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At the same time that two-dimensional (2D) systems open possibilities for new physics and applications, they
present a higher challenge for electronic structure calculations, especially concerning excitations. The achievement
of a fast and accurate practical model that incorporates approximate quasiparticle corrections can further open an
avenue for more reliable band structure calculations of complex systems such as interactions of 2D materials with
substrates or molecules, as well as the formation of van der Waals heterostructures. In this work, we demonstrate
that the performance of the fast and parameter-free DFT-1/2 method is comparable with state-of-the-art GW and
superior to the HSE06 hybrid functional in the majority set of the 34 different 2D materials studied. Moreover,
based on the knowledge of the method and chemical information of the material, we can predict the small number
of cases in which the method is not so effective and also provide the best recipe for an optimized DFT-1/2 method
based on the electronegativity difference of the bonding atoms.
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I. INTRODUCTION

The synthesis of isolated graphene from graphite exfoliation
in 2004 [1] and its unique properties gave rise to a totally new
research field dedicated to the study of novel two-dimensional
(2D) materials. In recent years, the scientific community
has studied several monolayer materials beyond graphene
[2–6], among which are IV-A elements such as silicene [7],
germanene [8,9], stanene [10] honeycomb structures made of
group III-A and V-A atoms, such as hexagonal boron nitride
(hBN) [11], and transition-metal dichalcogenides (TMDCs)
[12,13]. The spectrum of electronic properties available within
the library of 2D crystals ranges from insulating properties
in hBN to semiconducting, metal, and superconducting ones
in TMDCs [13,14]. A large variety of electronic properties
in 2D elemental group-V materials, binary III-VII and IV-VI
compounds, and ternary III-VI-VII and IV-V-VII compounds
has been also recently reported [15]. These new classes of
materials pave the way not only for understanding new physics,
but also for the application of these materials to novel electronic
and optoelectronic devices.

Electronic structure is a fundamental property, and its accu-
rate description is the basis for further study of electronic and
optical properties. It has been well established that the many-
body effects on the electronic structure are greatly enhanced in
low-dimensional systems [16]. Within theoretical studies, ab
initio calculations based on density functional theory (DFT)
[17] are often used in the computational prediction of physical
properties of novel materials. This approach achieved great
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success regarding ground state properties, such as total ener-
gies, bond lengths, and lattice parameters. However, accuracy
limitations must be considered for properties dependent on
excited states, such as in calculations of energy band gaps
and dielectric functions. It is well known that the standard
DFT approach underestimates the energy band gap, and even
predicts semimetallic behaviors instead of semiconducting
ones for some pathological cases, such as in the case of
bulk InAs and InN [18]. Different theoretical approaches have
been proposed to overcome these limitations, thus providing
more reliable predictions to physical properties that depend on
excited states. The GW approximation is considered the state-
of-the-art and most accurate method. It estimates the electron
self-energy from quasiparticle energy calculations in terms of
perturbation theory [19]. Hybrid functionals, which combine
standard DFT with Hartree-Fock (HF) calculations, are also
popular and robust alternatives, although they depend on ad-
justable parameters to calculate energy band gaps. The hybrid
functional calculations demand greater computational efforts
than standard DFT ones, leading to limitations on the size of
the simulated systems. This problem is exacerbated when GW
calculations are considered. Moreover, GW calculations for
2D materials pose additional convergence challenges due to
the analytical behavior of the 2D electronic screening and the
need to remove interactions between period images [20–22].
Therefore, the study of low computational cost methods for ob-
taining an accurate band structure for this new class of materials
is of great importance, and could open an avenue for studying
more complex systems, such as van der Waals heterostructures
[23,24], crystal defects [25,26], and alloys [18,27].

To improve computational efficiency while keeping a good
compromise with accuracy, Ferreira, Marques, and Teles
developed the LDA-1/2 method for approximate self-energy
corrections within the framework of conventional Kohn-Sham
DFT [28], which can be used not only with the local density
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approximation (LDA), but also with the generalized gradient
approximation (GGA) [29,30], nowadays usually named DFT-
1/2. The proposed method is able to predict the energy gap
results with precision similar to that of the aforementioned
quasiparticle corrections, but with the same computational
effort of standard DFT calculations. This formalism is also
free of adjusted parameters.

Particularly, the DFT-1/2 method was first applied for
several 3D crystals considering only the self-energy of the hole,
since in the vast majority of the cases only the self-energy of
the electron in the conduction band had any importance [28].
This occurs due to the fact that for the DFT-1/2 self-energy
the chemical bonding and the localization of the hole and
electronic valence and conduction bands are important. For
3D crystals, the valence band maximum (VBM) is usually
made of the p state of the anion, while the conduction band
is usually a mixture of many atomic states, including the
valence state of the cation. Thus, the self-energy of the cation
could be neglected [30]. More recently, it has been shown that
for Ge [31] it was also important to consider the conduction
self-energy. Moreover, for the challenging calculation of the
gaps of oxides, it was important to take into account the
composition of the VBM, which may have some character of
d or p states of the cation [32]. In the case of 2D materials,
differently from most of the bulk semiconductors for which
the majority of bonding is formed by sp3 hybridization, an
sp2 hybridization is present, or a mixture between sp2 and
sp3, or other hybridizations, presenting a different chemical
bonding. Moreover, the system is planar, which means that it
is not clear whether a self-energy correction arising from an
atomic potential spherically symmetric will work. Therefore
a deeper study of how the DFT-1/2 method can be applied to
this class of materials is highly desirable.

Despite the fact that the DFT-1/2 method has already been
successfully applied to a few two-dimensional (2D) materials
[27,31], insights into the DFT-1/2 performance on this class of
materials has not been made until now. To address this issue,
in this work, we verify the reliability of the DFT-1/2 method to
provide good description of 2D materials and perform a direct
comparison between its level of accuracy and the ones obtained
with GW and hybrid (HSE) calculations. A whole scenario
for the application of DFT-1/2 to simulated 2D materials is
presented, and cases in which the methodology succeeds or
fails are thoroughly discussed.

The paper is organized as follows. The theoretical back-
ground of the DFT-1/2 method and computational details of the
calculations performed are presented in Sec. II. The results for
the 34 considered materials are presented in Sec. III, in which
the accuracy comparison between DFT-1/2 and the HSE06
and GW approaches is discussed. A summary of the presented
results and main conclusions can found in Sec. IV.

II. METHODOLOGY

A. Theoretical background

The DFT-1/2 methodology is derived in the spirit of Slater-
Janak transition-state theory [33–35], solving the problem of
its implementation in the case of infinite solid systems, giving a

practical scheme for band gap calculations of semiconductors
[28,30].

Janak’s theorem [34] states that the derivative of the total
energy E(N ) of a system with N electrons with respect to the
occupancy number fi of an arbitrary state α is given by its
respective Kohn-Sham eigenvalue:

∂E(N )

∂fα

= εα(fα). (1)

Combined with the assumption of the linearity of the
eigenvalues with the orbital occupancies [30,35], one may
calculate the ionization energy I and electron affinity A of
an N -electron system as

I = E(N − 1) − E(N ) = −εv(1/2) (2)

and

A = E(N ) − E(N + 1) = −εc(1/2), (3)

where εv(1/2) and εc(1/2) represent respectively the eigenen-
ergies associated with the valence band maximum and conduc-
tion band minimum.

While the half-occupation scheme provides accurate atomic
ionization potentials, it cannot be directly applied to extended
crystalline systems. In the DFT-1/2 approach the orbital-
dependent self-energy Sα is considered as a quantum mechan-
ical average of a “self-energy potential” VS(�r),

Sα =
∫

d3rnα(�r)VS(�r), (4)

of a Kohn-Sham state α with nα(�r) being its correspon-
dent electronic density. The self-energy potential VS(�r) is
approximately given by the difference between the Kohn-Sham
potentials for the half-ionized and neutral atoms:

VS(�r) = −V (−1/2,r) + V (0,r). (5)

In crystals the self-energy correction is obtained by subtract-
ing the self-energy potential VS(�r) from the local part of the
atomic pseudopotential or the −2Z/r part of the all-electron
potential. To avoid the penetration of the self-energy Coulomb
tails into neighboring atom sites, the self-energy potentials are
trimmed according to ṼS = �(r)VS(�r) by a cutoff function
�(r):

�(r) =
{[

1 − (
r

CUT

)8]3
, r � CUT,

0, r > CUT.
(6)

The value of the cutoff parameter CUT is determined in a
variational way to make the band gaps extremal without falling
back to empirical parameters.

To describe the excitation of an electron from the valence
to the conduction band, then it is equivalent to subtracting a
half electron from the valence band maximum and adding a
half-electron to the conduction band minimum as illustrated in
Fig. 1. Therefore the following one-particle Kohn-Sham DFT-
1/2 equation must be solved:[− 1

2∇2 + VKS(�r) − Ṽs,v(�r) + Ṽs,c(�r)
]
ϕi(�r) = εiϕi(�r), (7)
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FIG. 1. Half-occupation scheme of DFT-1/2 considering self-
energy corrections on valence and conduction bands. A half electron is
removed from the VBM, while a half electron is added to the CBM, to
corrections on electronic affinity and ionization energy, respectively.

where Ṽs,v (Ṽs,c) is the trimmed valence (conducting) self-
energy potential. Thus the DFT-1/2 energy is directly given by
the difference between eigenvalues εc − εv .

In the case of 3D crystals, with the exception of Ge [31], Sn
[36], and very ionic compounds [37], only Ṽs,v is considered,
as already mentioned.

To apply the DFT-1/2 technique, it is essential to understand
the chemistry that lies within the band structure of compounds.
Thus, we first investigate the formation of band structures
through standard DFT calculations and later employ the DFT-
1/2 method. In the case in which the valence (conduction)
band has contributions from different atomic orbitals we must
remove (add) a smaller fraction of electron from each of them,
proportionally to their contribution given by

ξxφ = charxφ[ϕα(�k)] × 1/2, (8)

where charxφ[ϕα(�k)] corresponds to the proportion of the
atomic orbital φ of the atom x to the orbital character of the
Kohn-Sham state ϕα at point �k, given by the projection of ϕα(�k)
onto the atomic orbitals.

Considering the fact that sometimes there are very small
contributions (below 10%) that can be neglected, it is important
to normalize the orbital characters of the considered atoms with
respect to their sum, arriving at a set of normalized orbital
contributions ξ ′

xφ that satisfy∑
xφ

ξ ′
xφ = 1/2. (9)

Finally, the workflow of the DFT-1/2 is described as follows.
A standard DFT (LDA or GGA) calculation is performed and
the atomic orbital characters of the VBM and conduction band
minimum (CBM) are determined. The first self-energy correc-
tion is applied to the VBM states (for the vast majority of 3D

FIG. 2. An example of CUT parameters determination for VBM
(CBM) state self-energy potential, represented in blue (red) color.
The energy gaps E

(v)
GGA−1/2 and E

(v+c)
GGA−1/2 are indicated on the vertical

axis. The energy gap sensitivity of 
Eg due a variation 
 CUT on the
cutoff parameter is highlighted for the valence self-energy correction.

crystals we usually stop at this point). Then, when necessary, as
for 2D materials as we will see, the self-energy correction for
the CBM states is also calculated. In these cases, the electronic
structure obtained with valence self-energy correction is used
as the starting point for the conduction self-energy correction,
as depicted in Fig. 2. The energy band gap calculated consid-
ering valence and valence+conduction self-energy corrections
are denoted as E

(v)
GGA−1/2 and E

(v+c)
GGA−1/2, respectively.

Since the valence and conduction cutoff parameters CUT(v)
and CUT(c) are determined by a maximization of E

(v)
GGA−1/2

and E
(v+c)
GGA−1/2 gaps, the energy gap sensitivity 
Eg for small


 CUT variations is typically low (see Fig. 2). For this reason,
the determined pseudopotential file for the same element can
be often transferred from one material to another.

In the simplest case the VBM and CBM states have strong
orbital contributions from a single atomic orbital from distinct
atoms; in this case a half electron is removed (added) at
once and the atomic self-energy is expected to have its best
performance. One may verify that the self-energy potential
Ṽs,v (Ṽs,c) added in Eq. (7) results in stronger corrections
on eigenvalues associated with the ϕα(�k) states with stronger
contributions of the atomic orbital of the VBM (CBM) due to
different localization of electronic density of the Kohn-Sham
states. Therefore, in this ideal case Ṽs,v corrects the VBM states
while Ṽs,c corrects the CBM states.

At this point we already see a limitation of the method.
Sometimes, when the VBM and CBM are formed by the same
atomic orbitals from the same atom, the self-energy potential
corrections on the εv and εc eigenvalues are indistinct. This
is due to the hypothesis of the quantum mechanical average
and the spherical symmetry approximation of the self-energy
potential expressed in Eq. (5). In this context, the correction
will increase or decrease both levels at the same time, thus
keeping the energy gap unaffected.

As a benchmark for the DFT-1/2 performance on
the band gap calculation, we consider hybrid functionals
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(HSE06) and GW quasiparticle corrections, as explained
bellow.

The Hartree-Fock method leads to exact exchange en-
ergies [38], although it does not consider any correlation
interaction between the calculated orbitals constituting the
Slater determinant. In order to improve the description of the
exchange-correlation interaction, the DFT and HF approaches
can be combined into hybrid functionals, in which the exchange
energy is taken as a weighted average of Hartree-Fock and
standard DFT contributions, while the correlation energy is
estimated according to a DFT approximation.

To improve convergence time for big molecules and solids,
specially for metallic materials, Heyd, Scuseria, and Ernzerhof
proposed a screened Coulomb potential to the exchange inter-
action in order to screen the long-range part of the HF exchange
and spare computational effort [39]. In order to combine good
precision with fast convergence, the averaged Hartree-Fock
and PBE exchange contributions are only applied to the short-
range domain, while long-range exchange interaction only
considers the PBE functional. Although providing a faster con-
vergence with respect to standard hybrid approximations, the
screened hybrid functional can still increase the computational
time costs by two orders of magnitude when compared to the
DFT-1/2 approach [18]. This approach is also dependent on
adjustable parameters. We consider in this work the HSE06
functional [39–41], which corresponds to a Hartree-Fock
weight α = 0.25 and the screening value μ = 0.2 Å−1.

More accurate results can be obtained within the combi-
nation of many-body perturbation theory with the electronic
structure calculated by DFT approach. The quasiparticle en-
ergies are solutions of a one-electron equation that considers
a self-energy operator �(�r,�r ′,eQP

n ) [19]. This last quantity is
approximated by the first term of an expansion in Feynman
diagrams, which is the product of a Green’s function G and the
screened Coulomb interaction W . Since G and W depend on
the quasiparticles eigenvalues, a solution can be obtained with
a self-consistent scheme starting from the DFT wave functions
and eigenvalues. However, due to the great amount of computer
cost demanded, the W (and G) quantity (quantities) can be
estimated with “single-step shots,” which is known as the GW 0

(G0W0) approximation [42].
It is worth mentioning that for 2D materials with a large

energy gap, such as hBN, the choice of performing or not
self-consistent calculations of G and W terms may lead to
differences up to 1 eV in energy gaps [43]. It has been demon-
strated that GW calculations of 2D materials exhibit slow con-
vergence, dependent on the vacuum thickness of the simulated
supercell, number of the considered unoccupied states, and
k-point sampling of the Brillouin zone [22,43]. Therefore,
ab initio calculations based on quasiparticle GW self-energy
corrections demand careful convergence studies and may
strongly depend on simulation parameters as can be verified
comparing different calculations available in the literature,
e.g., the discrepancies between the GaN and InN energy gaps
calculated by Sahin et al. [3] and Prete et al. [44]. The computer
time demanded by simulations based on the GW approximation
can be larger than that for DFT-1/2 ones by three orders of mag-
nitude, with a significant memory consumption enhancement
[18]. Therefore, the size of feasible systems can be dramatically
limited by the availability of computer resources.

B. Computational details

In this work, ab initio simulations are calculated as imple-
mented in the Vienna Ab initio Simulation Package (VASP)
code [45,46]. Kohn-Sham equations are solved using the
projector augmented wave (PAW) scheme [47,48] leading to
all-electron wave functions of the valence electrons. Electronic
properties are investigated within the DFT by applying the
Perdew-Burke-Ernzerhof (PBE) functional within the general
gradient approximation (GGA) [49] combined with the pre-
viously described DFT-1/2 method. The energy cutoff for
the plane-wave expansion was set as 500 eV and a 12 ×
12 × 1 �-centered Monkhorst-Pack k-point mesh [50] was
employed to sample the first Brillouin zone. In order to
obtain the equilibrium configurations, structural geometries
are optimized using GGA-PBE and all atomic coordinates
are relaxed until the Hellmann-Feynman forces are smaller

than 1 meV Å
−1

. Each simulated two-dimensional material
is modeled as an artificial 3D periodic crystal constituted
by a repetition of atomic layers, separated by a distance of
L = 20 Å in the out-of-plane direction, which is large enough
to render interactions between neighboring sheets negligible.
The obtained energy gaps are compared with energy gaps
calculated with the hybrid functional HSE06.

III. RESULTS AND DISCUSSION

A. Atomic orbital contributions to VBM and CBM states

A previous DFT calculation for analyzing the chemical
bonding and corresponding information of the orbital contri-
butions for the VBM and CBM is the first step for applying
the self-energy correction. This information for each of the 2D
crystals studied in this work is summarized in Fig. 3. Using the
notation from Eq. (8), this diagram supplies us with charxφ ,
from which the set of orbital contributions ξ ′

xφ can be derived
and later employed in the DFT-1/2 method. As discussed
earlier, the variation 
Eg of the energy gap with respect to
vanishing contributions from orbitals is small, as their effect
on the approximate quasiparticle correction is proportionally
less influential than its counterparts. This allows ξ ′

xφ to be
calculated with approximate orbital composition, provided that
charxφ > 10%.

For honeycomb materials based on the IV group, valence
states are associated with pz orbitals of the more electronega-
tive element in the binary material, whereas the z direction is
adopted as the one perpendicular to the atomic plane. Energy
gaps are mostly direct, located at the K point. The only
exception is SnC, which has an indirect K-� band gap. The
CBM states located at the K point can be associated with pz

orbitals of the least electronegative element, while in SnC the
CBM state located at the � point is derived from a hybridization
of s states roughly equally from both carbon and tin atoms.

Direct gaps located at the K point are obtained for materials
based on boron, namely BN, BP, BAs, and BSb. These materi-
als exhibit a chemical behavior similar to the one observed for
group IV binaries. Their VBM states have strong projections
of pz orbitals of each respective anion, while CBM states are
derived from boron pz atomic orbitals. A different pattern
is observed by projecting VBM and CBM states on atomic
orbitals for other honeycomb binary materials based on III-V
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FIG. 3. Valence and conduction band states projected onto atomic orbitals for the 34 crystals studied. Red, green, and blue colors depict
contributions of s, p, and d orbitals to valence and conduction states, while the position of the bar (left or right) indicates the contribution of
each atom (cation or anion, respectively) to the formation of the state. The size of the bar is proportional to the relative contribution of each
orbital, and their numeric values are indicated for contributions superior to 11%. Upper bars are relative to the conduction band minimum
(CBM) and lower bars are relative to the valence band maximum (VBM) within a 2D crystal.

elements. For such materials, a K-� indirect band gap is
obtained. The VBM states located at the K point are integrally
derived from the anion pz atomic orbitals, while CBM states
have a strong s character distributed among both elements.
InSb has one singular behavior where the VBM state is derived
from px and also presents a direct gap, which is now located
at the � point.

Materials based on Hf and Zr exhibit CBM states based on
d states of the transition metals. VBM states are dominated
by p orbitals from the chalcogen elements. Pt-based TMDCs
exhibit a similar trend, but with a greater mixture between
its constituents. PtS2 and PtSe2 present a VBM made from p

orbitals from the chalcogen and p and d orbitals from platinum.
Its CBM, on the other hand, is amalgamated by d orbitals
from Pt, as well as s and p orbitals from the anions. Quite
similar to the tendency of Pt are SnS2 and SnSe2, whose VBM

states originate from a hybridization from s and p states from
both constituent elements. CBM states still follow the trend of
originating from chalcogen p states.

For all the previously mentioned materials, as also for
HfSe2, and ZrSe2, the VBM and CBM exhibit distinct pro-
jection on atomic orbitals. Therefore, a good performance of
the DFT-1/2 method is expected for these materials.

On the other hand, the majority of the TMDC materials
exhibit distinct chemical trends compared to honeycomb ma-
terials. Crystals based on Mo and W have VBM and CBM
states strongly based on d atomic orbitals. In MX2 (M = Mo,
W; X = S, Se, Te), VBM states are a mixture from in-plane
orbitals dxy and dx2 from the cation and px and py orbitals
from the anion. On the other hand, CBM states are largely
from out-of-plane dz2 orbitals from the cation, with smaller
contributions from s orbitals of the metal and px and py
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orbitals from the anion. As the DFT-1/2 atomic self-energy
correction is spherically symmetric, there is no expressive
distinction between the self-energy correction of the in- and
out-of-plane d orbitals. Therefore, the DFT-1/2 correction will
not be effective.

The same occurs for phosphorene, for which the VBM and
CBM states are quite similar, made primarily of p orbitals.
They differ by a directional reference: while the CBM states
are mainly composed by 68% of pz orbitals and 18% of px

orbitals (plus 14% by the spherically symmetrical orbitals),
91% of its VBM is made from pz orbitals. In the latter, only
3% of the contribution to the band state is made by in-plane
px orbitals.

As previously reported for several 3D materials [30], in the
studied materials one may observe that a CUT(v) parameter has
a strong dependence on the considered element where the half
occupation is applied, which is consistent with the environment
neglect and the isolated atom approximation for the self-energy
potential. The cutoff parameter and bond lengths are listed in
Table I for comparison. The significant differences between
CUT parameters for one element in distinct materials is
explained by the difference between bond lengths in the studied
materials. In general, materials with smaller first-neighbor
lengths exhibit smaller cutoff parameters. A linear relation
between the CUT parameter and the bond lengths (d) is
observed for each class of 2D materials, according to their
structures. The relation CUT(v) = 0.785 + 0.688d is observed
for group IV and III-V honeycomb crystals, and in the case
of TMDCs, for those with CUT(v) different from zero, the
relation CUT(v) = 2.919 + 1.283d is observed. In particular,
PtTe2 and phosphorene are pathological cases. Therefore, in
general a trend is seen for each group of 2D crystals. The
obtained CUT parameters are illustrated in Fig. 4.

Another important aspect to be analyzed is the transfer-
ability of the self-energy potentials. From Fig. 4 one observes
that for a given atom and bonding type, the value of CUT
depends little on the chemical environment, especially for
VBM corrections. Because we are using CUT values that
make the gaps extreme, small deviations from the optimal
values produce only second-order deviations in the gaps. In our
results variations of 
 CUT =±0.5 bohrs on cutoff parameters
typically leads to energy gap variations 
Eg of order a few
tenths of eV. Therefore, we conclude that is very reasonable to
consider the same CUT(v) value for the anion potentials. X-C
(X = Si, Ge, Sn) crystals based on IV-A atoms, for example,
have their valence band correction CUT pretty close to each
other, ranging from 3.10 to 3.44 bohrs. While they are close
to each other, the increase of the bond length also tends to
slightly enlarge this parameter. III-V 2D materials also have the
same tendency. The CUT value increases for P- and As-based
compounds along the family B-Ga-In. 2D nitrides also have
their CUT pretty close. Finally, for successful TMDCs, the
CUT is clearly linked to the chalcogen atom, presenting almost
the same CUT.

The tendencies among the CUT parameter for the correction
of the conduction band are similar, although not as clear as
the ones observed in the valence band. For tin-based IV-A
crystals, these values are quite similar, with deviations smaller
than 0.3 bohrs from one to another. IV-A carbides, on the
other hand, have an optimal CUT varying from 2.56 to 3.72

TABLE I. DFT-1/2 CUT length for the valence (v) and valence
and conduction (c) band corrections, in bohrs. The first-neighbor
distances d are listed for comparison with the cutoff parameters and
also given in bohrs.

Material CUT (v) CUT (c) d

Group-IV-based honeycomb crystals
SiC 3.13 2.79 3.38
GeC 3.20 2.56 3.53
SnC 3.44 3.72 3.92
SnGe 4.25 3.61 4.91
SnSi 4.39 3.90 4.84

Groups III-V binary honeycomb crystals
BN 2.52 1.22 2.74
AlN 3.38 0.00 3.41
GaN 3.12 2.93 3.50
InN 3.17 2.62 3.91
InP 3.86 3.87 4.70
InAs 4.00 3.67 4.92
InSb 4.31 3.50 5.30
GaAs 3.85 3.30 4.55
BP 3.27 3.24 3.51
BAs 3.42 3.37 3.69
GaP 3.68 3.18 4.32
AlSb 4.31 4.61 4.95
BSb 3.84 3.69 4.08

Transition-metal dichalcogenides
HfS2 3.37 3.30 4.82
HfSe2 3.56 3.38 5.05
MoS2 0.00 2.25 4.56
MoSe2 0.00 2.51 4.80
MoTe2 0.00 3.00 5.16
PtS2 2.84 1.68 4.54
PtSe2 3.17 1.80 4.78
PtTe2 1.17 2.31 5.10
WS2 0.00 2.37 4.59
WSe2 0.00 2.51 4.80
WTe2 0.00 3.50 5.16
ZrS2 3.37 3.32 4.86
ZrSe2 3.60 3.39 5.09

Group IV dichalcogenides and phosphorene
SnS2 3.43 2.90 4.90
SnSe2 3.64 2.93 5.16
Phosphorene 3.16 0.75 4.27

bohrs for GeC and SnC, respectively. This seeming lack of
relationship between the optimal CUT for the conduction band
and the 2D crystal may be related to the varying composition
of the CBM for each one of these materials, as depicted in
Fig. 3. Since the character of the bands changes along the
family of 2D carbides, perfect analogies between the materials
are not totally unexpected. Among III-V crystals, boron-
and gallium-based ones clearly present the same tendency
observed in the VBM correction. The conduction band of BN,
however, is an exception, probably due to its smaller lattice
parameter. Figure 4 also elucidates the trends for the same
anion, showing that phosphides and arsenides present optimal
values for the CUT parameter that are quite close. Finally,
similarities between the CUT for CBM corrections are clear
for the TMDCs under analysis, as well as for SnX2 (X = S,
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FIG. 4. Cutoff parameter comparison for a selected set of 2D
materials. The cutoff parameters of the VBM (CBM) states on the
anions (cations) are represented on the left (right).

Se). The CUT parameter deviates by less than 0.1 bohrs when
sulfides and selenides are compared. The chemical similarity
between Zr and Hf reflects on their close CUT values.

B. Comparison of GGA-PBE, HSE06, GW,
and DFT-1/2 band gaps

We performed GGA-PBE, HSE06, and DFT-1/2 calcu-
lations for all the 34 considered materials and compared
with other available results considering other calculations
that consider both hybrid functionals [24,51,52] and different
GW approximations [3,22,44,53–55]. The obtained results are
listed in Table II. The DFT-1/2 method exhibits different per-
formances according to chemical and electronic characteristics
from each material. The result trends can be graphically veri-
fied in Fig. 5, in which the DFT-1/2 performance is classified
in three situations: energy gap results between HSE06 and GW
results (green area), results that are closer to HSE06 results than
GGA-PBE (yellow area), and results that calculated energy gap
corrections below 50% of the ones estimated by the HSE06
approach (red area). The areas are mirrored with respect to the
100% standard for a more clear comparison and benchmark.
In cases in which DFT-1/2 is overestimated with respect to GW
approximations, equivalent absolute disagreement tolerances
with GW results are taken.

TABLE II. Band energy gaps (in eV) for 2D binaries obtained
with the DFT-1/2 considering both the corrections only on the valence
band (v) and the corrections on valence and conduction bands (v+c),
compared with pure GGA, hybrid functionals, and GW. In our
calculations, we considered GGA-PBE and HSE06 functionals.

Material GGA Hybrid GW DFT-1/2 (v/v+c)

Group-IV-based honeycomb crystals
SiC 2.54 3.35, 3.46b 4.19a, 4.42c 3.90/4.38
GeC 2.10 2.87, 2.85b 3.83a 3.43/3.87
SnC 0.93 1.78 2.43g 1.79/2.07
SnGe 0.23 0.35 0.4a 0.63/0.93
SnSi 0.25 0.38 0.68a 0.69/1.18

Groups III-V binary honeycomb crystals
BN 4.65 5.70 6.86a 6.62/6.85
AlN 2.91 4.04 5.57a 4.87/4.87
GaN 2.16 3.44 4.1d 3.64/3.81
InN 0.56 1.53 1.7d 1.90/1.98
InP 1.06 1.88 2.88a 1.71/2.03
InAs 0.79 1.47 2.07a 1.37/1.58
InSb 0.68 1.30 1.84a 0.95/1.18
GaAs 1.09 1.91 2.96a 1.65/1.99
BP 0.90 1.37 1.81a 1.90/3.05
BAs 0.76 1.17 1.24a 1.74/2.89
GaP 1.68 2.65 3.80a 2.28/2.69
AlSb 1.42 2.02 2.16a 1.95/2.26
BSb 0.32 0.61 0.23a 1.09/2.16

Transition-metal dichalcogenides
HfS2 1.25 2.03h 2.98e 2.45/2.99
HfSe2 0.54 1.18h 1.96e 1.65/2.18
MoS2 1.78 2.25h 2.48e 1.78/1.91
MoSe2 1.48 1.95h 2.18e 1.48/1.61
MoTe2 1.18 1.57h 1.71e 1.18/1.21
PtS2 1.83 2.64h 2.95e 2.01/2.06
PtSe2 1.37 1.91h 2.48e 1.80/1.86
PtTe2 0.46 1.08h 1.69e 0.63/1.14
WS2 1.80 2.29h 2.43e 1.80/1.92
WSe2 1.62 2.11h 2.08e 1.62/1.69
WTe2 1.10 1.52h 1.10/1.23
ZrS2 1.05 1.85h 2.88e 2.16/2.71
ZrSe2 0.56 1.10h 1.85e 1.61/2.15

Group IV dichalcogenides and phosphorene
SnS2 1.54 2.36h 3.07e 2.42/2.72
SnSe2 0.74 1.38h 1.91e 1.53/1.80
Phosphorene 0.79 1.45i 2.29f 1.39/1.39

aRef. [3] (GW 0).
bRef. [51] (HSE06).
cRef. [53] (GW).
dRef. [44] (GW 0).
eRef. [54] (G0W0).
fRef. [22] (GW 0).
gRef. [55] (G0W0).
hRef. [24] (HSE06).
iRef. [52] (HSE06).

For group-IV-based honeycomb crystals, HSE06 energy
gaps are systematically underestimated in comparison with
GW ones. The considered binary materials present energy
gaps which can be related with the electronegativity difference
between the constitutive elements in each sublattice. The
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FIG. 5. Comparative performance between GGA-PBE, HSE06, GW 0, and DFT-1/2. DFT-1/2 results considering only VBM self-energy
(v) and considering both VBM and CBM (v+c) are depicted with orange circles (red squares), while the HSE06 result is shown with green
triangles. The relative energy gap correction is normalized by considering 0% as equal GGA-PBE result and 100% as the GW result. The green
area is defined by results with calculated band gaps that lie between the HSE06 and GW gaps, while the yellow (red) region is defined by results
that provide energy gap corrections between 50% and 100% (below 50%) of the energy gap correction obtained by HSE06.

energy gap observed in carbides are, therefore, larger than
IV-based honeycomb crystals based on only Si, Ge, and Sn
[3,27]. For considered carbides, DFT-1/2 provides energy gaps
between HSE06 and GW approximation, which are considered
as satisfactory results depicted in the Fig. 5 green area. For SnSi
and SnGe the self-energy correction is overestimated by about
0.5 eV. This results in very large relative errors in Fig. 5, since
the absolute energy gap values are only tenths of an eV. This
indicates that the quality of the atomic approximation of the
self-energy potential depends on the electronegativity between
neighbor atoms.

For most III-V binary honeycomb crystals, the DFT-1/2
method provides energy gaps that fulfill the satisfactory criteria
adopted in Fig. 5. For many other III-V binary compounds
result comparisons between the different approaches show
a strong consistency between them. For III-V materials that
do not contain boron, the VBM and CBM projections on
atomic orbital fraction are significant on two or even three
atomic orbitals. For these materials, the fractional removal
of a half electron delivers a DFT-1/2 performance compatible
with hybrid functionals. For III-V materials that contain boron,
DFT-1/2 delivers a result in excellent agreement with GW
results for BN, while significantly overestimating the BP, BAs,
and BSb energy gaps. These three boron-containing materials
exhibit very low electronegativity difference, as previously
observed for SnSi and SnGe. This fact suggests that the
electronegativity difference between neighbor bonding atoms
works as an indicator of the quality of the atomic approxima-
tion to the self-energy potential. For these materials, the results
considering only the valence band self-energy correction are
significantly better, satisfying even satisfactory standard in the
cases of SnSi and BP, which is in agreement with the fact that
the small electronegativity difference between first-neighbor
elements leads to more delocalized conduction states.

For the TMDCs analyzed, Hf-, Sn-, and Zr-based dichalco-
genides are materials in which the DFT-1/2 technique is most
successful. Its band gaps are comparable to those obtained
with GW0 calculations and always better than those from
HSE06 calculations. The deviation from the GW0 energy gaps
obtained in these calculations, when DFT-1/2 is employed,
with corrections both in the valence and conduction bands, does
not surpasses 25%, as opposed to the deviations larger than
45% from HSE06 results. These crystals have clear chemical
tendencies. When observed from the point of view of their
characters, these crystals have a conduction band dominated
by cation states and valence band generated mostly by anion
states. Furthermore, the orbitals composing the bands do not
have preferential directions, rendering the nl quantum numbers
enough to describe the system. In this context, well-localized
electrons and holes allow us to apply the DFT-1/2 method
exactly in the way it was designed for. The chemical similarities
with bulk materials indicate that the success of these materials
is related to the anisotropy of 2D systems in the framework
of 3D simulations, as well as the chemical composition of the
materials. Indeed, the least successful crystals of this group,
SnS2 and SnSe2, present a higher mixture in their conduction
band composition than the other TMDCs. Furthermore, these
crystals have a higher Pauli electronegativity difference, which
supports the hypothesis of a better DFT-1/2 performance for
more localized electrons.

The same trend is valid when platinum dichalcogenides
are analyzed. While DFT-1/2 grossly underestimates the band
gap for PtS2, PtSe2 and PtTe2 have a better result when both
the valence and conduction bands are corrected. In the latter
two cases, the band gap is comparable to that obtained from
HSE06, but smaller than the GW0 gaps. The underestimation
with respect to this ideal value is about 0.6 eV for PtSe2 and
PtTe2, but 0.9 eV for PtS2.
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FIG. 6. Comparison of absolute energy band gaps calculated using GW and (a) GGA, HSE, and DFT-1/2 (v), (b) GGA, HSE, and DFT-1/2
(v+c), and (c) final DFT-1/2 results, considering the electronegativity threshold of 0.15. The black squares, up-pointing green triangles, orange
circles, and red squares represent the GGA, HSE, GGA-1/2 with only valence self-energy correction, and GGA-1/2 with valence and conduction
self-energy corrections, respectively. The solid black line illustrates the perfect agreement with the considered GW results.

Phosphorene is a crystal which does not have cations and
anions. However, its chemical composition, as stated earlier,
makes both its valence and conduction bands quite similar.
Since the conduction and valence bands are made by p

orbitals, the DFT-1/2 correction, as applied to all atoms, is
not effective, since both bands are affected together. That way,
the addition of a potential relative to the removal of half an
electron from the 3p shell is not as effective in employing
the quasiparticle corrections as in bulk cases, or even in
the successful crystals mentioned earlier. Indeed, the band
gap obtained with phosphorene is worse than HSE06, but its
underestimation does not surpasses 0.1 eV with respect to this
method. Both methods fail to describe the larger GW0 gap for
this system, whose band gap is about 0.8 eV greater than those
obtained from HSE06 and DFT-1/2.

In the case of crystals such as MX2 (M = Mo, W; X = S,
Se, Te), as previously seen in Sec. III A, the DFT-1/2 method
is not effective. A chemical explanation can be derived from
the observation of Fig. 3. These materials have their CBM
and VBM predominantly made from the cation d orbitals,
which hinders the application of the correction proposed by
the DFT-1/2 technique. The removal of the electron and later
application of the correction potential affects, therefore, the
conduction and valence bands by the same quantity. As a
consequence, the eigenvalues for these systems merely shift
downwards with respect to the vacuum level when a tentative
correction is applied to the valence band. Due to the greater
percentage of d orbitals in CBM states, the correction for the
conduction band in these materials slightly increases the band
gap, but in a rather superficial manner. The impossibility of
applying the correction with distinction to m quantum numbers
is a major obstacle to the application of the DFT-1/2 method in
these TMDCs. HSE06, on the other hand, performs quite well
for these crystals, with deviations no larger than 0.23 eV with
respect to the G0W0 results.

C. General trends

Finally, we evaluate what is the expected precision of
the DFT-1/2 valence and conduction self-energy corrections
compared with the HSE and GW approaches. The general
trends of the absolute energy gap values calculated within
different theoretical frameworks are summarized in Fig. 6. The
black squares illustrate the standard GGA energy band gap
results, which are significantly underestimated compared to
the GW ones, as expected. The root-mean-square error (RMSE)
of standard GGA energy gaps, compared with GW results, is
1.39 eV. The HSE hybrid functional, whose results are depicted
as up-pointing green triangles in Fig. 6, calculates energy
band gaps in better agreement with the GW approach, but still
underestimated with a RMSE of 0.70 eV. One may observe
that HSE performance is degraded especially for materials with
an energy band gap above 3.5 eV. This dependence of hybrid
functional performance on the calculated energy band gaps has
been also observed for bulk materials and can be addressed,
for example, by a nonfixed choice of the α mixing parameter
[56].

Figure 6(a) depicts the GGA-1/2 performance compared
with GGA, HSE, and GW results when only valence self-
energy correction is considered. For materials with a large
gap (Eg > 3.5 eV), the GGA-1/2 method restricted to only
valence self-energy correction already delivers better energy
gap results than HSE06, while the two methods exhibit similar
performances for materials with moderate energy gaps (Eg <

3.5 eV). The RMSE of the GGA-1/2 method considering only
valence state self-energy corrections with respect to GW results
is 0.70 eV.

The effect of the introduction of the conduction self-energy
correction is illustrated in Fig. 6(b). For the vast majority of
2D materials, this approach leads to more accurate results.
However, for a small set of materials (BP, BAs, BSb, SnSi, and
SnGe) the combination of the two self-energy potentials leads
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to overestimated results. This can be explained by a larger
delocalization of conduction states, which can be associated
with small Pauling electronegativity difference between first-
neighbor atoms. In these cases, an overestimation of the self-
energy correction estimated with the free atom approximation
should be expected. To overcome this obstacle, we identify a
threshold of 0.15 as the minimum Pauling electronegativity
difference between bonding atoms in order to demand the
inclusion of conduction self-energy corrections. When the
electronegativity difference is lower than the defined thresh-
old (SnGe, SnSi, BP, BAs, BSb, MoTe2, and phosphorene),
the conduction self-energy correction is ignored, while for
the other 2D materials valence and conduction self-energy
corrections must be considered. The final results, obtained by
this described prescription, are depicted in Fig. 6(c) and give
a RMSE of 0.53 eV with the same computational cost as a
standard GGA calculation.

IV. SUMMARY AND CONCLUSIONS

In summary, we performed a thorough investigation of the
DFT-1/2 method applied to 34 different 2D crystals. Differ-
ently from the 3D compounds, we found that for the majority
of 2D materials the inclusion of the conduction self-energy
corrections is important. In the case of mixed VBM (CBM)
states, the DFT-1/2 correction is applied by removing (adding)
a fraction of a half electron from different atomic orbitals
according to the VBM (CBM) atomic character. First, atomic
geometries for each crystal were optimized using GGA-PBE,
and an investigation of the composition of the conduction and
valence bands was performed to analyze the inherent chemical
trends within the set of crystals under study. Afterwards, a
benchmark using GGA, HSE06, and DFT-1/2 was performed
for all crystals, and the results compared with GW values from
the literature. The transferability of the DFT-1/2 self-energy
potentials was investigated through the CUT parameter, which
is obtained variationally, and can be related to the lattice
parameters and bond lengths.

A discussion on the performance of DFT-1/2 for 2D crystals
was made. TMDCs based on Hf, Zr, and Sn presented a
very good performance, achieving better results than those
from HSE06. PtS2 did not perform as well, but its DFT-1/2
band gap improved with respect to those from standard GGA
calculations. PtSe2, PtTe2, and phosphorene had results compa-
rable to the ones obtained from HSE06 calculations. Mo- and
W-based TMDCs had improved by an insignificant amount
with the application of DFT-1/2 technique. For group-IV,

DFT-1/2 provide energy gaps between the HSE06 and GW
calculations for the carbides. For the considered III-V mate-
rials, the DFT-1/2 approach obtains energy gaps equivalent
to the hybrid functional for most of the considered materials,
while overestimating the small band gaps of SnSi and SnGe.
The same occurs with BP, BAs, and BSb. This behavior
was associated with the small electronegativity difference
between the bonding atoms, leading to a more delocalized
conduction band and an overestimation of the conduction
DFT-1/2 self-energy. Thus, we defined a threshold for the
Pauling electronegativity difference of 0.15 for inclusion of the
conduction self-energy corrections. This results in a very nice
agreement between the DFT-1/2 and GW results. The overall
picture shows that the DFT-1/2 approach calculates energy
gaps with RMSE lower than the HSE06 hybrid functional
for the considered 2D materials, when compared to the GW
results, with a small fraction of computer resources necessary
of the latter approach. The failures of the method are traced
back to the composition of each band based on its orbitals,
with the least successful crystals presenting both the CBM and
VBM made by the same orbitals and in similar proportions.
The absence of 3D symmetry in these systems also renders it
impossible to describe well the correction in the self-potential
without the m quantum number.

We hope that this work gives grounds for efficient and
systematic investigations on 2D physics by using efficient
alternatives to quasiparticle corrections within the DFT such as
DFT-1/2. Furthermore, the methodology derived here for 2D
materials can provide a new perspective for more complex fu-
ture calculations, such as the inclusion of excitonic effects, in-
cluding the spin-orbit interaction (a fundamental effect for ma-
terials having heavy elements and for topological insulators), to
obtain results that can be directly comparable with the experi-
ments, thus expanding the theoretical research on 2D materials.
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