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O Problema de Estabilidade em Sistemas Elétricos de
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l Resumo

Este mimcurso têm o intuito de apresentar uma introdução ao problema de estabilidade
em sistemas elétricos de potência e ilustrar as várias causas que podem levar um sistema

à instabilidade. Particular atenção é dada ao problema de bifurcações que podem levar o
sistema a um colapso (blecaute). Um sistema de potência é modelado, para estudos de

estabilidade, por um conjunto de equações algébrico-diferenciais. Problemas de instabil-
idade surgem muitas vezes após a ocorrência de bifurcações deste conjunto de equações.

Neste trabalho, o problema de bifurcações em sistemas de potência é estudado e ilustrado
através de exemplos. Particular atenção é dada as singularidades das equações algébricas

que levam a problemas de perda de causalidade nos modelos utilizados.

2 Palavras Chaves

Sistemas de Potência, Estabilidade de Tensão, Bifurcação, Singularidade, Equações Algébrico-
Diferenciais, Causalidade.

3 Introdução

Os sistemas elétricos de potência formam um dois mais complexos sistemas dinâmicos

já criados pelo homem. A complexidade destes sistemas está associada a dois fatores

fundamentais: não linearidades fortes e grande dimensão. Nos últimos anos, em muitos

sistemas de potência no mundo, a expansão da geração e da transmissão não acompanhou

o crescimento de demanda devido a escassez de recursos e restrições ambientais. Com isto,

os sistemas passaram a operar mais próximos dos limites e as não linearidades, inerentes

a estes sistemas, tornaram-se mais evidentes e fenómenos, que até então não haviam sido

observados, passaram a se manifestar. Atualmente já foram relatados casos de sistemas

elétricos de potência, que em condições de alto carregamento, apresentam soluções como
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ciclos limites, soluções estas altamente indesejáveis neste tipo de sistema. Bifurcações que

levam sistemas ao colapso (blecaute) também têm sido relatadas e amplamente estudadas.

Utilizando modelos matemáticos, já verificou-se também a possibilidade de existência
de atratores estranhos os quais também são indesejáveis para a operação segura destes

sistemas. Sincronização de geradores é outro fenómeno observado em muitos sistemas e

muitas vezes explorado para a obtenção de sistemas equivalentes reduzidos.

Diante de todos estes problemas e para garantir a operação segura destes sistemas,

os engenheiros foram obrigados a aprofundar-se na teoria de sistemas dinâmicos para

entender estes fenómenos, essencialmente não lineares, e rever as técnicas de operação e

monitoramento com o objetivo de evitar a ocorrência de blecautes. Algumas diretrizes

e técnicas têm sido propostas em situações peculiares mas o problema geral de garantia

de estabilidade continua em aberto. A riqueza de comportamentos dinâmicos que pode

existir nestes sistemas faz com que os mesmos sejam também muito atrativos para os

estudiosos de sistemas não lineares.

Este minicurso têm o mtuito de apresentar uma introdução ao problema de estabilidade

em sistemas elétricos de potência e ilustrar as várias causas que podem levar um sistema

à instabilidade. Particular atenção é dada ao problema de bifurcações que podem levar o
sistema a um colapso (blecaute).

4 Formulação e Classificação dos Estudos de Estabil-

idade

Os sistemas elétricos de potência são compostos essencialmente por geradores (máquinas

síncronas na sua grande maioria), linhas de transmissão e cargas (centros consumidores).

O principal objetivo dos sistemas de potência é atender a demanda de energia requerida
pelas cargas. Além de atender esta demanda, para serem confiáveis e atender de maneira

ininterrupta as cargas, os sistemas devem ser robustos à presença de perturbações.

Numa situação de equilíbrio, a potência fornecida pêlos geradores deve ser igual a
potência consumida pelas cargas mais as perdas inerentes ao sistema de transmissão.

Quando uma perturbação (variações normais de carga, curto-circuitos) ocorre, este balanço

de potência deixa de existir, e como consequência, a potência líquida excedente injetada

no sistema transforma-se em energia cinética nos rotores das máquinas. Quando isto acon-

tece, um ou mais geradores aceleram com relação aos outros provocando oscilações entre

as máquinas do sistema. Estas oscilações são chamadas eletromecânicas e estão na fabca

de frequência de l Hz. Em algumas situações, dependendo da amplitude da perturbação,
o sistema pode se tornar instável provocando um blecaute devido a atuação em cascata

de diversos dispositivos de proteção.
Para estudar a dinâmica destes sistemas e entender os mecanismos que levam os mes-

mos a instabilidade, modela-se cada um de seus componentes. As máquinas elétricas

(geradores, compensadores síncronos e motores de grande porte) dão origem a um con-

junto de equações diferenciais do tipo:



.5. = _ _ .^_
MLÚ = P^-P^0,V)-D^ ^

onde ô e uj são respectivamente o desvio de ângulo e o desvio de velocidade do rotor.

A potência mecânica injetada na máquina é denotada por Pm, e Pe é a potência elétrica
injetada na rede pelo gerador. O parâmetro D é a, constante de amortecimento do con-

junto. As variáveis O e V são variáveis da rede e representam respectivamente o ângulo

de fase e a amplitude do fasor tensão nas barras (nós elétricos) da rede de transmissão.

Admite-se que as constantes de tempo da rede de transmissão são muito menores do

que as constantes de tempo relacionadas à oscilação eletromecânica, em outras palavras,

admite-se que a rede esteja em regime permanente senoidal e modela-se a mesma por um

conjunto de equações algébricas não lineares (equações de balanço de potência) do tipo:

O = PL-P(Ô^,V)
O - QL-Q(ô,0,V) ^

onde PL e QL são respectivamente a potência ativa e reativa injetada na rede. Em

geral PL e QL representam a potência consumida pela carga. Modelos de carga são muito

discutidos na literatura e até hoje não se tem um consenso a respeito de qual modelo

utilizar. Em geral modelos estáticos e passivos são utilizados para a carga, entretanto,

existem situações que exigem modelos dinâmicos para as mesmas. Modelos dinâmicos

para as cargas são em geral necessários em regiões altamente industrializadas em que a

parcela de motores elétricos na composição da carga é elevada.

Em uma representação compacta, um sistema de potência pode ser modelado, para

estudos de estabilidade, pela seguinte equação:

x - f {x, y, A)
y = g(h(x,y,\)) ^

onde x é o vetor de variáveis dos geradores, y é o vetor de variáveis da rede e das cargas,

A é um vetar de parâmetros em geral associado ao nível de carregamento do sistema, a

função / representa o modelo dos geradores, a função g o modelo de carga adotado e a

função h representa as equações de balanço de potência nos nós da rede.

Do ponto de vista matemático, o problema de estabilidade do sistema dinâmico (4.3)
é um problema único, entretanto, estudar o problema de estabilidade de um sistema

dinâmico complexo como o sistema de potência de maneira única é muito difícil uma

vez que a perda de estabilidade pode se processar devido a diversos fatores diferentes e

envolvendo geralmente variáveis diferentes. Para simplificar a modelagem e a solução do

problema, divide-se o estudo de estabüidade de sistemas de potência segundo o tempo

envolvido na análise como:

a Estabüidade de curto prazo,

® Estabilidade de médio prazo,

« Estabilidade de longo prazo,



segundo as variáveis de interesse como:

® Estabilidade de ângulo,

» Estabilidade de tensão,

s Estabüidade de velocidade,

e segundo a intensidade da perturbação como:

B Estabilidade a grandes perturbações

a Estabilidade a pequenas perturbações

Neste texto, o problema de estabilidade de velocidade não será abordado.
Os problemas de estabüidade de ângulo e estabilidade de tensão são estudados tanto na

presença de grandes perturbações, tais como curto-circuitos, como na presença de peque-

nas perturbações, tais como variações normais de carga. No primeiro caso, as variáveis

do sistema sofrem grandes excursões e o modelo utilizado é um conjunto de equações

algébrico-diferenciais não lineares e, no segundo caso, as mesmas equações são linearizadas

admitindo-se que as variáveis do sistema sofrem pequenas excursões ao redor de um certo

ponto de operação.

O estudo da estabüidade de ângulo na presença de grandes perturbações recebe o
nome de estabilidade transitória na literatura de sistemas elétricos de potência. Neste tipo
de estudo, os engenheiros estão preocupados em manter o sincronismo entre os ângulos

dos geradores síncronos após a ocorrência de uma grande perturbação. Em linguagem

matemática, deseja-se que no instante de eliminação do defeito, o estado do sistema esteja

contido dentro da área de atração do novo ponto de operação estável. Muitas vezes, neste

tipo de estudo, ignoram-se as dinâmicas da carga e as variáveis das equações algébricas

são eliminadas alegando-se que as variáveis importantes neste fenómeno são os ângulos

dos rotores. Neste caso o modelo utilizado tem, em geral, a seguinte forma:

x = f (x) (4.4)

O estudo de estabilidade de tensão a grandes perturbações é muito similar ao estudo de
estabilidade de ângulo. Entretanto, alega-se, neste caso, que as variáveis importantes são

as tensões nas barras de carga, e muitas vezes as dinâmicas dos geradores são desprezadas

admitindo-se que os mesmos não irão perder o sincronismo durante o transitório. O

modelo usualmente empregado para esta situação é:

y=ff(%,A)) (4.5)

No estudo de estabüidade de ângulo a pequenas perturbações, os engenheiros estão

interessados em analisar os modos de oscilação do sistema. Modos de oscilação pouco

amortecidos são mdesejáveis no sistema pois limitam a capacidade de transferência de
potência e ainda podem provocar desligamentos indesejáveis de alguns componentes do

sistema. O limite de estabilidade a pequenas perturbações, também conhecido por ümite



00

Jb12
r-^-y^

jtí^ 1̂2-

p^jq

Figura l: Sistema de Potência l

de estabilidade estática, ocorre quando um autovalor aproxima-se do ebco imagmário.

Neste caso, associa-se o problema a um ponto de máxima transferência de potência ativa

da rede de transmissão. Em geral as dinâmicas das cargas são desprezadas e o modelo

linearizado utilizado têm a seguinte forma:

x = Ax + Bu
O = Cx+Du (4.6)

No estudo de estabüidade de tensão a pequenas perturbações, os engenheiros associam

o fenómeno colapso de tensão a uma bifurcação das equações algébricas que representam

o sistema de transmissão. Verifica-se também autovalores cruzando o eixo imaginário,

mas neste caso, associa-se o problema a incapacidade de fornecer suporte de reativos em

alguns pontos do sistema. Estuda-se neste caso o problema de bifurcações da segumte

equação:

0=h(y,\) (4.7)

Apesar das semelhanças entre os estudos de estabilidade de ângulo e de tensão, não é

consenso na literatura o que deve e o que não deve ser representado no modelo para cada

um dos estudos em questão. Não é claro também se existe alguma relação entre estes dois

problemas e se os mesmos passem uma origem comum.

Neste minicurso o problema de estabilidade de ângulo e de estabilidade de tensão
são colocados dentro de um único contexto e de uma única formulação. Estudam-se os

mecanismos que levam o sistema a perda de estabilidade de tensão e perda de estabilidade
de ângulo dentro de uma formulação comum de forma a permitir um entendimento melhor

do problema de bifurcações em sistemas elétricos de potência.

5 Bifurcações em Sistemas Elétricos de otência

Nesta seção, o problema de bifurcações em sistemas elétricos de potência é ilustrado
através de dois exemplos de pequeno porte.

Exemplo l
Considere o sistema da figura l. Este sistema é composto por um gerador conectado a

barra l e uma carga na barra 2. Vamos modelar este sistema utilizando a formulação tradi-



cional de estudos de estabilidade de tensão a pequenas perturbações conforme equação
(4.7). Para isto, todas as dinâmicas do gerador l são desprezadas e o barramento l é

modelado como sendo um barramento infinito, ou seja, o gerador conectado a este bar-

ramento possui inércia infinita e capacidade ilimitada de injeção de potência. A carga
conectada a barra 2 é modelada por uma injeção de potência constante SL = PL + JQ.L

e admite-se que a linha de transmissão não tem perdas. A matriz admitância desta rede

elétrica é dada por:
, \BU BU

>21 -022

onde Bu = .622 = &i2 + -J'- e ^12 = £?2i = —&i2. É importante observar que como a

linha é indutiva, então B^ = .621 > O e se as capacitâncias "slmnts"não são grandes

então BU < 0, B^ < 0. Sejam Ei = V^ + jV^y e Ez = V-^d + J^ç os fasores de tensão

respectivamente nas barras l e 2 e sejam Vig = Q (referência angular) e Vu = l, Op-u.

(barramento infinito). Com um balanço de potência na barra 2 obtêm-se as seguintes

equações:

PL - B^V^V^ = O (5.8)

QL + B^, + B^ + B^VuV^ = Q (5.9)

As variáveis nesta equação são V^ e V^y e os parâmetros são PL e Q L. Numa notação

mais compacta escreveremos y := [V^, V2g]T e À := [PL, QL\T. Nesta notação, as equações

de balanço de potência podem ser escritas na seguinte formulação geral:

%,À)=0 (5.10)

que é exatamente a equação (4.7).

No problema de estabilidade de tensão, estuda-se o comportamento das soluções da

equação (5.8-5.9) (5.10) com relação à variação do parâmetro A.
Neste caso em particular, vamos mostrar que a bifurcação passível de ocorrer é uma

bifurcação sela-nó.

Da equação (5.8) obtém-se a equação auxiliar:

v^ = J^T. (5-u)
»21 V\d

Esta equação pode ser sempre resolvida e obtém-se uma única solução V^g para cada valor

do parâmetro PL.

Substituindo (5.11) em (5.9) obtém-se a seguinte equação de segundo grau em Vu-

r-i , -BziViri^ ^, Q£ , PÍ _
y-+^ay2d+^+BF^=° (5-12)

Esta equação é a equação de bifurcação. Com a seguinte mudança de variáveis:

B^VU
V^d = V -

S22
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Figura 2: Diagrama de bifurcação - curva V

obtém-se:

»2+&+ n
B'22 -Bji^

BW, _ .
~2B^~'

que numa forma mais compacta pode ser escrita como:

V2+^PL,QL)=0

onde p, é um parâmetro real que depende dos parâmetros originais PL e Q L- Portanto,

verifica-se a possibilidade de ocorrência de uma bifurcação sela nó. Se ju < 0, a equação

(5.8-5.9) tem duas soluções. Se // = 0, a equação (5.8-5.9) tem uma única solução e se

p, > O não existem soluções de (5.8-5.9). A figura 2 ilustra as possíveis soluções de (5.12)
em função do parâmetro ;u. Em sistemas de potência, quando existem duas soluções, é

comum denominá-las soluções de alta e de babca tensão. A solução de alta tensão é a

solução referente ao ponto de operação normal. A solução de baixa tensão está associada

a equilíbrios instáveis. A curva ju = O separa o espaço de parâmetros em duas regiões

distintas conforme mostrado na figura 3. Num dos lados o sistema possui duas soluções e

do outro nenhuma.

O segmento de reta na figura 3 ilustra a situação de um crescimento de carga, situação

esta muito comum na operação do sistema. O sistema possui inicialmente uma carga

ativa de 0.1 pu MW e reativa de 0.01 pu MVAr. Nesta situação o sistema admite duas

soluções e o sistema está operando em condições normais na solução de alta tensão. O

crescimento de carga ocorre lentamente com fator de potência constante e a bifurcação

ocorre aproximadamente quando a carga ativa é igual a 0.693 pu MW e a reativa é igual
a 0.0693 pu MVAr. A partir deste nível de carga, o sistema não admite nenhuma solução
de equilíbrio.
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Figura 4: Sistema de Potência 2

Uma análise mais cuidadosa da função ju nos revela a possibilidade de evitarmos a
bifurcação por intermédio de compensação de reativos na barra 2. A inserção de um

capacitar shunt na barra 2 modifica B^ e eleva o nível de potência no qual as bifurcações

ocorrem. A curva tracejada na figura 3 é a nova curva de bifurcação quando um capacitar

shunt de 0.2 p.u. é adicionado à barra 2.

O exemplo l é o exemplo mais simples onde verifica-se a ocorrência de uma bifurcação

estática em sistemas de potência. A formulação utilizada no exemplo l é a formulação

tradicional dos estudos de colapso de tensão. A seguir apresentaremos um exemplo onde

formulamos o problema de forma mais geral para estudar tanto o problema de estabiüdade

de ângulo como o problema de estabüidade de tensão.

Exemplo 2
Considere o sistema de dois geradores e uma barra de carga da figura 4. Utilizando

o modelo clássico para os geradores e modelando a carga por uma potência constante,



obtêm-se o seguinte conjunto de equações algébricas-diferenciais:

M,ô, = p^-Y^sm{Sz-9L}

M2Ô2 = Pm2-y3^Sm(Ó2-0L)
O = p^_^ísm(^-<y-^sin(^-<y____ lü"

O = Qi+(Bsh-^Vê+YL^'cos(0L-ô,)+v^cos(0L-ô,)

onde M,, Pmi e Vi (i = l, 2) são parâmetros constantes e representam respectivamente

a inércia, a potência mecânica injetada e o módulo de tensão do i-ésimo gerador. Os

parâmetros da rede X e bsh representam respectivamente a reatância indutiva das linhas

de transmissão e a susceptância do capacitar "shunt". As variáveis S-^ e ^2 estão associadas

aos desvios de ângulo dos rotores dos geradores e VL e O L são variáveis associadas a rede

de transmissão e representam respectivamente o módulo e o ângulo de fase da tensão na

barra de carga L.

O conjunto de equações (5.13) pode ser colocado numa forma mais compacta conforme

equação (4.3). Neste caso, as dinâmicas da carga foram desprezadas e portanto y = O e a

função g é o operador identidade. Neste exemplo vamos identificar situações de bifurcações
que levam o sistema ao colapso de maneiras distintas.

Para simplificar a notação, façamos Mi = Ma =1, V^=V2=leX=l. Com isto

temos o seguinte conjunto de equações:

Si == P^i-^sin^-^)

Sï = Pm2 - VL Sm(J2 - OL)

O = PL-VLSm(0L-ôi')-VLsm{0L-S2~)

O = Q^+(Bsh-2)V^+VLCOs(eL-6^+VLCOs(0L-S2)

Tomando S-i como referência para medida de ângulo e definindo ^21 := 8ï — 5i e

S LI '•= SL— Si obtém-se, subtraindo a primeira equação da segunda, o seguinte conjunto

de equações:

^21 = AP - Y£ sin^i - SLI) - VL SÍS.ÇÔLI')

O = p^-VLsm(SLi)-VLsm(Su-ô^) (5.15)
O = QL+{Bsh-2)V^+VLCOs(ÔLi)+VLCOs(S^-Sn)

onde as variáveis de estados são ô^i^SLl e Vi, e os parâmetros são PL, Q L, Bsh e

AP := Pm2—Pmi- Definindo a seguinte mudança de coordenadas, a := 2 iï^ 21 e /3 := ^L,

obtém-se o seguinte conjunto de equações nas novas variáveis:

3 = ^-y^sin/ïcosQi
O = P£-2V^smacos/3 (5.16)
O = QL+(Bsh-2)V^+2VL cos a cos/3

que de forma compacta podemos escrever como:

x = f {x, y, X) (5.17)

O = g^y,X) (5.18)

9
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Figura 5: Variedade de configuração gerada a partir da equação (5.18) para PL == —0,4;
QL= O e Bsh= Q.

onde x=/3, y= (a,Vi) e À = (P£, QL, Bsh, AP).

A equação algébrica (5.18) é uma restrição que define variedades no espaço das variáveis
,3, a e VL. Estas variedades se repetem periodicamente nas variáveis 13 e a conforme

mostrado na figura 5 para PL = —0,4, Qz, = O e Bsh = 0. Neste problema estamos

interessados em estudar apenas uma componente conexa destas variedades. A figura 6

apresenta a componente conexa de interesse no espaço das variáveis /?, a e VL.

Defina M\, a variedade de interesse na análise em questão, como sendo:

M^-={(x,y)çR3:g{x,y,X}=0}

O campo vetorial / define, de maneira implícita, um campo vetorial XÇx, y) : M. —>•

TM (a;, y), isto é:

IÏX{x,y)=f(x,y)

onde n é o operador projeção. O fluxo deste campo vetorial está apresentado na

figura 6. Para Ap = 0, existem 2 equilíbrios estáveis indicados nesta mesma figura pelas

bolinhas vermelha e preta. A bolinha preta indica o ponto de equilíbrio de alta tensão.

Este é o ponto de operação normal do sistema. A bolinha vermelha corresponde ao ponto

de equilíbrio de babca tensão. Quando HTM{x,y) = R", a função / define de maneira
única o campo X. Problemas ocorrem quando HTM(x,y} C R" mas T\.TM.(x,y) ^ R" e

/ é transversal a ÏÍTM. Neste caso, não é possível determinar X a partir de /. O ponto

(a;, y) e M no qual este problema ocorre é chamado de um ponto singular do sistema
(5.17)-(5.18). Os pontos de singularidade do sistema em estudo estão apresentados na

figura 6 em verde.
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Figura 6: Componente conexa de interesse da variedade de configuração gerada a partir

da equação (5.18) para PL = -0,4; QL=Q e Bsh = 0.

A seguinte proposição caracteriza os pontos singulares em função do Jacobiano da

função g.

Proposition 5.1 O conjunto de pontos singulares do sistema (5.17)-(5.18) e o conjunto

Mo := {(x, y} ç M: g(x, y) = 0, detD^g(x, y) = 0}

Suponha que inicialmente o sistema está operando com uma carga (Pj, = —0,2, QL =

0). e que Bs = 0, ou seja, não há capacitar de compensação de reativos conectado na

barra de carga. Suponha também que os geradores dividem a carga equalitariamente de

tal forma que Ap = 0. Vamos imaginar que a carga ativa Pi, cresce lentamente. A medida

que a carga vai aumentando, a variedade de configuração M.\ vai encolhendo. Como a

variação de carga é lenta, podemos supor que o sistema permanece operando no ponto de

equilíbrio de alta tensão. Isto ocorre até PL atingir o valor —l. Neste instante, a variedade

M\ é constituída de um único ponto de equilíbrio degenerado. Qualquer incremento em
PL faz com que M\ = 0. Isto caracteriza uma bifurcação.

A variedade M\ é apresentada para vários valores de PL na figura 7. Devido a
dinâmicas de carga desprezadas, após a ocorrência da bifurcação, o sistema apresenta

uma dinâmica caracterizada pelo colapso de tensão. Na figura 8, apresenta-se o com-

portamento dinâmico das variáveis em função do tempo. Conforme a carga aumenta,

o módulo da tensão na barra de carga, representada pela curva verde, diminui lenta-

mente até um certo momento em que observa-se um declínio brusco denominado colapso

de tensão. Neste exemplo, o colapso de tensão ocorre sem a perda de sincronismo dos

geradores. Esta situação, embora peculiar, permite caracterizar o fenómeno colapso de

tensão como um problema distinto do problema de perda de sincronismo.

Pode-se verificar que a bifurcação que ocorre neste caso é uma bifurcação sela-nó.

Apenas um autovalor da matriz Jacobiana torna-se nulo no instante em que PL = —l.
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Figura 7: Variedades de configuração para diferentes valores de carga PL com QL = 0,

Bsh = 0. Os equilíbrios do sistema são apresentados para Ap = 0.

80 100 120
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Figura 8: Dinâmica do colapso de tensão devido a um crescimento lento de carga.
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Figura 9: Variedade de configuração para PL = —0.1 QL = 0, Bsh = 0. Os equüfbrios do

sistema são apresentados para vários valores de Ap.

Em geral, os engenheiros associam o problema de bifurcações sela-nó com o fenómeno

de colapso de tensão. Entretanto, isto não é verdade. Podem ocorrer bifurcações sela-

nó em que a mstabilidade caracteriza-se fundamentalmente pela perda de sincronismo

entre as máquinas. No próximo caso, vamos imaginar que a carga seja constante e que

o intercâmbio de potência AP entre o gerador l e 2 esteja aumentando. Neste caso a

variedade de configuração M\ permanece constante conforme apresentado na figura 9.

Conforme a carga vai aumentando, os dois equilíbrios vão se deslocando em cima de M.\.

Enquanto o equflibrio de babca tensão está abaixo do ponto de singularidade, ele é um
ponto de equilíbrio estável. Ao cruzar a singularidade, o ponto de equilíbrio de alta tensão

se torna um ponto de equilíbrio instável. Com o aumento progressivo de AP o ponto de

equilíbrio de alta tensão (bolinha preta) coalesce com o ponto de equilíbrio de bauca tensão
(bolinha vermelha) numa bifurcação sela nó.

Embora a bifurcação seja também sela-nó com um único autovalor nulo no ponto

de bifurcação, a maneira como ela se processa é um pouco diferente. Neste caso, a

variedade de configuração continua existindo mesmo após a bifurcação. O problema é

que a equação dinâmica induz um campo vetorial nesta variedade que debca de possuir

equilíbrios após a ocorrência da bifurcação. Após a ocorrência da bifurcação, o sistema

apresenta uma dinâmica caracterizada pela perda de sincronismo entre geradores. Na

figura 10, apresenta-se o comportamento dinâmico das variáveis em função do tempo.

Conforme a carga aumenta, a diferença angular entre os geradores, representada pela

curva vermelha, cresce lentamente até um certo momento em que a máxima capacidade

de transferir potência entre os geradores é atingida e o ângulo ^21 passa a crescer de forma

muito acentuada e indepedente do crescimento de carga. Esta situação caracteriza a perda

de sincronismo entre os geradores. Verificam-se oscüações muito rápidas nas variáveis da

rede como consequência da perda de sincronismo entre os geradores.

13



2.!

u

0.1

-0.

— delta21
— deltaU

VI

Perda de Sincronismo
Entre Geradores

J_l,-,„„„„„„ t_!_l_[_l-,-„„,„,„ L
150 200 250

Tempo (s)
400 450

Figura 10: Dinâmica da perda de sincronismo devido a um crescimento lento de carga.

Os exemplos anteriores utilizam sistemas de pequeno porte para ilustrar a ocorrência

de bifurcações. O grande desafio dos engenheiros de potência é predizer a ocorrência de
bifurcações em sistemas elétricos de potência de grande porte. Embora existam algumas

propostas, este problema continua aberto a novas contribuições.

6 Conclusões

Neste texto apresentou-se a formulação geral do problema de estabilidade em sistemas

elétricos de potência. Estudou-se em uma única formulação geral tanto o problema de

estabilidade de tensão como o de estabilidade de ângulo. O problema de singularidades
foi analisado para um sistema de pequeno porte e os mecanismos que levam este sistema

ao colapso por bifurcações sela-nó foram ilustrados. Predizer a ocorrência de bifurcações

em sistemas de grande porte é atualmente o grande desafio dos engenheiros para evitar a

ocorrência de blecautes.
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