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Simple Summary: Trichogramma atopovirilia is an egg parasitoid used for the biological
control of fall armyworm (Spodoptera frugiperda), a major agricultural pest. To better
understand how different insecticides affect this natural enemy, we evaluated the lethal
and transgenerational effects of botanical and synthetic insecticides. The ethanolic seed
extract of Annona mucosa (ESAM) was highly toxic, almost completely reducing para-
sitism in the exposed generation. Other botanical insecticides also reduced parasitism
but had no significant impacts on subsequent generations. The tested synthetic insecti-
cide had a moderate effect on the exposed generation without relevant transgenerational
effects. Overall, while some botanical insecticides affected T. atopovirilia, most did not
compromise its long-term biological control potential. These findings underscore the
importance of insecticide selectivity studies in ensuring sustainable integrated pest
management strategies.

Abstract: This study investigated the lethal and transgenerational effects of botanical and
synthetic insecticides on the egg parasitoid Trichogramma atopovirilia, an important natural
enemy of Spodoptera frugiperda in Brazil and beyond. The treatments were assessed for
their impact on parasitism, emergence, sex ratio, and flight capacity of adults exposed
to contaminated eggs. The botanical insecticide ESAM (ethanolic seed extract of Annona
mucosa) significantly reduced the parasitism in the F0 generation by 99.76%, categoriz-
ing it as toxic. Anosom® [acetogenins (annonin as a major component)] and Azamax®

[limonoids (azadirachtin + 3-tigloilazadirachtol)] also caused substantial reductions (99.13%
and 92.36%, respectively) in the parasitism rate. EFAMON (ethanolic leaf extract of An-
nona montana) reduced the parasitism by 62%, while the synthetic insecticide Premio®

(chlorantraniliprole) resulted in a 28.21% reduction. In the F1 generation, emergence rates
for EFAMON, Azamax®, and Premio® exceeded 70%, showing no significant differences
from the negative control (82%), while Anosom® resulted in a lower emergence rate of
61.39%. No significant effects were observed on sex ratio or parasitism in the F1 and F2

generations. Most adults reached high flight capacity (above 80%). These results indicate
that while ESAM was toxic, the other treatments showed no transgenerational effects. Our
findings contribute to understanding insecticide selectivity and highlight the importance
of such studies for the sustainable management of S. frugiperda within integrated pest
management programs.
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1. Introduction
The fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), is one

of the most significant agricultural pests due to its ability to adapt to different environments
and host plants. This characteristic allows it to cause significant damage to economically
important crops, especially corn, one of its preferred hosts, with yield losses reaching up
to 94.8% [1,2]. The rapid evolution of resistance to insecticides and Bt corn intensifies
the challenges in its management [3]. In this context, integrated pest management (IPM)
programs emphasize the association of chemical and biological control methods as an
alternative to mitigate the impact caused by this pest [4,5].

Egg parasitoids of the genus Trichogramma (Hymenoptera: Trichogrammatidae) are
important tools in biological control [6,7]. Among the species of this genus, Trichogramma
atopovirilia Oatman & Platner stands out for its wide distribution and ability to parasitize
eggs of different lepidopteran pests, including S. frugiperda [8–11]. Jalareño-Teniente
et al. [9] demonstrated that T. atopovirilia achieves high parasitism rates under laboratory
conditions. Compared to Trichogramma pretiosum Riley, another parasitoid commonly used
for S. frugiperda management, T. atopovirilia exhibits superior performance, particularly in
overcoming the physical barrier formed by the scales covering the eggs [12].

Synthetic insecticides represent another important tool for controlling S. frugiperda.
However, previously reported cases of resistant populations to the main active ingredi-
ents available, along with concerns about environmental impacts associated with this
method, have driven the search for alternatives, including the adoption of botanical in-
secticides [4,13]. These natural compounds are often described as less toxic to non-target
organisms and less harmful to the environment [14]. Plants from the Annonaceae fam-
ily, including Annona mucosa Jacq., Annona montana Macfad., and Annona squamosa L.,
have demonstrated insecticidal activity against S. frugiperda [15–17]. The toxicity of these
botanical compounds is primarily attributed to acetogenins, a class of bioactive molecules
with diverse modes of action, including cytotoxic effects, which cause changes in midgut
epithelium and digestive cells of insects [18,19].

The integration of biological control using T. atopovirilia and chemical control with
botanical insecticides is a promising strategy for managing S. frugiperda [5,6]. However,
T. atopovirilia can be susceptible to insecticide exposure, whether through direct contact
or residual effects, which may negatively impact its population and reduce its effective-
ness [20,21]. Therefore, it is important to conduct studies that evaluate the selectivity of
botanical insecticides to ensure compatibility between these two control methods and
promote balance in agroecosystems [22–27].

Selective insecticides are those that are more toxic to pests than to beneficial organ-
isms [28]. The selectivity of these insecticides is evaluated through ecotoxicological studies,
often following protocols established by the International Organization for Biological Con-
trol (IOBC). These protocols include tests that assess both the lethal and sublethal effects of
the insecticides [29–32]. Additionally, it is important to consider transgenerational effects,
as the impacts of an insecticide can be transmitted to subsequent generations, even if
the previous generation did not suffer direct effects [33,34]. While previous studies have
investigated the effects of synthetic insecticides on T. atopovirilia, this is the first approach
involving botanical insecticides and their impacts across generations [22,25–27].

In light of this context, this study aimed to assess the compatibility between botanical
and a synthetic insecticide with the egg parasitoid T. atopovirilia. We hypothesize that botan-
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ical insecticides from the Annonaceae family may exhibit lower toxicity to T. atopovirilia
compared to the synthetic insecticide. To test this hypothesis, we assessed the lethal effects
of botanical insecticides and the synthetic insecticide on T. atopovirilia, sublethal impacts on
parasitism, emergence, sex ratio, and flight capacity, as well as transgenerational effects
by analyzing offspring performance. Understanding these effects can contribute to the
integration of pest management tactics in the framework of S. frugiperda management,
which is aligned with the principles of IPM, promoting agricultural sustainability and
food safety.

2. Materials and Methods
2.1. Maintenance of Trichogramma atopovirilia Colony

Trichogramma atopovirilia were obtained from a laboratory colony maintained by the
Insect Biology Laboratory at the University of São Paulo, Luiz de Queiroz College of Agri-
culture (Piracicaba, São Paulo, Brazil). The adults were kept in 50 mL glass tubes sealed
with plastic film (Tecfilm, Bom Retiro, SP, Brazil) and provided with droplets of pure bee
honey as a food source. For colony maintenance, UV-sterilized eggs of the alternative host
Ephestia kuehniella Zeller, 1879 (Lepidoptera: Pyralidae), supplied by Koppert Biological
Systems (Charqueada, SP, Brazil), were used. The eggs were affixed to 7.6 × 12 cm card-
board sheets using double-sided adhesive tape (Adere, Sumaré, SP, Brazil) and offered to
the adult T. atopovirilia for 48 h to allow for parasitism. Subsequently, the parasitized sheets
were transferred to new glass tubes where they remained until adult emergence. At that
point, the entire process was repeated. The rearing was maintained in climate chambers
(Eletrolab, São Paulo, SP, Brazil) under controlled conditions of temperature (25 ± 1 ◦C),
relative humidity (60 ± 10%), and 14 h photophase.

2.2. Treatments and Concentrations

The insecticides selected for assessing selectivity on T. atopovirilia exhibit insecticidal
activity against S. frugiperda in previous studies [15–17,35]. Five insecticides were selected
and classified into three categories. The first group included two non-commercial pre-
formulations: one based on the ethanolic seed extract of Annona mucosa (ESAM) and
another composed of the methanolic fraction of the ethanolic leaf extract from Annona
montana (EFAMON). The second group consisted of two commercial botanical insecticides:
Anosom® 1 EC, which is based on acetogenins (annonin as a major active ingredient), and
Azamax® 1.2 EC, based on azadirachtin and 3-tigloylazadirachtol. The third group included
the commercial synthetic insecticide Premio® SC, which has chlorantraniliprole as its active
ingredient. The control treatment consisted of distilled water and the solvents used in the
pre-formulations: Triton® X-100 (0.1%, v v−1), Tween® 80 (1%, v v−1), acetone + methanol
[1% (v v−1), in a 1:1 ratio] (Êxodo Científica Química Fina Indústria e Comércio Ltd.,
Sumaré, SP, Brazil).

All bioassays were conducted using the lethal concentration that causes 90% mortality
(LC90) in S. frugiperda. The procedure for determining the LC90 for each treatment is
described in Supplementary Material S1, while the corresponding values and additional
information are presented in Table 1.
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Table 1. Lethal concentrations (LC90) 1 of the treatments estimated for Spodoptera frugiperda and used
in selectivity bioassays on Trichogramma atopovirilia.

Treatments N LC90
(95% CI) 1 Slope ± SE X2

(df) p Manufacturer

EFAMON 452 10,949.0 mg kg−1

(8115.5–14,771.8)
1.93 ± 0.20 9.39 (5) 0.094 Pre-commercial

ESAM 672 1882.0 mg kg−1

(13,486.0–3830.0) 2 3.44 ± 0.64 9.24 (4) 0.838 Pre-commercial

Anosom® 1 EC, 1 g a.i L−1

(Acetogenin annonin)
480 2959.0 mg kg−1

(2596.0–3504.0) 3 3.53 ± 0.41 0.78 (2) 0.160 Agri Life
(Hyderabad, India)

Azamax® 1.2 EC, 1.2 g a.i L−1

(Azadirachtin +
3-tigloylazadirachtol)

442 65.42 mg kg−1

(44.28–96.68)
1.62 ± 0.16 8.04 (4) 0.090 UPL Brazil

(Campinas, Brazil)

Premio® SC, 200 g a.i. L−1

(Chlorantraniliprole)
523 0.43 mg kg−1

(0.37–0.50)
3.28 ± 0.28 2.58 (4) 0.630 FMC Brazil

(Campinas, Brazil)
EFAMON = Aqueous emulsion of the methanolic fraction of the ethanolic extract of Annona montana leaves.
ESAM = Aqueous emulsion of the ethanolic extract of Annona mucosa seeds. 1 LC90 = Lethal concentration and
confidence interval (95%) required to kill 90% of first-instar larvae of S. frugiperda after seven days of exposure.
Concentrations obtained from 2 Ansante et al. [15] and 3 Ansante et al. [16].

2.3. Bioassays

Selectivity bioassays were performed to assess the lethal and transgenerational ef-
fects of insecticides on T. atopovirilia through contact exposure with contaminated eggs
(Figure 1). All experiments were conducted under controlled conditions (temperature:
25 ± 1 ◦C, relative humidity: 60 ± 10% and a photophase of 14 h) following a completely
randomized design.
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2.3.1. Survival and Parasitism of the F0 Generation (Parental)

To assess the effects of the treatments on the survival of T. atopovirilia, cards containing
approximately 150 UV-sterilized eggs of the factitious host (E. kuehniella) were immersed
for 10 s in solutions with the LC90 of the treatments. After drying, the cards were placed
in 25 mL glass tubes, and a 24 h old female was introduced to ensure contact with the
contaminated eggs for 24 h. Following this period, the contaminated cards were replaced
daily with untreated cards, and the survival of the parasitoid was monitored until the death
of the last individual. Pure honey was provided as food for the parasitoid. To assess the
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parasitism capacity of the females exposed to the treatments, the cards containing eggs
collected daily from the survival bioassay were kept in 25 mL test tubes until the eggs
darkened, indicating parasitism. The number of parasitized eggs (darkened eggs) was then
counted using a stereoscopic microscope (Stereo-Zoom SZ/SZT series, BEL Engineering,
Newcastle upon Tyne, UK). The experiment included 30 replicates per treatment, with one
female per replicate and 150 eggs were offered daily to each female.

2.3.2. Transgenerational Effects on F1 and F2 Generations

The eggs parasitized by females exposed to treatments were kept until the emergence
of F1, with evaluations of the emergence rate and sex ratio. The emergence rate was
calculated based on the number of eggs with exit holes in relation to the total number of
darkened eggs, while the sex ratio was assessed by differentiating antennae [36]. F1 females
were individually placed in test tubes (25 mL) and received daily cards containing eggs of
the factitious host (E. kuehniella) for assessing parasitism. Their survival was recorded until
the last female died. Following the same procedures described previously, the emergence
rate and sex ratio of the F2 generation were also assessed. The transgenerational effects
experiments were conducted with 15 replicates per treatment.

2.3.3. Flight Capacity of the F2 Generation

To investigate the effects of insecticides on the flight capacity of the F2 generation,
females from the previous generation were individually placed in test tubes (25 mL) and
exposed to cards containing uncontaminated E. kuehniella eggs for parasitism. Close to the
parasitoid emergence date (two days before), these cards were placed in test tubes (50 mL)
positioned in the center of flight cages [37,38].

The cages consisted of plastic tubes (18 cm in height × 11 cm in diameter) internally
lined with black cardstock and sealed at the base with an acrylic lid covered with black
adhesive paper. A non-toxic entomological glue ring (0.5 cm wide) was positioned inside
the cage, 3.5 cm from the base. Additionally, the upper transparent acrylic lid was coated
internally with entomological glue.

Three days after the estimated emergence date, the number of insects that reached the
top of the cage (flyers), those trapped in the glue ring (walkers), and those remaining at the
base (non-flyers) were recorded. The experiment was conducted using a completely ran-
domized design, with six replicates per treatment. Each replicate contained approximately
50 parasitized eggs. The percentage of adults in each section of the cage was calculated
based on the total number of insects found.

2.4. Statistical Analysis

Survival data were analyzed using survival curves with the ‘survival’ package [39]
in R 4.2.1 [40]. The treatment effects were assessed using the Cox proportional hazards
regression model fitted to estimate the lethal time necessary to kill 50% of the individuals
(LT50). Differences in survival among treatments were compared using the log-rank test at
a 5% significance level [41]. For parasitism data, generalized linear models (GLMs) were
fitted to compare treatments after 24 h of exposure and the cumulative data at the end of
the experiment (16 days). The same approach was used to compare the flight capacity of T.
atopovirilia, using a two-factor GLM (treatments × location). Models assuming binomial
distribution were used, with corrections for overdispersion when necessary, including
quasi-binomial and beta-binomial models. The goodness of fit of the models was evaluated
using simulated envelopes within a 95% confidence interval, assessed through half-normal
plots generated by the ‘hnp’ package [42]. Treatment comparisons were performed using
deviance analysis, and when significant differences were detected, means were compared
using Tukey’s test at a 5% significance level.
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The treatments were classified into toxicological categories based on their reductions
in the beneficial capacity of T. atopovirilia, considering both parasitism and adult emergence,
following the IOBC/WPRS recommendations. The classifications were defined into four
categories: class 1 = innocuous (reduction < 30%); class 2 = slightly toxic (30% to 80%
reduction); class 3 = moderately toxic (reduction > 80% to 99%); and class 4 = toxic (reduc-
tion > 99%). The reduction percentage (R) was calculated using the formula: R = 100 − (in-
secticide treatment value × 100 ÷ control value) [32].

3. Results
3.1. Survival and Parasitism of the F0 Generation (Parental)

Survival of the F0 generation of T.atopovirilia was significantly affected by the treat-
ments (log-rank test: χ2 = 103.60; d. f . = 5, p < 0.001). The botanical insecticides ESAM and
Anosom® resulted in faster mortality rates, with median lethal times (LT50) of 10.36 days
and 10.22 days, respectively. The control treatment exhibited an LT50 of 12.68 days, which
was not significantly different from EFAMON (LT50 = 12.59 days). In contrast, Azamax® and
Premio® had similar median lethal times of 11.56 and 11.82 days, respectively (Figure 2).
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Figure 2. Survival curves and lethal time (LT50) (±SE) of the F0 generation of Trichogramma atopovirilia
exposed to Ephestia kuehniella eggs contaminated with botanical and synthetic insecticides. Lethal
times followed by different letters are significantly different (pairwise comparisons using log-rank
test, p < 0.05). EFAMON (aqueous emulsion of the methanolic fraction of the ethanolic leaf extract
of Annona montana); ESAM (aqueous emulsion of the ethanolic seed extract of Annona mucosa).
Temperature: 25 ± 1 ◦C, 60 ± 10% UR and 14 h photophase.

The insecticides significantly affected parasitism (F5,170 = 74.962; p < 0.001). Females
from the F0 generation that were exposed to the ESAM parasitized less than 1% of the eggs
within 24 h. This resulted in a 99.76% reduction in parasitism compared to the control
group, leading to the classification of this treatment as toxic (class 4). The bioinsecticides
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based on acetogenins (Anosom®) and limonoids (Azamax®) demonstrated reductions in
parasitism of 99.13% and 92.36%, respectively, and were classified as moderately toxic (class
3). In contrast, females exposed to the EFAMON treatment parasitized 7.28% of the eggs,
which was statistically different from the control group, resulting in a 62% reduction in
parasitism and a classification of slightly toxic (class 2). The synthetic insecticide Premio®

did not show any significant difference from the negative control in terms of parasitism
and was considered innocuous (Table 2). Figure 3 illustrates the accumulated parasitism
throughout the lifespan of the females (F5,169 = 22.894; p < 0.001). At the end of the females’
life cycle, no statistical differences in parasitism were observed between the EFAMON and
Premio® treatments, or between Azamax® and Anosom®. However, ESAM resulted in the
lowest number of parasitized eggs overall.

Table 2. Parasitism of the F0 generation of Trichogramma atopovirilia after exposure to Ephestia kuehniella
eggs contaminated with botanical and synthetic insecticides.

F0

Treatments 24 h
Parasitism (%) 1

Parasitism
Reduction (%) IOBC/WPRS Classification 2

Control 19.19 ± 0.72 a
EFAMON 7.28 ± 1.25 b 62.02 2

ESAM 0.04 ± 0.05 d 99.76 4
Anosom® 1.12 ± 0.36 cd 94.13 3
Azamax® 1.46 ± 0.52 c 92.36 3
Premio® 13.77 ± 1.34 a 28.21 1

1 Means (±SE) followed by different letters are significantly different (Tukey test, p < 0.05). 2 IOBC/WPRS classifi-
cations: class 1 = innocuous (<30% reduction), class 2 = slightly toxic (30% to 80% reduction), class 3 = moderately
toxic (>80% to 99% reduction), class 4 = toxic (>99% reduction). Temperature: 25 ± 1 ◦C, 60 ± 10% UR and
14 h photophase.
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Figure 3. Cumulative parasitism (mean number of eggs, ±SE) of the F0 generation of Trichogramma
atopovirilia exposed to Ephestia kuehniella eggs contaminated with botanical and synthetic insecticides.
Curves with different lowercase letters differ significantly among themselves (Tukey, p < 0.05).
EFAMON (aqueous emulsion of the methanolic fraction of the ethanolic leaf extract of Annona
montana); ESAM (aqueous emulsion of the ethanolic seed extract of Annona mucosa). Temperature:
25 ± 1 ◦C, 60 ± 10% UR and 14 h photophase.
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3.2. Transgenerational Effects on the F1 and F2 Generations

No adults emerged from eggs parasitized by parents that had contact with the botanical
insecticide ESAM. Due to the low parasitism observed in ESAM, the evaluation of other
parameters was not conducted for this treatment. Conversely, EFAMON, Azamax®, and
Premio® resulted in emergence rates above 70% and did not differ statistically from the
negative control (82%). The botanical insecticide Anosom® showed an emergence rate
of 61.40%, representing a 25.17% reduction compared to the control (χ2 = 10.17; d.f. = 4;
p = 0.038). Thus, all treatments affected the emergence parameter of the F1 generation but
were classified as harmless. No effects of the treatments were observed on the sex ratio of
this generation (F4,86 = 1.045; p = 0.3888) (Table 3).

Table 3. Emergence of the F1 generation of Trichogramma atopovirilia after exposure to Ephestia
kuehniella eggs contaminated with botanical and synthetic insecticides.

F1

Treatments 24 h Emergence
(%) 1

Emergence
Reduction (%) IOBC/WPRS Classification 2 Sex Ratio

Control 83.23 ± 2.64 ab 0.64 ± 0.03
EFAMON 87.24 ± 3.45 a 9.30 1 0.65 ± 0.07

ESAM - - - -
Anosom® 61.39 ± 11.08 b 25.17 1 0.77 ± 0.12
Azamax® 70.89 ± 10.93 ab 13.59 1 0.69 ± 0.26
Premio® 85.26 ± 2.33 ab 0.00 1 0.54 ± 0.12

1 Means (±SE) followed by different letters are significantly different (Tukey test, p < 0.05). 2 IOBC/WPRS classifi-
cations: class 1 = innocuous (<30% reduction), class 2 = slightly toxic (30% to 80% reduction), class 3 = moderately
toxic (>80% to 99% reduction), class 4 = toxic (>99% reduction). Temperature: 25 ± 1 ◦C, 60 ± 10% UR and
14 h photophase.

The survival of the F1 generation was not affected by the treatments (log-rank test:
χ2 = 8.15; d.f. = 4, p = 0.086). There were no significant differences in lethal times (LT50),
which were approximately 11 days (Figure 4). Additionally, parasitism rates in the F1

generation remained unchanged, both within the first 24 h (F4,70 = 0.8992; p = 0.4693) and
over the accumulated time (F4,70 = 0.8192; p = 0.5172). All insecticides tested were classified
as harmless, with each causing less than a 30% reduction in parasitism compared to the
control group (Table 4 and Figure 5). The same trend was observed in the F2 generation,
with no significant effects on the emergence rates (F4,51 = 0.7298; p = 0.5758) or sex ratio
(F4,48 = 0.6570; p = 0.6248) (Table 5).

Table 4. Parasitism of the F1 generation of Trichogramma atopovirilia after exposure to Ephestia kuehniella
eggs contaminated with botanical and synthetic insecticides.

F1

Treatments 24 h
Parasitism (%) 1

Parasitism
Reduction (%) IOBC/WPRS Classification 2

Control 22.08 ± 3.39 a - -
EFAMON 21.91 ± 3.29 a 0.80 1
Anosom® 22.57 ± 3.34 a 29.38 1
Azamax® 22.97 ± 2.30 a 0.00 1
Premio® 16.93 ± 3.26 a 23.34 1

1 Means (± SE) followed by different letters do not statistically differ from each other (Tukey test, p < 0.05).
2 IOBC/WPRS classifications: class 1 = innocuous (<30% reduction), class 2 = slightly toxic (30% to 80% reduction),
class 3 = moderately toxic (>80% to 99% reduction), class 4 = toxic (>99% reduction). Temperature: 25 ± 1 ◦C,
60 ± 10% UR and 14 h photophase.
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Figure 4. Survival curves and lethal time (LT50) (±SE) of the F1 generation of Trichogramma atopovirilia
exposed to Ephestia kuehniella eggs contaminated with botanical and synthetic insecticides. Lethal
times followed by different letters are significantly different (pairwise comparisons using log-rank
test, p < 0.05). EFAMON (aqueous emulsion of the methanolic fraction of the ethanolic leaf extract
of Annona montana); ESAM (aqueous emulsion of the ethanolic seed extract of Annona mucosa).
Temperature: 25 ± 1◦C, 60 ± 10% UR and 14 h photophase.

Table 5. Emergence of the F2 generation of Trichogramma atopovirilia after exposure to Ephestia
kuehniella eggs contaminated with botanical and synthetic insecticides.

F2

Treatments 24 h Emergence (%) 1 Emergence Reduction (%) IOBC/WPRS Classification 2 Sex Ratio

Control 83.55 ± 4.06 a - - 0.62 ± 0.06
EFAMON 73.65 ± 5.33 a 11.86 1 0.69 ± 0.04

ESAM - - - -
Anosom® 69.09 ± 8.16 a 17.31 1 0.60 ± 0.16
Azamax® 81.37 ± 3.82 a 2.62 1 0.82 ± 0.13
Premio® 79.20 ± 4.74 a 5.22 1 0.81 ± 0.19

1 Means (±SE) followed by different letters are significantly different (Tukey test, p < 0.05). 2 IOBC/WPRS classifi-
cations: class 1 = innocuous (<30% reduction), class 2 = slightly toxic (30% to 80% reduction), class 3 = moderately
toxic (>80% to 99% reduction), class 4 = toxic (>99% reduction). Temperature: 25 ± 1 ◦C, 60 ± 10% UR and
14 h photophase.

Most of the F2 generation adults successfully reached the top of the cage and were
classified as fliers. However, significant differences were observed among the treatments
(F8,75 = 5.8785; p < 0.001). The insecticide Premio® resulted in the lowest percentage of flying
adults compared to the control group. Nevertheless, over 80% of the treated individuals
were still capable of flight (Figure 6).
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Figure 5. Cumulative parasitism (mean number of eggs, ± SE) of the F1 generation of Trichogramma
atopovirilia exposed to Ephestia kuehniella eggs contaminated with botanical and synthetic insecticides.
Curves followed by different letters are significantly different (Tukey, p < 0.05). EFAMON (aqueous
emulsion of the methanolic fraction of the ethanolic leaf extract of Annona montana); ESAM (aqueous
emulsion of the ethanolic seed extract of Annona mucosa). Temperature: 25 ± 1 ◦C, 60 ± 10% UR and
14 h photophase.
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Figure 6. Flight capacity of the F2 generation of Trichogramma atopovirilia exposed to Ephestia kuehniella
eggs contaminated with botanical and synthetic insecticides. Percentages of females found in each
location within the flight cage followed by different letters are significantly different (Tukey test,
p < 0.05). EFAMON (aqueous emulsion of the methanolic fraction of the ethanolic leaf extract
of Annona montana); ESAM (aqueous emulsion of the ethanolic seed extract of Annona mucosa).
Temperature: 25 ± 1 ◦C, 60 ± 10% UR and 14 h photophase.
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4. Discussion
To improve compatibility between chemical insecticides and biological control agents

of S. frugiperda, this study investigates the lethal and transgenerational effects of botanical
and synthetic insecticides on the egg parasitoid T. atopovirilia, enhancing understanding
of insecticide selectivity for IPM programs. Adults of Trichogramma spp. reach their peak
parasitism within the first days of life [12,43]. Our results indicated that the median lethal
time (LT50) for the exposed individuals ranged from 10 to 12 days, providing enough time
for parasitism to occur. However, we observed a negative effect on this parameter. F0

females exposed to the botanical insecticide ESAM (aqueous emulsion of the ethanolic seed
extract of Annona mucosa) parasitized less than 1% of the eggs within 24 h, categorizing it as
toxic (class 4). Due to the drastic reduction in parasitism, no emergence was observed, and
it was not possible to evaluate this treatment in subsequent bioassays. While ESAM has
shown effectiveness in controlling various agricultural pests, this study is the first to report
its selectivity evaluation on T. atopovirilia. In a related study, Bernardi et al. [44] demon-
strated that this extract was toxic to another group of parasitoids, Trichopria anastrephae
Lima (Hymenoptera: Diapriidae), resulting in 70% mortality by contact.

The ESAM extract is primarily composed of acetogenins, particularly rolliniastatin-
1 [45]. Trichogramma atopovirilia females might have been exposed to these compounds
through tarsal contact or their ovipositor during parasitism, leading to intoxication. Aceto-
genins have various modes of action, including the inhibition of complex I in the mitochon-
drial electron transport chain, which compromises ATP production [46,47]. Additionally,
there are reports of effects on the digestive system and interactions with membrane cell
phosphates [18,19,48,49]. Another possible reason for the observed lack of parasitism is
repellency. Other compounds present in the ESAM extract, alongside the acetogenins,
even in minor quantities, could also have a repellent effect [50–52]. Baldin et al. [53]
demonstrated that ESAM has a repellent effect on Aphis glycines Matsumura (Hemiptera:
Aphididae). Although these insects belong to a different group, it is plausible that the
parasitoids studied here were similarly affected.

Anosom® and EFAMON (aqueous emulsion of the methanolic fraction of the ethanolic
leaf extract of Annona montana) reduced parasitism in the F0 generation. Anosom® is classi-
fied as moderately toxic (class 3), while EFAMON is considered slightly toxic (class 2). Both
products are derived from plants of the same genus as ESAM, Annona, and predominantly
contain acetogenins as active compounds [54]. However, their impact on parasitism was
less pronounced than that of ESAM. These differences can be attributed to variations in
the chemical structures of the acetogenins present in each product. Anosom® is primar-
ily based on the acetogenin annonin, while EFAMON includes a variety of acetogenins
(montanacin-L, montanacin-K, montanacin-D, and montanacin-E) [16,17]. The biological
activity of each compound depends directly on its chemical structure; factors such as alkyl
chain length, ring presence, functional group quantity, and degree of unsaturation can
significantly affect biological performance [45,52,54,55].

The commercial botanical insecticide Azamax®, based on limonoids (azadirachtin + 3-
tigloilazadirachtol), reduced parasitism in the F0 generation by 92% (class 3 = moderately
toxic) compared to the control. These results are consistent with those reported by Ro-
drigues et al. [56], who observed a 79.73% reduction in the parasitism of T. atopovirilia when
exposed to eggs contaminated with the same insecticide. Similarly, Luckman et al. [57]
observed comparable effects on parasitism reduction in T. pretiosum. Azadirachtin affects
insects through various mechanisms, including antifeedant, repellent, and ovicidal ef-
fects [58,59]. One possible reason for the reduced parasitism observed in this study is
sterility. Previous studies have documented hormonal changes that adversely affect egg
viability in insects exposed to azadirachtin [60]. Therefore, it is likely that the affected
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insects’ reproductive capacity was compromised, resulting in the laying of non-viable
eggs. Another factor to consider is the repellent effect of azadirachtin, as it belongs to the
limonoid group, compounds well known for this characteristic [61,62].

The synthetic insecticide Premio® (chlorantraniliprole) did not affect F0 generation
parasitism in the first 24 h (class 1 = innocuous). Its mode of action involves the activation of
ryanodine receptors, leading to the continuous release of calcium ions from the sarcoplasmic
reticulum into the cytoplasm of insect muscle cells [63,64]. A possible explanation for the
absence of effects observed is that, although chlorantraniliprole acts through contact and
ingestion, its effect is more pronounced when ingestion occurs, a pathway to which females
were not exposed in this study [64]. Our findings align with those of Santos et al. [65],
who reported that chlorantraniliprole was selective for T. pretiosum, resulting in less than
a 30% reduction in parasitism. This is also consistent with the study conducted by Li
et al. [66], who demonstrated the selectivity of chlorantraniliprole for several Trichogramma
species, including T. dendrolim Matsumura, T. chilonis Ishii, and T. mwanzai Schulten & Feijen
(Hymenoptera: Trichogrammatidae). When considering the full lifespan of the females,
Premio® resulted in a significant reduction in parasitism compared to the control. This
effect may be attributed to its prolonged mode of action, as its primary impact on muscle
function likely takes longer to manifest [63,64]. Despite this, the reduction in parasitism
did not exceed 35%.

We investigated the transgenerational effects of tested insecticides, as these com-
pounds can alter not only the individuals that are directly exposed but also subsequent
generations, resulting in long-term impacts [67]. Our objective was to determine whether
parents exposed to insecticides could negatively affect both their offspring (F1) and their
descendants (F2), who had no direct contact with these compounds. Transgenerational
effects may influence survival, parasitism, sex ratio, and even behavior [33,34]. However,
our results indicated no transgenerational effects on survival, parasitism, or sex ratio in
the F1 generation, nor on emergence and sex ratio in the F2 generation. Interestingly, even
botanical insecticides, which are classified as toxic or moderately toxic in the parental
generation, were found to be innocuous to subsequent generations. These findings contrast
with results reported for synthetic insecticides, as demonstrated by Silva et al. [68] and
Cantori et al. [22], who observed transgenerational effects on T. atopovirilia, such as changes
in longevity, parasitism, and sex ratio. Premio® significantly reduced flight capacity com-
pared to the control group. Although this insecticide did not cause direct mortality in the
parental generation, exposure to Premio® may have induced physiological changes that
affected wing development. These sublethal effects could have been inherited, resulting in
impaired flight capacity in the F2 generation [69,70].

5. Conclusions
Our results emphasize the importance of evaluating insecticide selectivity, including

transgenerational effects. Even products derived from the same botanical family exhibited
varying effects on T. atopovirilia. Most botanical insecticides, except for ESAM, had adverse
effects on the parental generations but were harmless to subsequent generations. These
findings suggest that such insecticides could be strategically utilized during pest outbreaks
in integrated pest management (IPM) programs, minimizing disruptions to biological
control methods. Further research, particularly under semi-field and field conditions, is
necessary for a deeper understanding. Nonetheless, this study significantly contributes
to the potential integration of chemical and biological control strategies for managing S.
frugiperda in an environmentally sustainable way.
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for generating concentration-mortality curves.
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