

Jordan canonical form: an elementary proof

Hamilton Luiz Guidorizzi

Instituto de Matemática e Estatística
da Universidade de São Paulo
Caixa Postal 20570 - Ag. Jardim Paulistano
01452-990 - São Paulo, SP - Brasil

1 Introduction

In this work we present, via linear system of differential equations, a natural and elementary proof for the Jordan canonical form. The idea of this work appeared during the preparation of a class on resolution of linear system of ordinary differential equations for a course that we taught in the second semester of 1994 in the Instituto de Matemática e Estatística da Universidade de São Paulo. We were considering a linear system of ordinary differential equations $\dot{\mathbf{x}} = A\mathbf{x}$, where A is an $n \times n$ complex matrix, \mathbf{x} a column vector of coordinates x_1, x_2, \dots, x_n and $\dot{\mathbf{x}} = \frac{d\mathbf{x}}{dt}$, t real. It is well known (see [5]) that there is a variable change that transforms $\dot{\mathbf{x}} = A\mathbf{x}$ in a system in a triangular inferior form. Now, if the system is in triangular inferior form, how do we put it in the *Jordan canonical form*? This was the natural question that came to our mind. Thus we started to play around with some examples. Miracle! Very soon we felt that we had in hands a natural and elementary proof for the *Jordan canonical form*. The proof is constructive and we think that the idea of the proof is new. In the references appear other interesting proofs for the *Jordan canonical form*.

We dedicate this work to the responsibles for it: our students.

2 Definition of Jordan partial chain

Let A be an $n \times n$ complex matrix, triangular inferior and with a unique eigenvalue λ . Let us consider the system $\dot{x} = Ax$, $A = (a_{ij})$. Suppose that there exist $p_1 < p_2 < \dots < p_s$, $s \geq 1$, such that

$$a_{ip_i} = 0 \text{ for } p_i < i \leq n$$

and for $k = 2, 3, \dots, s$, since $s > 1$,

$$\begin{aligned} a_{p_k p_{k-1}} &= 1, \\ a_{p_k j} &= 0 \text{ for } 1 \leq j < p_k \text{ and } j \neq p_{k-1}, \end{aligned}$$

and

$$a_{ip_{k-1}} = 0 \text{ for } p_{k-1} < i \leq n \text{ and } i \neq p_k.$$

In these conditions, we say that the set of the s equations of the system $\dot{x} = Ax$:

$$\begin{aligned} \dot{x}_{p_1} &= \sum_{j=1}^q a_{p_1 j} x_j + \lambda x_{p_1} \\ \dot{x}_{p_2} &= \quad x_{p_1} + \lambda x_{p_2} \\ &\vdots \\ \dot{x}_{p_s} &= \quad x_{p_{s-1}} + \lambda x_{p_s} \end{aligned}$$

where $q = p_1 - 1$, is a *Jordan partial chain of size s starting at λx_{p_1}* . If we have also $a_{p_1 j} = 0$ for $j = 1, 2, \dots, q$, we say that the Jordan partial chain is a *Jordan chain starting at λx_{p_1}* .

Example 2.1 Consider the system

$$\begin{aligned} \dot{x}_1 &= \lambda x_1 \\ \dot{x}_2 &= 2x_1 + \lambda x_2 \\ \dot{x}_3 &= x_1 + x_2 + \lambda x_3 \\ \dot{x}_4 &= \quad x_3 + \lambda x_4 \\ \dot{x}_5 &= \quad x_4 + \lambda x_5 \\ \dot{x}_6 &= \quad x_5 + \lambda x_6 \\ \dot{x}_7 &= \quad x_6 + \lambda x_7 \end{aligned}$$

We have a Jordan partial chain of size 3 starting at λx_3 and a Jordan chain of size 2 starting at λx_4 .

3 Proof of the Jordan canonical form for a particular case

In this section we will prove the theorem on the Jordan canonical form for an $n \times n$ complex matrix A that admits a unique eigenvalue λ . For this we need three lemmas, whose proofs are immediate.

Lemma 3.1 Consider the system $\dot{x} = Ax$, where $A = (a_{ij})$ is triangular inferior, with a unique eigenvalue λ and given by

$$\begin{aligned}\dot{x}_1 &= \lambda x_1 \\ \dot{x}_2 &= a_{21}x_1 + \lambda x_2 \\ \dot{x}_3 &= a_{31}x_1 + a_{32}x_2 + \lambda x_3 \\ &\vdots \\ \dot{x}_{q_1} &= \sum_{j=1}^r a_{q_1, j}x_j + \lambda x_{q_1} \\ \dot{x}_{q_2} &= \sum_{j=1}^r a_{q_2, j}x_j + \lambda x_{q_2} \\ &\vdots \\ \dot{x}_{q_{k-1}} &= \sum_{j=1}^r a_{q_{k-1}, j}x_j + \lambda x_{q_{k-1}} \\ \dot{x}_{q_k} &= \sum_{j=1}^r a_{q_k, j}x_j + x_{q_k} + \lambda x_{q_k} \\ &\vdots\end{aligned}$$

where $r = q_1 - 1$, λ is a complex number, $q_m = q_{m-1} + 1$ for $m = 2, 3, \dots, k$ and $a_{iq_i} = 0$ for $q_k < i \leq n$. Then such a system can be transformed in a system where the q_1 th and q_k th equations are, respectively,

$$\dot{y}_{q_1} = \sum_{j=1}^r b_{q_1, j}x_j + \lambda y_{q_1}$$

and

$$\dot{x}_{q_k} = y_{q_1} + \lambda x_{q_k}$$

and the other equations remain unchanged. The elements $b_{q_1, j}$, $j = 1, 2, \dots, r$ and y_{q_1} are given by

$$b_{q_1, j} = a_{q_1, j} + \sum_{i=j+1}^r a_{ij}a_{q_1, i}, \quad j = 1, 2, \dots, r-1, \quad b_{q_1, r} = a_{q_1, r}$$

and

$$y_{q_1} = \sum_{j=1}^r a_{q_k, j}x_j + x_{q_1}.$$

Proof. It is enough to multiply the p th equation, $p = 1, 2, \dots, r$ by $a_{q_k p}$ to add with the q_1 th and to make

$$y_{q_1} = \sum_{j=1}^r a_{q_k j} x_j + x_{q_1}$$

□

The main idea of this work is contained in the next lemma.

Lemma 3.2 *Let $A = (a_{ij})$ be an $n \times n$ complex matrix, in triangular inferior form that admits a unique eigenvalue λ . Suppose that the p_1 th equation of the system $\dot{\mathbf{x}} = A\mathbf{x}$ has the form*

$$\dot{x}_{p_1} = \sum_{j=1}^k a_{p_1 j} x_j + \lambda x_{p_1}$$

and the q_1 th has the form

$$\dot{x}_{q_1} = \sum_{j=1}^k a_{q_1 j} x_j + \lambda x_{q_1}$$

with $k < \min\{p_1, q_1\}$ and $a_{q_1 k} = 1$. Suppose also there is a Jordan partial chain of size r starting at λx_{p_1} and other of size s starting at λx_{q_1} , with $r \leq s$. Then the given system can be transformed in a system where the p_1 th equation is

$$\dot{u}_{p_1} = \sum_{j=1}^{k-1} b_{p_1 j} x_j + \lambda u_{p_1}$$

where $b_{p_1 j} = a_{p_1 j} - a_{p_1 k} a_{q_1 j}$, $j = 1, 2, \dots, k-1$, the p_i th equation, $i = 2, 3, \dots, r$, is

$$\dot{u}_{p_i} = u_{p_{i-1}} + \lambda u_{p_i}$$

where $x_{p_i} - a_{p_1 k} x_{q_i} = u_{p_i}$, $i = 1, 2, \dots, r$, and the other equations remain unchanged.

Proof. Multiplying the q_1 th equation by $-a_{p_1 k}$ adding with the p_1 th and making $x_{p_1} - a_{p_1 k} x_{q_1} = u_{p_1}$ we have

$$\dot{u}_{p_1} = \sum_{j=1}^{k-1} b_{p_1 j} x_j + \lambda u_{p_1}$$

where $b_{p_1 j} = a_{p_1 j} - a_{p_1 k} a_{q_1 j}$, $j = 1, 2, \dots, k-1$.

If $r = 1$ the lemma is proved. Otherwise,

$$\dot{x}_{p_2} = u_{p_1} + a_{p_1 k} x_{q_1} + \lambda x_{p_2} .$$

Remembering that $s \geq r$, multiplying the q_2 th equation by $-a_{p_1 k}$, adding with the p_2 th and making $x_{p_2} - a_{p_1 k}x_{q_2} = u_{p_2}$ we get

$$\dot{u}_{p_2} = u_{p_1} + \lambda u_{p_2}.$$

If $r = 2$ the lemma is proved. Otherwise it is enough to repeat the process. \square

Example 3.1 Consider the system

$$\begin{aligned}\dot{x}_1 &= \lambda x_1 \\ \dot{x}_2 &= x_1 + \lambda x_2 \\ \dot{x}_3 &= 2x_1 + x_2 + \lambda x_3 \\ \dot{x}_4 &= x_1 + 2x_3 + \lambda x_4 \\ \dot{x}_5 &= 2x_1 + x_2 + x_3 + \lambda x_5 \\ \dot{x}_6 &= x_5 + \lambda x_6 \\ \dot{x}_7 &= x_4 + \lambda x_7.\end{aligned}$$

The Jordan partial chain starting at λx_4 has size 2 and the one starting at λx_5 has also size 2. So, applying lemma 3.2 we get

$$\begin{aligned}\dot{x}_1 &= \lambda x_1 \\ \dot{x}_2 &= x_1 + \lambda x_2 \\ \dot{x}_3 &= 2x_1 + x_2 + \lambda x_3 \\ \dot{u}_4 &= -3x_1 - 2x_2 + \lambda u_4 \\ \dot{x}_5 &= 2x_1 + x_2 + x_3 + \lambda x_5 \\ \dot{x}_6 &= x_5 + \lambda x_6 \\ \dot{u}_7 &= u_4 + \lambda u_7.\end{aligned}$$

where $x_4 - 2x_5 = u_4$ and $x_7 - 2x_6 = u_7$. Now applying lemma 3.1 we obtain

$$\begin{aligned}\dot{x}_1 &= \lambda x_1 \\ \dot{x}_2 &= x_1 + \lambda x_2 \\ \dot{u}_3 &= 3x_1 + x_2 + \lambda u_3 \\ \dot{u}_4 &= -3x_1 - 2x_2 + \lambda u_4 \\ \dot{x}_5 &= u_3 + \lambda x_5 \\ \dot{x}_6 &= x_5 + \lambda x_6 \\ \dot{u}_7 &= u_4 + \lambda u_7.\end{aligned}$$

where $2x_1 + x_2 + x_3 = u_3$.

The next lemma is suggested by the following example.

Example 3.2 Consider the system

$$\begin{aligned}\dot{x}_1 &= \lambda x_1 \\ \dot{x}_2 &= \quad + \lambda x_2 \\ \dot{x}_3 &= \quad \quad + \lambda x_3 \\ \dot{x}_4 &= \quad x_2 \quad + \lambda x_4 \\ \dot{x}_5 &= \quad \quad x_4 \quad + \lambda x_5 \\ \dot{x}_6 &= \quad \quad x_3 \quad \quad + \lambda x_6.\end{aligned}$$

We have a Jordan chain of size 1 starting at λx_1 , a Jordan chain of size 3 starting at λx_2 and a Jordan chain of size 2 starting at λx_3 . The system can be rewritten in the following form

$$\begin{aligned}\dot{x}_2 &= \lambda x_2 \\ \dot{x}_4 &= x_2 + \lambda x_4 \\ \dot{x}_5 &= x_4 + \lambda x_5 \\ \dot{x}_3 &= \quad \quad + \lambda x_3 \\ \dot{x}_6 &= \quad \quad x_3 + \lambda x_6 \\ \dot{x}_1 &= \quad \quad \quad \quad \quad \quad \lambda x_1\end{aligned}$$

which is the *Jordan canonical form* of the given system.

In the following, we indicate by $J_{\lambda,k}$ a square matrix of order n_k given by

$$J_{\lambda,k} = \lambda I + E$$

where I is the identity matrix of order n_k and $E = (e_{ij})$ is a square matrix of order n_k given by $e_{ij} = 1$ if $j = i - 1$ and $e_{ij} = 0$ if $j \neq i - 1$. So

$$J_{\lambda,k} = \begin{pmatrix} \lambda & 0 & 0 & \cdots & 0 & 0 \\ 1 & \lambda & 0 & \cdots & 0 & 0 \\ 0 & 1 & \lambda & \cdots & 0 & 0 \\ \vdots & & & & & \\ 0 & 0 & 0 & \cdots & 1 & \lambda \end{pmatrix}$$

The matrix $J_{\lambda,k}$ is called a *Jordan block of order n_k* .

Lemma 3.3 Let $A = (a_{ij})$ be an $n \times n$ complex matrix, in triangular inferior form, with a unique eigenvalue λ and let r be the number of linearly independent eigenvectors associated with λ , that is, $r = \dim\{v \in \mathbb{C}^n \mid Av = \lambda\}$. Suppose, if $r < n$, there are

j_1, j_2, \dots, j_{n-r} , with $j_\alpha \neq j_\beta$ for $\alpha \neq \beta$, $j_k \in \{1, 2, \dots, n\}$ and $j_k < r+k$, $k = 1, 2, \dots, n-r$, such that

$$a_{(r+k)j_k} = 1, \quad k = 1, 2, \dots, n-r,$$

and

$$a_{ij} = 0 \text{ for } j < i \text{ and } (i, j) \notin \{(r+k, j_k) \mid k = 1, 2, \dots, n-r\}.$$

In these conditions, there exists an $n \times n$ nonsingular matrix P such that $P^{-1}AP = J_\lambda$, where $J_\lambda = \text{diag}(J_{\lambda,1}, J_{\lambda,2}, \dots, J_{\lambda,r})$, $\sum_{k=1}^r n_k = n$ and $n_1 \geq n_2 \geq \dots \geq n_r$, where n_k , $k = 1, 2, \dots, r$, is the order of the matrix $J_{\lambda,k}$.

Proof. If $r = n$ the lemma is immediate. So, let us suppose $1 \leq r < n$. It is immediate that we have a Jordan chain starting at λx_i , $i = 1, 2, \dots, r$, and if $r < m \leq n$, there is $i \in \{1, 2, \dots, r\}$ such that the m th equation belongs to the Jordan chain starting at λx_i . Now, let $i_k \in \{1, 2, \dots, r\}$ and let n_k be the size of the Jordan chain starting at λx_{i_k} . It is clear that we can choose i_k , $k = 1, 2, \dots, r$, such that $n_1 \geq n_2 \geq \dots \geq n_r$. Now, interchanging conveniently the positions of the equations (and changing the names of the variables) our system can be rewritten in the following form:

$$\begin{aligned} \dot{y}_1 &= J_{\lambda,1}y_1 \\ \dot{y}_2 &= J_{\lambda,2}y_2 \\ &\vdots \\ \dot{y}_r &= J_{\lambda,r}y_r \end{aligned}$$

where y_k , $k = 1, 2, \dots, r$, is a column vector of coordinates $y_{k,1}, y_{k,2}, \dots, y_{k,n_k}$. To close, let y be the column vector of coordinates $y_{1,1}, y_{1,2}, \dots, y_{1,n_1}, y_{2,1}, \dots, y_{2,n_2}, \dots, y_{r,n_r}$. It is clear that the matrix P such that $x = Py$ is nonsingular. From $\dot{x} = Ax$, it follows that $P\dot{y} = APy$ and therefore $\dot{y} = P^{-1}APy$. So $J_\lambda = P^{-1}AP$. \square

In the following we enunciate and prove the theorem on the Jordan canonical form for a matrix A with a unique eigenvalue λ .

Theorem 3.1 (Jordan canonical form) *Let A be an $n \times n$ complex matrix with a unique eigenvalue λ . Then there exists an $n \times n$ nonsingular matrix M such that*

$$M^{-1}AM = J_\lambda$$

where $J_\lambda = \text{diag}(J_{\lambda,1}, J_{\lambda,2}, \dots, J_{\lambda,r})$, $r = \dim\{\mathbf{v} \in \mathbb{C}^n | A\mathbf{v} = \lambda\mathbf{v}\}$, $\sum_{k=1}^r n_k = n$ and $n_1 \geq n_2 \geq \dots \geq n_r$.

Proof. Without loss of generality we can suppose that A is in triangular inferior form. If $r = n$ the theorem is immediate. So we can suppose $1 \leq r < n$. From lemma 3.3, it is sufficient to prove there exists an $n \times n$ nonsingular matrix Q such that $Q^{-1}AQ = B$ where $B = (b_{ij})$ is triangular inferior and given by: there are j_1, j_2, \dots, j_{n-r} , with $j_\alpha \neq j_\beta$ for $\alpha \neq \beta$, $j_k \in \{1, 2, \dots, n\}$ and $j_k < r + k$, $k = 1, 2, \dots, n - r$, such that

$$b_{(r+k)j_k} = 1, \quad k = 1, 2, \dots, n - r$$

and

$$b_{ij} = 0 \text{ for } j < i \text{ and } (i, j) \notin \{(r+k, j_k) | k = 1, 2, \dots, n - r\}.$$

Let

$$p = \max\{j \mid \text{there is } i, i > j, \text{ with } a_{ij} \neq 0\}.$$

(such a p exists because $r < n$). Without loss of generality we can suppose $a_{np} = 1$. The Jordan partial chain starting at λx_{p+k} , $k = 1, 2, \dots, n - p$, has size 1. From lemmas 3.1 and 3.2, the system $\dot{\mathbf{x}} = A\mathbf{x}$ can be transformed in a system $\dot{\mathbf{y}} = S\mathbf{y}$, $S = (s_{ij})$, where

$$\begin{aligned} s_{np} &= 1, \\ s_{nj} &= 0 \text{ for } j \neq p \text{ and } j < n \end{aligned}$$

and

$$s_{ij} = 0 \text{ for } p \leq j < i < n.$$

It is clear that the $n \times n$ matrix M_1 such that $\mathbf{x} = M_1\mathbf{y}$ is nonsingular. By induction, suppose now there is an $n \times n$ nonsingular matrix M_2 such that $M_2^{-1}AM_2 = D$, $D = (d_{ij})$, where D is given by: there are $j_1^*, j_2^*, \dots, j_{n-q}^*$, with $q \geq r$, $j_\alpha^* \neq j_\beta^*$ for $\alpha \neq \beta$, $j_1^* = \min\{j_1^*, j_2^*, \dots, j_{n-q}^*\}$, $j_k^* \in \{1, 2, \dots, n\}$ and $j_k^* < q + k$ for $k = 1, 2, \dots, n - q$ such that

$$d_{(q+k)j_k^*} = 1 \text{ for } k = 1, 2, \dots, n - q, \\ d_{ij} = 0 \text{ for } i \geq q + 1, j < i \text{ and } (i, j) \notin \{(q + k, j_k^*) | k = 1, 2, \dots, n - q\}$$

and

$$d_{ij} = 0 \text{ for } j_1^* \leq j < i < q + 1.$$

Observe that for $q = n - 1$ such a matrix M_2 there exists: $M_2 = M_1$. Consider the system $\dot{\mathbf{u}} = D\mathbf{u}$. If $q = r$ the theorem is proved. So, let us suppose $q > r$. Let

$$h = \max\{j < j^* \mid \text{there is } i, j < i \leq q, \text{ with } d_{ij} \neq 0\}.$$

(Such an h exists because $q > r$.) There is $q_1 \in \{h + i | i = 1, 2, \dots, q - h\}$ such that $d_{q_1 h} \neq 0$ and the size of the Jordan partial chain starting at λu_{q_1} is \geq to the size of the Jordan partial chain starting at λu_{h+i} , $i = 1, 2, \dots, q - h$, with $d_{(h+i)h} \neq 0$. Without loss of generality we can suppose $d_{q_1 h} = 1$. Now, interchanging the positions of the q th and q_1 th equations and applying lemmas 3.1 and 3.2 our system $\dot{\mathbf{u}} = D\mathbf{u}$, where $\mathbf{x} = M_2\mathbf{u}$, is transformed in $\dot{\mathbf{z}} = H\mathbf{z}$, $H = (h_{ij})$, where H is given by: there are $\bar{j}_1, \bar{j}_2, \dots, \bar{j}_{n-m}$, with $m = q - 1 \geq r$, $\bar{j}_\alpha \neq \bar{j}_\beta$ for $\alpha \neq \beta$, $\bar{j}_1 = h$, $\bar{j}_1 = \min\{\bar{j}_1, \bar{j}_2, \dots, \bar{j}_{n-m}\}$, $\bar{j}_k \in \{1, 2, \dots, n\}$ and $\bar{j}_k < m + k$ for $k = 1, 2, \dots, n - m$ such that

$$h_{(m+k)\bar{j}_k} = 1 \text{ for } k = 1, 2, \dots, n - m,$$

$$h_{ij} = 0 \text{ for } i \geq m + 1 = q, j < i \text{ and } (i, j) \notin \{(m + k, \bar{j}_k) | k = 1, 2, \dots, n - m\}$$

and

$$h_{ij} = 0 \text{ for } h \leq j < i < q.$$

It is clear that $\mathbf{u} = M_3\mathbf{z}$ where the $n \times n$ matrix M_3 is nonsingular. If $m > r$, it is enough to repeat the process. \square

4 Jordan canonical form: the general case

In order to prove the general case we need three lemmas, whose proofs are immediate and will be omitted.

Lemma 4.1 Let A, B and M be $n \times n$ complex matrices, with M nonsingular, such that $M^{-1}AM = B$. Let $\mathbf{e}_1, \mathbf{e}_2, \mathbf{v}_1$ and \mathbf{v}_2 be column vectors of \mathbb{C}^n such that $M\mathbf{e}_1 = \mathbf{v}_1$ and $M\mathbf{e}_2 = \mathbf{v}_2$. Suppose there is a complex number α such that $(B - \lambda I)\mathbf{e}_1 = \alpha\mathbf{e}_2$. Then, we have also $(A - \lambda I)\mathbf{v}_1 = \alpha\mathbf{v}_2$.

Lemma 4.2 Let J_λ be an $n \times n$ matrix given by $J_\lambda = \text{diag}(J_{\lambda,1}, J_{\lambda,2}, \dots, J_{\lambda,r})$. Let \mathbf{e}_i , $i = 1, 2, \dots, n$ be the i th canonical column vector of \mathbb{C}^n , that is, \mathbf{e}_i is the column vector of coordinates e_{ij} , $j = 1, 2, \dots, n$, with $e_{ij} = 0$ for $i \neq j$ and $e_{ij} = 1$ for $i = j$. Then

$$(J_\lambda - \lambda I)\mathbf{e}_i = \mathbf{e}_{i+1} \text{ for } i \notin \left\{ \sum_{q=1}^k n_q \mid k = 1, 2, \dots, r \right\}$$

and

$$(J_\lambda - \lambda I)\mathbf{e}_i = 0 \text{ for } i \in \left\{ \sum_{q=1}^k n_q \mid k = 1, 2, \dots, r \right\}$$

where n_q is the order of the matrix $J_{\lambda,q}$.

Lemma 4.3 Let A be an $n \times n$ complex matrix with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_s$, $\lambda_\alpha \neq \lambda_\beta$ for $\alpha \neq \beta$. Let m_k , $k = 1, 2, \dots, s$, denote the algebraic multiplicity of λ_k and for $k = 1, 2, \dots, s$ let r_k be the dimension of $\{\mathbf{v} \in \mathbb{C}^n \mid A\mathbf{v} = \lambda_k \mathbf{v}\}$. Then, for each k , $k = 1, 2, \dots, s$, there is an $n \times n$ nonsingular matrix M_k such that $M_k^{-1}AM_k = H_k$ with

$$H_k = \begin{pmatrix} & O_{pq} \\ H_{nm} & J_{\lambda_k} \end{pmatrix}$$

where $m = n - m_k$, $p = n - m_k$, $q = m_k$, H_{nm} is a $n \times m$ complex matrix, O_{pq} a $p \times q$ matrix where all the elements are equal to zero and $J_{\lambda_k} = \text{diag}(J_{\lambda_{k,1}}, J_{\lambda_{k,2}}, \dots, J_{\lambda_{k,r_k}})$.

Now, let us consider the matrix H_k of the above lemma 4.3. Let $\mathbf{f}_{k,i}$ denote the canonical column vector \mathbf{e}_{n-m_k+i} , $k = 1, 2, \dots, s$ and $i = 1, 2, \dots, m_k$. From lemmas 4.2 and 4.3, it follows immediately that

$$(H_k - \lambda_k I)\mathbf{f}_{k,i} = \mathbf{f}_{k,i+1} \text{ for } i \notin \left\{ \sum_{q=1}^h n_{k,q} \mid h = 1, 2, \dots, r_k \right\}$$

and

$$(H_k - \lambda_k I) \mathbf{f}_{k,i} = 0 \text{ for } i \in \left\{ \sum_{q=1}^h n_{k,q} \mid h = 1, 2, \dots, r_k \right\}$$

where $n_{k,q}$ is the order of the matrix $J_{\lambda_k q}$. Now, let us make

$$M_k \mathbf{f}_{k,i} = \mathbf{v}_{k,i} ,$$

$k = 1, 2, \dots, s$ and $i = 1, 2, \dots, m_k$. From lemma 4.1 it follows that

$$A \mathbf{v}_{k,i} = \lambda_k \mathbf{v}_{k,i} + \mathbf{v}_{k,i+1} \text{ for } i \notin \left\{ \sum_{q=1}^h n_{k,q} \mid h = 1, 2, \dots, r_k \right\} \quad (1)$$

and

$$A \mathbf{v}_{k,i} = \lambda_k \mathbf{v}_{k,i} \text{ for } i \in \left\{ \sum_{q=1}^h n_{k,q} \mid h = 1, 2, \dots, r_k \right\} . \quad (2)$$

By induction, one prove easily that the n column vectors $\mathbf{v}_{k,i}$, $k = 1, 2, \dots, s$ and $i = 1, 2, \dots, m_k$, are linearly independent.

Now let us consider the system $\dot{\mathbf{x}} = A\mathbf{x}$ and let us make the variable change given by

$$\mathbf{x} = \sum_{k=1}^s \sum_{i=1}^{m_k} y_{k,i} \mathbf{v}_{k,i} .$$

We have

$$\dot{\mathbf{x}} = \sum_{k=1}^s \sum_{i=1}^{m_k} \dot{y}_{k,i} \mathbf{v}_{k,i} \quad \text{and} \quad A\mathbf{x} = \sum_{k=1}^s \sum_{i=1}^{m_k} y_{k,i} A \mathbf{v}_{k,i} .$$

From the relations (1) and (2) above, it follows immediately that

$$\dot{\mathbf{y}}_k = J_{\lambda_k} \mathbf{y}_k , \quad k = 1, 2, \dots, s ,$$

where \mathbf{y}_k is the column vector of coordinates $y_{k,1}, y_{k,2}, \dots, y_{k,m_k}$. So $\dot{\mathbf{y}} = J\mathbf{y}$ where $J = \text{diag}(J_{\lambda_1}, J_{\lambda_2}, \dots, J_{\lambda_s})$ and \mathbf{y} is the column vector of coordinates $y_{1,1}, y_{1,2}, \dots, y_{1,m_1}, \dots, y_{s,1}, y_{s,2}, \dots, y_{s,m_s}$. Observe that the variable change

$$\mathbf{x} = \sum_{k=1}^s \sum_{i=1}^{m_k} y_{k,i} \mathbf{v}_{k,i}$$

can be rewritten in the following form

$$\mathbf{x} = M\mathbf{y}$$

where M is the $n \times n$ nonsingular matrix whose column vectors are $\mathbf{v}_{1,1}, \mathbf{v}_{1,2}, \dots, \mathbf{v}_{1,m_1}, \mathbf{v}_{2,1}, \mathbf{v}_{2,2}, \dots, \mathbf{v}_{2,m_2}, \dots, \mathbf{v}_{s,1}, \mathbf{v}_{s,2}, \dots, \mathbf{v}_{s,m_s}$. So $J = M^{-1}AM$. Thus we have proved the following theorem.

Theorem 4.1 (Jordan canonical form: general case) *Let A be an $n \times n$ complex matrix with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_s$, $\lambda_\alpha \neq \lambda_\beta$ for $\alpha \neq \beta$. Let m_k and r_k , $k = 1, 2, \dots, s$, be where m_k is the algebraic multiplicity of λ_k and $r_k = \dim\{\mathbf{v} \in \mathbb{C}^n \mid A\mathbf{v} = \lambda_k \mathbf{v}\}$. Then there is an $n \times n$ nonsingular matrix M such that $M^{-1}AM = J$ where $J = \text{diag}(J_{\lambda_1}, J_{\lambda_2}, \dots, J_{\lambda_s})$ and, for $k = 1, 2, \dots, s$, J_{λ_k} is a square matrix of order m_k given by $J_{\lambda_k} = \text{diag}(J_{\lambda_k,1}, J_{\lambda_k,2}, \dots, J_{\lambda_k,r_k})$. We have also, for $k = 1, 2, \dots, s$, $\sum_{q=1}^{r_k} n_{k,q} = m_k$ and $n_{k,1} \geq n_{k,2} \geq \dots \geq n_{k,r_k}$ where $n_{k,q}$ is the order of the Jordan block $J_{\lambda_k,q}$.*

References

- [1] Botha, J.D. A short treatment of the Jordan canonical form theory. *Expositiones Mathematicae*, vol. II, 4 (1993), 365-367.
- [2] Brualdi, R.A. The Jordan canonical form: an old proof. *Amer. Math. Monthly*, 94 (1987), 257-267.
- [3] Fletcher, R. and Sorensen, D.C. An algorithmic derivation of the Jordan canonical form. *Amer. Math. Monthly*, 90 (1983), 12-16.
- [4] Galperin, A. and Waksman, Z. An elementary approach to Jordan theory. *Amer. Math. Monthly*, 87 (1981), 728-732.
- [5] Plaat, O. *Ordinary differential equations*. Holden-Day, Inc., San Francisco, California (1974).