/ final private int VALUE = 50;
/*07*/ private int totValue;
/*08*/ private int currValue;
/*09*/ private Dispenser d;
/*10*/
/*11*/ public VendingMachine() {
/*12*/ totValue = 0;
/*13*/ currValue = 0;
/*14*/ d = new Dispenser();
/*15*/ }
/*16*/
/*17*/ public void insertCoin() {
/*18*/ currValue += COIN;
/*19*/ System.out.println("Current value = " + currValue);
/*20*/ }
/*21*/
/*22*/ public void returnCoin() {
/*23*/ if (currValue == 0)
/*24*/ System.err.println("No coins to return");
/*25*/ else {
/*26*/ System.out.println("Take your coins");
/*27*/ currValue = 0;
/*28*/ }
/*29*/ }
/*30*/
/*31*/ public void vendItem(int selection) {
/*32*/ int expense;
/*33*/
/*34*/ expense = d.dispense(currValue, selection);
/*35*/ totValue += expense;
/*36*/ currValue −= expense;
/*37*/ System.out.println("Current value = " + currValue);
/*38*/ }
/*39*/ } // class VendingMachine

/*01*/ package vending;
/*02*/
/*03*/ public class Dispenser {
/*04*/ final private int MINSEL = 1;
/*05*/ final private int MAXSEL = 20;
/*06*/ final private int VAL = 50;
/*07*/
/*08*/ private int[] valSel =
/*09*/ { 1, 2, 3, 4, 6, 7, 8, 9, 10,
/*10*/ 11, 12, 13, 14, 15, 16, 17, 19};
/*11*/
/*12*/ public int dispense(int credit, int sel) {
/*13*/ int val = 0;
/*14*/
/*15*/ if (credit == 0)
/*16*/ System.err.println("No coins inserted");
/*17*/ else if ((sel < MINSEL) || (sel > MAXSEL))
/*18*/ System.err.println("Wrong selection " + sel);
/*19*/ else if (!available(sel))
/*20*/ System.err.println("Selection " + sel + " unavailable");
/*21*/ else {
/*22*/ val = VAL;
/*23*/ if (credit < val) {
/*24*/ System.err.println("Enter " + (val − credit) + " coins");
/*25*/ } else
/*26*/ System.out.println("Take selection");
/*27*/ }
/*28*/ return val;
/*29*/ }
/*30*/
/*31*/ private boolean available(int sel) {
/*32*/ boolean ans = false;
/*33*/ try {
/*34*/ for (int i = 0; i < valSel.length && !ans; i++)
/*35*/ if (valSel[i] == sel)
/*36*/ ans = true;
/*37*/ } catch (NullPointerException npe) {
/*38*/ ans = false;
/*39*/ }
/*40*/ return ans;
/*41*/ }
/*42*/
/*43*/ public void setValSel(int[] v) {
/*44*/ valSel = v;
/*45*/ }

/*01*/ package vending;

Figura 12: Exemplo de uma aplicação Java (VendingMachine) e um componente
(Dispenser) [71].

O componente Dispenser é responsável por manter as informações sobre o preço de
cada item e quais deles são válidos e estão disponíveis. O método mais importante da classe
Dispenser é o método Dispenser.dispense(), o qual é responsável por receber como
parâmetros a quantia em dinheiro depositada na máquina e o número do item selecionado pelo
usuário, e decidir se o item pode ou não ser entregue ao usuário. Tal método realiza os seguintes
passos:

1. Verifica se pelo menos uma moeda foi depositada na máquina;

2. Verifica se um item válido foi selecionado;

30

3. Verifica se o item válido encontra-se disponível (para isso utiliza o método
Dispenser.available());

4. Verifica se o valor fornecido é suficiente para comprar o item válido e disponível selecio-
nado.

Se todos os pré-requisitos acima forem satisfeitos, o componente Dispenser entrega o item
desejado pelo usuário. Do contrário, caso alguma das condições acima não seja satisfeita, uma
mensagem de erro é emitida e nenhum item é entregue ao usuário.

Considerando a utilização da ferramenta JaBUTi via interface gráfica, o primeiro passo para
conduzir uma atividade de teste é a criação de um projeto de teste, o qual contém informações
sobre as classes a serem testadas. Para a criação do projeto de teste o testador deve, primeiramente,
fornecer o nome de uma classe base, ou seja, o nome de uma classe tipo aplicação a partir da qual
as demais classes relacionadas serão derivadas. Fornecido o nome da classe base, a ferramenta
exibe a janela do Gerenciador de Projeto (Project Manager), como ilustrado na Figura 13. Do
lado esquerdo dessa janela encontra-se o conjunto completo das classes que foram identificadas a
partir da classe base e que podem ser selecionadas para serem testadas. No exemplo, duas foram
as classes selecionadas – VendingMachine e Dispenser.

Figura 13: Janela do gerenciador de projetos.

Pressionando o botão Ok, JaBUTi cria um novo projeto (vending.jbt no exemplo), cons-
trói o grafo Definição-Uso (DU) para cada método de cada classe a ser testada, deriva os requisitos
de teste de cada critério, calcula o peso desses requisitos, e apresenta na tela o bytecode de uma
das classes sendo testadas, como ilustrado na Figura 14(a)6. Além da visualização do bytecode,
a ferramenta oferece ainda a visualização do grafo DU de cada método (Figura 14(b)), e tam-
bém do código-fonte correspondente ao bytecode (Figura 14(c)), quando tal código encontra-se
disponível.

Uma vez que o conjunto de requisitos de teste de cada critério foi determinado, tais requisitos
podem ser utilizados para avaliar a qualidade de um conjunto de teste existente e/ou para desen-
volver novos casos de teste visando a melhorar a cobertura dos requisitos pelo conjunto de teste.
O testador pode, por exemplo, decidir criar um conjunto de teste com base em critérios de teste
funcionais ou mesmo gerar um conjunto de teste ad-hoc e avaliar a cobertura desse conjunto de
teste em relação a cada um dos critérios de teste estruturais da JaBUTi. Por outro lado, o testador
pode visualizar o conjunto de requisitos de teste de cada critério gerado para cada um dos métodos

6As telas apresentadas nesta seção são referentes a uma versão da ferramenta na qual os critérios independentes
de exceção eram denominados Critérios Primários e os critérios dependentes de exceção eram denominados Critérios
Secundários. Assim, o critério All-Pri-Nodes que aparece nas telas corresponde ao critério Todos-Nósei e o
critério All-Sec-Nodes corresponde ao critério Todos-Nósed. A mesma consideração é válida para os demais
critérios de teste. No texto é utilizado o nome dos critérios conforme definido na Seção 3.

31

(a) Bytecode inicial. (b) DU inicial.

(c) Código-fonte inicial.

Figura 14: Tela da JaBUTi considerando ativo o critério Todos-Nósei.

das classes sendo testadas, verificar quais deles ainda não foram cobertos por algum caso de teste
e então desenvolver um novo caso de teste que satisfaça tais requisitos. As figuras 15(a), 15(b),
e 15(c) ilustram parte dos requisitos de teste do método Dispenser.avaliable() gerados
pelos critérios Todos-Nósei, Todas-Arestasei, e Todos-Usosei, respectivamente.

(a) Todos-Nósei. (b) Todas-Arestasei. (c) Todos-Usosei.

Figura 15: Parte dos requisitos de teste de três critérios estruturais para o método
Dispenser.dispense().

32

Ainda, como pode ser observado na Figura 15, a ferramenta permite ao testador ativar/desativar
diferentes combinações de requisitos de teste, bem como marcar um determinado requisito de teste
como não-executável quando não existir um caso de teste capaz de cobri-lo.

Estudos têm demonstrado que, para programas C, conjuntos de teste que determinam as mai-
ores coberturas têm uma maior probabilidade de detectar defeitos no programa em teste [97]. O
mesmo se aplica para Java sem perda de generalidade. Uma vez que, em geral, existe um grande
número de requisitos de teste para serem cobertos, a ferramenta JaBUTi utiliza cores diferentes
dando indicações ao testador para facilitar a geração de casos de teste que satisfaçam um maior
número de requisitos em menor tempo. As diferentes cores representam diferentes pesos que são
associados aos requisitos de teste de cada critério. Informalmente, os pesos correspondem ao nú-
mero de requisitos de teste que são cobertos quando um requisito de teste particular é satisfeito.
Assim, cobrir os requisitos de teste de maior peso leva a um aumento na cobertura de forma mais
rápida.

Observe que os pesos são calculados considerando somente informações sobre cobertura e por
esse motivo devem ser vistos como “indicações” ao testador. No cálculo do peso não é levado em
conta, por exemplo, a complexidade ou a criticalidade de uma determinada parte do programa.
Além disso, o cálculo do peso por meio do uso de superblocos e de dominadores não é necessário
quando não se pode garantir a execução normal do método até um nó de saída, o que pode ocorrer
em Java quando uma exceção é levantada. O testador, baseado em sua experiência, pode decidir
cobrir outros requisitos de teste que estejam com trechos de código que apresentam uma alta
complexidade e não tenham os maiores pesos. Posteriormente, após os trechos de código desejado
terem sido suficientemente testados, o testador pode então utilizar as indicações para melhorar a
cobertura do conjunto de teste de forma mais rápida.

A Figura 14 mostra parte do bytecode, do grafo DU e do código-fonte do método
Dispenser.dispense() antes da execução de qualquer caso de teste. As cores correspon-
dem aos diferentes pesos dos requisitos do critério Todos-Nósei. Observe que a barra de corres
vai do branco (peso 0) ao vermelho (peso 7 neste exemplo). O nó 105 da Figura 14(b), com-
posto das instruções de bytecode que vão do pc 105 ao pc 112 (Figura 14(a)), é um dos nós de
maior peso. Isso representa que um caso de teste que exercite o nó 105 irá aumentar a cobertura
em relação ao critério Todos-Nósei em pelo menos 7 nós. Requisitos com peso zero indicam
requisitos que já foram cobertos e são pintados em branco. Por exemplo, o caso de teste 0001,
desenvolvido para executar o comando localizado no nó 105 da Figura 14(b), determina uma co-
bertura de 56% em relação ao critério Todos-Nósei, o que corresponde a execução de 17 dos 30
nós independentes de exceção requeridos pelo critério em relação aos métodos de todas as classes
sendo testadas (veja relatório da Figura 18(c)). Toda vez que um novo caso de teste é inserido, as
telas da ferramenta são atualizadas considerando as possíveis mudanças nos pesos dos requisitos
de teste.

A Figura 16(a) ilustra os novos pesos dos requisitos de teste do critério Todos-Nósei para
o método Dispenser.dispense(). Nessa figura muitos blocos estão pintados de branco
porque foram cobertos pelo caso de teste 0001. Observe, ainda, que o requisito de maior peso
passou para outra parte do código, dando indicações a respeito de qual o próximo caso de teste que
deveria ser gerado visando a maximizar o número de requisitos cobertos. A diferença no peso dos
requisitos após a execução do caso de teste 0001 pode ser facilmente identificada comparando
as figuras 14(a) e 16(a). No exemplo, o requisito de maior peso foi reduzido de 7 para 1. Isso é
consistente com o entendimento dos critérios baseados em cobertura para os quais torna-se cada
vez mais difícil melhorar a cobertura após alguns casos de teste terem sido executados.

A título de comparação, supondo que ao invés de utilizar as indicações fornecidas pela fer-
ramenta o testador gerasse um outro caso de teste, por exemplo, o caso de teste 0003 da Fi-

33

(a) Bytecode atualizado. (b) Grafo DU atualizado.

Figura 16: Tela atualizada do método Dispenser.dispense() para o critério Todos-Nósei

após a execução do caso de teste 0001.

gura 18(c), o número máximo de nós independentes de exceção que teria sido coberto seria 7. Com
isso, é possível notar uma diferença significativa entre a cobertura total do critério Todos-Nósei

determinada pelo caso de teste 0001, que foi de 56%, e aquela determinada pelo caso de teste
0003, que foi de 23%. Uma diferença semelhante é também encontrada em relação aos demais
critérios de teste.

A ferramenta JaBUTi também permite que os requisitos de teste de cada um de seus critérios
possam ser visualizados no bytecode, código-fonte e no grafo DU de cada método de cada uma das
classes em teste. Diferentes cores são associadas a esses requisitos para indicar os seus pesos. Por
exemplo, as figuras 14(a) e 14(b) ilustram os requisitos do critério Todos-Nósei. Considerando
os critérios Todas-Arestasei e Todas-Arestased, seus requisitos (arestas do grafo DU) são
coloridos em duas etapas. Para o critério Todas-Arestasei, somente os nós que apresentam
mais de uma aresta regular saindo, ou seja, nós de decisão, aparecem pintados na primeira etapa
para indicar os pontos do código onde os comandos de decisão estão localizados. Por exemplo, as
figuras 17(a) e 17(b) ilustram parte dos nós de decisão do método Dispenser.dispense() e
como eles são coloridos na primeira etapa após três casos de teste terem sido executados.

Para cada nó de decisão, seu peso é o maior peso de seus arcos correspondentes. Assim,
supondo um nó de decisão nd com duas arestas saindo, uma com peso 0 e outra com peso 2, nd

terá peso 2. Este é o caso do nó 0 no grafo DU do exemplo utilizado (Figura 17(b)). Os cinco
nós de decisão da figura (0, 17, 22, 56 e 97) estão em diferentes cores porque possuem diferentes
pesos associados. Um nó de decisão tem peso zero se e somente se todos os arcos a ele associados
tiverem sido cobertos. Tal nó é pintado de branco nesse caso. A seleção de um nó de decisão faz
com que a segunda etapa seja realizada (figuras 17(c) e 17(d)), identificando-se todas as arestas
regulares associadas com o ponto de decisão selecionado. No caso da Figura 17(d), são duas
as arestas regulares correspondentes: uma do nó 0 para o nó 6 que ainda não foi coberta e está
pintada de vermelho, e outra do nó 0 para o nó 17 que já foi coberta e aparece pintada de branco.
Os demais critérios de Fluxo de Dados também são pintados de forma similar, em duas etapas.
Mais informações podem ser obtidas em [92].

A ferramenta permite ainda a geração de diferentes relatórios de teste, em diferentes granula-
ridades, dependendo do nível de detalhe desejado, para avaliar o andamento da atividade de teste.
Por exemplo, o testador pode estar interessado em avaliar a cobertura do critério Todos-Nósei

34

(a) Bytecode – Etapa 1. (b) Grafo DU– Etapa 1.

(c) Bytecode – Etapa 2. (d) Grafo DU– Etapa 2.

Figura 17: Etapas da exibição dos requisitos do critério Todas-Arestasei para o método
Dispenser.dispense().

em relação a cada método para descobrir quais desses métodos ainda não foi suficientemente tes-
tado. Esse tipo de relatório é fornecido pela JaBUTi como ilustrado na Figura 18(a).

(a) Cobertura de cada método: critério Todos-Nósei.

(b) Cobertura obtida em relação a cada critério. (c) Cobertura de cada caso de teste: critério
Todos-Nósei.

Figura 18: Relatórios de teste da cobertura em relação a cada método, critério e caso de teste.

Também pode ser importante avaliar a cobertura de todo o projeto em relação a cada um dos
critérios de teste. Essa informação pode ajudar o testador a decidir se o “efeito de saturação”

35

de determinado critério de teste já foi atingido. Em caso afirmativo, um critério de teste mais
forte pode ser utilizado para continuar a evolução do conjunto de teste; por exemplo, passar do
critério Todos-Nósei para o critério Todas-Arestasei. A ferramenta JaBUTi gera esse tipo
de relatório considerando os seis critérios de teste estruturais implementados pela mesma. A
Figura 18(b) ilustra esse tipo de relatório.

Além disso, pode ser interessante identificar os slices de execução de cada caso de teste, onde
o slice pode ser definido em relação a um conjuntos de nós independentes/dependentes de exce-
ção (considerando o critério Todos-Nósei/Todos-Nósed), arestas independentes/dependentes
de exceção, associações independentes/dependentes de exceção e potenciais-associações indepen-
dentes/dependentes de exceção, obtidas a partir dos critérios de teste correspondentes. Tais slices
podem ser utilizados, por exemplo, de forma similar às metodologias desenvolvidas para pro-
gramas C, para auxiliar aos testadores em atividades de depuração e entendimento de progra-
mas/componentes Java. Para um dado caso de teste, seu slice de execução pode ser facilmente
construído se a cobertura determinada por tal caso de teste é conhecida, tal como o relatório mos-
trado na Figura 18(c). Observe que é possível ativar/desativar diferentes combinações de casos de
teste de modo que o slice de execução de cada um, tanto no bytecode quando no grafo DU, possa
ser visualizado, como mostrado anteriormente na Figura 14(a), por exemplo.

É importante observar que a disponibilidade da ferramenta JaBUTi viabiliza a condução de
diversos estudos empíricos, tanto no que diz respeito ao desenvolvimento de estratégias de teste
incrementais, quanto na utilização das informações obtidas durante os testes em atividades de
depuração e entendimento de programas OO. Além disso, JaBUTi é a única ferramenta que apóia
a aplicação do teste de Fluxo de Dados em programas e componentes Java, podendo ser utilizada
tanto na transferência tecnológica de conceitos/critérios de teste para a indústria como na atividade
de ensino/aprendizagem em disciplinas da área de teste de software. Informações adicionais a
respeito da ferramenta JaBUTi podem ser obtidas em [92, 94].

Cabe ressaltar, por fim, a existência de duas outras versões da ferramenta JaBUTi: (1) Ja-
BUTi/AJ (Java Bytecode UnderstandiIng and Testing / AspectJ) [54], para o teste de unidade de
programas orientados a aspectos (OA), baseados na linguagem AspectJ; e (2) JaBUTi/MA (Java
Bytecode UnderstandiIng and Testing / Mobile Agents) [19], para o teste estrutural de agentes
móveis.

4 Estudos Teóricos e Empíricos

Em virtude da diversidade de critérios de teste existente, saber qual deles deve ser utilizado
ou como utilizá-los de forma complementar a fim de obter o melhor resultado com o menor custo
é uma questão complicada. Nesse sentido, estudos teóricos e empíricos têm sido conduzidos na
tentativa de avaliar as vantagens e desvantagens dos critérios de teste [14].

Os estudos teóricos têm explorado, sobretudo, a relação de inclusão entre os critérios e a
complexidade dos mesmos [67, 76, 95]. A relação de inclusão estabelece uma ordem parcial e
caracteriza uma hierarquia entre eles. Assim, diz-se que um critério C1 inclui um critério C2 se
para qualquer programa P e qualquer conjunto de casos de teste T1 C1-adequado, T1 for também
C2-adequado e para algum programa P e um conjunto T2 C2-adequado, T2 não for C1-adequado.
A complexidade é definida como o número máximo de casos de teste exigidos por um critério, no
pior caso. Além desses itens, também do ponto de vista teórico, alguns autores têm abordado a
questão de eficácia dos critérios de teste, definindo outras relações de inclusão entre eles, as quais
procurem captar a capacidade em revelar erros [30, 31, 96, 100].

Os estudos empíricos, por sua vez, procuram comparar a adequação dos critérios de teste a
partir de três fatores básicos: custo, eficácia e dificuldade de satisfação (strength). O custo refere-

36

se ao esforço necessário na utilização de um critério. Pode ser medido pelo número de casos de
teste requeridos para satisfazer o critério ou por outras métricas dependentes do critério, tais como:
o tempo necessário para executar todos os mutantes gerados ou o tempo gasto para identificar os
mutantes equivalentes, caminhos e associações não executáveis, construir manualmente os casos
de teste e aprender a utilizar as ferramentas de teste. A eficácia refere-se à capacidade de um
critério em detectar um maior número de erros em relação a outro. Dificuldade de satisfação
refere-se à probabilidade de satisfazer um critério tendo satisfeito outro.

Utilizando-se tais fatores comparativos, estudos teóricos e empíricos são conduzidos com o
objetivo de encontrar formas econômicas e produtivas para a realização dos testes. Uma visão
geral a respeito dos principais estudos realizados pode ser encontrada em [58, 100]. Uma síntese
quanto à avaliação e comparação entre critérios de teste OO está disponível em [92].

5 Conclusões e Direções na Área de Teste

O teste é uma atividade crucial no processo de desenvolvimento de software, tendo forte rela-
ção com aspectos relacionados à garantia da qualidade do produto em questão [14]. Neste texto
foi dada uma visão geral a respeito da atividade de teste, sendo apresentados alguns conceitos e
critérios pertinentes, com ênfase naqueles considerados mais promissores a curto e médio prazo
– os critérios baseados em Fluxo de Dados e os critérios baseados em Mutação. Mostrou-se,
também, que os conceitos e mecanismos desenvolvidos originalmente para o teste de programas
procedimentais podem ser utilizados no contexto do paradigma de desenvolvimento de software
orientado a objetos, com as devidas adaptações. Extensões de critérios de teste baseados em Fluxo
de Controle, Fluxo de Dados e em Mutação foram brevemente discutidas nesse contexto. Tam-
bém foram discutidas algumas iniciativas e esforços de automatização de critérios de teste. Em
especial, foram apresentadas as ferramentas PokeTool, Proteum e JaBUTi.

No que se refere a direções futuras, Harrold [38] discute as perspectivas, as necessidades e as
tendências na área de teste, visando ao desenvolvimento de métodos e ferramentas que permitam
a transferência de tecnologia para indústria. Como ressalta Harrold, dentre as principais linhas
de pesquisa na área destacam-se: (1) o teste de sistemas baseado em componentes de software
(o qual inclui o teste de programas OO); (2) o desenvolvimento de processos de teste efetivos; e
(3) a demonstração da eficácia de critérios e estratégias de teste. De fato, um aspecto relevante é
dar subsídios para o desenvolvimento de software baseado em componentes. Com o aumento no
desenvolvimento de produtos desse tipo, é necessária a definição de modos efetivos e eficientes de
testá-los. É necessário, ainda, entender e desenvolver técnicas e critérios de teste que exercitem
as várias questões associadas, tais como segurança e tolerância a falhas. Além disso, os tópicos
de verificação, validação e teste de software também começam a ser investigados e discutidos no
contexto de programação orientada a aspectos (POA) [54].

Para finalizar, ressalta-se que o conhecimento e as contribuições na área de teste – divididos
basicamente em conhecimento teórico, empírico e de ferramentas de suporte – devem ser cons-
tantemente atualizados, assim como nas demais áreas. Nessa perspectiva, a organização de uma
base histórica sobre o custo e a eficácia das técnicas e critérios de teste, em diferentes domínios de
aplicação, em relação a diferentes classes de erros, certamente facilitaria o planejamento de futu-
ros desenvolvimentos de software. Facilitaria, ainda, o estabelecimento de estratégias de teste que
explorem os aspectos complementares das técnicas e critérios, viabilizando a detecção do maior
número de erros possível e com o menor custo, o que contribuiria para a liberação de produtos de
software de maior qualidade a um menor custo [14].

37

Referências

[1] A. T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Mutation analysis.
Technical Report GIT-ICS-79/08, Georgia Institute of Technology, Atlanta, GA, September
1979.

[2] H. Agrawal, R. A. DeMillo, R. Hathaway, W. Hsu, W. Hsu, E. W. Krauser, R. J. Martin,
A. P. Mathur, and E. H. Spafford. Design of mutant operators for the C programming
language. Technical Report SERC-TR41-P, Software Engineering Research Center, Purdue
University, West Lafayette, IN, March 1989.

[3] T. R. Arnold and W. A. Fuson. In a perfect world. Communications of the ACM, 37(9):78–
86, September 1994.

[4] E. F. Barbosa, J. C. Maldonado, A. M. R. Vincenzi, M. E. Delamaro, S. R. S. Souza, and
M. Jino. Introdução ao teste de software. Minicurso apresentado no XIV Simpósio Brasi-
leiro de Engenharia de Software (SBES 2000), October 2000.

[5] E. F. Barbosa, A. M. R. Vincenzi, and J. C. Maldonado. Uma contribuição para a determi-
nação de um conjunto essencial de operadores de mutação no teste de programas C. In XII
Simpósio Brasileiro de Engenharia de Software (SBES 98), pages 103–120, Maringá, PR,
October 1998.

[6] B. Beizer. Software Testing Techniques. Van Nostrand Reinhold Company, New York, 2nd
edition, 1990.

[7] R. V. Binder. Modal testing strategies for OO software. Computer, 29(11):97–99, Novem-
ber 1996.

[8] R. V. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools, volume 1.
Addison Wesley Longman, Inc., 1999.

[9] T. A. Budd. Mutation Analysis of Program Test Data. PhD thesis, Yale University, New
Haven, CT, 1980.

[10] T. A. Budd. Mutation Analysis: Ideas, Example, Problems and Prospects, chapter Compu-
ter Program Testing. North-Holand Publishing Company, 1981.

[11] M. L. Chaim. PokeTool – Uma ferramenta para suporte ao teste estrutural de programas
baseado em análise de fluxo de dados. Master’s thesis, DCA/FEEC/UNICAMP, Campinas,
SP, April 1991.

[12] T. S. Chow. Testing software design modelled by finite-state machines. IEEE Transactions
on Software Engineering, 4(3):178–187, 1978.

[13] T. Chusho. Test data selection and quality estimation based on concept of essential branches
for path testing. IEEE Transactions on Software Engineering, 13(7):509–517, 1987.

[14] A. R. C. da Rocha, J. C. Maldonado, and K. C. Weber. Qualidade de Software: Teoria e
Prática. Prentice Hall, São Paulo, SP, 2001.

[15] M. E. Delamaro and J. C. Maldonado. Proteum – a tool for the assessment of test adequacy
for C programs. In Conference on Performability in Computing Systems (PCS 96), pages
79–95, Brunswick, NJ, July 1996.

38

[16] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur. Interface mutation: An approach for
integration testing. IEEE Transactions on Software Engineering, 27(3):228–247, March
2001.

[17] M. E. Delamaro, J. C. Maldonado, and A. M. R. Vincenzi. Proteum/IM 2.0: An integrated
mutation testing environment. In Mutation 2000 Symposium, pages 91–101, San Jose, CA,
October 2000. Kluwer Academic Publishers.

[18] M. E. Delamaro, M. Pèzze, A. M. R. Vincenzi, and J. C. Maldonado. Mutant operators for
testing concurrent Java programs. In XV Simpósio Brasileiro de Engenharia de Software
(SBES 2001), Rio de Janeiro, RJ, October 2001.

[19] M. E. Delamaro and A. M. R. Vincenzi. Structural Testing of Mobile Agents. In Egidio As-
tesiano Nicolas Guelfi and Gianna Reggio, editors, International Workshop on Scientific
Engineering of Java Distributed Applications (FIDJI 2003), volume 2952 of Lecture Notes
on Computer Science, pages 73–85. Springer, November 2003.

[20] R. A. Demillo. Mutation analysis as a tool for software quality assurance. In COMPSAC80,
Chicago, IL, October 1980.

[21] R. A Demillo. Software Testing and Evaluation. The Benjamin/Cummings Publishing
Company Inc., 1987.

[22] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for the
practicing programmer. IEEE Computer, 11(4):34–43, April 1978.

[23] S. C. P F. Fabbri. A Análise de Mutantes no Contexto de Sistemas Reativos: Uma Contri-
buição para o Estabelecimento de Estratégias de Teste e Validação. PhD thesis, IFSC-USP,
São Carlos – SP, October 1996.

[24] S. C. P. F. Fabbri, J. C. Maldonado, M. E. Delamaro, and P. C. Masiero. Proteum/FSM: A
tool to support finite state machine validation based on mutation testing. In XIX Internatio-
nal Conference of the Chilean Computer Science Society (SCCC 99), pages 96–104, Talca,
Chile, 1999.

[25] S. C. P. F. Fabbri, J. C. Maldonado, and P. C. Masiero. Mutation analysis in the context
of reactive system specification and validation. In 5th Annual International Conference on
Software Quality Management, pages 247–258, Bath, UK, March 1997.

[26] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, and M. E. Delamaro. Análise de mutantes
baseada em máquinas de estado finito. In XI Simpósio Brasileiro de Redes de Computadores
(SBRC 93), pages 407–425, Campinas, SP, May 1993.

[27] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, and M. E. Delamaro. Mutation analysis
testing for finite state machines. In 5th International Symposium on Software Reliability
Engineering (ISSRE 94), pages 220–229, Monterey, CA, November 1994.

[28] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, and M. E. Delamaro. Mutation analysis
applied to validate specifications based on petri nets. In 8th IFIP Conference on Formal
Descriptions Techniques for Distribute Systems and Communication Protocols (FORTE
95), pages 329–337, Montreal, Canada, October 1995.

39

[29] S. C. P. F. Fabbri, J. C. Maldonado, T. Sugeta, and P. C. Masiero. Mutation testing applied
to validate specifications based on statecharts. In ISSRE – International Symposium on
Software Reliability Systems, pages 210–219, November 1999.

[30] P. G. Frankl and E. J. Weyuker. An analytical comparison of the fault-detecting ability
of data flow testing techniques. In XV International Conference on Software Engineering,
pages 415–424, May 1993.

[31] P. G. Frankl and E. J. Weyuker. A formal analysis of the fault-detecting ability of testing
methods. IEEE Transactions on Software Engineering, 19(3):202–213, March 1993.

[32] A. D. Friedman. Logical Design of Digital Systems. Computer Science Press, 1975.

[33] S. Fujiwara, G. V. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi. Test selection
based on finite state models. IEEE Transactions on Software Engineering, 17(6), June 1991.

[34] C. Ghezzi and M. Jazayeri. Programming Languages Concepts. John Wiley and Sons, New
York, 2 edition, 1987.

[35] S. Ghosh and A. P. Mathur. Interface mutation. In Mutation 2000 Symposium, pages 227–
247, San Jose, CA, October 2000. Kluwer Academic Publishers.

[36] G. Gönenç. A method for design of fault-detection experiments. IEEE Transactions on
Computers, 19(6):551–558, June 1970.

[37] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8:231–274, 1987.

[38] M. J. Harrold. Testing: A roadmap. In 22th International Conference on Software Engine-
ering, June 2000.

[39] M. J. Harrold, D. Liang, and S. Sinha. An approach to analyzing and testing component-
based systems. In First International ICSE Workshop on Testing Distributed Component-
Based Systems, Los Angeles, CA, May 1999.

[40] M. J. Harrold, J. D. McGregor, and K. J. Fitzpatrick. Incremental testing of object-oriented
class structures. In 14th International Conference on Software Engineering, pages 68–80,
Los Alamitos, CA, May 1992. IEEE Computer Society Press.

[41] M. J. Harrold and G. Rothermel. Performing data flow testing on classes. In Second ACM
SIGSOFT Symposium on Foundations of Software Engineering, pages 154–163, New York,
December 1994. ACM Press.

[42] M. J. Harrold and M. L. Soffa. Interprocedural data flow testing. In Third Testing, Analysis,
and Verification Symposium, pages 158–167, December 1989.

[43] M. J. Harrold and M. L. Soffa. Selecting and using data for integration test. IEEE Software,
8(2):58–65, March 1991.

[44] P. M. Herman. A data flow analysis approach to program testing. Australian Computer
Journal, 8(3), November 1976.

[45] D. Hoffman and P. Strooper. ClassBrench: A framework for automated class testing. Soft-
ware Practice and Experience, pages 573–597, May 1997.

40

[46] J. R. Horgan and P. Mathur. Assessing testing tools in research and education. IEEE
Software, 9(3):61–69, May 1992.

[47] W. E. Howden. Methodology for the generation of program test data. IEEE Computer,
C-24(5):554–559, May 1975.

[48] W. E. Howden. Software Engineering and Technology: Functional Program Testing and
Analysis. McGrall-Hill Book Co, New York, 1987.

[49] IEEE. IEEE Standard Glossary of Software Engineering Terminology. Standard 610.12,
IEEE Press, 1990.

[50] S. Kim, J. A. Clark, and J. A. Mcdermid. The rigorous generation of Java mutation ope-
rators using HAZOP. In 12th International Conference on Software & Systems Engine-
ering and their Applications (ICSSEA 99), December 1999. Disponível em http://www-
users.cs.york.ac.uk/ jac/, Último acesso: 12/2003.

[51] S. Kim, J. A. Clark, and J. A. Mcdermid. Class mutation: Mutation testing for object-
oriented programs. In FMES, 2000. Disponível em http://www-users.cs.york.ac.uk/ jac/,
Último acesso: 12/2003.

[52] D. C. Kung, P. Hsia, and J. Gao. Testing Object-Oriented Software. IEEE Computer Society
Press, Los Alamitos, CA, 1998.

[53] J. W. Laski and B. Korel. A data flow oriented program testing strategy. IEEE Transactions
on Software Engineering, 9(3), May 1983.

[54] O. A. L. Lemos. Teste de programas orientados a aspectos: uma abordagem estrutural para
AspectJ. Master’s thesis, ICMC-USP, São Carlos, SP, 2005.

[55] U. Linnenkugel and M. Müllerburg. Test data selection criteria for (software) integration
testing. In First International Conference on Systems Integration, pages 709–717, Morris-
town, NJ, April 1990.

[56] Y. S. Ma, Y.-R. Kwon, and J. Offutt. Inter-class mutation operators for java. In 13th
International Symposium on Software Reliability Engineering (ISSRE 2002), pages 352–
366, Annapolis, MD, November 2002.

[57] J. C. Maldonado. Critérios Potenciais Usos: Uma Contribuição ao Teste Estrutural de
Software. PhD thesis, DCA/FEEC/UNICAMP, Campinas, SP, July 1991.

[58] J. C. Maldonado, E. F. Barbosa, A. M. R. Vincenzi, M. E. Delamaro, S. R. S. Souza, and
M. Jino. Teste de software: Teoria e prática. Minicursos – XVII Simpósio Brasileiro de
Engenharia de Software (SBES 2003), October 2003.

[59] J. C. Maldonado, M. L. Chaim, and M. Jino. Arquitetura de uma ferramenta de teste de
apoio aos critérios potenciais usos. In XXII Congresso Nacional de Informática, São Paulo,
SP, September 1989.

[60] J. C. Maldonado, M. E. Delamaro, S. C. P. F. Fabbri, A. S. Simão, T. Sugeta, A. M. R.
Vincenzi, and P. C. Masiero. Proteum: A family of tools to support specification and
program testing based on mutation. In Mutation 2000 Symposium – Tool Session, pages
113–116, San Jose, CA, October 2000. Kluwer Academic Publishers.

41

[61] J. C. Maldonado, A. M. R. Vincenzi, E. F. Barbosa, S. R. S. Souza, and M. E. Delamaro.
Aspectos teóricos e empíricos de teste de cobertura de software. Technical Report 31,
Instituto de Ciências Matemáticas e de Computação – ICMC-USP, June 1998.

[62] A. P. Mathur. On the relative strengths of data flow and mutation testing. In Ninth Annual
Pacific Northwest Software Quality Conference, pages 165–181, Portland, OR, October
1991.

[63] R. McDaniel and J. D. McGregor. Testing polymorphic interactions between classes. Te-
chnical Report TR-94-103, Clemson University, March 1994.

[64] J. D. McGregor. Functional testing of classes. In Proc. 7th International Quality Week, San
Francisco, CA, May 1994. Software Research Institute.

[65] G. J. Myers, Corey Sandler, Tom Badgett, and Todd M. Thomas. The Art of Software
Testing. John Wiley & Sons, 2nd. edition, 2004.

[66] S. C. Ntafos. On required element testing. IEEE Transactions on Software Engineering,
SE-10:795–803, November 1984.

[67] S. C. Ntafos. A comparison of some structural testing strategies. IEEE Transactions on
Software Engineering, 14(6):868–873, July 1988.

[68] A. J. Offutt and A. Irvine. Testing object-oriented software using the category-partition
method. In 17th International Conference on Technology of Object-Oriented Languages
and Systems, pages 293–304, Santa Barbara, CA, August 1995.

[69] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An experimental determina-
tion of sufficient mutant operators. ACM Transactions on Software Engineering Methodo-
logy, 5(2):99–118, April 1996.

[70] A. J. Offutt, G. Rothermel, and C. Zapf. An experimental evaluation of selective muta-
tion. In 15th International Conference on Software Engineering (ICSE 93), pages 100–107,
Baltimore, MD, May 1993.

[71] A. Orso, M. J. Harrold, D. Rosenblum, G. Rothermel, H. Do, and M. L. Soffa. Using
component metacontent to support the regression testing of component-based software. In
IEEE International Conference on Software Maintenance (ICSM 2001), 2001.

[72] D. E. Perry and G. E. Kaiser. Adequate testing and object-oriented programming. Journal
on Object-Oriented Programming, pages 13–19, January/February 1990.

[73] Roger S. Pressman. Software Engineering - A Practitioner’s Approach. McGraw-Hill, 5
edition, 2001.

[74] R. L. Probert and F. Guo. Mutation testing of protocols: Principles and preliminary ex-
perimental results. In Third International Workshop on Protocol Test Systems (IFIP TC6),
pages 57–76. North-Holland, 1991.

[75] S. Rapps and E. J. Weyuker. Data flow analysis techniques for program test data selection.
In 6th International Conference on Software Engineering, pages 272–278, Tokio, Japan,
September 1982.

42

[76] S. Rapps and E. J. Weyuker. Selecting software test data using data flow information. IEEE
Transactions on Software Engineering, SE-11(4):367–375, April 1985.

[77] A. C. A. Rosa and E. Martins. Using a reflexive architecture to validate object-oriented
applications by fault injection. In Workshop on Reflexive Programming in C++ and Java,
pages 76–80, Vancouver, Canada, 1998. (http://www.dc.unicamp.br/ eliane).

[78] D. S. Rosenblum. Adequate testing of component-based software. Technical Report UCI-
ICS-97-34, University of California, Irvine, CA, August 1997.

[79] K. K. Sabnani and A. Dahbura. Protocol test generation procedure. Computer Networks
and ISDN Systems, 15(4):285–297, April 1988.

[80] A. S. Simão. Proteum-RS/PN: Uma ferramenta para a validação de redes de petri baseada
na análise de mutantes. Master’s thesis, ICMC-USP, São Carlos, SP, February 2000.

[81] A. S. Simão and J. C. Maldonado. Geração de seqüências para redes de Petri baseadas em
mutação. In III Workshop de Métodos Formais, João Pessoa, October 2000.

[82] A. S. Simão, J. C. Maldonado, and S. C. P. F. Fabbri. Proteum-RS/PN: A tool to support
edition, simulation and validation of petri nets based on mutation testing. In XIV Simpósio
Brasileiro de Engenharia de Software (SBES 2000), João Pessoa, October 2000.

[83] S. R. S. Souza. Avaliação do custo e eficácia do critério análise de mutantes na atividade de
teste de programas. Master’s thesis, ICMC-USP, São Carlos, SP, June 1996.

[84] S. R. S. Souza, J. C. Maldonado, S. C. P. F. Fabbri, and W. Lopes de Souza. Mutation
testing applied to estelle specifications. Software Quality Journal, 8(4):285–302, April
2000. Kluwer Academic Publishers.

[85] T. Sugeta. Proteum-RS/ST : Uma ferramenta para apoiar a validação de especificações
statecharts baseada na análise de mutantes. Master’s thesis, ICMC-USP, São Carlos, SP,
November 1999.

[86] T. Sugeta, J. C. Maldonado, and W. E. Wong. Mutation testing applied to validate SDL
specifications. In 16th IFIP International Conference on Testing of Communicating Systems
(TestCom 2004), Oxford, United Kingdom.

[87] C. D. Turner and D. J. Robson. The state-based testing of object-oriented programs. In
IEEE Conference on Software Maintenance, pages 302–310, 1993.

[88] H. Ural and B. Yang. A structural test selection criterion. Information Processing Letters,
28:157–163, 1988.

[89] S. R. Vergílio, J. C. Maldonado, and M. Jino. Uma estratégia para a geração de dados de
teste. In VII Simpósio Brasileiro de Engenharia de Software (SBES 93), pages 307–319,
Rio de Janeiro, RJ, October 1993.

[90] P. R. S. Vilela. Critérios Potenciais Usos de Integração: Definição e Análise. PhD thesis,
DCA/FEEC/UNICAMP, Campinas, SP, April 1998.

[91] P. R. S. Vilela, J. C. Maldonado, and M. Jino. Program graph visualization. Software
Practice and Experience, 27(11):1245–1262, November 1997.

43

[92] A. M. R. Vincenzi. Orientação a Objetos: Definição, Implementação e Análise de Recursos
de Teste e Validação. PhD thesis, Instituto de Ciências Matemáticas e de Computação –
ICMC-USP, São Carlos, SP, March 2004.

[93] A. M. R. Vincenzi, J. C. Maldonado, M. E. Delamaro, E. S. Spoto, and E. Wong. Desenvol-
vimento Baseado em Componentes: Conceitos e Técnicas, chapter Software Baseado em
Componentes: Uma Revisão sobre Teste. Editora Ciência Moderna Ltda., 2005.

[94] A. M. R. Vincenzi, W. E. Wong, M. E. Delamaro, and J. C. Maldonado. JaBUTi: A coverage
analysis tool for java programs. In XVII Simpósio Brasileiro de Engenharia de Software
(SBES 2003), Manaus, AM, October 2003.

[95] E. J. Weyuker. The complexity of data flow for test data selection. Information Processing
Letters, 19(2):103–109, August 1984.

[96] E. J. Weyuker and B. Jeng. Analyzing partition testing strategies. IEEE Transactions on
Software Engineering, 17(7):703–711, July 1991.

[97] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur. Effect of test set size and block co-
verage on fault detection effectiveness. In Fifth IEEE International Symposium on Software
Reliability Engineering, pages 230–238, Monterey, CA, November 1994.

[98] M. R. Woodward. Mutation testing – its origin and evolution. Information and Software
Technology, 35(3):163–169, March 1993.

[99] M. R. Woodward, D. Heddley, and M. A. Hennel. Experience with path analysis and testing
of programs. IEEE Transactions on Software Engineering, SE-6:278–286, May 1980.

[100] H. Zhu. A formal analysis of the subsume relation between software test adequacy criteria.
IEEE Transactions on Software Engineering, SE-22(4):248–255, April 1996.

44

View publication statsView publication stats

