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1 Introduction 

In this work we present, via linear system of differential equations, a natural and 

elementary proof for the Jordan cauonical form. The idea of this work appeared duriog 

the preparatioo of a class on resolution of linear system of ordinary differential equations 

for a course that we taught in the second sernester of 1994 in the lnstituto de Matematica e 

Estatistica da Universidade de Sao Paulo. We were considering a linear system of ordinary 

differential equations x = Ax, where A is an n x n complex matrix, x a column vector 

of coord inates x1, xl, ... , x" an• x = !~, t real. l t is wcll known ( see [5]) that there is a 

variable cha.nge that transforrns x = Ax in a system in a triangular inferior form. Now, if 

the systern is in triangular inferior form, how do we put it in the Jordan canonical form? 

This was the natural question that came to our mind. Thus we started to play around 

with some examples. Miracle! Very soon we Ielt that we bad in bands a natural and 

elementary proof for the Jordan cauonical form. The proof is constructive and we think 

that the idea of the proof is new. In the references appear other interesting proofs for the 

Jordan canonical form. 
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We dedicate this work to the responsibles for it: our students. 

2 Definition of J ordan partial chain 

Let A be an n x n complex rnatrix, triangular inferior and with a unique eingem·alue 

>.. Let us consider the system x= Ax, A = (a;,). Suppose that there exist P1 < p1 < 
· · · < p., s ~ 1, such that 

a;p, = 0 for p, < i 5 n 

and for k = 2, 3, ... , s, since s > 1, 

and 

aP•P•-• = I , a,,., = 0 for I 5 j < Pk and j -:/ Pt-1 , 

a;P•-• = 0 for P•-I < i 5 n and i-:/ p •. 
In these conditions, we say that the st>t of the s equations of the system x = Ax: 

x,,,= L~=J a,,1,x, +Ax,,, 
.in= x"1 +Axn 

where q = P1 - I, is a Jordan pariial chain of size s startinq at Ax,,
1
• If we have also 

a,,i; = 0 ior j = J, 2, ... , q, we say that the Jordan partial chain is a Jordau chuin stariiu q 
at >.x,,1• 

Example 2.1 Consider the system 

%1 = >.x1 
.i2 = 2x1 +>.r2 
%3 = X1 +z2 +AZ3 
Z4 = >..r. 
%5 = Z3 +>.x6 
Ze = Z 4 +>.x6 
%7 = X& +>.x1 

We have a Jordan partial chain of size 3 starting at >.x3 and a Jordan chain of size 2 
startiug at >..r4. 
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3 Proof of the J ordan canonical form for a particu­ 
lar case 

In this section we will prove the theorem on the Jordan canonical form for an n x n 

complex matrix A that admits a uniqur eiugenvalue >.. For this we need three lernmas, 

whose proofs are immediate. 

Lemma 3.1 Consider the system :ic = Ax, where A = (a;i) is triangular inferior, with a 
unique eingenvaluc >. and given by 

X1 = >.x1 
X2 = a21 I1 + h2 
X3 = a31X1 +a3iX2 +>.x3 

Xq, = Li=I aq,;x, 
X92 = Ljcl aq2jX j 

Xq•-• = Li=I aq•-• ;x; 
Xq• = I:; .. 1 a9.; x, 

where r = q1 - 1, >.is a complez numbrr, 9111 = q,,._1 + 1 [or m = 2, 3, ... , k and a;91 = 0 

for q* < i S n. Then such a systcm can be trausjormed in a system u1hert the 91 th and 

q* th equations are, respcctivclv, 

and 

and the other equations rrmain u11cha11gtd. Tl.« clcments b9,,, j= 1,2, ... ,r alld y91 are 

given by 

b91;=a91;+I:;.,+1a;;a9,,, j=l,2, ... ,r-1, b91,=a9,. 
and 
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Proof. It is enough to multiply the pth equation, p = I, 2, ... , r by a9•" to add with the 

q1 th and to make 
r 

Y9, = L a9.,xj + x91 
p=I 

The main idea of this work is contained in the next lernma, 

D 

Lemma 3.2 Let A= (a;j) be an n x II comple:r matrix, in triangular injericr form th at 

admits a unique einqcnvalue >.. Supposc that thr p1 th cquction of the system :x = Ax has 
the form 

k 

x", = L aP,iXj + >.x", 
J=I 

and the q1 th has the form 
k 

i91 = I:a9,i:rj + >.x9, 

J=I 

with k < min{p1,qi} and a9,k = I. Suppose also there is a Jordan partial ch ain of size r 
starting at >.x", and oilier of size s starling at >..i·v,, with 1· S s. Tlu u tlu. qiucn. systt111 

can be transformcd i11 a systr:m uilurc the p1 th cquation 1s 

k-1 

ti", = L bP, ;:1·j + >.uP, 
,=1 

where Xp, - a,,, 1,X9, = up,, i = l, 2, ... , 1·. and tli« othcr equations rcmain unclunujcd. 

Proof. Multiplying the 91th equation by -a",k addiug with the p1th and making x11, 

a 1,:x9 = u,, we have 7'1 I I 
/;-J 

u,,, = L b,,,ixi + >.u,,, 
J"' I 

where b ,·=a,, ,· - a,, 1,;a9 i, j= J, 2 .... , J.- - l. P1 I I I 

If r = ) the lemma is proved. Otlwrwise, 
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Remembering that s ~ 1·, multiplying the q2th equation by -a,,1k, adding with the p2th 

and making x,,l - a,,1 kXql = u,,l we gt'L 

lf r = 2 the lemma is proved. Otherwise it is enough to repeat the process. D 

Example 3.1 Cousider the system 

±1 = >.x1 
X2 = X1 +>.xi 
X3 = 2i·1 +xi +>..L·3 
X4 = X1 +2.r3 +>.x4 
:i:~= 2x1 +xi +;r3 +>.x~ 
Xs = x~ +>.xs 
X7 = x~ +>.x1 . 

The Jordan partial chain startiug at >.x4 has size 2 and the one starting at >.x~ has 

also size 2. So, applying lemma 3.2 we get 

±1= >.J·1 
X2 = X1 +>.xi 
.:r3 = 2x1 +xi +>.x3 
U4 = -3J·1 -2x1 +>.u~ 
Xs = 2x1 +xi +x3 +>.xs 
Xc; = X5 +>.xs 
U7 = U4 +>.u7 . 

where x4 - 2x5 = u4 and x7 - 2x6 = u7. Now applying lernma 3.1 we obtain 

:i-1 = >.x1 
X2 = J'1 +>.xi 
U3 = 3x1 +xi +>.u3 
U4 = -3x1 -2x1 +>.u~ 
±& = U3 +>.x& 
Xo = X5 +>.xs 
U7 = U4 +>.u, . 

wbere 2x1 + r2 + X3 = u3. 

The next lemma is suggested 1,~ 1 !11• Iollowiug example. 
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Example 3.2 Cousider the system 

.:i:1 = AX1 

.:i:2 = +>.J·2 
X3 = +>.x3 
.:i:•= X2 +>.x4 
.X5 = X4 +>.rs 
.:i:s = %3 +>.x5 . 

We have a Jordan chain of size J startiug at >.xi, a Jordan chain of size 3 startiug 

at >.:r2 and a Jordan chain of size 2 starting at >.x3. The system can be rewritten in the 

following form 
%2 = AX2 

X4 = X2 +A.r4 

X5 = 
X3 = 
X5 = 
.i-1 = 

which is the Jordau cauonicn] form of the given systern. 

In the following, we indicate by J.1,i a square matrix of order u1; given by 

J.1,;. = >.J + E 

where J is the identity matrix of order u• and E = ( e;,) is a square matrix of order n k 
given by e;, = J if j = i - J and c;, = 0 if j 'F i - J. So 

>.oo oo 
I >. 0 0 0 

J>.,t = 0 >. 0 0 

000···1>. 

The matrix J >.,lc is called a Jordan b/c,rk of ordr r n1;. 

Lemma 3.3 Let A= (a;,) be a11 u x II complrr matrix, in t,·ia11gu/a1· iujcrior form, with 

a ,miqur eingr:11 valuc -X a11d le: r be tlic numbcr of lirieady iudrpruden: r:iugr:11 vectors 

as&ociatcd with -X, that is, ,. = dim{v E C" I Av = -X}. Supposc, if r < n, there an 
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j l , is, ... , j n- r, with j O i- j /J J Or O i- a' j. E { I , 2 I ••• , n } a 71 d j k < ,. + k' k = l , 2' ... ' n - r I 
sucl: that 

O(r+•)i, = J , k = J,2,.,. ,n - f', 

and 

a;;=Oforj <i and(i,j)(f.{(,·+l·,j•)lk= 1,2, ... ,n-r}. 

In these conditions, there cxists a11 11 x n nonsnujular matrix P such that p-l AP = J;. 

wherf J;. = diag(J;.,1, J;.,2, ... , J;.,,), :[~=l nk = n and n1 2: n2 2: , , · 2: n,, uih ere n., 

k = 1, 2, ... , r, is ilu ordcr of the rnatrix J;., •. 

Proof. If r = n the lenuna is immediate. So, let us suppose J :S r < n. It is immediate 

that we have a Jordan chaiu startiug at >.x;, i= 1,2, ... , ,., and if r < m :S n, there is 

i E { 1, 2, ... , r} such that the mth equation belongs to the Jordan chain starting at h,. 

Now, let i• E { 1, 2, ... , ,. } and let 11. be the size of the Jordan chain starting at >.x, •. 

It is clear that we can choose ik, l· = 1,2, ... ,,·, such that 111 2: 12i? .. ·? 11,. Now, 

interchanging conveniently the positions of the equations (and changing the names of the 

variables) our system can be rewritte» in the fcllowing form: 

Y1 = J,1,1Y1 
Y2 = J>.,JY2 

where Y•, k = 1,2, ... ,r, is a column vector of coordinates Yk.i,Yu· .. ,,Yk.n,· To close. 

let y be the columu vector of coordiuates y1 ,1, !/1,J, ... , Y1.n,, y2,1, ••• , Yi.11,, .. · , Yr,n, · It is 

clear that the matrix P such that x = Py is nonsingular. From x = Ax, it Iollows that 
Py = APy and therefore y = p-1 APy. So J;.= p-1 AP. D 

ln the following we enuuciate and prove t lie iheorem on the Jordan canonical form for 

a matrix A with a unique eingenvalu- >.. 
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Theorem 3.1 (Jordan cauouical form) Let A be a11 n x 11 comph:r matrix with a uniqut 

eingenvaluf >.. Thcn there exists a11 11 x n no11si11gular matriz M sucli that 

tir1AM = J~ 

Proof. Withoul lost of generality we can suppose that A 1s m triangular inferior form. 

If r = n the theorem is immediate. So we can suppose J $ ,. < n. From lemma 3.3, it 

is sufficienl to prove there exists an n x n nonsingular rnatrix Q such that Q-1 AQ = B 
where B= (b;1) is triangular inferior and given by: there art' j1,j2, ••• ,j,._., with j0 -j: J[J 
for o ::/: /3, j1,; E {1,2, ... ,n} and ]k < 1· + k, J.:= 1,2, ... ,n - r·, such that 

b(•+k)j. = 1, k = 1,2, ... ,n -1· 

and 

b;j = 0 for j< i and (i,j) (/. {(,· + l,,jk)jk = 1,2, ... ,11 - r·}. 
Let 

p = max{j I there is i, i> j, with u,; # Cl} . 

(such a p exists because r < n). Without lost of geuerality we can suppose a,.,, = 1. The 
Jordan partial chain starting at >.x,,+b k = I, 2, ... , n - p, has size I. From lernrnas 3. J 

and 3.2, the system x= Ax can be transformed in a system y = Sy, S = (s;j), where 
Snp = l , 
Snj = 0 for j ::/: p 1111d j < 11 

and 
S;j = 0 for p $ j < i < n. 

It is clear that the n x n matrix M1 such that x= M1Y is nonsingular. By iuduction, 

auppos.e. now t.bere. is an. n x n n.o.nsi1t&uJau 111,atrht M-t sudi th~t M,;1 AAfl ~ D, D = 
(d;;), wbere D is giveu by: there are};, j2, ... , i:-,, with q ~ r, i; # j0 for o ::/: /3, 

jj = min{jj,ji, .. , ,j;_9}, J; E {l,:L, ... ,n} and j;< q + k for k == 1,2, ... ,n - q such 

that 
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d(q+k )i; = 1 for k = 1, 2, ... , n - q, 
d;j = 0 for i 2: q + 1, J< 1 and (i,j) !/. {(q + k,j;;)\k = 1,2, ... ,n - q} 

and 
d;j = 0 for jj $ j < i < q + 1. 

Observe that for q = 11 - l such a matrix M1 there exists: M2 = M1. Cousider the 

systern u = Du. If q = r the theorem is proved, So, let us suppose q > r. Let 

h = max{j < j" I there is i,j <i$ q, with d;j "'f O} . 

(Such an h exists because q > r.) There is q1 E {h + i\i = 1,2, ... ,q- h} such that 

d
9
, h # 0 and the size of the Jcrdan p.ut ial cliain starting at >.u9, is 2: to the size of the 

Jordan partial chain starting at >.u1,+,, i = I, '2, ... , q - h, with d(l,+iJh # 0. Wit hout lost 

of generality we can suppose d
91 

h = I. Now, inu-rchanging the positious of the qth and 

q1 th equations and applying lernmas :3.1 and 3.2 our system u = Du, where x = M2u, is 

transformed in :i:= Hz, H = (h;j), where H is given by: there are )p)1, ... ,)11_"', with 
m = q-1 2: r, )

0 
"'f )fJ for o "'f /3, ]1 = h, ]1 = min{J1,;2, ... ,J11_m}, )k E {1,2, ... ,n} 

and J k < m + k for k = 1, 2, ... , 11 - 111 such that 

h(m+kJ"j. = I for k = 1,2, ... ,11- m, 

h;j = 0 for i 2: 111 + 1 =,,,j< i and (i,j) ~ {(m + k,j\:)!k = 1,2, ... ,11 - m} 

and 

h;j = 0 for h $ j < i < q. 

It is clear that u = M3z where the II x II mauix M3 is nonsingular. If m > r, it is 

enough to repeat the process. D 

4 J ordan canonical form: the general case 

In order to prove the gcneral case we- need three lemrnas, whose proofs are immediate 

and will be ornitted. 
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Lemma 4.1 Lct A, B and M be n x 11 complt r matrict:s, with M uousin qular, such that 

M-1 AAf = B. Let ei, e2, v1 aud vi be colu11111 vcciors of (1;" sucli tliat Af e1 = v1 and 

Me2 = v2. Supposr thcn: is a complcr uumbcr o sucl: tliat (B - ).J )e1 = oe2. Then, we 

have also (A - >-./)v1 = ov2. 

Lemma 4.2 Lct J>. be an n x n matrix givrn by J>.= diag(J>.,i, J>.,i, ... ,J>..,). Let e,, 

i= 1, 2, ... , n be the ith canouical columu uecior of f", that is, e; is tli« columu vector of 

coordinatcs e,j, j = 1, 2, ... , n, with t-,J = 0 for i::/: j and e,j = 1 [or i =j. Thcu 

(J>. - >-.l)e; = e,+1 for i</. {t n9jk = 1, 2, ... , ,·} 
y,:] 

and 

(J>. - >-.l)e, = 0 for i E {t 119jk = 1,2, ... ,,·} 
y:I 

uiher« n9 is the ordcr of th c matrix J >..q. 

Lemma 4.3 Let A be a11 n x n conipli :r matrix with eingrn ualsu» ).1, ).2, .•• , )., , ).0 ::j: >-.
0 

/or o -f /3. Let m1c, k = 1,2, ... ,.s, dcnotc th, algebraic mu/tiplicity of>-. and for 

k = 1,2, ,s lct 1·1c br tiif dinunsion. of {v E ~'IAv = >-..v}. Thcu, for each J..·, 

k = 1,2, ,s, there is an n x n uousiuqulcr matrix M* sucli tliat M;1AM. = th 
with 

H~ = ( H,..,, 

where m = n - mi.:, p = n - m1c, (J= m.,, Hn.,, is a n X m complcr matrix, O,,y a p x q 

mairiz where a// the clcmruts nrr equa! to zcro au d J>.• = diag(J >. •. ,, J.1..,, ••• , J>. •. ,.). 

Now, let us consider the matrix H. of the above lernma 4.3. Let f •. , deuote the 

cauonical column vector e,._.,..+;, k = J, 2, ... , s and i = 1, 2, ... , m.,. From lemmas 4.2 

and 4.3, it follows inunediately that 

(H1c - A1c/)f1.:,i = r •. ,+I for i</. {t nk,qlh = I, 2 •... , ,·.} 
ya: J 
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and 

(Hk - >-.kl)fk,i == 0 Ior i E {±=11k,9jh == 1,2, ... ,l'k} 
q=I 

wbere nk,q is the order of the matrix J., •. 9. Now, let us make 

k = 1, 2, ... , s and i = 1, 2, ... , m,. From lernma 4. l it Iollows that 

Avi..,; = >-.1.vk,i+vk.,+1 for i'/. {tnk,qlh == 1,2, ... ,1·1.} 
q•'1 

(J) 

and 

Avk., == >-..vk.i for i E {i:11k.ylh == 1,2, ... ,,·k} . 
q:I 

By induction, OIH' prove easily that tlw n column vectors v.,;, k == I, 2, ... , 8 and z = 

(2) 

l, 2, ... , m1c, are Iinearly indepeudeut. 

Now let us consider the system x == Ax and let us make the variable change given by 
, fllt 

x== I: LY1..,Vk.i. 
•-=I •=I 

w~ have 
• ti&,&. 

x= I: LY1.,;Vi.., 
k&I u:I 

. "'' 
and Ax = LLY,.,Avk,, 

lrcl i&I 

From the relations (I) and (2) above, it Iollows immediately that 

:h=J>.,Y,, k=!,2, ... ,.s, 

wbere Y« is the column vector of coordinates Yu, 111r,2, ... , 1/k,m•· So y == Jy where 

J = diag( J >.1, J >,3, ••• , J>.,) and y is tlw column vector of courdinates y1,1, Yl.2• · · ·• Y1.n" 

... , 11,.1, J/,.2, ... , 1/1,m,· Observe thut t lie variuble change 
, m,. 

x= I: LYk.iVk,i 
kcl ,,.l 

c.an be rewrittcn in the following form 

x= My 
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where M is the n x n nonsingular mat rix whose column vectors are v1,1, V1,2, ... , V1.m,, 

v2,1, v2,2, ••• , v2,,,.2, ••. , v ,.1, v,,2, ... , v ,,m,. So J = ,AJ-1 A 1\1. Tbus we have proved the 

following theorem. 

Theorem 4.1 (Jordan canonical form: geueral case] Let A be an n x n complex matriz 

toith eingenvalucs J..1, J..2, ••• , J..,, J..0 ,:j; J..p for C\ ,:j; /3. Lct mk and 1·1,;, k = I, 2, ... , s, 
be where mk is the algcbraic mu/Jiplit:il.y of >.i.- and r1c = dim { v E (C'' IAv = J..1r v}. 

Then there is au n x n nonsiuqular matrix M sucli that M-1 AM = J whrrc J = 
d.iag(J-\i,J-\2, ... ,J-\,) and, for k = 1,:!, ... ,s, J>,4 is a square matriz of ord.cr m1c givrn 

by J,\.= diag(J>,.,1,J-\.,2, ... ,J-\.,,.). We have: also, for k = 1,2, ... ,s, L;~1 n1c,q = m, 
and n1c,1 ~ n1c,2 ~ ···~ni.-,,. whcrc 11,.y is tli« ordcr of the Jordan block J>,.,

9
. 
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