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Abstract: This paper presents an integrated approach for the estimation of the parameters of a
mixture model in the context of data clustering. The method is designed to estimate the unknown
number of clusters from observed data. For this, we marginalize out the weights for getting allocation
probabilities that depend on the number of clusters but not on the number of components of the
mixture model. As an alternative to the stochastic expectation maximization (SEM) algorithm,
we propose the integrated stochastic expectation maximization (ISEM) algorithm, which in contrast
to SEM, does not need the specification, a priori, of the number of components of the mixture.
Using this algorithm, one estimates the parameters associated with the clusters, with at least two
observations, via local maximization of the likelihood function. In addition, at each iteration of the
algorithm, there exists a positive probability of a new cluster being created by a single observation.
Using simulated datasets, we compare the performance of the ISEM algorithm against both SEM
and reversible jump (RJ) algorithms. The obtained results show that ISEM outperforms SEM and RJ
algorithms. We also provide the performance of the three algorithms in two real datasets.
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1. Introduction

Recently, there has been increasing interest in modeling using mixture models. This is mainly
due to the flexibility for treating heterogeneous populations. Under a data-clustering framework,
this model has the advantage of being probabilistic, and then the obtained clusters can have a better
interpretation from a statistical point of view [1]. This contrasts with usual methods, such as k-means
or hierarchical clustering, in which clusters are not statistically based, as discussed by [2].

From a frequentist viewpoint, the standard method to get the maximum likelihood estimates
for the parameters of a mixture model is based on the use of the Expectation Maximization (EM)
algorithm [3]. However, for the use of this algorithm, the number of components k of the mixture
model needs to be known a priori. As the resulting model is highly dependent on the choice of
this value, the main question is how to set the k value. Selecting an erroneous k value may cause
the non-convergence of the algorithm and/or a low exploration of the clusterings. In addition,
depending on the k value chosen we may have empty components, and therefore, there are no
maximum likelihood estimates for these components.
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An approach frequently used to determine the best k value among a fixed set of values is the use
of the stochastic version of the EM algorithm (SEM) with some model selection criterion, such as the
Akaike information criterion (AIC) [4,5] or the BIC [6]. In this approach, models are fitted for a set of
predefined k values, and the best model is the one that has the smallest AIC or BIC value.

However, as discussed by [7], to adjust several models for a predefined set of values for the
number of the cluster and compare them using some model selection criterion is not a practical and
efficient procedure. Therefore, it is desirable to have an efficient algorithm to calculate the optimal
number of clusters together with the estimation of the parameters of each mixture component. In this
scenario, the Bayesian approach was successfully performed considering the Markov chain Monte
Carlo (MCMC) algorithm with reversible jumps, described by [8] in the context of univariate normal
mixture models. On the other hand, a difficulty often encountered in implementing a reversible
jump algorithm (RJ) is the construction of efficient transition proposals that lead to a reasonable
acceptance rate.

Following in the line of MCMC algorithms, [9] proposes a split–merge MCMC procedure for the
conjugated Dirichlet process mixture model using a restricted Gibbs sampling scan to determine a split
proposal, where the number of scans (tuning parameter) must be previously fixed by the user, and [10]
extend their method to a nonconjugated Dirichlet process mixture model. [11] proposes a data-driven
split-and-merge approach. In this proposal, the number of clusters is updated according to the creation
of a new component based on a single observation and using a split–merge strategy, developed based
on the use of the Kullback–Leibler divergence. A difficulty encountered for implementing this
algorithm is the obtaining of the mathematical expression for the Kullback–Leibler divergence,
which does not always have known analytical expression. In addition, the sequential allocation
used in the split–merge strategy of these three works may make the algorithm slow when the sample
size is great, and the computation implementation of these methods is not so simple.

The present work proposes an integrated approach that, in a joint way, selects the number of
clusters and estimates the parameters of interest. With this approach, the mixture weights are integrated
out to obtain allocation probabilities that depend on the number of clusters (nonempty components)
but do not depend on the number of components k. In addition, considering k tending to infinity,
this procedure introduces a positive probability of a new cluster being created by a single observation.
When a new cluster is created, the parameters associated with it are generated from its posterior
distribution. We then developed the ISEM (integrated stochastic expectation maximization) algorithm
to estimate the parameters of interest. This algorithm configures a setting for latent allocation variables
c according to allocation probabilities, and then the cluster parameters are updated conditionally
on c as follows: for clusters with at least two observations, the parameter values are the maximum
likelihood estimates; for the clusters with only one observation, the parameter values are generated
from their posterior distribution.

In order to illustrate the computation implementation of the method and verify its performance,
we have considered a specific model in which data are generated from mixtures of univariate normal
distributions. This model allows us to avoid the label switching problem by considering the labeling
of the components according to the increasing order of the component averages, as done by [8,11–13],
among others. But we emphasize that our algorithm is not restricted to this particular model.
For instance, for the multivariate case, we may consider the labeling of the components according to
the eigenvalues of the current covariance matrix, as done by [14]. However, a detailed discussion of
the multivariate case will be done in a future paper.
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We also compare the performance of the ISEM with both SEM and RJ algorithms. The criteria
used to compare the methods are the estimated probability of the number of clusters, convergence
of the sampled values, mixing, autocorrelation, and computation time. We also applied the three
algorithms to two real datasets. The first is the well-known Galaxy data, and the second is a dataset
on Acidity.

The remainder of the paper is as follows. Section 2 describes the mixture model and the estimation
process based on the SEM algorithm. Section 3 develops the integrated approach and describes the
ISEM algorithm. Section 4 shows how we applied the algorithm to simulated datasets in order to
assess its performance. Section 5 describes the application of the three algorithms to two real datasets.
Section 6 is about our final remarks. Additional details are in the Supplementary Material, which is
referred to as “SM” in this paper. Table 1 presents the main notations used throughout the article.

Table 1. Main mathematical notation used throughout the paper.

Notation Description

k Number of components
kc Number of clusters
θj Parameter of the j-th component, for j = 1, . . . , k

θk = (θ1, . . . , θk) The whole vector of parameters
wj Weight of the j-th component, for j = 1, . . . , k
Yi The i-th sampled value, for i = 1, . . . , n
ci The i-th indicator variable, for i = 1, . . . , n

y = (y1, . . . , yn) The vector of independent observations
c = (c1, . . . , cn) The vector of latent indicator variables

kc−i Number of clusters excluding the i-th observation
nj,−i Number of observations assigned to the j-th component, excluding the i-th observation

2. Mixture Model and SEM Algorithm

Let y = (y1, . . . , yn) be a vector of independent observations from a mixture model with k
components, i.e.,

f (yi|w, θk, k) =
k

∑
j=1

wj f (yi|θj), (1)

where f (yi|θj) is the density of a family of parametric distributions with parameters θj (scalar or
vector), θk = (θ1, . . . , θk) are the parameters of the components, and w = (w1, . . . , wk), wj > 0 and

∑k
j=1 wj = 1 are component weights.

The log-likelihood function for (θk, w) is given by

l(θk, w|y, k) = log

{
n

∏
i=1

[
k

∑
j=1

wj f (yi|θj)

]}
=

n

∑
i=1

log

{[
k

∑
j=1

wj f (yi|θj)

]}
.

The mathematical notation l(θk, w|y, k) is given as in the book of Casella and Berger (2002).
The usual procedure to obtain the maximum likelihood estimators consists of getting partial

derivatives of l(θk, w|y) in relation to θj and then equalizing the result to zero, i.e.,

dl(θk, w|y)
dθj

=
n

∑
i=1

wj f (yi|θj)

k
∑

j=1
wj f (yi|θj)

d log
[

f (yi|θj)
]

dθj
= 0, (2)

for j = 1, . . . , k.
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But, note that in (2), the maximization procedure consists of a weighted maximization process
of the log-likelihood function with each observation yi having a weight associated to component j
given by

w∗
ij =

wj f (yi|θj)

k
∑

j=1
wj f (yi|θj)

, (3)

for i = 1, . . . , n and j = 1, . . . , k. However, these weights depend on the parameters that we are trying
to estimate. In this way, we cannot obtain a “closed” mathematical expression that allows the direct
maximization of the log-likelihood function. Due to this, the mixture problem is reformulated as a
complete-data problem [12,15].

Complete-Data Formulation

Consider associated to each observation yi a latent indicator variable ci not known, so that if
ci = j, then yi is from component j, for i = 1, . . . , n and j = 1, . . . , k. The probability of ci = j is wj,
P(ci = j|w, k) = wj, for i = 1, . . . , n and j = 1, . . . , k. Letting nj be the number of observations from
component j (i.e., the number of cis equals to j), the joint probability for c = (c1, . . . , cn) given w and
k is

π(c|w, k) =
k

∏
j=1

w
nj
j . (4)

The distribution of the number of observations assigned to each component, n1, . . . , nk, called the
occupation number, is multinomial, (n1, . . . , nk|n, w) ∼ Multinomial(n, w), where n = n1 + . . . + nk.

Thus, under this augmented framework, we have that

(1) the probability of ci = j, conditional on observation yi and on component parameters θk, is w∗
ij,

i.e., P(ci = j|yi, θk, k) = w∗
ij, for w∗

ij given in Equation (3), for i = 1, . . . , n and j = 1, . . . , k. That is,
although the indicator variables are nonobservable, they are implicitly present in the estimation
procedure given in Equation (2).

(2) the log-likelihood function for (θk, w), conditional on complete data (y, c), is given by

l(θk, w|y, c) = log

{
k

∏
j=1

w
nj
j L(θj|y)

}
=

k

∑
j=1

[
nj log(wj) + l(θj|y)

]
,

where l(θj|y) = log
[
L(θj|y)

]
is the log-likelihood function for component j, for j = 1, . . . , k.

Thus, the estimation procedure of the k component parameters reduce to k independent problems
of estimation. For example, for a normal mixture model, the maximum likelihood estimates for
component parameters θj = (μj, σ2

j ) is θ̂j = (μ̂j, σ̂2
j ) = (yj, s2

j ), where yj and s2
j are, respectively,

the average and variance of the observations allocated to component j, for j = 1, . . . , k.

From this complete-data formulation, the estimation procedure is given by an iterative process
with two steps. In the first one, the allocation indicator variables are updated conditional on component
parameters, and in the subsequent step, the component parameters are updated conditional on
configuration of the allocation indicator variables.

The usual algorithm used to implement these two steps is the EM algorithm [3]. The stochastic
version of the EM algorithm (SEM) can be implemented according to Algorithm 1.
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Algorithm 1 SEM Algorithm

1: Initialize the algorithm with a configuration c(0) =
(

c(0)1 , . . . , c(0)n

)
for allocation indicator variables.

2: procedure For the s-th iteration of the algorithm, s = 1, . . .
3: get the maximum likelihood estimates θ̂

(s)
k =

(
θ̂
(s)
1 , . . . , θ̂

(s)
k

)
and ŵ(s) =

(
ŵ(s)

1 , . . . , ŵ(s)
k

)
conditional on configuration c(s−1);

4: if

∣∣∣∣∣ l
(

θ̂
(s)
k ,ŵ(s) |y

)
−l
(

θ̂
(s−1)
k ,ŵ(s−1) |y

)
l
(

θ̂
(s−1)
k ,ŵ(s−1) |y

)
∣∣∣∣∣ < ε, where ε is a threshold value previously fixed, then stop

the algorithm. Otherwise, go to item (iii);
5: conditional on θ̂

(s)
k and ŵ(s), update c = (c1, . . . , cn) as follows. For i = 1, . . . , n and j = 1, . . . , k

do the following:

6: Let zi = (zi1, . . . , zik) be a indicator vector, so that zij = 0 or zij = 1;

7: Generate zi ∼ Multinomial(1, w∗
i ), where w∗

i = (w∗
i1, . . . , w∗

ik) and w∗
ij is obtained from

Equation (3) doing θj = θ̂j and wj = ŵj. If zij = 1, then do ci = j;
8: Do s = s + 1 and return to step (3).

Although it is simple to implement computationally, the SEM algorithm may present some
practical problems. As discussed by [16], the algorithm may present a slow convergence. Due to
this, some authors, such as [17,18], discuss how to set up the start values in order to increase the
convergence. In addition, [15] discusses the non-existence of the global maximum estimator.

Moreover, in this algorithm, the k value must be known previously. For the cases in which k
is an unknown quantity, the best k value is chosen by fitting a set of models associated with a set
of predefined k values and comparing them according to AIC [4,5] or BIC [6] criteria. Furthermore,
given a sample of size n and fixed a k value, there exists a positive probability, given by (1 − wj)

n �= 0,
of the j-th component not having observations allocated in an iteration of the algorithm. In this
case, we have an empty component, and the maximum likelihood estimates cannot be calculated for
these components. Thus, in order to avoid the practical problems presented by the EM algorithm,
we propose an integrated approach.

3. Integrated Approach

We start our integrated approach linking data clustering to a mixture model. For this, consider a
sampling process from a heterogeneous population that is subdivided into k sub-populations. Thus,
it is natural to assume that the sampling process consists of the realization of the following steps:

(i) choose a sub-population j with probability wj, where wj is the relative frequency of the j-th
sub-population in relation to the overall population;

(ii) sample a Yi value of this sub-population,

for i = 1, . . . , n and j = 1, . . . , k, where n is the sample size.
Let (Yi, ci) be a sample unit, where ci is an indicator allocation variable that assumes a value of

the set {1, . . . , k} with probabilities {w1, . . . , wk}, respectively. Thus, assuming that subpopulation j is
modeled by a probability distribution F(θj) indexed by parameter θj (scalar or vector), we have that

(Yi|ci = j, θj) ∼ F(θj) and P(ci = j|w) = wj,

for i = 1, . . . , n and j = 1, . . . , k.
However, in clustering problems, the ci’s values are non-observable. Thus, the probability of

ci = j is wj, and the marginal probability density function for Yi = yi is given by Equation (1).
In addition, as the model in Equation (1) is a population model; so there exists a non-null

probability (1 − wj)
n that the j-th component is an empty component. Thus, the number of clusters
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(i.e., non-empty components) is smaller than the number of components k. As viewed in the description
of the EM algorithm, the number of clusters is defined by the configuration of the latent allocation
variables c; thus hereafter, we will denote the number of clusters by kc, for kc ≤ k.

Since the interest lies in the configuration of c, let us marginalize out the weights of the mixture
model. Thus, integrating density (4) with respect to the prior Dirichlet

( γ
k , . . . , γ

k
)

distribution of the
weights, denoted by (w1, . . . , wk)|k, γ ∼ Dirichlet

( γ
k , . . . , γ

k
)
, the joint probability for c is given by (see

Appendix 3 of the SM)

π(c|γ, k) =
Γ(γ)

Γ(n + γ)

k

∏
j=1

Γ(nj +
γ
k )

Γ
( γ

k
) . (5)

Similarly, the conditional probability for ci = j given c−i = (c1, . . . , ci−1, ci+1, . . . , cn), is given by

π(ci = j|c−i, γ, k) =
nj,−i +

γ
k

n + γ − 1
, (6)

where nj,−i is the number of observations allocated to the j-th component, excluding the i-th
observation, for i = 1, . . . , n and j = 1, . . . , k.

As the main interest is in kc and not k, we remove k from Equation (6) by letting k tend to infinity.
Under this assumption, the probability reaches the following limit:

π(ci = j|c−i, γ) =
nj,−i

n + γ − 1
, (7)

when nj,−i > 0, for i = 1, . . . , n and j = 1, . . . , kc, where kc is the number of clusters defined by
configuration c. In addition, we now have a probability of the i-th observation being allocated to one
of the other infinite components, which is given by

π(ci = j∗|c−i, γ) =
γ

n + γ − 1
, (8)

for j∗ /∈ {1, . . . , kc}. This is the probability of the observation yi creating a new cluster, for i = 1, . . . , n.
The probabilities in (7) and (8) are equivalent to the update probabilities of a Dirichlet process mixture
model. See, for example, [19–21].

Given yi, the conditional probability for ci = j, such that nj,−i > 0, is

πij = π(ci = j|yi, θj, c−i, γ) =
nj,−i

n + γ − 1
f (yi|θj), (9)

for i = 1, . . . , n and j = 1, . . . , kc−i
, where kc−i is the number of clusters excluding the i-th observation.

At this point, it is important to note that if an observation yi is allocated to a component j, ci = j,
and nj > 1, then nj,−i ≥ 1 and kc−i = kc. But if ci = j and nj = 1, then nj,−i = 0 and kc−i = kc − 1.

In order to define the conditional probability of the i-th observation creating a new cluster j∗,
we integrate parameters out for this case, for j∗ = kc−i + 1. This was done because that probability
does not depend on the parameter value θj∗ . Thus, the conditional posterior probability for Ci = j∗ is

πij∗ = π(ci = j∗|yi, c−i, γ) =
γ

n + γ − 1
I(yi), (10)

where I(yi) =
∫

f (yi|θj∗)π(θj∗)dθj∗ and π(θj∗) is the density of the prior distribution for θj∗ , for i =
1, . . . , n.

As is known from the literature, the likelihood function for a mixture model is non-identifiable,
i.e., any permutation of the components’ labels lead to the same likelihood function (see,
for example, [8,11,22–24]). Thus, in order to get identifiability, we assume that μ1, . . . , μkc

are the
component means for clusters and that μ1 < . . . < μkc

. However, it does not prevent the algorithm
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described in the next Section from being applicable to another labeling criterion. Additional discussion
about label switching can be found in [22,23].

3.1. Integrated SEM Algorithm

Using probabilities given in Equations (9) and (10), we update the allocation indicator variables
according to Algorithm 2.

Conditional on a configuration c, we have kc clusters. So, we update parameters of interest
according to Algorithm 3. We then join Algorithms 2 and 3 to get the Algorithm 4.

After the S iterations, we discard the first B iterations as a burn-in. In the following, we also
consider “jumps” of size h, i.e., only one draw every h is extracted from the original sequence in order
to obtain a sub-sequence of size H = (S − B)/h to make inferences. Denote this sub-sequence by
S(H).

Consider Nkc
(j) to be the number of times that kc = j in S(H), for j ∈ {1, . . . , Kmax}, where Kmax

is the maximum kc value sampled in the course of iterations. Thus, P̃(kc = j) = Nkc (j)
H is the estimated

probability for kc = j. We then consider

k̃c = argmax
1≤j≤Kmax

(
P̃(kc = j)

)
as being the estimates for the number of components kc.

Appendix 1 of the SM presents the mathematical expression used to determine a configuration
for c and estimates for the parameters of the clusters, conditional on the estimate k̃c.

Algorithm 2 Updating c

1: Let c = (c1, . . . , cn) be the current configuration for latent allocation variables. Then, update c as
follows.

2: procedure For i = 1, . . . , n:

3: Remove ci from the current state c, obtaining c−i and kc−i ;

4: Generate a variable Zi =
(
Zi1, . . . , Zikc

) ∼ Multinomial(1, Pi), where Pi = (πi1, . . . , πikc−i
, πij∗)

for πij given in (9) and πij∗ given in (10), for j = 1, . . . , kc−i and j∗ = kc−i + 1;

5: If Zij = 1, for j ∈ {1, . . . , kc−i}, set up ci = j and do nj = nj,−i + 1;

6: If Zij∗ = 1, do nj∗ = 1 and kc = kc−i + 1. As this new cluster has just one observation allocated,
set as component parameter θj∗ = θ

g
j , where θ

g
j is a value generated from posterior distribution

π(θj∗ |yi) ∝ f (yi|θj∗)π(θj∗), where f (yi|θj∗) is the probability density function for yi conditional
on θj∗ and π(θj∗) is the density of the prior distribution for θj∗ . Relabel the kc clusters in order to
maintain the adjacency condition. If the component mean μj∗ of the new cluster is such that:

7: μj∗ = min
1≤j≤kc

μj, then do j∗ = 1 and relabel all other clusters doing j + 1;

8: μj∗ = max
1≤j≤kc

μj, then do j∗ = kc and keep all other clusters labels;

9: μj < μj∗ < μj+1, for j �= {1, kc}, then do j∗ = j + 1 and relabel all other clusters j′ ≥ j + 1 doing
j′ = j′ + 1.

13
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Algorithm 3 Updating cluster parameters

1: Let θkc
= (θ1, . . . , θkc

) be the current parameter values of the clusters. Conditional on configuration

c, get θ
updated
kc

= (θ
updated
1 , . . . , θ

updated
kc

) as follows:

2: if cluster j is such that nj > 1, then do θ
updated
j = θ̂j, where θ̂j are the maximum likelihood estimates

of the j-th cluster;
3: if cluster j is such that nj = 1, then generate θ

g
j from conditional posterior distribution π(θ|yi) and

set θ
updated
j = θ

g
j ;

4: Do θk = θ
updated
k only if the adjacency condition μ

updated
1 < . . . < μ

updated
kc

is met. Otherwise, keep
θkc

as the current value.

Algorithm 4 ISEM Algorithm

1: Initialize the algorithm with a configuration c(0) =
(

c(0)1 , . . . , c(0)n

)
for allocation indicator variables.

2: procedure For the s-th iteration of the algorithm, s = 1, . . . , S, do the following.
3: Conditional on c(s−1), update the parameters of the clusters according to algorithm 3 ;
4: Obtain a new configuration c(s) for the allocation of indicator variables using algorithm 2.

4. Simulation Study

In this section, we describe the results from a simulation study carried out to verify the
performance of the proposed algorithm. To generate the artificial datasets, we considered univariate
normal mixture models. We set up the number of clusters and parameter values according to the
specified values in Table 2. We also fixed the sample size equal to n = 200.

Table 2. Number of clusters and parameter values used for simulating the datasets.

Artificial
Dataset

Number of
Clusters

Parameter Values

A1 kc = 2
μ1 = 0, μ2 = 3,
σ2

1 = 1, σ2
2 = 1,

w1 = 0.80, w2 = 0.20,

A2 kc = 3
μ1 = −6, μ2 = 0, μ3 = 4
σ2

1 = 3, σ2
2 = 2, σ2

3 = 1
w1 = 0.50, w2 = 0.30, w3 = 0.20

A3 kc = 4
μ1 = −6, μ2 = 0, μ3 = 7, μ4 = 14
σ2

1 = 1, σ2
2 = 2, σ2

3 = 2, σ2
4 = 1

w1 = 0.10, w2 = 0.40, w3 = 0.40, w4 = 0.10

A4 kc = 5
μ1 = −13, μ2 = 7, μ3 = 0, μ4 = 6, μ5 = 11

σ1 = 1, σ2 = 2, σ3 = 3, σ4 = 2, σ5 = 1
w1 = 0.15, w2 = 0.20, w3 = 0.30, w4 = 0.20, w5 = 0.15,

The procedure for generating the datasets is given by the following steps:

(i) For i = 1, . . . , n, generate Ui ∼ U (0, 1); if
j−1
∑

j′=1
wj < ui ≤

j
∑

j′=1
wj, generate Yi ∼ N

(
μj, σ2

j

)
,

with fixed parameter values according to Table 2, for w0 = 0 and j = 1, . . . , kc.
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(ii) In order to record from which component each observation is generated, we define G =

(G1, . . . , Gn) such that Gi = j if Yi ∼ N
(

μj, σ2
j

)
, for i = 1, . . . , n and j = 1, . . . , kc.

Having generated the datasets, we need to define the the probability of creating a new cluster and
the posterior distribution for θj∗ =

(
μj∗ , σ2

j∗
)

given yi, for i = 1, . . . , n. For this, consider the following

conjugated prior distributions for component parameters θj =
(

μj, σ2
j

)
:

μj|σ2
j , μ0, λ ∼ N

(
μ0,

σ2
j

λ

)
and σ−2

j |α, β ∼ Γ(α, β),

where μ0, λ, α, and β are hyperparameters. The parametrization of the gamma distribution is such
that the mean is α/β and the variance is α/β2.

Following [11,24], we consider the following procedure to define the values for the
hyperparameters. Let R be the observed variation interval of the data and ε its midpoint. Then,
we set up μ0 = ε and E(σ−2

j ) = R−2. Thus, we obtain β = αR2, and we fix α = 1. In addition,

to obtain a prior distribution with a large variance, we fixed λ = 10−2, and for the hyperparameter γ,
we consider the value 0.1, γ = 0.1.

Thus, the probability of creating a new cluster is given by Equation (10), in which

I(yi) =

[
λ

2βπ(1 + λ)

] 1
2 Γ(α + 1)

Γ(α)

[
1 +

y2
i + λμ2

0
2β

− (yi + λμ0)
2

2β(1 + λ)

]−(α+ 1
2 )

, (11)

and j∗ = kc + 1, for i = 1, . . . , n.
When a new cluster is created, the new parameter values θj∗ = (μj∗ , σ2

j∗) are generated from the
following conditional posterior distributions,

μj∗ |σ2
j∗ , yi, c, μ0, λ ∼ N

(
yi + λμ0

1 + λ
,

σ2
j

1 + λ

)
(12)

and

σ−2
j∗ |yi, c, τ, β ∼ Γ

(
α + 1, β +

y2
i + λμ2

0
2

− (yi + λμ0)
2

2(1 + λ)

)
, (13)

for j∗ = kc−i + 1.
We run the ISEM algorithm for S = 55,000, B = 5000, and h = 10. From these values, we got

a sub-sequence S(H) of size 5000 to make inferences. The algorithm was initialized with kc = 1
and parameter values μ1 = y and σ2

1 = s2, the sample mean and variance of the generated
dataset, respectively.

We also apply to the generated datasets the SEM algorithm, as describe in Section 2, and the RJ
algorithm as proposed by [8]. In order to choose the number of clusters using the SEM algorithm,
we consider the AIC and BIC model selection criteria. In addition, the algorithm was initialized using
a configuration c(0) obtained via the k-means algorithm [25]. As stop criterion, we set up the threshold
ε = 0.001. For the RJ algorithm, we consider the same number of iterations, burn-in, and thin value
used in the ISEM algorithm.

In order to compare the three algorithms in terms of the estimation of the number of clusters, we
consider M = 500 simulated datasets. Table 3 shows the proportion of times that the ISEM and RJ
algorithms put the highest estimated probability on the kc values presented. This table also show the
proportion of times that the AIC and BIC indicated the kc value as the best among the tested values.
The values highlighted in bold are the proportions on the kc true value. As one can note, the ISEM
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shows a better performance, i.e., higher proportion of the kc true value than the other two algorithms,
especially in relation to the SEM algorithm with the selection of kc via the AIC and BIC. The results
also show that the AIC and BIC model selection criteria have a low success ratio, with a proportion of
the kc true value smaller than 0.50.

Table 3. Proportion of times the algorithms chose the kc values as the number of clusters.

Data Set ktrue
c kc

P̃(kc = j·)
AIC BIC Data Set ktrue

c kc
P̃(kc = j·)

AIC BIC
ISEM RJ ISEM RJ

A1 2

1 0.014 0.002 0.050 0.210

A2 3

1 0.000 0.000 0.000 0.004
2 0.976 0.972 0.294 0.448 2 0.276 0.094 0.104 0.438
3 0.010 0.026 0.238 0.224 3 0.720 0.672 0.304 0.384

4 0.000 0.000 0.152 0.082 4 0.004 0.232 0.262 0.138
5 0.000 0.000 0.148 0.028 5 0.000 0.002 0.184 0.028
6 0.000 0.000 0.118 0.008 6 0.000 0.000 0.146 0.008

A3 4

1 0.000 0.000 0.000 0.000

A4 5

1 0.000 0.000 0.000 0.000
2 0.000 0.004 0.000 0.000 2 0.006 0.000 0.000 0.006
3 0.000 0.000 0.010 0.066 3 0.006 0.000 0.000 0.018
4 0.956 0.476 0.226 0.450 4 0.218 0.010 0.038 0.210
5 0.044 0.474 0.252 0.296 5 0.682 0.509 0.322 0.446

6 0.000 0.044 0.214 0.122 6 0.028 0.442 0.246 0.222
7 0.000 0.000 0.184 0.056 7 0.000 0.039 0.210 0.072
8 0.000 0.002 0.114 0.010 8 0.000 0.000 0.184 0.026

4.1. Results from a Single Simulated Data Set

We also analyze the results from a single dataset selected at random from the M = 500 generated
datasets in each situation A1 to A4. Then, we discuss the convergence of the ISEM and RJ algorithms
based on the sample generated across iterations, using graphical tools. In general, the graphical tools
show whether the simulated chain stabilizes in some sense and provide useful feedback about the
convergence [26].

Table 4 shows the estimated probabilities of kc obtained with ISEM and RJ and the AIC and BIC
values from the SEM algorithm for the selected dataset. In this table, the values highlighted in bold are
the highest estimated probabilities and the smallest AIC and BIC values. As we can note, the ISEM
algorithm set up a maximum probability for the kc true value for the four simulated cases.

The RJ algorithm puts a higher probability on the kc true value for datasets A1 and A2. However,
the probability on the kc true value is smaller than that estimated by ISEM. This indicates a higher
precision for the ISEM algorithm. For datasets A3 and A4, the RJ attributes maximum probability to
the wrong values, kc = 5 and kc = 6, respectively. Moreover, the probabilities estimated by RJ do
not evidence a single value for kc as being the best value since there are different values for kc with
similar probabilities. For example, for dataset A2, the maximum is at kc = 3 with P(kc = 3|·) = 0.3836,
but one can argue that the estimated probabilities favor kc = 3 or kc = 4. For dataset A3, there is
similar support for kc between 4 and 7, and for A4 between 5 and 7.

Analogously to ISEM and RJ, the AIC and BIC model selection criteria indicate the kc true value
as the best value for datasets A1 and A2. For dataset A3, similar to the RJ, the AIC indicates the wrong
value kc = 5 as the best value, while the BIC indicates the kc true value as the best value. For dataset
A4, the AIC and BIC indicate the wrong value kc = 6 as the best model.

4.2. An Empirical Check of the Convergence

We now empirically check the convergence of the sequence of the probability for kc across
iterations, the capacity to move for different values of kc in the course of the iterations, and the
estimated autocorrelation function the (acf) for the ISEM and RJ algorithms.
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Table 4. Estimated probability for kc.

Data Set ktrue
c kc

P̃(kc = j·)
AIC BIC Data Set ktrue

c kc
P̃(kc = j·)

AIC BIC
ISEM RJ ISEM RJ

A1 2

1 0.0000 0.0000 786.7166 793.3133

A2 3

1 0.0000 0.0004 1160.758 1167.355
2 0.9006 0.5252 762.5204 779.0120 2 0.0122 0.0136 1129.981 1146.472
3 0.0962 0.2862 764.1440 790.5305 3 0.8694 0.3836 1114.024 1140.411

4 0.0032 0.1138 769.2648 805.5463 4 0.1124 0.3140 1118.789 1155.070
5 0.0000 0.0466 768.0492 814.2256 5 0.0058 0.1716 1120.108 1166.284
6 0.0000 0.0160 775.1082 831.1796 6 0.0002 0.0744 1130.558 1186.630
≥7 0.0000 0.0122 - - ≥7 0.0000 0.0424 - -

A3 4

1 0.0000 0.0000 1273.886 1280.482

A4 5

1 0.0000 0.0002 1416.124 1422.721
2 0.0000 0.0000 1276.281 1292.773 2 0.0000 0.0004 1388.738 1405.230
3 0.0000 0.0002 1251.357 1277.743 3 0.0000 0.0028 1358.474 1384.861
4 0.8412 0.1696 1188.470 1224.751 4 0.0014 0.0114 1357.037 1393.318
5 0.1500 0.3014 1186.075 1232.252 5 0.8340 0.2788 1355.922 1402.098
6 0.0088 0.2400 1191.747 1247.818 6 0.1520 0.3004 1325.927 1381.998

7 0.0000 0.1632 1197.028 1262.995 7 0.0124 0.2224 1331.940 1397.907
8 0.0000 0.0816 1200.337 1276.199 8 0.0002 0.0186 1331.352 1407.213
≥9 0.0000 0.0440 - - ≥9 0.0000 0.0750 - -

Figure 1a,d,g,j presents the graphics of the probability for kc in the course of the iterations, for the
four simulated datasets. To maintain a better visualization, we plot in these graphics only the three
higher P(kc|·) estimates. Observing at these figures, it can be seen that the L iterations and the
burn-in value B used were adequate to achieve stability for P(kc|·). In addition, Figure 1b,e,h,k shows
that the ISEM algorithm mixes well over kc, i.e., “visits” mixture models with different values of
kc across iterations. As shown by Figure 1c,f,i,l, the sampled kc values also do not have significant
autocorrelation function (ACF). Thus, based on these graphical tools, there is no evidence against the
convergence of the generated values by the ISEM algorithm.

Figure 2 shows the performance of the RJ algorithm. The probabilities of kc present a satisfactory
stability. The sampled kc values have a satisfactory mix, and the estimated autocorrelation is
non-significant. In addition, as can be noted in Figure 2, probabilities for the number of clusters do not
differentiate a value of kc in order to be chosen as the better value, as done by ISEM. This may happen
due the fact that the performance of the RJ depends on the choice of the transition functions to do
“good” jumping, meaning that a transition function that is adequate for one dataset may be not for
another one. As the ISEM algorithm does not need the specification of transition functions to propose
a change of the kc value, these results shows us that ISEM may be an effective alternative in relation to
RJ and SEM algorithms for the joint estimation of kc and the cluster parameters of a mixture model.

Figure 1 in Appendix 2 of the SM shows the generated values for datasets A1 to A4. This Figure
also shows the clusters identified by the ISEM algorithm. As can be seen, clusters are satisfactorily
identified by the proposed algorithm.

We also compare ISEM and RJ algorithms in terms of CPU computation time. The simulations
were realized on a MacBook Pro, 2.5 GHz Intel Core i5 dual core, 4 Gb MHz DDR3. Table 5 shows
a summary of the times of iterations for the ISEM and RJ algorithms. The column denoted by s.d.
presents the standard deviation values. For dataset A1, the average time that RJ takes to run one
iteration is 1.8491 times greater than the average time that ISEM takes to run an iteration. For datasets
A2, A3, and A4, the average time that RJ needs to run one iteration is 1.8175, 2.3239, and 1.8932 times
greater than the average time that ISEM takes to run an iteration, respectively. These results show a
better performance of the ISEM algorithm. The higher iteration times of the RJ algorithm are mainly
due to the split–merge step used to increase the mixing of the Markov chain in relation to the number
of clusters.

17



Entropy 2019, 21, 1063

0 1000 2000 3000 4000 5000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Iterations

P
(k

c
|.
)

kc=2

kc=3
kc=4

(a) Dataset A1.

0 1000 2000 3000 4000 5000

1
2

3
4

5

Iterations

k
c
 v

a
lu

e
s

(b) Dataset A1.

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

(c) Dataset A1.

0 1000 2000 3000 4000 5000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Iterations

P
(k

c
|.
)

kc=2

kc=3

kc=4

(d) Dataset A2.

0 1000 2000 3000 4000 5000

2
3

4
5

6

Iterations

k
c
 v

a
lu

e
s

(e) Dataset A2.

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag
A

C
F

(f) Dataset A2.

0 1000 2000 3000 4000 5000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Iterations

P
(k

c
|.
)

kc=4

kc=5

kc=6

(g) Dataset A3.

0 1000 2000 3000 4000 5000

3
4

5
6

7

Iterations

k
c
 v

a
lu

e
s

(h) Dataset A3.

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

(i) Dataset A3.

0 1000 2000 3000 4000 5000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Iterations

P
(k

c
|.
)

kc=5

kc=6

kc=7

(j) Dataset A4.

0 1000 2000 3000 4000 5000

4
5

6
7

8

Iterations

k
c
 v

a
lu

e
s

(k) Dataset A4.

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

(l) Dataset A5.

Figure 1. Performance of the ISEM algorithm across iterations.
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Figure 2. Performance of the RJ algorithm across iterations.
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The results from these simulated datasets show that the ISEM algorithm may be an effective
alternative to the RJ and SEM algorithms for data clustering in situations where the number of clusters
is a unknown quantity.

Table 5. Times of the iterations, in seconds.

Artificial
Dataset

Algorithm
Summary

Min 1o Q. Med. Mean 3o Q. Max. s.d.

A1
ISEM 0.0064 0.0082 0.0091 0.0109 0.0105 0.4987 0.0107

RJ 0.0032 0.0137 0.0158 0.0208 0.0202 0.3855 0.0174

A2
ISEM 0.0055 0.0100 0.0114 0.0137 0.0146 0.3806 0.0108

RJ 0.0032 0.0169 0.0196 0.0249 0.0243 0.7709 0.0181

A3
ISEM 0.0059 0.0112 0.0123 0.0142 0.0139 0.4951 0.0100

RJ 0.0020 0.0218 0.0255 0.0330 0.0320 0.4785 0.0239

A4
ISEM 0.0059 0.0130 0.0146 0.0179 0.0187 0.5149 0.0108

RJ 0.0026 0.0232 0.0266 0.0339 0.0323 0.5490 0.0231

5. Application

The three algorithms are now applied to two real datasets. The first real dataset refers to velocity
in km/s of n = 82 galaxies from 6 well-separated conic sections of an unfilled survey of the Corona
Borealis region. This dataset is known in the literature as the Galaxy data and has already been analyzed
by [8,13,22,27], among others. This dataset is available in the R software. The second real dataset refers
to an acidity index measured in a sample of n = 155 lakes in central-north Wisconsin. This dataset was
downloaded from the website https://people.maths.bris.ac.uk/$\sim$mapjg/mixdata.

For application of ISEM and RJ algorithms, we consider the same number L = 5500, B = 5000,
and h = 10. Table 6 shows the estimated probabilities for kc obtained with ISEM and RJ and the AIC
and BIC values from EM algorithm for each dataset. The maximum probability from ISEM and RJ and
the minimum AIC and BIC values are highlighted in bold.

Table 6. Estimated probabilities for kc, real datasets.

Data Set kc
P̃(kc = j·)

AIC BIC Data Set kc
P̃(kc = j·)

AIC BIC
ISEM RJ ISEM RJ

Galaxy

1 0.0000 0.0000 484.6819 489.4954

Acidity

1 0.0000 0.0000 455.5740 461.6608
2 0.0000 0.0008 451.0018 463.0354 2 0.7194 0.0502 380.3449 395.5620

3 0.7024 0.1200 426.7421 445.09959 3 0.2638 0.3164 382.7395 407.0869
4 0.2748 0.2530 427.4915 453.9654 4 0.0152 0.3040 382.3660 415.8437
5 0.0222 0.2592 410.3666 444.0607 5 0.0016 0.1724 391.7630 434.3709
6 0.0006 0.1848 413.7755 454.6897 6 0.0000 0.0832 386.1420 437.8802
7 0.0000 0.1084 422.1793 470.3137 7 0.0000 0.0452 388.1296 448.9981
8 0.0000 0.0472 423.5542 478.9088 8 0.0000 0.0186 395.3957 465.3945
≥9 0.0000 00226 - - ≥9 0.0000 0.0010 - -

For the Galaxy dataset, the ISEM and RJ algorithms put highest probability on kc = 3 and kc = 5,
respectively. However, analogously to the simulation study, the probabilities estimated by RJ do not
evidence a single value for kc as being the best value. For this dataset, the estimated probabilities
indicate a kc value between 3 and 7. The AIC and BIC also indicate kc = 5 as the best value. For the
Acidity dataset, ISEM, AIC, and BIC indicate kc = 2 as the best value. The probabilities estimated by
RJ attribute similar values for kc = 3 and kc = 4.
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Figures 3 and 4 show the performance of the ISEM and RJ algorithms across iterations for
the Galaxy and Acidity datasets. The values sampled by the ISEM algorithm present satisfactory
stability for estimated probability across iterations, mix well among different kc values, and present no
significant autocorrelation. That is, we do not have evidence against the convergence of the generated
chain by the ISEM algorithm. In relation to the RJ, the sampled values mix well and do not present
significant autocorrelation. However, although the values sampled by RJ present stability for P(kc),
the estimated probabilities do not differentiate a value of kc in order to be chosen as the better value,
as done by ISEM. This result shows the need to run RJ for a greater number of iterations. With this,
we have that for both real datasets, ISEM presents faster convergence than the RJ algorithm.

Table 7 shows a summary of the iteration times for the ISEM and RJ algorithms. For the Galaxy
data, the average time that ISEM takes to run an iteration is 0.0053 s; while the average time for RJ is
0.0098 s. That is, the average time that RJ takes to run one iteration is 1.8491 times greater than the
average time that ISEM takes to run an iteration. For the Acidity data, the average times that the ISEM
and RJ algorithms take to run an iteration are 0.0085 and 0.0180 s, respectively. For this dataset, the
average time that RJ needs to run an iteration is 2.2118 times greater than the average time that ISEM
runs. Similarly to results from the simulation study, ISEM presents better results, i.e., a shorter time to
run the iterations.
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Figure 3. Performance of the ISEM and RJ algorithms for the Galaxy data.
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Figure 4. Performance of the RJ algorithm across iterations for the Acidity data.

Table 7. Iteration times in seconds.

Artificial
Dataset

Algorithm
Summary

Min 1o Q. Med. Mean 3o Q. Max. s.d.

Galaxy
ISEM 0.0023 0.0038 0.0045 0.0053 0.0054 0.2468 0.0062

RJ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Acidity
ISEM 0.0055 0.0100 0.0114 0.0137 0.0146 0.3806 0.0108

RJ 0.0046 0.0128 0.0149 0.0188 0.0180 0.4588 0.0160

6. Final Remarks

This article presents a discussion of how to estimate the parameters of a mixture model in the
context of data clustering. We propose an alternative algorithm to the EM algorithm called ISEM.
This algorithm was developed through an integrated approach in order to allow kc to be estimated
jointly with the other parameters of interest. In the ISEM algorithm, the allocation probabilities depend
on the number of clusters kc and are independent of the number of components k of the mixture model.

In addition, there exists a positive probability of a new cluster being created by a single observation.
This is an advantage of the algorithm because it creates a new cluster without the need to specify
transition functions. In addition, the cluster parameters are updated according to the number of
allocated observations. For the clusters with at least two of these observations, the values of the
parameters are taken by the maximum likelihood estimates. For a cluster with just one observation,
the parameter values are generated from the posterior distribution.

In order to illustrate the performance of the ISEM algorithm, we developed a simulation study.
In this simulation study, we considered four scenarios with artificial data generated from Gaussian
mixture models. In addition, each one of the four scenarios was replicated M = 500 times, and the
proportion of times that ISEM put a higher probability on the kc true value was recorded. We applied
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this same procedure to the EM algorithm, choosing the number of clusters kc via the AIC and BIC,
and to the RJ algorithm. Then, the three algorithms were compared in terms of proportion of times that
the kc true value was selected as the best value. The results obtained show that the ISEM algorithm
outperforms the RJ and SEM algorithms. Moreover, the results also show that the AIC and BIC model
selection criteria should not be used to determine the number of clusters in a mixture model due to a
low success rate.

We also compared the performance of ISEM and RJ in terms of empirical convergence of the
sequence of values generated using graphical tools. For this, we selected at random an artificial
dataset from each scenery, and then we plotted the probability estimates for kc across iterations, the
generated kc values, and the estimated autocorrelation of the sampled values (see Figures 1 and 2).
Again, the results show a better performance for the ISEM algorithm. While ISEM presents satisfactory
stability for the probability of kc and differentiates the true kc as the best value, the probabilities
estimated by RJ do not differentiate a value of kc in order to be chosen as the better value.

In order to illustrate the practical use of the proposed algorithm and compare its performance
with the SEM and RJ algorithms, we applied the three algorithms to two real datasets: the Galaxy and
Acidity datasets. For the Galaxy dataset, ISEM indicates kc = 3 with probability P(kc = 3|·) = 0.7024,
while the RJ algorithm, the AIC, and the BIC indicate kc = 5. However, as shown in Figure 3d, the RJ
algorithm again does not differentiate a value of kc, while ISEM differentiates the kc = 3 value, and the
generated values across iterations present satisfactory stability. For the Acidity dataset, the ISEM, AIC,
and BIC indicate kc = 2 as the best value, while RJ attributes similar probabilities for kc = 3 and kc = 4.

As mentioned in the Introduction, the generalization of the proposed algorithm for the
multivariate case is the next step of our research. The simulation study and the application were done
in R software, and the computational codes can be obtained by emailing the authors.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/21/11/1063/
s1.
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