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We explicitly construct, in terms of Gelfand-Tsetlin tableaux, a new family of simple
positive energy representations for the simple affine vertex algebra V(sl,,, ;) in the min-
imal nilpotent orbit of sl, ;. These representations are quotients of induced modules
over the affine Kac-Moody algebra f,A[nH and include in particular all admissible simple
highest weight modules and all simple modules induced from sl,. Any such simple

module in the minimal nilpotent orbit has bounded weight multiplicities.

1 Introduction

Relaxed highest weight modules for affine Kac-Moody algebras attract a considerable
interest due to their connection to the representation theory of conformal vertex
algebras and conformal field theories, cf. [16], [2], [3], [4], [5], [1], [10] and the references
therein. In particular, the importance of relaxed highest weight admissible modules for
conformal field theory was shown in [34], [11], [12], see also [35], [15]. Using the Zhu's
functor the study of positive energy representations of simple affine vertex algebras
reduces to the representations of the underlined finite-dimensional Lie algebra. This
allows to construct new families of simple representations of admissible vertex
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algebras. This has been exploited in [9], where new families of simple modules were
constructed for the affine vertex algebra of sl, and a complete classification of all
simple relaxed highest weight representations with finite-dimensional weight spaces
in the case n = 3 was obtained. Further on, this approach was developed in [29%]
and [30] using Fernando—Mathieu classification of simple weight representations with
finite weight multiplicities of finite-dimensional simple Lie algebras. These papers
provided an algorithm for classifying all admissible relaxed highest weight modules
starting from admissible highest weight modules. The latter modules were classified
in [27] and [7]. However, explicit construction of admissible relaxed highest weight
representations beyond their classification is rather difficult. Moreover, the algorithm
is limited to the modules with finite weight multiplicities. We refer to the recent paper
[20], where the localization and the Wakimoto functors were used to construct relaxed
Wakimoto modules for the universal and simple affine vertex algebras with infinite
weight multiplicities.

The current paper aims to give an explicit construction of admissible repre-
sentations extending [9], where the Gelfand-Tsetlin tableau realization was used to
describe admissible families in type A. Such realization provides a basis and explicit
formulas for the action of the Lie algebra. In this paper we describe several new
families of simple positive energy weight representations of the admissible affine vertex
algebra V; (sl,,). These families include all simple highest weight modules in the minimal
nilpotent orbit described in [6]. They also include simple modules in the minimal
nilpotent orbit induced from an sl,-subalgebra. All constructed modules have bounded
weight multiplicities. Our approach is based on the theory of relation Gelfand-Tsetlin
modules developed in [21], where explicit tableau basis was constructed for different
classes of simple Gelfand-Tsetlin modules for gl,,.

Our 1st main result is Theorem 4.8, which provides a tableau realization for
simple highest weight modules, namely we give necessary and sufficient conditions
for such modules to be relation modules with respect to the standard Gelfand-Tsetlin
subalgebra. In Section 5 we apply twisted localization to relation Gelfand-Tsetlin

modules. We establish the following result (cf. Theorem 5.4).

Theorem 1.1. Let g = sl,,,, I the standard Gelfand-Tsetlin subalgebra (correspond-
ing to the chain of embeddings starting from the upper left corner), f = E,;, and M a
I'-relation module with an injective action of f. Then the twisted localization D}‘M of M

is a I'-relation Gelfand-Tsetlin module for any x € C.
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Simple Modules in the Minimal Nilpotent Orbit 3

Using the theorem above we obtain our 2nd main result—Theorem 5.6, where
we classify all simple I'-relation Gelfand-Tsetlin modules induced from sl,-subalgebra
generated by E;, and E,;. Also, in Theorem 5.8, we obtain an explicit construction of
a family of simple sl, ,-modules, which are parabolically induced from cuspidal a-
modules, where a =~ sl is part of the I'-flag, m = 2, ..., n. Further, localization of simple
highest weight relation modules is considered in Proposition 5.12 for a multiplicative
set generated by any number of commuting generators of the form E;.

Finally, in Section 6, we establish our 3rd main result—explicit description
of simple admissible highest weight sl,,,-modules and modules induced from sl,

subalgebra in the unique minimal non-trivial nilpotent orbit Q,,;, of sl,,_ ;. Let

min

k+n:£—1, p>n,q>1land (p,q =1,
q
aecfl,2,...,q—1}and A, = A — %wl, where A = (A,...,A,) is a weight of sl ; with
Aj € Zzo, foralli=1,...,n, A +...+ 1, < p—n. Then we have (cf. Theorem 6.3 and
Theorem 6.12):

Theorem 1.2.

(i) If I' is the standard Gelfand-Tsetlin subalgebra then the simple highest
weight module L(%,) is a bounded I'-relation Gelfand-Tsetlin s, ;-module.
Moreover, all simple admissible highest weight modules in the minimal
nilpotent orbit are bounded I'-relation Gelfand-Tsetlin modules.

(ii) Let m be a basis of the root system of g, b(wr) the corresponding Borel
subalgebra of g, B a positive (with respect to x) root of g, and p, the half-
sum of positive (with respect to 7) roots. Let Ly, (3) be an admissible simple
b(r)-highest weight g-module in the minimal orbit, such that (x + p,, 8") ¢ Z,
and f = f. Denote by A, 4 the set of all x € C\Z for which x+(x + p,., 8") ¢ Z.
Then the twisted localization modules D}‘Lb(n)(k), x € Aryg, exhaust all
simple sl,-induced admissible modules in the minimal orbit. Moreover, there

exists a flag 7 such that DLy, (1) is I'z-relation Gelfand-Tsetlin g-module.
2 Preliminaries

2.1 Weight modules

Let g be a simple complex finite-dimensional Lie algebra, §) a fixed Cartan subalgebra,

U(g) the universal enveloping algebra of g, and W the Weyl group of g. By A we denote
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4 V. Futorny et al.

the root system of g and by A, the set of positive roots with respect to a fixed basis =
of A. Put Q = > Z« for the root lattice and Q¥ = > Z«" for the coroot lattice, where

aeA aeA
oY = 2a/(a,a). Let p, to be the half sum of positive roots.

By b(rr) we denote the standard Borel subalgebra of g corresponding to the set
7. In addition to the standard Borel subalgebra of g we also consider the standard
parabolic subalgebras of g. For a subset ¥ of = denote by Ay the root subsystem in h*
generated by X. Then the standard parabolic subalgebra py, () of g associated to = and
¥ is defined as py(7) = Iy @ uf with nilradical uf = @Doca,\ax 9or OPPOsite nilradical

uy = @yea,\ay 9o and Levi subalgebra [y, defined by

s :=h @ga.

a€Ay

Moreover, we have the corresponding triangular decomposition g = uy, @ [y & u; Note
that if ¥ = ¢ then py(7) = b(xr), and if ¥ = 7 then py(7) = g.

Recall that a g-module (respectively [y-module) M is called weight if b is
diagonalizable on M. Let V be a simple weight [y, -module. Set p := py () and consider V
as a p-module with trivial action of the nilradical uJLE. The generalized Verma g-module
M (%, V) is the induced module

My (Z,V) =1Ind}V = U(g) Ry V-

The module MS(E, V) has a unique maximal submodule and a unique simple quotient
Ly(Z, V). We write M()) for the Verma module Mg(ﬂ)(@,CvA) and L(}) for Lg(ﬂ)(ﬂ,(CVA)
when it is clear which Borel subalgebra is meant.

Let M be a weight g-module. For A € h* the subspace M, of those v € V such that
hv = A(h)v is the weight subspace of weight A. The dimension of M, is the multiplicity
of weight A. We say that a weight module is bounded if all weight multiplicities are
uniformly bounded. A weight g-module M is torsion free if for any nonzero weight
subspace M, and any root «, a nonzero root vector X € g, defines an isomorphism
between M, and M,_,. A weight module M is cuspidal if M is finitely generated torsion

free module with finite weight multiplicities.

Proposition 2.1. [31, Corollary 1.4] For a simple weight g-module M with finite weight

multiplicities, the following assertions are equivalent:

(a) M is cuspidal;

20T JoqWIdAON 6z UO J8sn O 13dd OYdIFald SYH131 SYIONIIO VId0SOT1I4 3ava1nNOVv4 Ad #6971 £9/6G | qeul/uiwl/e601 01 /10p/d[01E-80UBAPE/UILI/WOD dNO"dIWapEDE//: S}y WOy PEPEOJUMO(



Simple Modules in the Minimal Nilpotent Orbit 5

(b) M is torsion free;

(c) The support of M is exactly one Q-coset.

A weight module satisfying Proposition 2.1, (c) is called dense.

2.2 Annihilators

Recall that A € b* is dominant if (A + p,,a") ¢ Z_y, for all @« € A,. Similarly A is
antidominant if (A + p,,a) ¢ Z_q for alla € A, . Also, 1 is regular if (A + p,,a") # 0 for
all @« € A. If Z is the center of U(g) and A € b*, then x, : £ — C stands for the central
character of L(A).

For an associative algebra A and an A-module M, the annihilator of M in A is
the ideal {a € A | am = 0 for allm € M} and will be denoted by Ann, ().

Proposition 2.2. [13, 8.5.8] If A € h* is dominant, then the annihilator of L(1) is the

unique maximal two-sided ideal of U(g) containing U(g) ker y; .

If 1 is regular dominant, then the correspondence I — IM()) gives an order-
preserving bijection between two-sided ideals of U(g) containing U(g) ker x, and sub-
modules of M (1) [24, Corollaries 4.3 and 4.8]. As a consequence of Proposition 2.2 we

immediately have the following well-known assertion.

Corollary 2.3. LetA,u € h* be dominant. If 4 = w-A for some w € W then Anng ) L(A) =

Anng ) L(n). Moreover, the converse holds if A is regular.

2.3 Affine vertex algebras

Consider the non-twisted affine Kac-Moody algebra associated with g: § = glt, t~!]14-CK,
where K is a central element. Denote by A the set of roots of §. Then A™ = {a + mé | « €
A, m € Z} is the set of real roots and Kf =fa+mélaeA,meZplu{—a+mé|ae
A, m € Z,} is the set of positive real roots with respect to the basis = U{—6 + &}, where
0 is the maximal positive root of g and § is the minimal indivisible positive imaginary
root. By W = W x Q¥ we denote the extended affine Weyl group of .

For k € C denote by V¥(g) the universal affine vertex algebra associated with g
at level k ([18, 26]):

k
V(g = U@ ygaack) CVir

where g[tlv, = 0 and Kv; = kv;.
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6 V. Futorny et al.

The simple affine vertex algebra associated with g at level k is the unique simple
graded quotient of V¥(g), which will be denoted by Vi(9). In the conformal case (i.e.,
k # —h", where h" is the dual Coxeter number of g) there is a one-to-one correspondence
between simple positive energy representations of V;(g) and simple A(V;(g))-modules
[36], where

A(Vi(9) = U(g) /Iy

is the Zhu's algebra of V;(g) and I; is some two-sided ideal of U(g).

For A € h* and k € C denote byfk(k) the simple highest weight g-module with the
highest weight A=A+ kAg € E*, where Ay(K) = 1, and Ay(h) = 0 for h € h. Following
[27], the module fk(/\), and the highest weight A, will be called admissible if

(1) (A+p,a’)¢Zgforallae ATE;
(2) QA()=QA™,

where A(A) = {& € A™ | (A + 5,aV) € Z}. The level k of § is admissible if the §-module
V() = fk(O) is admissible.

In this paper we are interested in type A only, hence from now on we fix n > 2
and assume that g is of type A,,. In this case the description of admissible levels is as

follows.

Proposition 2.4. [28, Proposition 1.2] Let g = sl,,, ;. The number k is admissible if and

only if
k+n=§—1 withp,qeN, (p,9) =1, p>n+1.

2.4 Relaxed highest weight modules

Fix an admissible number k. Following [9], we say that a g-module M is admissible of
level k if M is an A(V;(g))-module. The corresponding simple quotient of the induced
module for g is a relaxed highest weight module. We have a one-to-one correspondence
between the set of isomorphism classes of simple admissible g-modules of level k and
the isomorphism classes of simple positive energy representations of V;(g).

Denote by Pr; the set of admissible weights A such that there exists y € w
satisfying AN = y(ﬁ(kAO)), and Pry, = {A € Pry | M(K) = k, (k,aiv) € Z forall i =
1,...,1}, where [ is the rank of g. If k has the denominator g such that (g,rV) = 1, then
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Simple Modules in the Minimal Nilpotent Orbit 7

(see [28])

Prk = U Pr‘k’y, and Pr‘k’y ::y-Pr‘k'Z.
yew
y(A(kAo)+)CATE

Let Pry := {A | A € Pr} C bh*, where 1 is the projection of A to h*. The importance of this

set comes from the following Arakawa result by Arakawa.

Theorem 2.5. [7, Main Theorem] Let k be admissible, A € §*. Then fk()») is a module
over V;(g) if and only if A € Pry.

For » € bh* denote by J, the corresponding primitive ideal Anng ., L(}). By
Theorem 2.5, a simple g-module M is admissible of level k if and only if Anng,) M = J;
for some A € Pr. As a consequence of Proposition 2.2 and Corollary 2.3, we have

immediately the following statement.

Proposition 2.6. [9, Proposition 2.4] For A € Pry, the primitive ideal J, is the unique
maximal two-sided ideal of U(g) containing U(g) ker x; . In particular, J, = J, for A, u €

Pry if and only if there exists w € W such that u = w - A.

Remark 2.7. The following characterization of the Zhu's algebra of V;(g) was shown
in [8, Theorem 3.4]:

U@

Aaveo = [ =

re[Pryl

For a two-sided ideal I of U(g), denote by Var(I) the associated variety of I (the
zero locus of the associated graded ideal grl in g*, with respect to the PBW filtration).
If I is primitive then Var(I) = O for some nilpotent orbit O of g [25, Theorem 3.10].

Definition 2.8. A simple g-module M is in the orbit O if Var(Anng g M) = 0.
We have the following:

Theorem 2.9. [6, Corollary 9.2 and Theorem 9.5] A simple g-module M in the orbit O

is admissible of level k if and only if Anngy ;) M = J, for some A € [ﬁ?]. Moreover, there
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8 V. Futorny et al.

exists a nilpotent orbit O, that depends only on g such that
Var(I) = (OTq.

Hence, Var(J,) C Var(ly) = OTIfor any A € ﬁk. Moreover, by Theorems 2.5 and 2.9,

we have

— —0
Pr= | | Pry,
0c04

where Q is a nilpotent orbit of g and ﬁ? = {} € Pry | Var(J;) = O}.
Set [Pry] = Pry/ ~, where A ~ p if and only if there exists w € W such that
u = w - .. By Proposition 2.6, the ideal J;, depends only on the class of A € Pry in [Pr;].

Therefore,

(Prd = | | (Prel,

0c0y
where [Pr; | is the image of Pry. in [Pry].
3 Twisted Localization
In this section F := {f],...,f,} will denote any set of locally ad-nilpotent commuting

elements of U(g), x any element of C". A g-module M will be called F-bijective if f; acts
bijectively on M for each i = 1,2,...,r. By DyU(g) we denote the localization of U(g)
relative to the multiplicative set (F) generated by F. Similarly, for a g-module M denote
by DM = DpU(g) Qg M the localization of M relative to (F). We will consider DpM
both as a U(g)-module and as a DzU(g)-module.

Proposition 3.1. Let M be an F-bijective g-module, L, N submodules of M, such that L
is not F-bijective, and M/L is simple. If L is isomorphic to a proper submodule of DyN
then DyN ~ M.

Proof. As Dy is an exact functor, then Dy is a submodule of DM ~ M. Since L is a

proper submodule of DN, the statement follows from the maximality of L in M. |
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Simple Modules in the Minimal Nilpotent Orbit 9

For x = (xy,...,X%,) € C" consider the automorphism ©% of D,U(g) such that

OFw = > ().(1)...()i(r)ad(fl)il...ad(fr)ir(u)fl_il...f;i’,

. - l
Llgeees >0 1

for u € DpU(g), where (3) := x(x — 1)..(x —i+ 1)/i! forx € C, i € Z_q and () := 1 ([31,
Section 4]).

Definition 3.2. For a D;U(g)-module N, we will denote by ®¥N the D;U(g)-module on

N twisted by ®%, where the new action is given by

u-v* = (0 - v)¥,
for u € DzU(g), v € N. Here v* stands for the element v considered as an element of
PEN.

If M is a g-module and x € C", then DM := ®%D M is the twisted localization
of M relative to F and x.

Remark 3.3. Note that for x € Z", we have ©%(u) = ffuf *, where f* := f*..f;".

Moreover, DM and DzM are isomorphic for any g-module M.

The following important property of the twisted localization is a consequence
of [23, Lemma 2.8].

Proposition 3.4. Let M be a weight g-module with finite-dimensional weight spaces

and assume that F is injective on M. Then
Anng M = Anng DpM C Anng DM,

for any x € C". Moreover, Anny M C Anny, N, for any subquotient N of DEM.

Applying Proposition 3.4 and Proposition 2.2 to simple highest weight modules

with dominant highest weights we obtain the following statement.
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10 V. Futorny et al.

Corollary 3.5. Let A € h* be dominant, x € C", and F be injective on L(A). If N # O is a
simple subquotient of D}L(A) then

4 Relation Gelfand-Tsetlin Modules
4.1 Gelfand-Tsetlin modules

For any flag F : gl; C --- C gl,,, we have an induced flag U; C --- C U, , of the
corresponding universal enveloping algebras. Let Z,, be the center of U,,,. Following [14],
we call the subalgebra I' - of U := U, ; generated by {Z,, |[m = 1,...,n+1} the Gelfand-
Tsetlin subalgebra of U (with respect to F). If the flag is given by left-upper corner
inclusions, the corresponding Gelfand-Tsetlin subalgebra will be called the standard
Gelfand-Tsetlin subalgebra and will be denoted by I'y;. Consider a standard basis Ej;,
i,j=1,...n+1ofgl, . Then the standard flag F; of gl,, , consistsof gly, k =1,...,n+1,
with gl; generated by E;;, i,j = 1,...sforalls. If w e W and F = wF thenI'r = wT;

with a natural action of w.

Definition 4.1. A finitely generated U-module M is called a I' z-Gelfand-Tsetlin

module if M splits into a direct sum of I' z-modules:

M= @ M(m),

meSpecmTI r

where
M(m) = {v € M | mFv = 0 for some k > 0}.

Identifying m with the homomorphism x : I'r — C with Kery = m, we will call
m a Gelfand-Tsetlin character of M if M(m) # 0. The dimension dim M(m) will be called
the Gelfand-Tsetlin multiplicity of m.

Remark 4.2. Let r : gl,,; — sl,,; be a natural projection that extends to a
homomorphism 7 : U(gl, ;) — U(sl, ;). If T is a Gelfand-Tsetlin subalgebra of gl
then 7(I') of T is called a Gelfand-Tsetlin subalgebra of sl,,_ .
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Simple Modules in the Minimal Nilpotent Orbit 11

which
we simply denote by I'. We will refer to I'-Gelfand-Tsetlin modules simply as Gelfand-

Unless otherwise is stated, from now on we will assume that I'r = I'g,,

Tsetlin modules.

4.2 Relation modules

A class of relation Gelfand-Tsetlin modules was constructed in [21]. These modules have

properties similar to finite-dimensional modules [22] and to generic Gelfand-Tsetlin

modules [14]. We recall their construction here since it will be used later on.
SetU:={({,j)|1<j<i<n+1},and R:=R UROUR' C Y x W, where

R :={@j);-1Lt)|2<j<i<n+1,1<t<i-—1}
R ={@);G+Ls)|1<j<i<n 1<s<i+l}

RYO:={(n+1,0);(n+1,) |1 <i#j<n+1}

Any subset C C R will be called a set of relations. With any C € R we associate
a directed graph G(C) with the set of vertices 2, which has an arrow from vertex (i, j)
to (r,s) if and only if ((i,j); (r,s)) € C. For convenience, we will picture the set ¥ as a
triangular tableau with n+ 1 rows, where the k-th row is {(k,1),..., (k. k)}, k=1,...,n+
1.

(n+1)(n+2) . . . .
Forv € C 2 denote by T(v) the image of v via the natural isomorphism

(nt1)(n+2)
between C™ 2 and C*! x ... x CL. If T(v) = (v™*+D, .., v(D) then we refer to v® =

(Vk1r-- -+ Vi) as the k-th row of T(v). Hence, we can picture T(v) as a triangular tableau,
n+1)(n+2)
a Gelfand-Tsetlin tableau of height n + 1. Finally, by Z, * , we will denote the set of

. (n+1)(n+2)
vectors vinZ 2z  such that v(®tD = Q.

Definition 4.3. [21, Definition 4.2] Let C be a set of relations and T(L) any Gelfand-

. () (n42)
Tsetlin tableau, where L = (lij) e CcMHE,

(a) We say that T(L) satisfies C if:
@) ;=g € Zoq for any ((i,j); (,8) € CN(RTURY);
(ii) lij —1lg€Z_yforany (G,));(r,s) eCNR™.

(b) We say that T(L) is a C-realization if T(L) satisfies C and forany 1 <k <n
we have [j; —[;; € Z if only if (k, i) and (k,j) in the same connected component

of the undirected graph associated with G(C).
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12 V. Futorny et al.

(c) We call C noncritical if for any C-realization T(L) one has [;; # lkj, 1<k<
n, i #j, if (k,i) and (k,j) are in the same connected component of G(C).
(d) Suppose that T(L) satisfies C. Then Bz(T(L)) denotes the set of all tableaux
(n+1)(n+2)

of the form T(L +z2), z € Z; * satisfying C. Also, V(T(L)) denotes the
complex vector space spanned by B.(T(L)).

Remark 4.4. Note that if T(L) satisfies C, and C is the maximal set of relations satisfied
by T(L), then T(L) is a C-realization.

Definition 4.5. [21, Definition 4.4] Let C be a set of relations. We call C admissible if
for any C-realization T(L), V(T(L)) has a structure of a sl,, ;-module, endowed with the

following action of the generators of sl ;:

k+1
(W 1 w; ") .
Ep o1 (T(w)) = — ( T (Mlj M];H)] )T(W+3kl),
jAI\ YV ki T YWkj
k
(W 1 Wi_ I') i
Ek+1,k<T<w>>—Z( Hl (V'; - ? )T(w—ak>, 1
jA£I\W ki — YWkj

k— k+1
Hk<T<w>>—(22wkl Zwkl, Zwkm )T(w)-

A pair {(k, 1), (k,j)} C U is an adjoining pair for a graph G if i < j, there is a path
in G(C) from (k, i) to (k,j), and there is no path in G(C) from (k, i) to (k,j) passing trough
(k,t) withi <t <.

Suppose that C is a noncritical set of relations whose associated graph G = G(C)

satisfies the following conditions:

(i) G is reduced;
(ii) If there is a path in G connecting (k, 1) and (k, j) with tail (k,7) and head (%, ),
then i < j (in particular G does not contain loops);
(iii) If the graph G contains an arrow connecting (k,i) and (k+1,t) then (k+1,s)

and (k,j) with i < j, s < t are not connected in G.

By [21, Theorem 4.33], the set C is admissible if and only if G is a union of

connected graphs satisfying the following
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Simple Modules in the Minimal Nilpotent Orbit 13

<&-Condition: For every adjoining pair {(k, 1), (k,/)}, 1 < k < n, there exist p, g such that

C, € C or there exist s < t such that C, € C, where the graphs associated to C; and C, are

as follows:
(k+1,p) (k+1,s) (k+1,t)
G(C)= (ki) kg); G(Co)= (k1) (k.J)
(k—1,9)

From now on we will assume that C is an admissible set of relations and consider

the s, ;-module V(T(L)). The simplicity criteria for V(T(L)) is as follows.

Theorem 4.6. [21, Theorem 5.6] The Gelfand-Tsetlin module V,(T(L)) is simple if and

only if C is the maximal (admissible) set of relations satisfied by T(L).

We will call V(T (L)) a I'-relation Gelfand-Tsetlin module. Similar construction
can be made for any Gelfand-Tsetlin subalgebra I'» = wI'y,, w € W. Applying w to the

formulas (1) we obtain explicit action of sl,,, ; on I' z-relation Gelfand-Tsetlin modules.

4.3 Classification of highest weight relation modules

The goal of this section is to describe all simple highest weight modules that can be
realized as V,(T(L)) for some admissible set of relations C. From now on we fix g :=
sl 41, the set of simple roots 7 = {oy,...,a,}, and seta, s := . +...tagforl <r <s<n.
We use elements Ejj, i,j=1,...,n+ 1,1 #J, Hy = Eg — Ep ;1. kK =1,...,n, as a basis
of g.

From [21, Proposition 5.9], we have the following statement.

Lemma 4.7. If (A+p,,a) ¢ Z_yforalla € A, \{og, | k=1,...,n}, then the simple

highest weight module L()) is a I'-relation module.
The following assertion classifies all simple highest weight I'-relation modules.

Theorem 4.8. The simple highest weight module L(%) is a I'-relation module if and

only if one of the following conditions holds:

a) (A4pgaY)¢Zg foralla e Ay \{oy, |k=1,...,n}.
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14 V. Futorny et al.

b) There exist unique i,j with 1 <i <j < n such that:

i) (A+p; )€, foreachk > j,
ii) (A + ,on,otv> ¢ Zgforalla e A, \{o;x | k=j},
i) (3 + pr )y € Zo.

Proof. Suppose that L(A) is a I'-relation Gelfand-Tsetlin module. Then L(A) >~ V(T(v))
for some tableau T(v). As L(1) is simple, we can assume without loss of generality that
T(v) is a highest weight vector of weight A and C is the maximal set of relations satisfied
by T(v) (cf. Theorem 4.6). Then E} ;. (T(v)) = 0 for all k = 1,...,n, which implies vy =
Vij foralll <i,k <j<n+1(see(l),andC D {(G+1,));3,j) |1 =<j<1ic=<n} Set
V=V and note that v; — Vig = <A + pn'aiv,j> forall 1 <i <j < n.Now suppose that
for some o € A\ {0 n | k =1,...,n} we have (A + ,on,ozv) € Z,. Hence, there exists a
pair (r,s) with 1 <r <s < n such that v, — vy, ; = (A + p,, ;) € Z_,. This shows that
I={rs)|vi—v,eZ gand 1l <r <s < n} # §. Now choose i = min{r | (r,s) € I} and
j=min{s| (i,s) € I}. Then (j,i) and (j,j) form an adjoining pair and the associated graph

looks as follows:

(+1,0) G+1.)
N N
g (VA

N

=19

On the other hand, C is an admissible set of relations and, hence, by the ¢-condition the

associated graph must satisfy

G+1,0) G+1.) G+1,j+1)
NS /“
G0 G

/

G-19)

Therefore, vi—v;,, € Z_y and v;, —v; € Z_,. Repeating the same argument, we conclude
that vy — vy, € Z_gforall k =j,...,n and v,,; — v; € Z.,. Consequently, we have
vV, — Vv, €Z_gforallj <r <s <n+ 1. On the other hand, from the choice of i, we have

that v, — vy ¢ Z_y for each 1 < r < iand s > r. From the definition of j we also have
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Simple Modules in the Minimal Nilpotent Orbit 15

v; — Vs ¢ Z_o for each i < s < j. Given that vy — v; € Z_( for all s > j and v; — v, ¢ Z_ for
alli <r <j, we obtain vy — v, ¢ Z_y for all s,r such thati <r <j <s < n+ 1. Finally,
vs—V, ¢ Z_o forall s,r such thati < r < s <. Indeed, assume that v;—v, € Z_, for some
i <r <s<J. Then there exists r < j' < ssuchthatvy —v; , €Z_yforallk=j,...,n.In
particular, v — v; € Z_, which is a contradiction.

Conversely, suppose first that (a) holds. Then by Lemma 4.7 we have that L(}) is

a I'-relation module. Now assume (b) and let vy — v,,; = (A + p,,a)) foreach 1 <s <n
& n+1 L : o
such that z vy = — 0 . Then for some 1 < i < j < n the following conditions are

s=1
satisfied:

* Vpn _VieZZO'

o v,—vieZforallj+1<r<s<n+1,

° Vr—vsgéZSOforalll§r§j,r<sgn+1andr,s;ﬁi,
o v,—v;eZ_gforallj+1<r<n,

o v,—Vv;¢Z gforalll <r<jandr#i.

Let T(v) be a Gelfand-Tsetlin tableau with entries

Vg, if 1<s<iori<rc<j,
Vis = \ Vsyjoiy1r L 1<s<r+i—},
Vs—rtjr if s>r+i—j,

for1 <s<r=<n+1, and let C be the maximal set of relations satisfied by T(v). To prove
that C is admissible we consider the following cases.
Case I: Suppose that (k,r) and (k, s) form an adjoining pair for some 1 < k < j.

Then we have an indecomposable subset C’ of C with the associated graph

(k+1,s)

7N

(k,r) (k,s)

NS

(k—1,r)

The same happens in the following cases:
e j<k=<nandl<s<i;
e j<k<nandl=<r<s=i

e j+l<k<nandi<s<n+i—jwherer=s—1.
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16 V. Futorny et al.

Case II: Supposej <k <n,1 <r<i,ands > k+1i—j If (k,r) and (k,s) form
an adjoining pair, then we have an indecomposable subset ¢’ of C with the following

associated graph:

(k+1,5+1)

s

(k,r) (k,s)

NS

(k—1,r)

The graph is the same in the case k =jand r > i.
Case III: Fix j < k < nwithr > k+1i—j. If (k,r) and (k, s) form an adjoining pair,

then the associated graph of the indecomposable subset C’ of C is as follows:

(k+1,5+1)

/

(k,r) (k,s)

e

(k—1,r—1)

Case IV: Finally, letj <k <n,s=k+1i—j, and r = s — 1. In this case (k,r) and

(k,s) are an adjoining pair with the associated graph as follows:

(k+1,s) (k+1,s+1)

/ e

(k,7) (k,s)

The same happens in the case: j < k <nandr = k+i—j— 1 for each adjoining pair
{(k, 1), (k,9)}.

Therefore, C is admissible and V.(T(v)) is a simple module by Theorem 4.6.
Hence, Vo (T(v)) = U@T(v), Exy,1(T(v)) = 0, and Hi(T(v)) = (A,a,\c/)T(V) for all k =
1,...,n. ||

In particular, applying Theorem 4.8 and [31, Proposition 8.5], we get the fol-
lowing criterion for infinite-dimensional simple highest weight modules to be bounded

I'-relation modules.
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Simple Modules in the Minimal Nilpotent Orbit 17

Corollary 4.9. The simple highest weight module L(%) is a bounded infinite-
dimensional I'-relation module if and only if one of the following conditions holds:
(@ (A4 pg o) ¢ Zog, and (A + p,, o)) € Z_q for all k < n;
(b) (A4 oy, 0)) ¢ Z, and(k—i—,oﬂ,o:,\c/)eZ>0 forall k > 1;
(© (A4 pp0))€Z_g, (A4 pgayy) € Zog, and (A + p,, o)) € Z_y forall k > 1;
(d) There exists a unique i € {2,...,n — 1} such that (A+p,, o)) € Z_,,
<A + pﬁ’aiv—l,i> € Zog (A +pgi0f) € Zicg, and (A + p,, o)) € Z_ for all k # i;
(e) There exists a unique i # n such that (A +p,a)) ¢ Z, <A +,oﬂ,aier1> ¢ 7,
(x4 0Yis1) € Zog and (h+ oy @) € Zg forall k #4,i+ 1.

Remark 4.10. Fori=1,2,...,n, the highest weight module L(—w;) is bounded but not

a I'-relation module.

Corollary 4.11. Let A € h*. The following conditions are equivalent:

(a) The Verma module M(}) is a simple I'-relation module;
(b) (A ~|—pﬂ,av) ¢ Z,foranya € A, \{ag, | k=1,...,n}, and <A +pw°‘l¥,n> ¢ Z.
fork=1,...,n.

Remark 4.12. By Corollary 4.11, M()) is a simple I'-relation module if and only if
M) ~ V(T (v)), where T(v) is a generic tableau and C is the maximal set of relations
satisfied by T(v). This generalizes [32, Proposition 1] (cf. [9, Corollary 3.7] and [21,
Example 5.10]).

Since L(1) has finite-dimensional weight subspaces, then it is a wI'-Gelfand-
Tsetlin module for any w € W. Denote by W the extension of the Weyl group of g by
the symmetries of the root system. Let w € W and b = whbg,. Then, clearly, L,(w2)
is a wI-relation Gelfand-Tsetlin module if and only if wA satisfies the conditions of

Corollary 4.9 for WO(,\C/, k=1,...,n.In particular, we obtain the following:

Corollary 4.13. Let A € h* and <A + ,oﬂ,ﬂjv> € Z. for some simple roots B;,j =1,...,¢.

Consider the minimal w € W such that <W()» + pn),ﬂ}/> € Zgo forallj =1,...,t, and
set ' = wr'. Then the simple highest weight module L(1) is a bounded infinite-
dimensional I' z-relation Gelfand-Tsetlin module if and only if A satisfies one of the

conditions of Corollary 4.9.
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18 V. Futorny et al.

Proof. Since L, (wi) =~ L(}), it is sufficient to consider the weight wi and apply
Corollary 4.9. |

Corollary 4.13 shows that L(1) can have different realizations via Gelfand-

Tsetlin tableaux as a relation module.

Lemma 4.14. Suppose A satisfies conditions (a) or (e) of Corollary 4.9. Let i > 1 and
Set wW; = S;_18;S;_2S;_ 1525351, € W, thenL; =L -1, t(wflk) is a I'-relation Gelfand-
i S

Tsetlin module.

Proof. Let us consider {v,...,v,,;} € Csuchthatv, —v, = A+ p,, &), v; —v; ;| =
—<A+pﬂ,aiv_1>, Vy — Vi = <A+pﬂ,aiv+l>, Vigz — Vips = (A +pp ) foralll <k <i-—2,

n+l n+1
Vk—ka=(A+pn,a,‘c’)forallk2i+2,and2vi=—( ) )

Let T(v) be the Gelfand-Tsetlin tableau with entries

vi+i—1, if r=s=1,

vi+i+l—-r, ifl<r<iands=r-1,

vy, if r>iands=1,

vo+i+1—r, if l<r<iands=r,
Vis =

Vy, if r>iands=r,

Vg, if r>3ands=1,

Vsios if r>4and2<s <1,

o if r>s>i+1.

Consider the set of relations C = Ct UC~, where

Cti={((r+1,8;(rs)|l1<s<r<norr=s= I}U{((r+1,r+ D;(rr)li+l<r<nj}

C={rmir+1Lr+ D)) |1 <r <} JU(re;r+ 1,5+ 1) |1 <s<r<n}

In this case, C is an admissible set of relations, T(V) is a C-realization, and
Ve(T(v)) is a simple module by Theorem 4.6. Moreover, Ve (T(v)) = U(g)T(v), E 5(T(v)) =
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Simple Modules in the Minimal Nilpotent Orbit 19

E; 1 1(T(WV) = Ey;1o(T(v)) = Epp 1 (T(v)) =0 forall k ¢ {i —1,i,i + 1}, H(T(v)) =
() T, Tt CHOT @) = (1,0 ) Tw), T H(T0) = (a7, ) TW), By (T@)) =
<A,aJY>T(v) forall 1 <j < i-2 and H(T(v)) = </\,a].V>T(v) for all j > i + 2. Hence,
Vo(T(v)) ~ L;. [

5 Induced Relation Modules

In this section we fix f = E,; and I' =T,.

5.1 Localization of relation modules

Lemma 5.1. Suppose that T(v) is a C-realization for some admissible set of
relations C.
(a) fisinjective on V(T (v)) if and only if ((1,1); (2,1)) ¢ C and ((1,1);(2,2)) ¢ C.
(b) f is surjective on V. (T(v)) if and only if ((2,1);(1,1)) ¢ C and ((2,2);
(1,1)) ¢C.

Proof. For any T(w) € Bp(T(v)) we have f(T(w)) = T(w — §1) € Bp(T(v)), since
((1,1);(2,1)) ¢ C and ((1,1);(2,2)) ¢ C. Suppose that 0 # u = >, ; aiT(Wi) € Vo (T(v)).
Then

fw :f(ZaiT(Wi)) => a,T(w' —5'") #0,

iel iel

as a; # 0, T(w' — 8'1) € Vo(T(v)) and T(w' — §'1) # T(w/ — §'1) for all i # j € I. On the
other hand, if ((1,1); (2,1)) € C or ((1,1);(2,2)) € C, then there exists T(w) € Bg(T(v))
such that wy; — w,; = 1 or w;; — w,, = 1, and hence f(T(w)) = T(w — §!!) = 0, as
T(w — 811) ¢ Bo(T(v)). This shows item (a).

If ((2,1);(1,1)) ¢ C and ((2,2); (1,1)) ¢ C then for any T(w) € B.(T(v)), we have
T(w + 811) € Bo(T(v)) and f(T(w + §'1)) = T(w). Hence, for any u € Vp(T(v)),

u= > a,Tw') => af(Tw' +s')) =f(z a;T(w' + 5“)).

iel iel iel

On the other hand, assume that ((2,1); (1,1)) € C or ((2,2);(1,1)) € C and f is surjective

on V(T (v)). Then there exists T(w) € B, (T(v)) with w,; = w,; or w;; = w,, and
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20 V. Futorny et al.
u € Ve(T(v)), such that

fw=> a;T(w' - ') = T(w).

iel

Hence, T(w) = T(w' — §'1) for some i € I. As T(w') € Bp(T(v)), we have 0 = wy; — wy; =

Wél - Wil +1leZ_gor0=wy —wy = Wéz - Wll'1 + 1 € Z_,. This implies (b). |

Next we consider the twisted localization of V(T (v)) with respect to f and its

tableaux realization.

Lemma 5.2. Let C be an admissible maximal set of relations such that
CN{((1,1);(2,1)),(1,1);(2,2)} =9

and T(v) a C-realization. If D = C\{((2,1); (1, 1)), ((2,2); (1, 1))} then the localized module
D¢ (Ve (T(v))) is isomorphic to V(T (v)).

Proof. Set M = V (T(v)) and N = Vp(T(v)). By Lemma 5.1, the action of f on M is
injective but not bijective. Hence, M is a proper submodule of D¢M. On the other hand,
consider the set of relations C; = DU{((1,1); (2,1))}. By Theorem 4.6, V. (T(v+5'!))is a
simple module isomorphic to N/M and hence, M is a maximal submodule of N. Finally,

since f is bijective on N, by Proposition 3.1, we have N >~ DcM. |
Under the assumptions of Lemma 5.2 the following is straightforward.

Lemma 5.3. For any tableau T(w) € B;(T(v)) and any x € C denote by T(w)* the image
of T(w) as an element of the twisted module D}‘(VC(T(V))). Then we have

Epy - T(W)* = —(Wy, + X — Wy ) (W, + X — Wyy) T(w + 81X,

k k+1
% T2 (Wi — Wiy )
Epjepr - T == A

io \ Lzi(wig — wyy)

)T(w—i—Ski)X,for allk=2,...,n.

E, - T(w)* = T(w — §'H*,
Wy — (W +X) T(w — 621y% 4 W22 = Wy 4%,
Wy, — Wy Woo — Wo

Egp - T(W)* = (W — §2%)%,
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Simple Modules in the Minimal Nilpotent Orbit 21

k k-1

i1 Wi — W, .

Ep Tw)* = Z(HJ=; (Wi k—1,)
[Tjiei (Wi — W)

)T(w — ghiyx, forallk=3,...,n.
i=1

H, - Tw)* = (2(w;; +x) — (Wy + Wyy) — DT(W)*.

H, - T(W)™ = (2(wy) + Wypy) — (Wg) + Wy + Wag) — (Wy; +x) — 1) T(w)™.

k+1

k k-1
Hk . T(W)X = (2 Zwkl — Zwk+1'i — Z Wk*l,i — 1) T(W)X, fOT' all k = 3, N (8
i=1 i=1 i=1

Theorem 5.4. Let M be a I'-relation module with an injective action of f. Then D}fM is

a I'-relation Gelfand-Tsetlin module.

Proof. By hypothesis, M >~ V(T (v)) for some C-realization T(v). By Lemma 5.2, the set
{T(v+¢€8'") | € € Z} is a basis of the localized module D;M. Define the linear isomorphism
¢ from D (Vo(T(v))) to Vp(T(v + x811)), such that ¢(T(w)) = T(w + x8!1) = T(w)* €
BD(T(V+X511)) for any T(w) € Bz(T(v)). Comparing the twisted action of g from Lemma

5.3 with the Gelfand-Tsetlin formulas, we have
¢(g- T(w)™) = go(T(w)*)
for any g € g. Hence, ¢ is an isomorphism of modules, which completes the proof. |

Corollary 5.5. Let M be a simple I'-relation Gelfand-Tsetlin module.

(@) If f is bijective on M, then M is isomorphic to D}‘(N) for some simple I'-
relation Gelfand-Tsetlin module NV with an injective action of f and x € C\Z.
(b) If f is surjective on M but not injective, then M is isomorphic to D¢(IN)/N for

some simple I'-relation Gelfand-Tsetlin module N with an injective action

of f.

Proof. As M is a simple relation module, then M >~ V(T (v)) for some Gelfand-Tsetlin
tableau and a maximal admissible set of relations C satisfied by T'(v).

Part (a): Suppose that f is bijective on M. By Lemma 5.1, we have v;; —v,; ¢ Z
and v,; — vy, ¢ Z. Without loss of generality, we assume that v,; — vy, ¢ Z. In this case,
let x = v;; — v,; and consider the Gelfand-Tsetlin tableau T(v') = T(v + x8'!). Then,
C' = CU{((2,1);(1,1))} is the maximal admissible set of relations satisfied by T(v').
Hence, by Theorem 4.6, N = V/(T(v')) is a simple I'-relation Gelfand-Tsetlin module. By
Lemma 5.1, f is injective on N but not surjective. Then D}‘N ~ M by Theorem 5.4.
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Part (b): Suppose that f is surjective on M, but not injective. By Lemma 5.1, we
can assume that v;; — vy, € Z_g and v, — vy, ¢ Z. Set again x = v;; — v,; and T(V) =
T(v+x8'1). Then C’' = (C\{((l, 1); (2, 1))}) U{((2,1); (1,1))} is the maximal admissible set
of relations satisfied by T(v'). Hence, N = V(T (v')) is a simple relation Gelfand-Tsetlin
module by Theorem 4.6. From Lemma 5.1, we have that f is injective on N and that the
localized module D¢(N) is isomorphic to VC\{((I,I);(Z,l))}(T(V,)) (cf. Lemma 5.2). Moreover,
N is a maximal submodule of D¢ (N), and hence Dy(N)/N ~ Vo (T(V')) is a simple module.
We conclude that D¢(N)/N = Ve(T(v)). |

5.2 sly-induced relation modules

Let p C g be a parabolic subalgebra of g with the Levi factor isomorphic to a, = sl, +§
based on the root « = oy € w. Let V. = V(y, ) be a simple cuspidal weight a,-module,
where u € h* is such that V, # 0, and y € C is the eigenvalue of the Casimir element
¢y = (Ey) — Eyy + 1)% 4 4E, E), of a,. Denote by L(y, 1) = Ly({a}, V) the unique simple
quotient of the induced module Indg({a}, V) with the trivial action of the radical of p
on V. Let I', be any Gelfand-Tsetlin subalgebra corresponding to the flag containing a,,
and b.
We have the following:

Theorem 5.6. Letn > 1. The module L(y, ) is a ' ,-relation Gelfand-Tsetlin g-module
if and only if L(A) is a I',-relation highest weight g-module, where (,u - A,alv) = 2x,
(w—nraf)=—x,(n—1a)=0foreachi=3,...,n, (L + p,,ay) ¢ Z.q and (2x—pu;—1)% =
y. In this case, L(y,u) ~ D}‘(L(k)) and x satisfies the condition x — <u —i—pﬂ,oz}/) ¢ 7.

Moreover,

(@) L(y,w) is bounded if and only if L() is bounded;

(b) If A is dominant then s, - A is dominant and y # m? for all m € Z. In this
case, AnnU(g)L(y,u) = AnnU(g)L(k) = ArmU(g)L(s1 -A);

(c) If y = m? for some m € Z\ {0} then L(%) is bounded and the weight w - A
is integral, for all w € W. In this case, Anny L) C Anngg) Ly, n) C

AnnggL(w - 4), if w - A is dominant.

Proof. Since V is a simple dense sl,-module, then y # (u; — 2k + 1) for all k € Z, and
hence x ¢ Z. On the other hand,y = m? for some m € Z if and only if (A + p,,a)) € Z.

Consider the following two cases:
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Simple Modules in the Minimal Nilpotent Orbit 23

Case 1: Let y # m? for all m € Z. Assume that L(y, u) is a I',-relation Gelfand-
Tsetlin g-module. Then L(y,u) >~ V. (T(v)) for some set of relations C and a tableau
T(v) = T(vy), such that

v +x, ifi=1
Vi= 1V, ifi>j=1

v, ifj=2,
with vy —vy = (1 + o, 0) ) = 2%, vy = V3 = (u + py, a3 )+ X, vy — Vi) = <,u + ,Oﬂ,ajv> for each
3<j<nand 3X™!v.=—n—1.0n the other hand, f is bijective on Ve (T(v)) if and only

j=1 "j
if x — (u, @) ¢ Z, in which case

CN{,1);(2, ), (1, 1;(2,2),((2,1); (1,1)),((2,2); (1,1)} = 4.

Consider the tableau T(v') = T(ng) with entries v{; = v,; and ng = v for i # 1.
Then, D = C U {((2,1);(1,1))} is the maximal set of relations satisfied by T(v’), since
(k + pn,alv) ¢ Z. Hence, the module V(T(v')) is simple by Theorem 4.6. Then V(T(V')) ~
U@T V), Ep 141 (T(V)) = 0, and Hi(T(v)) = L T(v) forall k = 1,...,n, iy = (L, o). We
get Vp(T(v')) >~ L(A). Moreover, c,(T(V)) = (Ao, + 1)2T(v') = yT(v'). Applying Theorem
5.4, we conclude that D}‘L(A) ~ L(y, ).

Conversely, let L(A) be a I',-relation Gelfand-Tsetlin module. Then L(A) =~
Ve(T(v)), where T(v) = T(vy) is the Gelfand-Tsetlin tableau such that Vi =V with

Vi — Vi = <)»+,oﬂ,ajv> for each 1 < j < n, and Z]”:ll v; = —n — 1. Note thi:t C is
the maximal set of relations satisfied by T(v). Without loss of generality we assume
that ((2,1);(1,1)) € C and ((1,1); (2,1)) ¢ C. Hence, the localized module D}‘(L(A)) is
isomorphic to Vp(T(v + x811)), where D = C \ {((2,1); (1,1))} by Theorem 5.4. Given that
X+ vy, — Vo, ¢ Z, then Vp(T(v + x8'1)) is a simple module. Further, the sl,-module
spanc{T(v+(x+£)8'!) | £ € Z} is isomorphic to V. By (1), we have E . (T(v+(x+£)8')) =

O0forallk=2,...,nand ¢ € Z. Hence, we get an epimorphism of U(g)-modules
¢ : Mi({}, V) > Vp(T(v + x8'1)),
such that ¢(u ® T(v)) = uT(v) for all u € U(g). Therefore, L(y, 1) =~ V(T (v + x51)).

Case 2: Let y = m? for some m € Z. In this case, (A +p,,a)) € Z_, and the

construction is similar. We leave the details out.
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24 V. Futorny et al.

Note that if (A + pﬂ,alv) = 0 then L(y, 1) is not a relation module. The statement
(a) is clear from the construction, while (b) and (c) follow from Proposition 2.2, Corollary
2.3, and Corollary 3.5. |

5.3 Family of induced relation modules

In this section, we give an explicit construction of a family of parabolically induced
bounded I'-relation modules.

Fix complex {u,;};_; ,, satisfying conditions:

..........

(@ u;—vy¢Zforanyl <i<n.

(b) v;—vi, €Z gforanyl <j<n.

Let T(v) be a Gelfand-Tsetlin tableau with entries

u;,

Vj—lr lf.]# 1

if j=1
iy —

forl<j<i<n+1.
Consider the set of relations Q = OF U Q—, where
O ={((+1,); @) |2<j<i=<n}

Q™ ={((,j;A+1,j+1)|2<j<i<n}

Lemma 5.7. Let T(v) be a Gelfand-Tsetlin tableau (2). Then, V5(T(v)) is a bounded

dense g-module. Moreover, V5 (T(v)) is simple if and only if u;—u;,; ¢ Zforalll <i <n.
Proof. TFollows from [33, Lemmas 3.1, 3.2, and 3.3]. [ |

If C is any admissible set of relations containing Q and T(v) is a C-realization,
then V(T (v)) is a submodule of V(T (v)) and hence a bounded module. In particular,
V(T (v)) has finite length [17].

For m € {2...,n} consider the tableau T (v) as in (2) satisfying the conditions

u;=uy, fori=m+1,...,n+1, andui—ui+1 ¢ Zfori=1,2,.... m—1.

LetC™ = QUI{((i+1,1);(i,1)) | m <i < n}. Then, T"(v) is a C"-realization and

the relation module Vym (T (v)) is simple.
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Consider the subset %, = {«y,...,@,,_;} C 7 of simple roots and the correspond-
ing parabolic subalgebra p,, = py, C g. Then, p,, has the Levi subalgebra isomorphic to

sl + bh. We have the following:

Theorem 5.8. For m € {2,...,n}, the module V»(T™(v)) is isomorphic to Lgm(Em, V)

for some simple cuspidal sl,,,-module V.

Proof. By construction, C™ is the maximal set of admissible relations satisfied by
T™(v). Hence, Vom(T™(v)) is a simple Gelfand-Tsetlin g-module by Theorem 4.6. Let
D™ = Dt U D™, where

DY ={((i+1,);G))I2<sj<si=m—1}

D™ ={@E+1,j+1))|2<j<i<m-—1}.

Then V = Vpn(T™(v)) = spancBpm (T™(v)) is a simple cuspidal sl,,,-module by Lemma

5.7, where Bpm(T™(v)) denotes the set of D™-realizations of the form T™(v + z), z €
m(m+1)
Zy * .1t follows from (1) that V is a p,,-module with the trivial action of u;m. Hence,

we have a homomorphism
¢ : Mp(Z,V) = Ven(T™(V))

of U(g)-modules, such that ¢ (u @ T™(v)) = uT™(v) for all u € U(g). Since Vem (T™(V)) is
a simple g-module, then ¢ is surjective, and LS(E, V) = Vem (T™(V)). |

5.4 Localization of highest weight modules with respect to E;;;

Forany 2 <m <n+1andany k < m—1fix i; € {1,...,k}. Associated with the set
{i;,...,1,_;} define
. . . . n+1)(n+2)
€@y, e i) 1= =811 —§%2 g3 gm-Limo1 g7 2

Suppose that T(v) is a C-realization for some admissible set of relations C. For
each T(w) € Bo(T(v)) and any 1 <i, <k <m — 1 define

o 0, i T(W + (i, ... i) ¢ Be(T(V)
a(W’ lyreeey lmfl) = m—1 Hi;ils_l (Wsig—Ws—1,¢)
HSZZ n§¢i5 (Wsis —-ws)

if T(w+e(iy,..., i, 1) € Bo(T(V)).
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One can easily check by direct computation the following analog of [19,Proposition

3.13l.

Proposition 5.9. Let C be an admissible set of relations and T(v) a C-realization. If
T(w) € Bo(T(v)) then

Epy (T(w)) = > a(W, iy, ... iy ) TW A+ (g, Ty 1)), (3)
k=1,...m—1
(i1, im—1)€{1,....K}ym—1

forme{3,...,n+ 1}

Theorem 5.10. Let T(v) be the Gelfand-Tsetlin tableau satisfying (2), C an admissible
set of relations containing Q, for which T(v) is a C-realization. Then

(a) E,,; is injective on V(T (v)) if and only if ((m —1,1); (m, 1)) ¢ C;

(b) E,,; is surjective on V(T (v)) if and only if ((m,1); (m —1,1)) ¢ C.

Proof.

(a) For any T(w) € B-(T(v)) we have
T(w+e(l,..., 1) =T(w — 8§ —62! =831 — . — ™11y € B.(T(v)).

Infact, (W1 — 1) —(wy; — D) =w;; —wy foralli=1,.... m—-2, wy,, —
(Wi 1171) = Wiy =Wy 1 +1 ¢ Zy, and (Wi =1 =Wy o = Wy =Wy, p—1 ¢
Zforalli=1,...,m— 1. On the other hand, for any s € {3,...m — 1} given
that wy; — wy
W —Ws ;¢ Zforallt € {2,...5s—1}. Hence, a(w, 1,...,1) # 0. Using the fact
that T(w+e(1,...,1)) # T(w+e(y,..., i, ;) forall (iy,...,i, 1) #1,...,1),

we obtain (cf. formula (3))

12 ¢Zand wy_; 5 — wy

_1¢ €Zforallte({2,...s—1}, we have

E (Tw) =a(w,1,...,1) T(w+e(l,..., 1)+

+ > | > a(W, iy, ... iy 1) T(W 4Gy, ... 0y 1)) # 0.
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Now, suppose that 0 # u = >, ; ciT(wi) € Vo (T(v)) with ¢c; # O foralli eI
Then

Epy (u) = z c;a(Whiy, ... i ) TOW' — (... 0y, 1) #0.

({1 /eesim—1)€{1,..., K}

In fact, for any i € I, we have Cia(wi, 1,...,1) T(Wi +e(1,...,1)) # 0 and
T(W! +e(1,...,1)) # TW + @iy, ... iy ) forall (y,..., iy, 1) # (1,...,1).
Also, as T(w') # T(w’), we obtain T(w' +¢(1,...,1)) # T(w? +¢(1,...,1)) for
all i # j € I. Finally, suppose that for any i € I, there exists j € I such that
j#iand T(w!+e(,...,1) = T(W +¢(iy,...,i,_ ;) for some (iy,...,i,, ;) #

(1,...,1). Then there exists s € {2,...m — 1} with W§1 —1= VI/‘él, and hence
Zwil = Z(Wél -D= Zwél —#l = Zwil — #,
jeI iel iel jeI

which is a contradiction. Thus, there exists i € I such that T(Wi +
e1,...,1)) # T(wW + €(iy,...,i,,_1)) for all j # i and for all (iy,...,i,_;) #

1,...,1).
Conversely, let (m — 1,1); (m, 1)) € C. By the hypothesis,

{(m—-1,j);(m,j+1)|j=2,....m—-1}CC

and hence there exists T(w) € By (T(v)) such that w,, ;; —w, w.

ml — Wm-1j "

Wi jt1 =1 foreachj=2,...m—1. Therefore, T(w+e(i;,...,i,,_1) & Be(T(v))
forany 1 <iy <k<m-—1andE,;(T(w)) =0.
First, note that for any T(w) € B¢(T(v)), we have

T(w') :=T(w —e(1,...,1)) € Bo(T(v)),

since ((m,1);(m —1,1)) ¢ C.
Using (3) we obtain
E, . (T(W)) =b(w,1,...,1) T(w)
+ > bW, iy, ... i, 1) TW+¢ Gy 1)),

(P2, sim-1)#(1,...,1)
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with &'(y, ..., 1, 1) == €@y, ..., i,_1) —&(,...,1),and
b(W, iz, ceey im_l) =
o, f T(w+¢e'(iy, ... 10,_1) ¢ Bo(T(v))
= m—1 i;ils_l(Wsis_Ws—l,t+81iS_81t)

: » .
$=2 [Tipis Wsig—wst+815—010) ETW + 6y, b)) € Be(T(WV)).

In particular, for any s € {3,...m — 1}, we have wy; — W 1: ¢ Z for any

te{2,...s—1}, and hence

—1
ngz (Wsl - Ws—l,t) # 0
i:z(wsl - Wy + 1)

m—1
b(W,l,...,l):H
s=2

As T(w) € B(T(v)), we have Wi — Wit 41 € {1,2,...,dij}, where dij =
Vi1 — Vpyj_i — N+ 1€ Z,y We consider the following cases:

Case I: wy, — wgg € {1,2,...,dy,} and wy; — wyy, ;4 = 1 forall 3 <
i <nand2 <j<i In this case, T(wW + ¢'(iy,...,i;,_1)) & Be(T(v)) for all
(iz,--.,ipm_1) such that iy > 1 for some k = 3,...,m — 1, since (w;; — 1) —

Wity 41 = Oforall 3 <i<nand2<j<i. Therefore,
E, (T(W)) =b(w,1,1,..., DT(w) + b(w,2,1,..., )T(w 4 62! — §?2),

If ((1,1);(2,1)) € C or ((3,1); (2,1)) € C, then T(w + §2! — §22) ¢ B,(T(v)),
when wy; — wy; = 1 or wy; — wy; = 0. Hence, b(w,2,1,...,1) = 0, and
E, (T(W) =b(w,1,1,..., DT(w).
Suppose now that ((1,1); (2,1)) ¢ C and ((3,1); (2,1)) ¢ C and consider
the following cases:
(1) wyy —wgy = 1.
In this case T(w + §%!' — §22) ¢ By(T(v)) implying E, (T(w') =
b(w,1,1,...,1)T(w).
(i) wyy, —way=1€{2,3,4,...,dy,}.
In this case T(w+3821 —§%2) € Bo(T(v)) as (Wyy—1)—Wg3 = Wy, —Wyy—1 =
i—1and wyy, — (Wy, — 1) = wyy — Wy, +1 € Z_. By the induction on i, we
have T(w + 62! —§?2) = E,,, (T(w,)), where T(w,) is a tableau in V;(T(v)).
So, E,,; (TW')) = b(w,1,1,...,)T(w) + b(w,2,1,..., DT (w + §2! — §22).
Consequently, T(w) = E,,; (T(wg)) for some T(w,) € Vo (T(v)).
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Case II: Wy, — Wag € {1,2,...,dy}, Wy, —Wy3 =J €{2,3,4,...,d35}
andwij—wiﬂﬁl =wyy —Wy,=1forall4<i<nand2<j<i.

In this case, T(w + &'(iy,...,1,_1)) ¢ Be(T(v)) for all (iy,..., 0, ;)
such that iy =3 ori; > 1foranyk=4,...,m—1,as (w; — 1) — w4y =
(W33 —1)—wy, =0forall4<i<nand2 <j<i.

(i) If wy, — wyy = 1 then T(w + 82! — §22) and T(w + §2! — §22 + 531 — §32) do
not belong B, (T(v)). On the other hand, T(w + 83! — §32) € B,(T(v)), as
Wyap—(Wgo—1) € Z_g, (W3y—1)—Wyg =j—1 > 2 and (Wgy,—1)—Wyy = Wyz—
Wy, +J — 3 € Z_,. Following the case I-(i), we conclude that there exists
T(w,) € Vo(T(v)) such that T(w + 83! — §32) = E, | (T(w,)). Therefore,
E, (Tw")) =bw,1,1,...,)T(W) +bw,1,2,..., 1)E,,, (T(wy)).

(ii) Assume wy, —wyy =1 € {2,3,...,d,,}. We immediately get that T(w +
821 — 822y and T(w + 82! — 622 463! — §32) belong to B.(T(v)). On the other
hand, T(w + 83! — §%2) € B.(T(v)) if and only if wyy — wy, > i —j+ 2,
since Wy, — (Wgy —1) € Z_gand (Wgy — 1) — Wy, = Wyg — Wy +j—1— 2.
Then, following the cases I and II-(i), there exists T(wy) € V(T (v)) for
each k = 1,2,3 such that T(w + §*! — §?2) = E,,; (T(w)), T(w + §%! —
822 + 831 — §%2) = E,,, (T(wy)) and T(w + 83! — §%2) = E,,; (T(wy)) (f
Wy — Wyy < i—J+ 2, then T(w3) = 0).

Hence,
Eml(T(w’)) =b(w,1,1,..., )T(w) +b(w,2,1,..., DE,,; (T(w;))

+bW,2,2,..., DE, (T(Wy) +bw,1,2,..., )E, (T(wy)).

Repeating the process, after finitely many steps, we obtain that
for any T(w) € B(T(v)) there exists T(w,) € V(T (v)) such that T(w) =
E,,,(T(wy)), which implies the surjectivity of E,,;.

Conversely, assume that E,,; is surjective on V(T (v)) but ((m, 1); (m—
1,1)) € C. Choose T(w) € B(T(v)) such that w,, ;; = wy,;. As
((m,j);m —1,j)) e Cforallj =2,...,m — 1, we can assume without loss

of generality that w,, Wi j forallj=2,...,m — 1. On the other hand,

1j =
there exists u € V(T (v)) such that

E,,(u) = > c;a(Wh iy, ... i ) TW' —&(iy,... 0y 1) = T(W).

@1 rbm—1)€{1,... K} 1

20T JoqWIdAON 6z UO J8sn O 13dd OYdIFald SYH131 SYIONIIO VId0SOT1I4 3ava1nNOVv4 Ad #6971 £9/6G | qeul/uiwl/e601 01 /10p/d[01E-80UBAPE/UILI/WOD dNO"dIWapEDE//: S}y WOy PEPEOJUMO(



30 V. Futorny et al.

Hence, T(w) = T(w' — e(y,...,i,,_1)) forsomeielandl <iy <k<m-1.
Then, there exists j € {1,...,m — 1} such that 0 = Wi — Wiy_qj = winj -
Win—l,j + 1 > 0. Therefore, ((m,1); (im—1,1)) ¢ C. [

Remark 5.11. Note that in Theorem 5.10 the set of relations C does not need to be
neither indecomposable nor maximal set satisfied by T'(v). This is the case, for example,
whenu;,;—u; € Z,pforanyl <i<nandC={((@+1,1); @ 1) |1 <i<njoru;,,—u; ¢7Z

foranyl <i<nandC =4.

Let F := {Emi1 |i=1,...,k} suchthat, m; €{2,...,n+ 1} foreachi=1,..., k. We

have

Proposition 5.12. Let A € h*.
(a) If A satisfies conditions (b), (c) or (e) for i = 1 of Corollary 4.9, then DyL(}) is

a bounded relation Gelfand-Tsetlin module.
(b) If M = L()) and F,, = {E,,;} for some m € {2,...,n + 1} such that E,; acts
injectivity on M, then Dy (M)/M is simple.

Proof. Suppose that A satisfies the condition (b) of Corollary 4.9 (the proof of other
cases is similar). Then L(A) ~ V (T(v)) where T(v) is the Gelfand-Tsetlin tableau (2)
such that u; = u; foralli=2,3,...,n+1landC=QU{((I+1,1);(, 1)) |1 <i<n}. Set
M = Vq(T(v)) and N = Vp(T(v)), where D = C\ {((m;,1); (m; — 1,1)) | i =1,...,k}. Then
M C DM C N by Theorem 5.10.

Suppose first that k = 1. Then F = F,, = {E,,;}. Since E,,; is injective but not
bijective on M, we conclude by Theorem 5.10 that M is a proper submodule of D M.
On the other hand, consider the set of relations D,, = D U {((m — 1,1); (m, 1))}. Then
Vp, (T(v 4 8™~11)) is a simple module by Theorem 4.6, and Vp, (T (v + 8™ 1)) ~ N/M.
Hence, M is a maximal submodule of N. Finally, given that E,,; acts bijectively on N, we
get that N >~ D M by Proposition 3.1. This completes the proof in the case k = 1.

Now, suppose that statement holds for all subsets of F with k£ — 1 elements.
Define F; := F \ {E,,; ,} and D; := DU {((m;,1); (m; — 1,1))} for any i = 1,...,k. Then
Dp,M = Vp,(T(v)). Set L = Vp, (T(V) + -+ + Vp, (T(V)). As Dy M C Dy, \DpM = DM,
we have L C DzM. Since L is not F-bijective, then L is a proper submodule of DyM. On
the other hand, let T(w) = T(v + i;6™ 1! 4 (i; — 1)§™m2~ 11 ... 4 sMma bl (k-
ig + 1Mt~ 4 .. 4 gmk—L1) Consider A = DU {((m; — 1,1); (m;, 1)) | i = 1,...,k},
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where {m; |1 =1,2,...k} = {my,...,m; }U-.-U{m;,...,my} is a disjoint union of sets
with consecutive elements. Then A is a maximal set of relations satisfied by T(w) and
V 4(T(w)) is a simple module by Theorem 4.6. As N/L ~ V 4,(T(w)), we conclude that L is
a maximal submodule of N and DM ~ N by Proposition 3.1. |

6 Simple Modules in the Minimal Nilpotent Orbit

Recall that g = sl ;.

6.1 Minimal nilpotent orbit

Let k an admissible number for § with denominator g € N. In this section, we discuss
explicit construction of simple admissible highest weight and sl,-induced g-modules
min- The orbit O
= 2n. We have the following description of [P_r?

in the minimal nilpotent orbit O is the unique minimal non-trivial

min
min],

nilpotent orbit of g with dim O

min
Proposition 6.1. [9, Proposition 2.10] Then
—0 q_l ap
(Pri" = | |1 = "ol 12 € B2,
a=1

where ﬁf__n_l is the set of level p — n — 1 integral dominant weights of § and o, is the

1st fundamental weight.

To describe simple admissible g-modules in the minimal orbit O,,;,, of level k we

min]

need to find those simple g-modules V for which Anny,,V = J,, for each A € [P_r(,?
We start with the highest weight modules.

6.2 Explicit realization of highest weight modules

Let

k—i—nzg—l, p>n,q>1and (p,q =1.
By Proposition 6.1, an element of [ITrg'”i"] has the form

rfn—-1r"n

- ap ap )
A——w,=Ay — —, A0, Aq,..., A A ),
q ! (1 q 273
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where A; € Zzo,foralliz 1,...,naresuchthatA;+...+A, <p—nandae{l1,2,...,q—1}.

Example 6.2. Letg=sl;. ASA; = (A — %,Az) is regular dominant, by Corollary 2.3,
the simple admissible highest weight modules in the minimal orbit are L(A;), i = 1,2, 3,
where:

o Ap=51-A=(B A -2+ L+1);

o Ag=5;5 A= (g, T =2 =2y = 3).

These modules have weight multiplicities bounded by A, + 1.

Applying Corollary 4.9, (b), we get the following:

Theorem 6.3. Any simple admissible highest weight module in the minimal nilpotent

orbit is a bounded I'-relation Gelfand-Tsetlin module.

Example 6.4. Letg=sl,and A; = — %, A9, A3). Then the simple admissible highest
weight modules in the minimal orbit are L(A;), i = 1, 2, 3,4, where:

o Np=s5p A== =20 — L4+ 11y);

o Ag=5;5 Ay =0 P =M = Ay =30+ Ay +hg =L +2)

o Ay=53551-A; = (g kg, P — Ay — Ay — Az —4).
These modules are bounded, for example, the weight multiplicities of L(A ) are bounded
by 3Gy + D(hg + 1Ay + A5 +2).

Let F := {Emi1 |i=1,...,k} such that m; € {2,...,n+ 1} foreachi =1,... k.

From Corollary 3.5 and Proposition 5.12, we immediately obtain the following:

Corollary 6.5. Let n > 2. All simple subquotients of DzL(1") are admissible bounded

I'-relation Gelfand-Tsetlin g-modules in the minimal orbit.

Remark 6.6.

(i) Corollary 6.5 for s[(3) was shown in [9, Theorem 5.6].
(ii) All simple modules in Corollary 6.5 are highest weight modules (with respect

to some Borel subalgebra) with bounded weight multiplicities.

We have from Corollary 4.13
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Corollary 6.7. Let b = b(w), ﬁj en,j=1,...,t with <A + pn,,ij> € Z>g for all j, and let
w € W be such that <W()» + pn),ﬁjv> €Z_gforallj=1,...,t. Then L(A) = Ly, (W) is a

I" -relation Gelfand-Tsetlin module, where I' = wT'.

We also have the following result.

Corollary 6.8. Let A € h*, = a basis of the root system, L(1) = Ly (A) an admissible
highest weight module in the minimal orbit (with respect to the Borel subalgebra b(x))
and g € 7 is such that (A, 8¥) ¢ Z.,. Then

(a) The module Ly, (2 + B) is an admissible s;I'-relation Gelfand-Tsetlin
module in the minimal orbit.

(b) Leti > 1, B = f; the 1st simple root of = such that (1, ") ¢ Z., and w =
Si_15;S;i_2S;_1 " S251535,S, € W. Then Ly,—1,,(w™'1) is a I'-relation Gelfand-
Tsetlin module in the minimal orbit.

(c) For any x € C, D}‘ﬂL(/\) is a wrl'-relation Gelfand-Tsetlin module in the

minimal orbit.

Proof. LetA =i—“Pw;, where’ = (.,...,%,) with non-negative integers 1, for all i =
1,...,n.Then A =s;...s; - A for some t < n.If t = n then X has the last component non-
integral in which case g = «,,. If ¢ < n then X has exactly two non-integral components in
the places t and t+1 and 8 = o, or B = ;. Hence, L(s4-1) is a simple admissible highest
weight module in the minimal orbit. Note that s;-1 = s5(1+f) and consider Ly, ) (A +5).
This is the highest weight module with respect to the Borel subalgebra b(sg) and the
corresponding highest weight (with respect to b(sﬁn)) is A + B. Therefore, Lb(sﬁn)(k + B)
is an admissible module in the minimal orbit, and it is a I'’-relation Gelfand-Tsetlin
module where I'" is the standard Gelfand-Tsetlin subalgebra of SpT, thatis [V = sﬂF.
This shows (a).

Since L(A) is a module in the nilpotent orbit, then L, 1,(w~!1) is also an
admissible module in the nilpotent orbit. Hence, Ly, -1, (w™'A) is a w™!T-relation
Gelfand-Tsetlin module. The statement (b) follows from Lemma 4.14. Now, twisting
Lb(w_ln)(w_lk) by w, that is applying w to the corresponding Gelfand-Tsetlin formulas,
we obtain that L(A) is a wI'-relation Gelfand-Tsetlin module. Note that w € W is the
element of minimal length such that 8 is the 1st simple root of wx. Hence, (c) follows
from Theorem 5.4. u
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6.3 Classification of sly-induced modules

Let k = % — n — 1 be an admissible number for g. In this section, we complete
the construction of all simple admissible g-modules in the minimal orbit, which are
the quotients of modules induced from parabolic subalgebras with the Levi factor
isomorphic to sl, + h. All such modules are I' z-relation modules for some 7.

Let M be an admissible g-module of level k. Consider a parabolic subalgebra
p =py =[x +ny of g, where T consists of one simple root . Denote by M" the subspace
of all ny-invariants, which is an [y-module. Suppose M = Lg(E,N) for some simple
weight [y-module N with nyN = 0. Then M" ~ N is admissible [y-module of level
kg (ﬁﬂ)(k+n+1)—2by [9, Theorem 2.12].

The following is straightforward.

Proposition 6.9. Let a = sl,, V = V(y,u) a simple dense weight a-module, y,u € C.

Then V is admissible of level k in the minimal orbit if and only if u = A — % + 2x and

2
y:(k—%‘Fl) ,whereke{0,1,...,p—2},ae{1,...,q—1},X€C\Zandx—%¢Z.

Remark 6.10. In the proposition above we have V = V(T (v)), where C = @, T(v) =

T(vy) is the Gelfand-Tsetlin tableau with height 2, such that v,; = l; Vo = ( - ?p)
and vy, = 5 (% — A - 2) (cf. Theorem 5.6). The set Bo(T(v)) = {T(v+¢811) | L € Z} is a

basis of V.

Applying Proposition 6.9, Theorem 2.9, and Theorem 5.6, we obtain the follow-

ing statement.

Corollary 6.11. Letn > 1,y € C, u = (uy,...,14y,) € b, such that V >~ V(y,u,) is
a simple dense weight sl,-module and p; = (u,e}’), i = 1,...,n. Let L(y, ) = Ly({e}, V).
Then, L(y, 1) is admissible of level k in the minimal orbit if and only if u; = A; — % +2x,

2
Mg =hy—x,u;=Ajforallj=3,...,nand y = (kl—%+1) with {A;};,_;

,,,,,

suchthatkl~|—...+kn<p—n,ae{1,2,...,q—1},X€(C\Zandx—a?¢Z.

Theorem 6.12. Let 7 be a basis of the root system of g, 8 a positive root of g (with

respect to 7). Let Ly ) be an admissible simple b()-highest weight g-module in the
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minimal orbit, such that (1, ") ¢ Z, and f = f;. Denote by A, ; the set of all x € C\ Z
such that x + (A + p,., BY) ¢ Z.

(@) The g-module DLy, (%) is admissible in the minimal orbit for any x € 4, 4;

(b) Modules D}‘Lb(n)(k), where 7 runs the sets of simple roots of g, 8 runs
positive roots with respect to 7, x € Aﬂ,ﬂ, (A,,BV) ¢ 7, and Lb(ﬂ)(k) is
admissible module in the minimal orbit, exhaust all simple sl,-induced
admissible modules in the minimal orbit. All such modules have bounded
weight multiplicities;

(c) There exists a flag F such that DiLy,)(2) is I'z-relation Gelfand-Tsetlin

g-module.
Proof. Letn ={ay,...,,}. First we prove (a). Let 8 = «,.+ ...+ «, for some consecutive
simple roots o, j=r,...,t. Since A is admissible in the minimal orbit then we have two

possibilities: either there exists only one simple root i such that (k,aiv) ¢ 7, or there are
only two such roots which are consecutive. Assume the 1st case. Then eitheri =r =1
or i = t = n. Without loss of generality we may assume that i = 1 (if i = n then
apply symmetry of the root system), and hence <A + ,oﬂ,ajv> €Z.g, j=2,...,t. Take the

following basis of the root system
=B, gm0y Uy O Qg Oy )

Let w € W be such that wr = 7’. Then w satisfies Corollary 6.7, and L(\) ~ L wry (W)
is a wT -relation Gelfand-Tsetlin module. Then the statement follows from Theorem 5.4.

Consider now the 2nd case. Assume that (A, ) ¢ Z for i = k,k + 1 for some k.
If B = oy then the statement follows from Corollary 6.8, (c). If 8 = ., then apply the
symmetry of the Dynkin diagram and Corollary 6.8, (c). Let 8 = «, + ... + o, for some
1 <r < k— 1. Take the minimal w € W such that wr contains g and —«,,..., —a;_;
(such w clearly exists). Then L(1) >~ Ly wr)(wh). Hence, the problem reduces to the case
B = o, which was argued above. If § = o;,; + ... + o, for some k +1 < t < n, then
the statement follows from the symmetry of the Dynkin diagram. Now (b) and (c) follow
from (a) and Theorem 5.6. |

We note that Theorem 6.12 was initially proved for g = s((3) in [9, Theorem 5.6].
Let 8 be a root of g and 7 be a basis of the root system containing 8 as the 1st
root (such = always exists by the conjugation by the Weyl group). Let p = a; & n be a

parabolic subalgebra of g containing b(r) with the Levi factor ag ~ sl, + b based on the
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root B. Let V="V(yg, ), vp €Cou= o +... + n,oy, € h*, where vp is the eigenvalue

of the Casimir element of ag and <wi, J.V> =68..,1i=1,...,n.

ijr
Corollary 6.13. The module L, g(vg 1) = Lg(V) is admissible in the minimal orbit if
and only if (u— A, 8)) = 2x, (u— A, By) = —x, (u — 1, B;) = 0 for each i = 3,...,n, and
vs = (A + pp, By, with (A + o, BY) € Z g forallie (2,...,n}, x € C\Z, x+{k + oy, ) ¢ Z
and<)\~|—%w1 +,on,,31V> eZ>0,<A+%wl —|—,on,,31V’n> <pforsomeac{l,2,...,q—1}.

Remark 6.14. Theorem 6.12 provides an algorithm how to list all simple sl,-induced

admissible modules in the minimal orbit:

e Consider all possible Borel subalgebras of g containing b;

e For each Borel subalgebra b(r) describe A € h* for which Ly (1) is admissible
using the Arakawa’s classification for the standard Borel and applying the
Weyl group;

e Choose any positive (with respect to m) root 8 such that (A,ﬂv) ¢ 7, and
define DL, (%) for any x € C\Z such that x+ (1 +p,, BY) ¢ Z, where f = f3-

Obtained modules exhaust all simple sl,-induced admissible modules in the minimal
orbit. Moreover, the proof of Theorem 6.12 explains how to define the flag F for
which L 5(yg, 1) is a T’ z-relation Gelfand-Tsetlin g-module, and hence to obtain explicit

tableaux realization for all such modules.
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