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1 Introduction

In this work we present, via linear system of differential equations, a natural and
elementary proof for the Jordan canonical form. The idea of this work appeared during
the preparation of a class on resolution of linear system of ordinary differential equations
for a course that we taught in the second semester of 1994 in the Instituto de Matematica e
Estatistica da Universidade de Sao Paulo. We were considering a linear system of ordinary
differential equations X = Ax, where A is an n x n complex matrix, X a column vector
of coordinates zy,z;,...,7, and X = %, { real. It is well known (see [5]) that there is a
variable change that transforms X = Ax in a system in & triangular inferior form. Now, if
the system is in triangular inferior form, how do we put it in the Jordan canonical form?
This was the natural question that came to our mind. Thus we started to play around
with some examples. Miracle! Very soon we felt that we had in hands a natural and
elementary proof for the Jordan canonical form. The proof is constructive and we think
that the idea of the proof is new. In the references appear other interesting proofs for the

Jordan canonical form.
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We dedicate this work to the responsibles for it: our students.

2 Definition of Jordan partial chain

Let A be an n x n complex matrix, triangular inferior and with a unique eingenvalue
A. Let us consider the system x = Ax, A = (ai;). Suppose that there exist p, < p; <
+++ < p,, $ 2 1, such that

g, =0forp,<i<n

and for k =2,3,...,s, since s > 1,

ath—l =1 ’ .

ap;=0for1 <j<pandj#pi,,
and

@ip,, =0 for proy <1< nand i # p.

In these conditions, we say that the set of the s equations of the system x = Ax:

. G L
Ip, = Zz=l ap jx; +Azy,

z,, = z,, +Az,,

:P' = IP--I +Azﬂo

where ¢ = p; — 1, is a Jordan partial chain of size s starting at Az, . If we have also

ay,; =010rj =1,2,...,q, we say that the Jordan partial chain is a Jordan chain starting

at Az,,.

Example 2.1 Consider the system

i‘] = AI,
I.z = 21‘1 +A1’2
Iy= I, +z; +Az;

i‘q = AI.

Iy = Z3 + Az

I¢= T4 + Az

I;= E +Az,

We have a Jordan partial chain of size 3 starting at Az, and a Jordan chain of size 2

starting at Az,.
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3 Proof of the Jordan canonical form for a particu-
lar case

In this section we will prove the theorem on the Jordan canonical form for an n x n
complex matrix A that admits a uniqur eingenvalue A. For this we need three lemmas

whose proofs are immediate.

Lemma 3.1 Consider the system x = Ax, where A = (a,;) is triangular inferior, with a

unique eingenvalue A and given by

i] = /\I)

i‘; = a“I, - A.Tg

I3 = a3, +ayr; +Az;

. = r

iy, = T ten il

i o1 2 ,

Iq, = E;‘:l Qg 5T, +/\qu

- F—3 r . .

Loy = p oA aq,_,3%; -{—/\J:,,‘_I

> = i . .

Lo & a1 8q,5%; +zq, +Az,,
where r = ¢1 — 1, Ais @ complez number, gy = Guey + 1 form =2,3,...,k and a,y =0

for g« < t < n. Then such a system can be transformed in a system where the g th and

qith equations are, respectively,

f’c, - :;:1 bql)zj +'\yql

and
Iy, = Y, +AI°.
and the other equations remain unchanged. The elements by ,, j = 1,2,...,r and y, are
)
given by
b'.J. = n'.j + E:-,+l alj“q.i \ .’ = ],2....,7’ o 1 ) bq,r = a',r
and

Vo, = Ly 94,57 + 2, -
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Proof. It is enough to multiply the pth equation, p =1,2,...,r by aq,p to add with the
¢ith and to make

Yo, = Zam:r, + T, O

=1

The main idea of this work is contained in the next lemma.

Lemma 3.2 Let A = (a,;) be an n x n compler matriz, in triangular inferior form that

admils a unique eingenvalue A. Supposc that the p,th equation of the system x = Ax has

the form )
I, = Zla,,',;z, + Az,

)=

and the g th has the form .
Lol Zlav.:-r: + Az,

)=

with k < min{p,,q,} and agk = 1. Suppose also there is a Jordan partial chain of size r
starting at Az, and other of size s sturting af Az, with v < s. Then the given systen

can be transformed in a system where the pith equation is
k=1
uy, = Z L Aup,

)=

where b, ; = Gp,; = Gp kGq 5, J = 1,2,.... k=1, the p,th equation, 1 = 2,3,...,r, is
Up, = Up,_, + Ay,
where 2, — ap kTg, = up, i =1,2,... .7, and the other equations remain unchanged.

Proof. Multiplying the g,th equation by —a, i« adding with the p,th and making z, -

ap KTy = Uy We have o

Up = zbn.jx)'f'\“p,
=)
where b”x-’ =Gp = Gp kg 5, ) = | [, -

If r =1 the lemma is proved. Otherwise,

Ty, = Uy, + 6,41, + Az
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Remembering that s > r, multiplying the g;th equation by —a, &, adding with the pyth

and making z, — a, kT, = u; we gel

Up, = up + Aup, .
If r = 2 the lemma is proved. Otherwise it is enough to repeat the process. o
Example 3.1 Consider the system
.'I.’.'l = AI]
Ip= I +A1
Ty= 21, +z; +Ar;
1.4 = I, +2.[3 +AT4
Ty = 2, +I; I3 +Azs
Tg= Ts +ATg
i7 = Ty % +'\I7 .

The Jordan partial chain starting at Az, has size 2 and the one starting at Ars has

also size 2. So, applying lemma 3.2 we get

i, = AJ']

i‘z = I +AI;

i':; = 21." +7T2 +A1'3

ug= -3, -21; +Auy

Ty= 21, +r; +7I3 +Azs

i’c = 3 +A.’L‘6

l'l-, = Uy +/\U1 .

where 7, — 275 = uy and 77 — 226 = uz. Now applying lemma 3.1 we obtain

.1") = )\1‘1

Iy= I +Ar,

l‘lg = 31) +z, +/\U3

l.lq = —31| —21‘-) +/\u¢

ib = uj +AI;

Ig = Ts +Ax6

Uy = Uy +Auy .

where 2z, 4+ 23 4 73 = uj.

The next lemma is suggested 1\ the following example.
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Example 3.2 Consider the system

i’] = /\I]

1"2 = +A1'7

Iy= +Az3

2.34 = I +/\I4

zy= T4 +A1s

is = I3 +/\.1'5 .

We have a Jordan chain of size 1 starting at Az,, a Jordan chain of size 3 starting
at Az; and a Jordan chain of size 2 starting at Az;. The system can be rewritten in the

following form

ATQ
12 +A.l'4
2y +ATs

I3
4
s
3
Zg
)

nn

+/\1’3
I3 +Azg

nnn

/\I]

which is the Jordan canonical form of the given system.
In the following, we indicate by Jik & square matrix of order n, given by
his=AM+E

where [ is the identity matrix of order ne and E = (e,;) is a square matrix of order n,

givenbyc.-,:lifj=i-landc,-,-:Oifj#i—l.So

A0 0 00
1 A0 00
Jo| 013 00
000 .1 A

The matrix J) « is called a Jordan block of order n,.

Lemma 3.3 Let A = (a,;) be an n x u compler matriz, in triangular inferior form, with
a unigue eingenvalue A and let v be the number of linearly independent eingenvectors

associated with A, that is, v = dim{v € C" | Av = A}. Supposc, ifr < n, there arc
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Jsdase v dnery with jo # Jp fora # 8, j, € {1,2,...,n} and j; < r+k, k=1,2,...,n-r,
such that

A(r4k)j = 1 ) k= 1,2,...,71 =T

and
a;; =0 forj<iand(i,j) ¢ {(r+kj)lk=12,...,n=71}.

In these conditions, there exists an n x n nonsingular matriz P such that P7VAP = J,
where J, = diag(Jyy,Jaz -y dar) Theifk = nand ny 2 np 2 00 2 Ny where ny,

k=1,2,...,r, is the order of the matrix Jy .

Proof. If r = n the lenuna is immediate. So, let us suppose 1 < r < n. It is immediate
that we have a Jordan chain starting at Az;, i = 1,2,...,r, and if r < m < n, there is
i € {1,2,...,7} such that the mth equation belongs to the Jordan chain starting at Az,.
Now, let ix € {1,2,...,r} and let u; be the size of the Jordan chain starting at Az,,.
It is clear that we can choose i, k = 1,2,...,r, such that n; 2 ny 2 -+ 2 nr. Now,
interchanging conveniently the positions of the equations (and changing the names of the

variables) our system can be rewritten in the fcllowing form:

A2 Jaay

Y2

Jaaya2

yr = Jrryr
where y, k= 1,2,...,r, is a column vector of coordinates yiy,Yu2.-- - Yk To close.
let y be the column vector of coordinates ¥y, Y1zy -« Yim s ¥auds -+ -2 Yamare -1 Yroe: It s
clear that the matrix P such that x = Py is nonsingular. From x = Ax, it follows that
Py = APy and therefore y = P~'APy. So J, = P7'AP. o
In the following we enunciate and prove the theorem on the Jordan canonical form for

a matrix A with a unique eingenvalue A.
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Theorem 3.1 (Jordan canonical form) Let A be an n x n compler matriz with a unique

eingenvalue A. Then there ezists an n x n nonsingular matriz M such that
M™AM =,

where J, = diag(Jry, a2, day), v = dim{v € C*|Av = Iv}, Ti.,nx = n and

n2n;2 - 2n,.

Proof. Without lost of generality we can suppose that A is in triangular inferior forn.
If r = n the theorem is immediate. So we can suppose 1 < r < n. From lemma 3.3, it
is sufficient to prove there exists an n x n nonsingular matrix Q such that Q' AQ = B
where B = (b,;) is triangular inferior and given by: there are j,,ja,...,ju_y, with j, # 75

fora # B, jx € {1,2,...,n}and jy <r+ k, k=1,2,....,n = r, such that
b(,..,k)“ =] ) k= 1‘2,...,71—1‘

and

by =0 for j <iand (i,j) € {(r+kji)lk=1,2,...,n 1} |

Let

p = max{j | there is 1,1 > j, with q,, # 0} .

(such a p exists because r < n). Without lost of generality we can suppose @np = 1. The
Jordan partial chain starting at Az,4i, k= 1,2,...,n — p, has size 1. From lemmas 3]

and 3.2, the system x = Ax can be transformed in a systemy = Sy, § = (si,), where

3";’:]‘

spj=0forj#pandj<n
and

sij=0forp<j<i<n.

It is clear that the n x n matrix M, such that x = M,y is nonsingular. By induction,
suppose now there is an n x n nonsingular matrix M, such that M;'AM, = D, D =
(di;), where D is given by: there are j;, | - — j;_', with ¢ 2 r, Ja # Jp for a # B,
sy =min{j],53, ... Jaze) s Ji €{1.2,...,n) and ji < g+ kfork=1,2,...,n~ q such

that
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digsr)je = 1fork=1,2,...,n~q,

dy=0fori>q+1,j<iand (ij) ¢ {(g+kjDlk=12....n =)
and
d.‘,‘:OfOl‘j{Sj(i((['*’l.

Observe that for ¢ = n — 1 such a matrix M, there exists: M, = M,. Consider the

system u = Du. If ¢ = r the theorem is proved. So, let us suppose ¢ > r. Let
h =max{j < j° | thereis i,j <1 < g, with d,; # 0} .

(Such an h exists because g > r.) There is ¢y € {h+1i|i = 1,2,...,¢0 - h} such that
dyn # 0 and the size of the Jordan partial chain starting at Aug, is 2 to the size of the
Jordan partial chain starting at Auj4,, 1= 1,2,...,9 = h, with dueagu # 0. Without lost
of generality we can suppose d, » = 1. Now, interchanging the positions of the qth and
¢:th equations and applying lemmas 3.1 and 3.2 our system u = Du, where x = Mju, is
transformed in z = Hz, H = (h,;), where H is given by: there are Findas s dnmis With
meg—12r7.¥jsforast B, j=hj = Min{7ys 72+ s dmem}s Jk € 11,2,5.449)

and 7, <m+kfor k=1,2,...,n—m such that

h(,,,,,,,‘);A =]fork=12...,n-m,

hij=0fori>m+1=q j<iand(i,j) € {(m+kT)k=12...,n—m)}
and

hij=0forh<j<i<y.

It is clear that u = Mz where the n x n matrix My is nonsingular. If m > r it is

enough to repeat the process. D

4 Jordan canonical form: the general case

In order to prove the general case we need three lemmas, whose proofs are immediate

and will be omitted.
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Lemma 4.1 Let A, B and M be n x n complcr matrices, with M nonsingular, such that
M-YAM = B. Let e;,e;3,vy, and v, be column veciors of C" such that Me, = v, and
Me; = v;. Suppose there is a compler number a such that (B — M )e, = ae;. Then, we

have also (A= Al)v, = av;.

Lemma 4.2 Let J, be an n x n matriz given by J, = diag(Jay, Jazs---yJday). Let e,
1=1,2,...,n be the ith canonical column vector of C*, that is, e, is the column vector of
coordinates e,;, j = 1,2,...,n, with ¢;; = 0 fori # j and e;=1fori=j. Then
k
(Jr—=Al)e,=e,, fori g {Zn,”c = 1,2,....1'}
y=1

and

L
(Jx=Ale;, =0 forie {Zn,lk: 1,2,...,1'}

9=1

where ng is the order of the matriz J, .

Lemma 4.3 Let A beann xn compler matriz with eingenvalues Ay, Ay, ..., A,, Ao # A3
for o # B. Let my, k = 1,2,...,s. denote the algebraic multiplicity of A, and for
k= 1,2,...,s let vi be the dimension of {v € C'|Av = A\v). Then, for each k,

k = 1,2,...,s, therc is an n x n nonsingular matriz M, such that MTAM, = H,
with
o)
H ;= Hll'll -
i ( Jh)

wherem=n—my, p=n-—my, g=my, H,. isan xm complez matriz, O,, a p x ¢

matriz where all the elements are equal to zero and J,, = ding(Jay s aigse s sdagm)-

Now, let us consider the matrix H, of the above lemma 4.3. Let fi. denote the
canonical column vector e,y 4iy k = 1,2,...,s and 1 = 1,2,...,m,. From lemmas 4.2
and 4.3, it follows immediately that

h
(He = Ae)fii =1, 4 fore g {an.qlh = ].2....,rk}

y=)
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and

h
(Hk -— Akl)fL_. =0 for1 € {Z”k.vlh = 1,2,.--»rk}

9=1

where n, , is the order of the matrix J,,¢. Now, let us make
Aikrk.l = vk.l )

k=1,2,...,sand i =1,2,...,m;. From lemma 4.1 it follows that

h
Avy, = AkVii + Vi for 1 ¢ {Z n*'q”l —3 |[§ T J'k} (1)
=1
and
h
AV, = MV fori1 € {an_vlh =) ) ,r‘.} . (2)
9=
By induction, one prove easily that the n column vectors vy, k = 1,2,....¢ s and 1 =

1,2,...,my, are linearly independent.

Now let us consider the system x = Ax and let us make the variable change given by

s
X = Z z:yl:.nvk.i .
k=11=1
We have '
8 My s my
* - z ng.lvk.l ':ﬂld Ax = 2 zyk.lAvk.l .
k=1 =) k=) =)

From the relations (1) and (2) above, it follows immediately that
Yk = J,\‘yk ) k= lv2\-~-~5v

where yj is the column vector of coordinates yiy, Yaay -« Vemi: SO y = Jy where
J = diag(Jxr,,Jags- - -+ Ja,) and y is the column vector of coordinates ¥y, Y12, -+ Yims

veey Yady Yo2s -+ s Yim,. Observe that the variable change

s My

X m Z Z YraVii

k=) =)

can be rewritten in the following form

x= My
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where M is the n X n nonsingular matrix whose column vectors are vy, Vi, ..., Vim,,
V2,1, V2,25 - ooy V2mgs -+ -y Va1, Va2, -y Vo, SoJ = M~1AM. Thus we have proved the

following theorem.

Theorem 4.1 (Jordan canonical form: general case) Let A be an n x n compler matrir
vith eingenvalues Ay, ),,...,0,, A, # Ag fora # B. Let my and Yug B = 1,20 00008
be where m, is the algcbraic multiplicity of )\, and r, = dim{v € C'|Av = A,v}).
Then there is an n x n nonsingular matriz M such that M= AN = J where J =
diag(Jy,,Js,,...,Ja,) and, for k = 1,2,...,s, Js is a square matriz of order my given
by J, = diag(Ja, 1y a2y oy Jagw, ). We have also, for k = 1,2,...,s, Toa) kg = my

and nyy 2 ngg 2 -0 > ny,, where N4y 18 the order of the Jordan block " P
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