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Abstract—We present recent results on neutral fermion pair production by magnetic field inhomogeneities
as external backgrounds. Vacuum instability characteristics are calculated in the framework of QED with
x-steps and specified to a magnetic step that allows solving the relativistic wave equation pertinent to this
problem.
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1. INTRODUCTION

According to the usual interpretation, pair
production by external fields is intimately associated
with the possibility of such backgrounds producing
work on virtual pairs of charged particles [1–15]. This
raises the question as to whether inhomogeneous
magnetic fields, which, contrary to homogeneous
magnetic fields, produce work on particles with a
magnetic moment, can actually create pairs from
the vacuum. The answer to this question is affirma-
tive, provided the particles are neutral and have an
anomalous magnetic moment. This work presents
our recent results on neutral fermion pair produc-
tion by magnetic field inhomogeneities [16]. Our
study is based on the quantization of fermion fields
in terms of neutral particles/antiparticles, whose
states have well-defined spin polarizations [17] and
for which a nonperturbative formulation in QED
[18, 19] can be used. To employ this formulation–
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which relies on the possibility of solving the Dirac–
Pauli equation exactly–we consider an external mag-
netic field given by an analytic function; see Sec-
tion 2 for its definition. We consider the four-
dimensional Minkowski spacetime, parameterized
by coordinates X = (Xμ, μ = 0, i) = (t, r), t = X0,
r = Xi = (x, y, z), i = 1, 2, 3, metric tensor ημν =
diag (+1,−1,−1,−1), and employ natural units
(� = 1 = c).

2. SOLUTIONS
OF THE DIRAC-PAULI EQUATION

WITH STEPLIKE MAGNETIC FIELDS
The motion of a relativistic spin 1/2 neutral

particle with anomalous magnetic moment μ, mass
m, in external electromagnetic fields is described by
the Dirac–Pauli (DP) equation [20, 21]. Considering
steplike magnetic fields1) (or magnetic steps) as

1)Time-independent magnetic fields oriented along a specific
direction (say, z-direction), inhomogeneous along another
direction (say, y-direction), B (r) = (0, 0, Bz (y)), homoge-
neous at remote distances, Bz (±∞) = const., and whose
gradient is always positive ∂yBz (y) ≥ 0 (thus, Bz (+∞) >
Bz (−∞)).
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external backgrounds B (r) = (0, 0, Bz (y)), the DP
equation in the Schrödinger form reads

i∂tψ (X) = Ĥψ (X) , Ĥ = γ0
(
γ3p̂z +ΣzΠ̂z

)
,

Π̂z = Σz (γp̂⊥ +m)− IμBz (y) ,

Σz = iγ1γ2. (1)

ψ (X) is a four spinor, γμ =
(
γ0,γ

)
are Dirac matri-

ces, I is the 4× 4 identity matrix, and μ is the alge-
braic value of the magnetic moment (e.g., μ = − |μN |
for a neutron). The set of operators p̂0, p̂x, p̂z, Π̂z , and

R̂ = ĤΠ̂−1
z

[
I+

(
p̂zΠ̂

−1
z

)2
]−1/2

are compatible and

are integrals of motion (i.e., they commute with the
Hamiltonian operator (1)). In particular, DP spinors
obey the eigenvalue equations:
p̂0ψn (X) = p0ψn (X) , p̂xψn (X) = pxψn (X) ,

p̂zψn (X) = pzψn (X) ,

Π̂zψn (X) = sωψn (X) , R̂ψn (X) = sψn (X) ,

p20 = ω2 + p2z, s = ±1. (2)

Solutions to the eigenvalue equations can be
presented in the form ψn(X) = exp(−ip0t+ ipxx +
ipzz)ψn(y), where

ψn (y)

= (I+ sR) [π̂z + I (μBz (y) + sω)]ϕn,χ (y) υ
(χ)
κ ,

π̂z = Σz

(
γ1px + γ2p̂y +m

)
,

R =
γ0Σz + (spz/ω) γ

0γ3√
1 + p2z/ω

2
, iγ1υ(χ)κ = χυ(χ)κ ,

γ0γ2υ(χ)κ = κυ(χ)κ , χ = ±1 = κ. (3)

Here, n = (px, pz, ω, s) labels the complete set of

quantum numbers, υ(χ)κ are constant and orthonor-

mal spinors, υ
(χ′)†
κ′ υ

(χ)
κ = δχ′χδκ′κ, and ϕn,χ (y) a

scalar function, solution to the second-order ordinary
differential equation{

− d2

dy2
− [sω + μBz (y)]

2 + π2
x + iμχB′

z (y)

}

× ϕn,χ (y) = 0, π2
x = m2 + p2x. (4)

To quantize fermion fields in the framework of
QED with x-steps [18, 19], one needs to classify
DP spinors based on their asymptotic properties. At
remote areas–where the field can be considered ho-
mogeneous and do not accelerate particles–the co-
efficient proportional to χ in (4) is absent. There-
fore, solutions of Eq. (4) have well-defined “left” (L)
ζϕn,χ (y) and “right” (R) ζϕn,χ (y) asymptotic forms

ζϕn,χ (y) = ζN exp
(
iζ

∣∣∣pL
∣∣∣ y

)
,

ζ = sgn
(
pL

)
, y → −∞,

ζϕn,χ (y) =
ζN exp

(
iζ

∣∣∣pR
∣∣∣ y

)
,

ζ = sgn
(
pR

)
, y → +∞, (5)

with real asymptotic momenta
∣∣∣pL/R

∣∣∣ =√[
sπs

(
L/R

)]2 − π2
x provided

[
πs

(
L/R

)]2
> π2

x,

πs
(
L/R

)
= ω − sUL/R. The potential energy of a

fermion in the field is sU (y), U (y) = −μBz (y), and
UL = U (−∞), UR = U (+∞) denote the
corresponding asymptotic potential energies. For a
fermion with negative magnetic moment μ = − |μ|,
the difference U ≡ UR − UL is always positive.

The normalization constants ζN , ζN can be
calculated with the aid of the inner product on the
time-like hyperplane y = const., namely (ψ,ψ′)y =∫
dtdxdzψ† (X) γ0γ2ψ′ (X). Assuming that all

processes take place in a macroscopically large
space-time box, of volume TVy, Vy = LxLz , and
imposing periodic boundary conditions at the bound-
aries, the inner product is y-independent and the
DP spinors may be subjected to the normalization
conditions (

ζ′ψn′ , ζψn

)
y
= ζηLδn′nδζ′ζ ,(

ζ′
ψn′ , ζψn

)
y
= ζηRδn′nδζ′ζ , (6)

where ηL/R = sgn
[
πs

(
L/R

)]
. Under these condi-

tions, “left” ζψn (X) and “right” ζψn (X) sets of DP
spinors are orthogonal and complete, and it allows
expanding one set in terms of another as follows

ζψn (X) = ηL

∑
ζ′=±

ζ ′g
(
ζ′ |ζ

)
ζ′ψn (X) ,

ζψn (X) = ηR

∑
ζ′=±

ζ ′g
(
ζ′ |ζ

)
ζ′
ψn (X) , (7)

in which
(
ζψn,

ζ′
ψn′

)
y
= δnn′g

(
ζ |ζ

′
)
=

δnn′g
(
ζ′ |ζ

)∗
.

To explicitly calculate vacuum instability
characteristics (due to neutral fermion pair produc-
tion from the vacuum), we consider the external field

Bz (y) = �B′ tanh (y/�) , B′ > 0, � > 0, (8)

as it enjoys the properties above discussed and allows
solving the DP equation exactly. Exact solutions of
Eq. (4) with “left” and “right” asymptotic properties
(5) have the form [16]

ζϕn,χ (y) = ζN exp
(
iζ

∣∣∣pL
∣∣∣ y

)
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× [1 + exp (2y/�)]−i�(ζ|pL|+|pR|)/2
ζu (ξ) ,

ζϕn,χ (y) =
ζN exp

(
iζ

∣∣∣pR
∣∣∣ y

)

× [1 + exp (−2y/�)]i�(|p
L|+ζ|pR|)/2 ζu (ξ) , (9)

where −u (ξ) = F (a, b; c; ξ), +u (ξ) = F (a+ 1− c,
b+ 1− c; 2− c; ξ), −u (ξ) = F (a, b; a+ b+ 1− c;
1− ξ), and +u (ξ) = F (c− a, c− b; c+ 1− a− b;
1− ξ) are Hypergeometric functions [22], whose pa-
rameters are a = (1− χ)/2− i�(U + |pL| − |pR|)/2,
b = (1 + χ)/2 + i�(U+ |pR| − |pL|)/2, and c = 1−
i�|pL|.

3. NEUTRAL FERMION PAIR CREATION
FROM THE VACUUM

The condition that solutions have physical
asymptotic momenta pL/R introduces important limi-
tations on the quantum numbers. For critical fields
U > Uc = 2m, the manifold of quantum numbers
divides into five subranges [18]. Particle creation
takes place only in the so-called Klein zone Ω3,

Ω3 = {n : UL + πx ≤ sω ≤ UR − πx,

πxz ≤ U/2}, πxz =
√

π2
x + p2z. (10)

The quantization is realized using exact solutions
classified as particle/antiparticle and as inco-
ming/outgoing waves. After a careful considera-
tion of the inner product on t-constant hyperplane
(ψn, ψ

′
n′) =

∫
drψ†

n(X)ψ′
n′(X), it follows that lin-

early independent sets of spinors are classified as [18]:

in-solutions : −ψn (X) ,−ψn (X) ,

out-solutions : +ψn (X) ,+ψn (X) , n ∈ Ω3. (11)

Based on this classification, we may introduce “in”
and “out” sets of operators

in-set: −bn3 (in) ,
−an3 (in) ,

out-set: +bn3 (out) ,+an3 (out) , (12)

which, in turn, obey the anticommutation relations[
−an′

3
(in) ,−a†n3 (in)

]
+
=

[
−bn′

3
(in) ,−b

†
n3 (in)

]
+
=

δn′
3n3

,
[
+an′

3
(out) ,+a†n3 (out)

]
+
=

[
+bn′

3
(out) ,

+b
†
n3 (out)

]
+
= δn′

3n3
, and annihilate the correspon-

ding vacuum states

−bn3 (in) |0, in〉 = −an3 (in) |0, in〉 = 0,

+bn3 (out) |0, out〉 = +an3 (out) |0, out〉 = 0. (13)
Thus, we may quantize the DP field operator in the
Klein zone as

Ψ̂ (X) =
∑
n∈Ω3

M−1/2
n

[
−an (in)−ψn (X)

+ −b
†
n (in)−ψn (X)

]
,

=
∑
n∈Ω3

M−1/2
n

[
+an (out)+ψn (X)

+ +b
†
n (out)+ψn (X)

]
, (14)

where Mn = 2 |g (+|−)|2 Cn and Cn are some
constants; see [16, 18, 19] for their definition. Using
orthogonality relations between DP spinors, it is
possible to derive linear canonical transformations
between sets of operators. For example, one (out of
four) of such thansformations have the form

+an (out) = −g
(
−|+

)−1
−b

†
n (in)

+ g
(−|+

)−1
g
(
+|+

)−an (in) . (15)

Using such a transformation, we may finally compute
the differential mean numbers of “out” particles cre-
ated from the “in” vacuum,

N cr
n =

〈
0, in

∣∣∣+a†n (out)+an (out)
∣∣∣ in, 0

〉

=
∣∣g (−|+

)∣∣−2
, n ∈ Ω3, (16)

the flux density of particles created with a given s

ncr
s =

1

VyT

∑
n∈Ω3

N cr
n

=
1

(2π)3

∫
dpz

∫
dpx

∫
dp0N

cr
n (17)

and the vacuum-vacuum transition probability

Pv = |〈0, out|0, in〉|2

= exp

⎡
⎣∑
s=±1

∑
n∈Ω3

ln (1−N cr
n )

⎤
⎦ . (18)

It should be noted that ncr
+1 = ncr

−1; thus, the total flux
density of particles created is ncr = ncr

+1 + ncr
−1. The

exact differential mean number of pairs created from
the vacuum by the magnetic step (8) has the form [16]
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N cr
n =

sinh
(
π�

∣∣pR
∣∣) sinh (π� ∣∣pL

∣∣)

sinh
[
π�

(
U+

∣∣pL
∣∣− ∣∣pR

∣∣) /2] sinh [π� (U+
∣∣pR

∣∣− ∣∣pL
∣∣) /2] . (19)

To unveil important features about pair creation,
it is worth discussing a situation where the field in-
homogeneity evolves “gradually” along the y-axis,
such that it stretches over a relatively wide region of
the space. Such a configuration is achieved as long

as the condition
√

�U/2 	 max
(
1,m/

√
|μ|B′

)
is

satisfied. For this configuration, the mean num-
ber of pairs created is approximately given by N cr

n ≈
exp

[
−π�

(
U−

∣∣pR
∣∣− ∣∣pL

∣∣)]. Performing summa-
tions over all quantum numbers, the total flux den-
sity of the pairs created ncr and the vacuum-vacuum
transition probability (18) have the form:

ncr ≈ 1

2π3
�2

(
|μ|B′)5/2 e−πb′

Ib′ ,

Ib′ =

∞∫

0

du

(u+ 1)5/2
ln

(√
1 + u+

√
1 + 2u√

u

)
e−πb′u,

Pv = exp (−βVyTn
cr) ,

β =

∞∑
l=0

εl+1

(l + 1)3/2
e−lπb′

,

εl =
Ib′l

Ib′
, b′ =

m2

|μ|B′ . (20)

If the field inhomogeneity is strong, m2/ |μ|B′ � 1,
the total flux density of the pairs created is admits an
approximate form ncr = �2

(
π+ln2−1

6π3

)
(|μ|B′)5/2 ×

e−πm2/|μ|B′
. This approximation is quite similar to

an earlier estimate, derived for the linearly-growing
magnetic field [17].

The described mechanism raises the question
about the critical magnetic field intensity, near which
the phenomenon could be observed. It is possible
to estimate such a field based on fermion’s mass
and anomalous magnetic moment. Since, within
the present model, max (Bz (y)) = Bz (y) = �B′, the
nontriviality of the Klein zone U > 2m yields the
condition:

U = 2 |μ| �B′ > 2m → �B′

= max (Bz (y)) ≡ Bcr >
m

|μ| ≈ 1.73 × 108

×
( m

1 eV

)(
μB

|μ|

)
G. (21)

Here, μB = e/2me ≈ 5.8× 10−9 eV/G is Bohr’s
magneton [23]. For a neutron, mN ≈ 939.6× 106 eV,
μN ≈ −1.042 × 10−3μB, the critical magnetic field
(21) is Bcr ≈ 1.6× 1020 G. More optimistic val-
ues can be estimated for neutrino pair production.
Considering a recent experimental limit to neutrinos
effective magnetic moment μν ≈ 2.9× 10−11μB [24]
and mass mν ≈ 10−2 eV [25], we find Bcr ≈ 6×
1016 G. This value lies within the range of values
in astrophysical environments. For example, it was
reported [26–28], that magnetic fields of the order of
1016–1018 G could be generated during a supernova
explosion or in the vicinity of magnetars. Moreover,
ultra-intense magnetic fields (of order up to 1020 G)
can be produced at the core of compact magnetars
[29]. Thus, the mechanism here described can
potentially explain additional sources of astrophysical
neutrinos. Moreover, bearing in mind the possible
existence of light sterile neutrinos, vacuum instability
effects due to inhomogeneous magnetic fields may be
relevant to studies on cosmological dark matter.
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