INSTITUTO. Maamu DE PESQUISAS mmus :

,wmsrénto DR CNGIA € TECNOLOGIA': .

1. Dmdﬁilcn' 2. Teoria d"c’icibriird‘lé 3. Teoria do conirole néo-linear.
4. Sistemas de purumetros dlsmhmdos ‘
L Bnlthnzur, Jose Mnnoel llBouventuru, Maurilio. lil. SIIVG, Geruldo Nune '

I/

("

—



O Problema de Estabilidade em Sistemas Elétricos de
Poténcia

Luis F. C. Alberto Newton G. Bretas
luis@sel.eesc.usp.br ngbretas@sel.eesc.usp.br

Dep. de Eng. Elétrica, EESC - Escola de Eng. de Sao Carlos
USP - Universidade de Sao Paulo

1 Resumo

Este minicurso tém o intuito de apresentar uma introdugdo ao problema de estabilidade
em sistemas elétricos de poténcia e ilustrar as vérias causas que podem levar um sistema
a instabilidade. Particular atengdo é dada ao problema de bifurcagbes que podem levar o
sistema a um colapso (blecaute). Um sistema de poténcia é modelado, para estudos de
estabilidade, por um conjunto de equacoOes algébrico-diferenciais. Problemas de instabil-
idade surgem muitas vezes apds a ocorréncia de bifurcagdes deste conjunto de equagdes.
Neste trabalho, o problema de bifurcactes em sistemas de poténcia é estudado e ilustrado
através de exemplos. Particular atencdo é dada as singularidades das equacdes algébricas
que levam a problemas de perda de causalidade nos modelos utilizados.

2 Palavras Chaves

Sistemas de Poténcia, Estabilidade de Tens3o, Bifurcagdo, Singularidade, Equagdes Algébrico-
Diferenciais, Causalidade.

3 Introducao

Os sistemas elétricos de poténcia formam um dois mais complexos sistemas dindmicos
j& criados pelo homem. A complexidade destes sistemas estd associada a dois fatores
fundamentais: nao linearidades fortes e grande dimensdo. Nos tltimos anos, em muitos
sistemas de poténcia no mundo, a expansio da geracdo e da transmissao ndo acompanhou
o crescimento de demanda devido a escassez de recursos e restrigdes ambientais. Com isto,
os sistemas passaram a operar mais préximos dos limites e as ndo linearidades, inerentes
a estes sistemas, tornaram-se mais evidentes e fenémenos, que até entdo nao haviam sido
observados, passaram a se manifestar. Atualmente j4 foram relatados casos de sistemas
elétricos de poténcia, que em condigGes de alto carregamento, apresentam solugdes como
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ciclos limites, solucGes estas altamente indesejaveis neste tipo de sistema. BifurcacGes que
levam sistemas ao colapso (blecaute) também tém sido relatadas e amplamente estudadas.
Utilizando modelos matemaéticos, ja verificou-se também a possibilidade de existéncia
de atratores estranhos os quais também sao indesejiveis para a operagao segura destes
sistemas. Sincronizagdo de geradores é outro fenémeno observado em muitos sistemas e
muitas vezes explorado para a obtencdo de sistemas equivalentes reduzidos.

Diante de todos estes problemas e para garantir a operagio segura destes sistemas,
os engenheiros foram obrigados a aprofundar-se na teoria de sistemas dindmicos para
entender estes fendmenos, essencialmente nao lineares, e rever as técnicas de operagdo e
monitoramento com o objetivo de evitar a ocorréncia de blecautes. Algumas diretrizes
e técnicas tém sido propostas em situacdes peculiares mas o problema geral de garantia
de estabilidade continua em aberto. A riqueza de comportamentos dindmicos que pode
existir nestes sistemas faz com que os mesmos sejam também muito atrativos para os
estudiosos de sistemas n&o lineares.

Este minicurso tém o intuito de apresentar uma introdugo ao problema de estabilidade
em sistemas elétricos de poténcia e ilustrar as virias causas que podem levar um sistema
a instabilidade. Particular atencdo é dada ao problema de bifurcacoes que podem levar o
sistema a um colapso (blecaute).

4 Formulacao e Classificacao dos Estudos de Estabil-
idade

Os sistemas elétricos de poténcia sdo compostos essencialmente por geradores (mdquinas
sincronas na sua grande maioria), linhas de transmissdo e cargas (centros consumidores).
O principal objetivo dos sistemas de poténcia é atender a demanda de energia requerida
pelas cargas. Além de atender esta demanda, para serem confidveis e atender de maneira
ininterrupta as cargas, os sistemas devem ser robustos & presenca de perturbacoes.

Numa situagdo de equilibrio, a poténcia fornecida pelos geradores deve ser igual a
poténcia consumida pelas cargas mais as perdas inerentes ao sistema de transmissio.
Quando uma perturbacio (variagdes normais de carga, curto-circuitos) ocorre, este balango
de poténcia deixa de existir, e como conseqiiéncia, a poténcia liquida excedente injetada
no sistema transforma-se em energia cinética nos rotores das méquinas. Quando isto acon-
tece, um ou mais geradores aceleram com relagdo aos outros provocando oscilagoes entre
as miquinas do sistema. Estas oscilagoes sdo chamadas eletromecénicas e estao na faixa
de freqiiéncia de 1 Hz. Em algumas situagtes, dependendo da amplitude da perturbagao,
o sistema pode se tornar instavel provocando um blecaute devido a atuacdo em cascata
de diversos dispositivos de protecao.

Para estudar a dindmica destes sistemas e entender os mecanismos que levam os mes-
mos a instabilidade, modela-se cada um de seus componentes. As mdaquinas elétricas
(geradores, compensadores sincronos e motores de grande porte) ddo origem a um con-
junto de equagdes diferenciais do tipo:



§ = w

Mo = P,—P\(5,0,V)— Dw

onde 0 e w s@o respectivamente o desvio de dngulo e o desvio de velocidade do rotor.
A poténcia mecanica injetada na maquina é denotada por P,,, e P, é a poténcia elétrica
injetada na rede pelo gerador. O pardmetro D é a constante de amortecimento do con-
junto. As varidveis § e V sdo varidveis da rede e representam respectivamente o angulo
de fase e a amplitude do fasor tensfo nas barras (nds elétricos) da rede de transmissio.
Admite-se que as constantes de tempo da rede de transmissio sido muito menores do
que as constantes de tempo relacionadas & oscilagdo eletromecénica, em outras palavras,
admite-se que a rede esteja em regime permanente senoidal e modela-se a mesma por um
conjunto de equagdes algébricas ndo lineares (equacdes de balango de poténcia) do tipo:

(4.1)

0 — P,—P(5,6,V)
0 = QL—Q(J)QaV)

onde P e (1 sao respectivamente a poténcia ativa e reativa injetada na rede. Em
geral Pr e r representam a poténcia consumida pela carga. Modelos de carga sao muito
discutidos na literatura e até hoje ndo se tem um consenso a respeito de qual modelo
utilizar. Em geral modelos estaticos e passivos sdo utilizados para a carga, entretanto,
existem situagbes que exigem modelos dindmicos para as mesmas. Modelos dindmicos
para as cargas sdo em geral necessdrios em regides altamente industrializadas em que a
parcela de motores elétricos na composicdo da carga é elevada.

Em uma representacdo compacta, um sistema de poténcia pode ser modelado, para
estudos de estabilidade, pela seguinte equagéo:

& = flz,9,2)

onde z é o vetor de varidveis dos geradores, y é o vetor de varidveis da rede e das cargas,
A é um vetor de pardmetros em geral associado ao nivel de carregamento do sistema, a
funcao f representa o modelo dos geradores, a funcdo g o modelo de carga adotado e a
funcdo h representa as equacdes de balanco de poténcia nos nés da rede.

Do ponto de vista matemadtico, o problema de estabilidade do sistema dindmico (4.3)
é um problema tnico, entretanto, estudar o problema de estabilidade de um sistema
dindmico complexo como o sistema de poténcia de maneira tnica é muito dificil uma
vez que a perda de estabilidade pode se processar devido a diversos fatores diferentes e
envolvendo geralmente varidveis diferentes. Para simplificar a modelagem e a solugdo do
problema, divide-se o estudo de estabilidade de sistemas de poténcia segundo o tempo
envolvido na anélise como:

(4.2)

(4.3)

e Estabilidade de curto prazo,
e Estabilidade de médio prazo,

e Estabilidade de longo prazo,



segundo as varidveis de interesse como:

e Estabilidade de 4ngulo,
e Estabilidade de tensao,

e Estabilidade de velocidade,
e segundo a intensidade da perturbagao como:

e Estabilidade a grandes perturbacoes

e Estabilidade a pequenas perturbacoes

Neste texto, o problema de estabilidade de velocidade ndo serd abordado.

Os problemas de estabilidade de 4ngulo e estabilidade de tensao sao estudados tanto na
presenca de grandes perturbagdes, tais como curto-circuitos, como na presenca de peque-
nas perturbacdes, tais como variagbes normais de carga. No primeiro caso, as varidveis
do sistema sofrem grandes excurstes e o modelo utilizado é um conjunto de equacdes
algébrico-diferenciais nio lineares e, no segundo caso, as mesmas equagoes sdo linearizadas
admitindo-se que as varidveis do sistema sofrem pequenas excursoes ao redor de um certo
ponto de operacao.

O estudo da estabilidade de 4dngulo na presenca de grandes perturbagdes recebe o
nome de estabilidade transitéria na literatura de sistemas elétricos de poténcia. Neste tipo
de estudo, os engenheiros estdo preocupados em manter o sincronismo entre os angulos
dos geradores sincronos apds a ocorréncia de uma grande perturbagdo. Em linguagem
matemadtica, deseja-se que no instante de eliminagdo do defeito, o estado do sistema esteja
contido dentro da drea de atracdo do novo ponto de operacgio estdvel. Muitas vezes, neste
tipo de estudo, ignoram-se as dindmicas da carga e as varidveis das equacgoes algébricas
sdo eliminadas alegando-se que as varidveis importantes neste fendmeno sao os angulos
dos rotores. Neste caso o modelo utilizado tem, em geral, a seguinte forma:

i = f(z) (4.4)

O estudo de estabilidade de tensdo a grandes perturbactes ¢ muito similar ao estudo de

estabilidade de dngulo. Entretanto, alega-se, neste caso, que as varidveis importantes sao

as tensoOes nas barras de carga, e muitas vezes as dindmicas dos geradores sao desprezadas

admitindo-se que os mesmos nfo irdo perder o sincronismo durante o transitério. O
modelo usualmente empregado para esta situacao é:

v =g(h(y, V) (45)

No estudo de estabilidade de dngulo a pequenas perturbagOes, os engenheiros estdo
interessados em analisar os modos de oscilacdo do sistema. Modos de oscilacdo pouco
amortecidos sdo indesejdveis no sistema pois limitam a capacidade de transferéncia de
poténcia e ainda podem provocar desligamentos indesejdveis de alguns componentes do
sistema. O limite de estabilidade a pequenas perturbactes, também conhecido por limite
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Figura 1: Sistema de Poténcia 1

de estabilidade estatica, ocorre quando um autovalor aproxima-se do eixo imagindrio.
Neste caso, associa-se o problema a um ponto de méxima transferéncia de poténcia ativa
da rede de transmissdo. Em geral as dindmicas das cargas sdo desprezadas e o modelo
linearizado utilizado tém a seguinte forma:

& = Az+ Bu
0 = Cz+Du

No estudo de estabilidade de tensdo a pequenas perturbagdes, os engenheiros associam
o fendmeno colapso de tensdo a uma bifurcagdo das equacdes algébricas que representam
o sistema de transmissdo. Verifica-se também autovalores cruzando o eixo imaginério,
mas neste caso, associa-se o problema a incapacidade de fornecer suporte de reativos em
alguns pontos do sistema. Estuda-se neste caso o problema de bifurcacdes da seguinte
equacao:

(4.6)

0= h(y, A) (4.7)

Apesar das semelhangas entre os estudos de estabilidade de dngulo e de tensdo, ndo é
consenso na literatura o que deve e o que nao deve ser representado no modelo para cada
um dos estudos em quest8o. Ndo € claro também se existe alguma relacdo entre estes dois
problemas e se 0S mesmos possem uma origem comum.

Neste minicurso o problema de estabilidade de &ngulo e de estabilidade de tensio
sao colocados dentro de um tnico contexto e de uma tnica formulacdo. Estudam-se os
mecanismos que levam o sistema a perda de estabilidade de tensdo e perda de estabilidade
de dngulo dentro de uma formula¢do comum de forma a permitir um entendimento melhor
do problema de bifurcagdes em sistemas elétricos de poténcia.

5 Bifurcacoes em Sistemas Elétricos de oténcia

Nesta se¢do, o problema de bifurcagbes em sistemas elétricos de poténcia é ilustrado
através de dois exemplos de pequeno porte.

Exemplo 1
Considere o sistema da figura 1. Este sistema é composto por um gerador conectado a
barra 1 e uma carga na barra 2. Vamos modelar este sistema utilizando a formulagao tradi-



cional de estudos de estabilidade de tensdo a pequenas perturbagdes conforme equacao
(4.7). Para isto, todas as dindmicas do gerador 1 sdo desprezadas e o barramento 1 ¢
modelado como sendo um barramento infinito, ou seja, o gerador conectado a este bar-
ramento possui inércia infinita e capacidade ilimitada de injecdo de poténcia. A carga
conectada a barra 2 é modelada por uma injecido de poténcia constante Sp = Pr + jQp
e admite-se que a linha de transmissao nao tem perdas. A matriz admitancia desta rede
elétrica é dada por:

- Bll BlZ
Y =
J [321 Bas
sh 4
onde By; = By = bjs + %1 e By = By; = —bys. E importante observar que como a

linha é indutiva, entdo Bz = By; > 0 e se as capacitdncias “shunts”ndo sdo grandes
entdo By < 0, By < 0. Sejam By = Vig + jVi, e By = Voq + jV, 0s fasores de tensdo
respectivamente nas barras 1 e 2 e sejam Vi, = 0 (referéncia angular) e Viq = 1,0p.u.
(barramento infinito). Com um balango de poténcia na barra 2 obtém-se as seguintes
equacoes:

Pp — By V14V, =0 (5.8)
Qr + BV + 322V22q + B21V1aVea = 0 (5.9)

As varidveis nesta equacdo sdo Vo4 e Vo, € 0s pardmetros sdo Pr e Q. Numa notacdo
mais compacta escreveremos y := [Vag, Vo |7 € A := [Pr, Qr]T. Nesta notagio, as equagdes
de balanco de poténcia podem ser escritas na seguinte formulagdo geral:

h(y,\) =0 ’ (5.10)

que é exatamente a equagdo (4.7).

No problema de estabilidade de tensdo, estuda-se o comportamento das solugdes da
equacio (5.8-5.9)(5.10) com relagio & variagdo do pardmetro .

Neste caso em particular, vamos mostrar que a bifurcacdo passivel de ocorrer é uma
bifurcacio sela-né.

Da equagdo (5.8) obtém-se a equagdo auxiliar:

Py

V=50,

(5.11)

Esta equagao pode ser sempre resolvida e obtém-se uma tinica solugao V3, para cada valor
do parametro Pr.
Substituindo (5.11) em (5.9) obtém-se a seguinte equagdo de segundo grau em Vay:

Bs1Vig Qr P?
VA+ —=——"Vog+ -+ =2 =0 5.12
2d + B22 24 + B22 + B%I*V'lzd ( )
Esta equacdo é a equagdo de bifurcagdo. Com a seguinte mudanca de varidveis:
_ By Vig
Vag = 5By
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Figura 2: Diagrama de bifurcacdo - curva V

obtém-se:
., P BV
By BZVE  2B%

que numa forma mais compacta pode ser escrita como:

v? + =0

UQ +N(PL7 QL) =0

onde x é um pardmetro real que depende dos pardmetros originais P e (Jr. Portanto,
verifica-se a possibilidade de ocorréncia de uma bifurcacdo sela né. Se u < 0, a equacgio
(5.8-5.9) tem duas solucdes. Se p = 0, a equacdo (5.8-5.9) tem uma tnica solugio e se
u > 0 nfo existem solucbes de (5.8-5.9). A figura 2 ilustra as possiveis solugdes de (5.12)
em funcdo do pardmetro ;. Em sistemas de poténcia, quando existem duas solugdes, é
comum denomina-las solucbes de alta e de baixa tensdo. A solucio de alta tensdo € a
solugdo referente ao ponto de operagio normal. A solugfo de baixa tensfo estd associada
a equilibrios instdveis. A curva pg = 0 separa o espago de pardmetros em duas regiGes
distintas conforme mostrado na figura 3. Num dos lados o sistema possui duas solucgdes e
do outro nenhuma.

O segmento de reta na figura 3 ilustra a situacdo de um crescimento de carga, situagio
esta muito comum na operacdo do sistema. O sistema possui inicialmente uma carga
ativa de 0.1 pu MW e reativa de 0.01 pu MVAr. Nesta situacdo o sistema admite duas
solucGes e o sistema estd operando em condi¢gdes normais na solugdo de alta tensdo. O
crescimento de carga ocorre lentamente com fator de poténcia constante e a bifurcacao
ocorre aproximadamente quando a carga ativa € igual a 0.693 pu MW e a reativa é igual
a 0.0693 pu MVAr. A partir deste nivel de carga, o sistema nio admite nenhuma solugao
de equilibrio.
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Figura 4: Sistema de Poténcia 2

Uma andlise mais cuidadosa da funcdo u nos revela a possibilidade de evitarmos a
bifurcagdo por intermédio de compensacdo de reativos na barra 2. A insercdo de um
capacitor shunt na barra 2 modifica By, € eleva o nivel de poténcia no qual as bifurcacGes
ocorrem. A curva tracejada na figura 3 é a nova curva de bifurcacao quando um capacitor
shunt de 0.2 p.u. é adicionado & barra 2.

O exemplo 1 é o exemplo mais simples onde verifica-se a ocorréncia de uma bifurcacdo
estitica em sistemas de poténcia. A formulagdo utilizada no exemplo 1 é a formulacio
tradicional dos estudos de colapso de tensdo. A seguir apresentaremos um exemplo onde
formulamos o problema de forma mais geral para estudar tanto o problema de estabilidade
de angulo como o problema de estabilidade de tensao.

Exemplo 2
Considere o sistema de dois geradores e uma barra de carga da figura 4. Utilizando
o modelo classico para os geradores e modelando a carga por uma poténcia constante,



obtém-se o seguinte conjunto de equacdes algébricas-diferenciais:

Mlél == Pml —_ %Sin(él - 9[,)

M = Pry = “5sin(5; — 6) (5.13)
0 = PL — -‘%{—lsin(HL - 51) _ ZLXV—ZSiIl(aL — 52) ’
0 = Qr+(Bh—2)V2+ XA cos(6 — 61) + 22 cos(fz, — 62)

onde M;, Pp; e V; (i = 1,2) sdo pardmetros constantes e representam respectivamente
a inércia, a poténcia mecédnica injetada e 0 médulo de tensdo do i-ésimo gerador. Os
parametros da rede X e b*® representam respectivamente a reatincia indutiva das linhas
de transmissdo e a susceptancia do capacitor ”shunt”. As varigveis 6; e d» estdo associadas
aos desvios de angulo dos rotores dos geradores e Vy, e 81 sdo varidveis associadas a rede
de transmissdo e representam respectivamente o médulo e o dngulo de fase da tensdo na
barra de carga L.

O conjunto de equagdes (5.13) pode ser colocado numa forma mais compacta conforme
equacdo (4.3). Neste caso, as dindmicas da carga foram desprezadas e portanto §y =0 e a
funcdo g é o operador identidade. Neste exemplo vamos identificar situagtes de bifurcagdes
que levam o sistema ao colapso de maneiras distintas.

Para simplificar a notacio, fagamos M; = Mo =1, Vi =V, =1e X = 1. Com isto
temos o seguinte conjunto de equagdes:

& = Py — Visin(, — 6y)
52 == sz - VL SiIl((Sz — 91,)
6 = PL - VL sin(9L — (51) — VL sin(&L — 52)
0 = @Qr+ (BSh - Z)Vg + Vi COS(@L — 51) + Vi COS(GL — 52)
Tomando §; como referéncia para medida de dngulo e definindo &9 := § — &; €
0r1 = 0, — 0, obtém-se, subtraindo a primeira equacio da segunda, o seguinte conjunto
de equacdes:

(5.14)

0 = AP —Vpsin(8y — 611) — Vi sin(8z:)
0 = PL - VL sin(ém) - VL Sin(6L1 - 521) (515)
0 = Q-+ (B*—-2)V2+Vrcos(011) + Vi cos(6r1 — d21)
onde as varidveis de estados sdo d21,0L1 e V, e os pardmetros sio Pr,Qr, B*" e
AP = P,5— Pp;. Definindo a seguinte mudanca de coordenadas, o := 2—5“2'& ef:= %l,
obtém-se o seguinte conjunto de equagdes nas novas varidveis:

B = & — Vi sinBeos o
0 = Pp—2Vrsinacosf (5.16)
0 = Q-+ (B*—2)V2+2Vcosacosf

que de forma compacta podemos escrever como:

= f(z,y,A) (5.17)
0 = g(z,y,A) (5.18)

9
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Figura 5: Variedade de configuracio gerada a partir da equacdo (5.18) para Pp = —0,4;
QL =0e BSh =0.

onde z = 8, y = (&, V1) e A = (P1, Qz, B, AP).

A equagdo algébrica (5.18) é uma restri¢io que define variedades no espaco das varidveis
B,a e Vi. Estas variedades se repetem periodicamente nas varidveis § e o conforme
mostrado na figura 5 para P = —0,4, Qr = 0 e B** = 0. Neste problema estamos
interessados em estudar apenas uma componente conexa destas variedades. A figura 6
apresenta a componente conexa de interesse no espacgo das varidveis 5, e V.

Defina M,, a variedade de interesse na andlise em questdo, como sendo:

My = {(z,y) € R : g(z,y, ) = 0}

O campo vetorial f define, de maneira implicita, um campo vetorial X(z,y) : M —
TM(z,y), isto é:

IX(z,y) = f(z,y)

onde II é o operador projecio. O fluxo deste campo vetorial estd apresentado na
figura 6. Para Ap = 0, existem 2 equilibrios estdveis indicados nesta mesma figura pelas
bolinhas vermelha e preta. A bolinha preta indica o ponto de equilibrio de alta tensao.
Este é o ponto de operagdo normal do sistema. A bolinha vermelha corresponde ao ponto
de equilibrio de baixa tensdo. Quando IITM(z,y) = R*, a fun¢do f define de maneira
tdnica o campo X. Problemas ocorrem quando IITM(z,y) C R* mas [ITM(z,y) # R* e
f é transversal a IIT M. Neste caso, ndo é possivel determinar X a partir de f. O ponto
(z,y) € M no qual este problema ocorre é chamado de um ponto singular do sistema
(5.17)-(5.18). Os pontos de singularidade do sistema em estudo estdo apresentados na
figura 6 em verde.

10



. Equilibo Estivars, ..
de Alta Tensdo- -~ -,

0.84..-

07T : f
Siogularidsdé’

2 064..
054..-
0.44...-
034..-

02y, ol 'EQui}gt;_rlp,E's‘téwel"
Ct:... deBaixa Tensdo

Beta -1 14

Figura 6: Componente conexa de interesse da variedade de configuracdo gerada a partir
da equagdo (5.18) para Pr = —0,4; Q1 =0 e B =0.

A seguinte proposicdo caracteriza os pontos singulares em fungdo do Jacobiano da
fungdo g.

Proposition 5.1 O conjunto de pontos singulares do sistema (5.17)-(5.18) é o conjunto
M, := {(z,y) € M : g(z,y) = 0, detDyg(z, y) = 0}

Suponha que inicialmente o sistema estd operando com uma carga (P, = —0,2,Qr =
0). e que B*® = 0, ou seja, nfio hé capacitor de compensacdo de reativos conectado na
barra de carga. Suponha também que os geradores dividem a carga equalitariamente de
tal forma que Ap = 0. Vamos imaginar que a carga ativa Py, cresce lentamente. A medida
que a carga val aumentando, a variedade de configuracio M) vai encolhendo. Como a
variacao de carga é lenta, podemos supor que o sistema permanece operando no ponto de
equilibrio de alta tensao. Isto ocorre até Py, atingir o valor —1. Neste instante, a variedade
M), é constituida de um tnico ponto de equilibrio degenerado. Qualquer incremento em
Py, faz com que M, = . Isto caracteriza uma bifurcaggo.

A variedade M), é apresentada para vérios valores de Pp na figura 7. Devido a
dindmicas de carga desprezadas, apds a ocorréncia da bifurcagio, o sistema apresenta
uma dindmica caracterizada pelo colapso de tensdio. Na figura 8, apresenta-se o com-
portamento dindmico das varidveis em funcdo do tempo. Conforme a carga aumenta,
o mdédulo da tensdo na barra de carga, representada pela curva verde, diminui lenta-
mente até um certo momento em que observa-se um declinic brusco denominado colapso
de tensdo. Neste exemplo, o colapso de tensdo ocorre sem a perda de sincronismo dos
geradores. Esta situacdo, embora peculiar, permite caracterizar o fenémeno colapso de
tensdo como um problema distinto do problema de perda de sincronismo.

Pode-se verificar que a bifurcagdo que ocorre neste caso é uma bifurcacio sela-né.
Apenas um autovalor da matriz Jacobiana torna-se nulo no instante em que P, = —1.
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Figura 7: Variedades de configuracdo para diferentes valores de carga Pr com Qp = 0,
B** = 0. Os equilibrios do sistema sdo apresentados para Ap = 0.
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Figura 8: Dindmica do colapso de tensdo devido a um crescimento lento de carga.
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Figura 9: Variedade de configuragio para Pp, = —0.1 Q7 = 0, B** = 0. Os equilibrios do
sistema sdo apresentados para varios valores de Ap.

Em geral, os engenheiros associam o problema de bifurcagdes sela-né com o fenémeno
de colapso de tensdo. Entretanto, isto ndo é verdade. Podem ocorrer bifurcacdes sela-
né em que a instabilidade caracteriza-se fundamentalmente pela perda de sincronismo
entre as mdquinas. No préximo caso, vamos imaginar que a carga seja constante e que
o intercAmbio de poténcia AP entre o gerador 1 e 2 esteja aumentando. Neste caso a
variedade de configuracdo M) permanece constante conforme apresentado na figura 9.
Conforme a carga vai aumentando, os dois equilibrios v&o se deslocando em cima de M,.
Enquanto o equilibrio de baixa tensdio estd abaixo do ponto de singularidade, ele é um
ponto de equilibrio estavel. Ao cruzar a singularidade, o ponto de equilibrio de alta tensdo
se torna um ponto de equilibrio instavel. Com o aumento progressivo de AP o ponto de
equilibrio de alta tensdo (bolinha preta) coalesce com o ponto de equilibrio de baixa tensio
(bolinha vermelha) numa bifurcagio sela né.

Embora a bifurcacdo seja também sela-né com um tinico autovalor nulo no ponto
de bifurca¢do, a maneira como ela se processa é um pouco diferente. Neste caso, a
variedade de configuracdo continua existindo mesmo apés a bifurcagdo. O problema é
que a equacao dindmica induz um campo vetorial nesta variedade que deixa de possuir
equilibrios apds a ocorréncia da bifurcacio. Apds a ocorréncia da bifurcacdo, o sistema
apresenta uma dindmica caracterizada pela perda de sincronismo entre geradores. Na
figura 10, apresenta-se o comportamento dindmico das varidveis em funcio do tempo.
Conforme a carga aumenta, a diferenca angular entre os geradores, representada pela
curva vermelha, cresce lentamente até um certo momento em que a méxima capacidade
de transferir poténcia entre os geradores é atingida e o 4ngulo d; passa a crescer de forma
muito acentuada e indepedente do crescimento de carga. Esta situagio caracteriza a perda
de sincronismo entre os geradores. Verificam-se oscilagdes muito rdpidas nas varidveis da
rede como conseqiiéncia da perda de sincronismo entre os geradores.
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Figura 10: Din&mica da perda de sincronismo devido a um crescimento lento de carga.

Os exemplos anteriores utilizam sistemas de pequeno porte para ilustrar a ocorréncia
de bifurcacBes. O grande desafio dos engenheiros de poténcia é predizer a ocorréncia de
bifurcagdes em sistemas elétricos de poténcia de grande porte. Embora existam algumas
propostas, este problema continua aberto a novas contribuicGes.

6 Conclusoes

Neste texto apresentou-se a formulagdo geral do problema de estabilidade em sistemas
elétricos de poténcia. Estudou-se em uma tnica formulagado geral tanto o problema de
estabilidade de tensdo como o de estabilidade de dngulo. O problema de singularidades
foi analisado para um sistema de pequeno porte e 0s mecanismos que levam este sistema,
ao colapso por bifurcagdes sela-né foram ilustrados. Predizer a ocorréncia de bifurcagGes
em sistemas de grande porte é atualmente o grande desafio dos engenheiros para evitar a
ocorréncia de blecautes.
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