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Resumo 
Devido às suas vantagens, a madeira tem sido amplamente utilizada como elemento estrutural ao redor do 
mundo, principalmente em países do Hemisfério Norte. Entretanto, no Brasil, apesar de sua expressiva 
diversidade florestal, muito pouco deste potencial é utilizado devido a preconceitos inerentes ao material. 
Todavia, ainda se verifica uma recorrência em estruturas treliçadas planas de telhados. Uma das 
problemáticas que envolvem o projeto de estruturas de cobertura é aquela referente aos modelos idealizados 
de análise. Engenheiros projetistas costumam adotar o modelo clássico de treliça na concepção estrutural. 
Entretanto, ao se considerar outras modelagens, diferenças significativas podem ser observadas nas 
dimensões finais das peças. Sendo assim, primando a avaliação dessas influências, uma ferramenta 
computacional foi desenvolvida baseada no método dos elementos finitos (MEF) e nas rotinas de 
dimensionamento prescritas pela revisão da NBR 7190 (ABNT, 2020). Os valores de esforços e 
deslocamentos foram aferidos com o software SAP2000

®, resultando em notória confiabilidade. Mediante 
fixação da espessura, o critério de dimensionamento utilizado foi o de altura mínima dos perfis. Após 
simulação de três modelos idealizados, os resultados evidenciaram que os perfis realmente sofrem 
consideráveis mudanças em função do modelo empregado, atingindo dimensões cerca de 50% inferiores em 
modelos que conferem rigidez perfeita. 
Palavras-chave: Estruturas de madeira. Treliças planas. Método dos elementos finitos. Dimensionamento. 
 
Abstract 
Due to its advantages, wood has been widely used as a structural element around the world, mainly in 

countries in the Northern Hemisphere. However, in Brazil, despite its expressive forest diversity, very little of 

this potential is used due to inherent prejudices in the material. However, there is still a recurrence in plane 

trussed roof structures. One of the problems that involve the design of roofing structures is related to the 

idealized models of analysis. Design engineers usually adopt the classic truss model in structural design. 

However, when considering other models, significant differences can be observed in the final dimensions of 

the pieces. Therefore, in order to evaluate these influences, a computational tool was developed based on the 

finite element method (FEM) and the design routines prescribed by the revised version of the standard NBR 

7190 (ABNT, 2020). The values of efforts and displacements were measured with the SAP2000
®
 software, 

resulting in notable reliability. By setting the thickness, the design criterion used was the minimum height of 

the pieces. After simulation of three idealized models, the results showed that the sections really undergo 

considerable changes depending on the model used, reaching dimensions about 50% lower in models that 

provide perfect stiffness. 
Keywords: Timber structures. Plane trusses. Finite element method. Design. 
 
1 Introdução 

 
A madeira é um dos materiais mais antigos 

utilizados pelo homem na construção civil, 
demostrando vantagens consideráveis ao longo do 
tempo. Dentre tais, sustentabilidade e excelentes 
propriedades mecânicas fazem dela um material 
alternativo a ser empregado de forma inovadora, 
funcional e confiável em sistemas estruturais. 

Com uma produção que demanda energia inferior 
ao do cimento; aço e alumínio, a madeira se 
caracteriza por ser um material sustentável e 
ecologicamente viável, uma vez que constitui uma 
fonte renovável que traz benefícios ao meio 
ambiente. 

Além da sustentabilidade, do ponto de vista 
estrutural, a madeira possui excelentes propriedades 
mecânicas, competindo com materiais consagrados, 
como o concreto e o aço. Dentre tais propriedades, 



 

 

Ramage et al. (2017) destacam sua elevada relação 
entre resistência mecânica e densidade, cujos 
quocientes podem atingir valores superiores ao do 
aço e do concreto armado, quando solicitados, 
respectivamente, à tração e à compressão (CALIL 
JUNIOR e DIAS, 1997; RAMAGE et al., 2017). 
Ademais, pesquisadores atestaram que a madeira é 
um material tenaz (CHRISTOFORO et al., 2020), 
isto é, tem a capacidade de resistir às solicitações de 
maior magnitude quando aplicadas em um curto 
espaço de tempo. 

Devido às suas excelentes qualidades, verifica-se 
uma ampla utilização em países do Hemisfério Norte 
(KIRKHAM et al., 2013; EGAN CONSULTING, 
2017), principalmente em residências unifamiliares, 
construídas através do sistema wood frame (DE 
ARAUJO et al., 2016). 

Entretanto, no Brasil, o cenário é distinto 
daqueles países. Ter Steege et al. (2020) estimaram 
em mais de 15.000 o número de espécies de árvores 
somente na Amazônia. Todavia, pouco dessa 
diversidade florestal é aproveitada em sistemas 
estruturais, resultado de preconceitos inerentes ao 
material (CALIL JUNIOR et al., 2019). 

A despeito de sua pouca difusão no país, quando 
comparada ao concreto e ao aço, contudo, verifica-se 
uma considerável recorrência em estruturas de 
coberturas residenciais; industriais e rurais, na forma 
de sistemas treliçados planos. A tenacidade e a 
elevada relação resistência/densidade reforçam que a 
madeira pode ser potencialmente utilizada em 
estruturas de cobertura, não se restringindo apenas a 
telhados de edificações residenciais. 

Todavia, conforme outrora exposto, o uso 
potencializado da madeira em estruturas de 
cobertura é diversas vezes inibido devido aos 
preconceitos decorrentes de sua má utilização e 
insuficiente divulgação das informações 
tecnológicas disponíveis (CALIL JUNIOR et al., 
2019). Paralelamente a esta situação, o Brasil está 
inserido em mais outros dois cenários distintos: 

• Fase de recuperação e reforço de estruturas 
de coberturas históricas, concebidas durante 
o século XX;  

• Atual estádio de transição da construção em 
madeira, migrando do processo artesanal 
para o processo de pré-fabricação. 

Diante de tais circunstâncias, destaca-se a 
necessidade de estudos referentes às estruturas de 
cobertura, sobretudo com abordagem no projeto e 
dimensionamento prescritos pelas normas técnicas 
vigentes. Tais iniciativas propiciarão um uso mais 
racional e técnico da madeira em sistemas 
estruturais. 

No Brasil, o documento normativo que rege as 
diretrizes de projeto e dimensionamento de 
estruturas de madeira é a NBR 7190 (ABNT, 1997). 
Contudo, em 2020 foi proposta uma revisão 
normativa que introduziu algumas abordagens que 
estavam ausentes na versão anterior. 

Por conseguinte, um estudo que envolva análise 
estrutural e dimensionamento atualizados, 
certamente constituirá uma excelente contribuição 
no sentido de viabilizar as verificações tanto de 
estruturas históricas em recuperação, quanto de 
estruturas a serem concebidas, agora embasadas nos 
documentos normativos vigentes. 

Um dos questionamentos que envolvem o projeto 
de treliças planas de cobertura é aquele referente aos 
modelos de análise estrutural. Engenheiros 
projetistas costumam adotar o modelo clássico de 
treliça, que por sua vez admite que todos os nós são 
perfeitamente rotulados e que as barras estão 
submetidas apenas a esforços axiais. Porém, a 
literatura evidencia que, apesar de semirrígidas, 
certas tipologias de ligações podem apresentar um 
comportamento mais próximo de um caráter rígido, 
isto é, barras perfeitamente engastadas sujeitas a 
esforços de flexão composta (VALLÉE et al., 2011; 
SCHOBER e TANNERT, 2016; SAGARA et al., 
2017; RIVERA-TENORIO e MOYA, 2019). Outro 
caso que ocorre frequentemente é a ocorrência de 
barras diagonais-montantes conectadas a banzos 
contínuos, caracterizando um modelo misto pórtico-
treliça, que por sua vez também diverge do modelo 
clássico de treliça. 

Ademais, verificou-se que trabalhos que analisam 
o comportamento e rigidez de ligações em estruturas 
de madeira geralmente se restringem a variáveis 
como carga crítica de ruptura; ductibilidade; 
deslocamentos; deformações; comportamento não 
linear etc. (CHRISTOFORO et al., 2011; DORN et 

al., 2013; MOYA e TENORIO, 2017; TENORIO et 

al., 2018; FRONTINI et al., 2018). Ou seja, há uma 
escassez de pesquisas que tratam da influência que 
os modelos exercem no dimensionamento das peças 
de madeira, considerando análise linear-elástica 
requerida em projetos de coberturas. 

Diante do exposto, este trabalho teve como 
objetivos: desenvolver um software com 
processamento elástico-linear à luz do método dos 
elementos finitos (MEF) e dimensionamento 
segundo o novo projeto de norma da NBR 7190 
(ABNT, 2020); simular uma treliça tipo Howe com 
quatorze metros de vão, considerando os modelos de 
treliça, pórtico e misto pórtico-treliça; avaliar a 
influência destes modelos idealizados de ligações no 
dimensionamento dos perfis. 
 



 

 
 

2 Fundamentação teórica 
 
Cronologicamente, para se projetar estruturas de 

cobertura são necessárias cinco etapas básicas: 
concepção da geometria; levantamento de ações e 
carregamentos; análise estrutural; estimativa dos 
esforços e deslocamentos de cálculo; 
dimensionamento e detalhamento. 

A primeira etapa (concepção da geometria) está 
em função da configuração do edifício, podendo ser 
realizada empiricamente ou através de técnicas de 
otimização, não sendo mister deste trabalho abordá-
las. A última etapa (detalhamento) depende de 
algumas recomendações normativas ou detalhes 
expressivos que o projetista julgar necessário. Logo, 
restam os questionamentos e conceitos que norteiam 
as quatro etapas intermediárias, sendo de suma 
importância o seu esclarecimento. 
 
2.1 Ações e carregamentos nas estruturas de 
cobertura em madeira 

 
Basicamente são dois os tipos de ações que 

atuam nas estruturas de coberturas: permanentes e 
variáveis. 

De acordo com a NBR 8681 (ABNT, 2003), as 
ações permanentes são aquelas que ocorrem com 
valores constantes durante praticamente toda a vida 
da construção, como, por exemplo, o peso próprio da 
estrutura principal e o peso de elementos fixos. 

Também de acordo com a referida norma, as 
ações variáveis são aquelas que apresentam 
variações significativas durante a vida da 
construção. Nas estruturas de cobertura, os tipos 
mais corriqueiros são as forças devidas ao vento; 
sobrecargas de eventuais instalações e cargas 
acidentais oriundas do processo de construção 
(pessoas). 

Uma vez levantadas as ações, seus efeitos nos 
elementos da estrutura devem ser analisados de 
forma a propiciar um comportamento estrutural 
adequado. 
 
2.2 Análise estrutural pelo método dos elementos 
finitos (MEF) 

 
Existem diversos métodos para se analisar uma 

estrutura. No caso de treliças planas, considerando 
uma análise computacional, um procedimento eficaz 
é o método dos elementos finitos (MEF).  
Christoforo e Lahr (2007) denotam que o MEF 
consiste na geração de funções de aproximação que 
podem ser utilizadas para interpolar deslocamentos, 
esforços, tensões e deformações ao longo do 
domínio do elemento. Sua premissa básica consiste 

na divisão do domínio de integração em um número 
finito de elementos (malha), de forma que a união 
destes produza a resposta aproximada do objeto. 

Em treliças planas, a malha é constituída por 
elementos unidimensionais (barras) unidos em suas 
extremidades (nós) através de ligações. Em termos 
de comportamento momento vs. rotação relativa, 
Pfeil e Pfeil (2003) classificam idealmente as 
ligações em: 

• Rótulas perfeitas (rotação relativa livre, 
momento transmitido nulo); 

• Engastes perfeitos (rotação relativa 
totalmente impedida). 

Se as ligações da estrutura puderem ser 
assimiladas a rótulas perfeitas, tem-se o modelo 
estrutural treliça, onde as barras são solicitadas 
apenas a esforços axiais, desde que as cargas estejam 
aplicadas somente nos nós. Do contrário, quando 
perfeitamente engastadas, admite-se o modelo 
estrutural pórtico, onde os elementos são solicitados 
à flexão composta. Nas estruturas reticuladas planas, 
a tipologia de elementos finitos depende do número 
de graus de liberdade, que por sua vez originam as 
solicitações. Na Figura 1 estão ilustrados três tipos, a 
saber: elemento de barra, de viga e de pórtico. 
 

Figura 1 – Elementos finitos em estruturas reticuladas 
 

 
(a) Elemento de barra (b) Elemento de viga (c) Elemento de pórtico 
Fonte: Elaboração própria. 

 
No elemento de barra [Figura 1(a)], com a 

imposição de deslocamento axial (u) unitário em um 
dos nós da malha, mantendo-se nulo o deslocamento 
axial (u) no nó consecutivo (e vice-versa), torna-se 
possível a construção de funções base [ϕ(x)]. A 
integração da derivada primeira dessas funções, 
multiplicadas ao produto de rigidez axial (Ei ·  Ai), 
produzirá os coeficientes (Km,n) (linha m, coluna n) 
da matriz de rigidez do elemento finito [Kele]i, sendo 
Ei o módulo de elasticidade longitudinal e Ai a área 
da seção transversal. 

Já no elemento de viga [Figura 1(b)], cujos graus 
de liberdade consistem em uma translação (ν) e uma 
rotação (θ) em cada nó da malha, com a imposição 



 

 

sucessiva de valor unitário em cada um dos graus de 
liberdade, mantendo-se nulos todos os demais, as 
funções base [ϕ(x)] são dadas por quatro polinômios 
de grau três (cada qual referente ao respectivo grau 
de liberdade). Os coeficientes (Km,n) da matriz de 
rigidez do elemento finito [Kele]i são quantificados 
através da integração da derivada segunda das 
funções [ϕ(x)], multiplicadas ao produto de rigidez 

na flexão (Ei ·  Iz,i), sendo Iz,i o momento de inércia 
em relação ao eixo z. 

O elemento de pórtico [Figura 1(c)], por sua vez, 
resulta da sobreposição de efeitos entre o elemento 
de barra e o elemento de viga. No Quadro 1 contêm 
a tipologia do elemento finito, as funções base 
[ϕ(x)], a formulação dos coeficientes (Km,n) e as 
matrizes de rigidez [Kele]i. 

 
Quadro 1 – Elementos finitos, funções base [ϕ(x)], formulação dos coeficientes (Km,n) e matrizes de rigidez [Kele]i 
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FINITO 
FUNÇÕES BASE [ϕ(x)] E 
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Fonte: Elaboração própria. 

 
Alguns dos elementos finitos de uma estrutura 

bidimensional podem apresentar inclinações (α) em 
relação aos eixos principais z e y. Dessa forma, os 
coeficientes locais (Km,n) necessitam de 
transformação em um referencial global que seja 
comum a todos os elementos da estrutura. Para tal, a 
matriz de rigidez local [Kele]i de cada elemento deve 
ser modificada através do produto de uma matriz de 
transformação [R] vezes sua transposta [R]T, 
conforme apresentado na Equação 1. 
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T
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A matriz [R] é dada pela Equação 2. 
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(2) 

Uma vez transformados os coeficientes (Km,n) de 
cada elemento, faz-se necessária sua locação na 
matriz de rigidez da estrutura [Kest]. Para tal, é 
necessária a imposição de coordenadas matriciais 
globais que interceptem todos os elementos. Estas 
coordenadas ou índices gerais (IG) são quantificadas 
com base nos graus de liberdade correspondentes. 
Por exemplo, em um elemento de pórtico cujo par de 



 

 
 

nós é dado por i e j, os índices gerais de cada grau de 
liberdade (u, ν e θ) são quantificados por meio da 
Equação 3. 
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Portanto, os coeficientes (Km,n) da matriz de 

rigidez da estrutura [Kest] são obtidos por intermédio 
do somatório de todos os campos cujas coordenadas 
matriciais (IG) são idênticas, conforme apresentado 
na Equação 4. 

( ), ,
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K K
=
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As condições de contorno podem ser aplicadas na 

matriz de rigidez da estrutura [Kest] através da 
técnica dos “zeros e um”, cuja regra de formação é 
dada pela Equação 5. 
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Ou seja, em todo nó onde houver apoios, o 

coeficiente da diagonal principal (relativo à direção 
restringida m) assume o valor unitário e os demais 
coeficientes naquela linha e coluna assumem valores 
nulos. 

Com a matriz de rigidez da estrutura [Kest] 
completamente ajustada, o vetor dos graus de 
liberdade nodais [Uest] pode ser quantificado por 
meio da Equação 6, sendo [Fest] a matriz coluna das 
forças-reações nodais. 
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(6) 

 
De posse dos resultados da matriz [Uest], os 

valores de deslocamentos (u); translações (ν); 
rotações relativas (θ); esforços solicitantes (N, V, 
M); tensões (σ) e deformações (ε) podem ser 
interpolados em cada elemento finito mediante 
equações apresentadas no Quadro 2. 

 
Quadro 2 – Funções de interpolação 
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Flexão simples (viga) 
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Flexão composta (pórtico) Sobreposição de efeitos 
Fonte: Elaboração própria. 

 
Nota-se, no Quadro 2, que a tensão (σ) e o 

esforço normal (N) são obtidos através da Lei de 
Hooke, originariamente definida para materiais 
homogêneos e isotrópicos. Apesar da madeira ser 
um material heterogêneo e anisotrópico, essa 

simplificação não levaria a variações consideráveis, 
haja vista que em situações de projeto (regime 
elástico-linear), a consideração da homogeneidade 
do material não levaria a influências significativas 
(PALMA, 1994). 



 

 

 
2.3 Esforços e deslocamentos de cálculo 

 
No processo de análise estrutural, cada ação 

produzirá valores distintos tanto de deslocamentos, 
quanto de esforços solicitantes. A fim de garantir 
que o projeto seja executado com margem de 
segurança, estes resultados devem ser combinados 
entre si através de dois possíveis estados limites: 
ELU (estados limites últimos) e ELS (estados limites 
de serviço). 

Segundo a NBR 8681 (ABNT, 2003), o ELU se 
refere ao colapso ou qualquer outra forma de ruína 
estrutural que resulte na paralização do uso da 
estrutura. A formulação das combinações últimas 
normais referentes a este estado limite é dada pela 
Equação 7, sendo Fd o esforço solicitante de cálculo; 
FGi,k o valor característico das ações permanentes; 
FQi,k o valor característico da ação variável tida 
como a principal para a combinação e ψ0,j ·  FQj,k o 
valor reduzido de combinação para cada uma das 
demais ações variáveis tidas como secundárias. 
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d gi Gi k q Q k qj j Qj k

i j
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= =
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(7) 

 
O novo projeto de norma da NBR 7190 (ABNT, 

2020) propõe uma modificação da Equação 7 
quando houver a incidência de apenas duas ações 
variáveis, sendo o vento (Wk) a principal delas 
(Equação 8): 
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m
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(8) 

 
Os coeficientes de ponderação (γg e γq), bem 

como o coeficiente de redução (ψ0) são extraídos das 
Tabelas 1, 2, 4, 5 e 6 da NBR 8681 (ABNT, 2003). 

Já o ELS se refere à esteticidade, durabilidade e 
utilização da estrutura, de modo a evitar que esta 
apresente, em seu período de vida útil, deformações 
ou deslocamentos excessivos. Para tal, os 
deslocamentos máximos dos elementos devem ser 
combinados e posteriormente aferidos com os 
limites estabelecidos por norma. O novo projeto da 
NBR 7190 (ABNT, 2020) admite duas hipóteses, a 
saber: deslocamentos instantâneos (δinst) (Equação 9) 
e deslocamentos finais ou efetivos (δfin) (Equação 
10), onde ϕ é o coeficiente de fluência da madeira, 
dado pela NBR 7190 (ABNT, 2020), e ψ1 e ψ2 os 

fatores de redução de ações variáveis obtidos através 
da Tabela 5 da NBR 8681 (ABNT, 2003). 
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2.4 Dimensionamento e verificações 
 
De posse dos valores combinados de esforços 

solicitantes e deslocamentos, todas as peças da 
estrutura devem ser dimensionadas para ambos os 
estados limites. 

Na verificação das solicitações no ELU, a revisão 
da NBR 7190 (ABNT, 2020) estabelece que as 
dimensões mínimas de peças principais isoladas 
devem ser de 50 cm

2, para área da seção transversal, 
e 5 cm para a espessura. 

Quanto aos parâmetros de resistência (f) e rigidez 
(E), a referida norma apresenta classes de resistência 
para o grupo das Coníferas e Folhosas, ressaltando 
que os valores propostos estão na condição padrão 
de referência, ou seja, teor de umidade (U) igual a 
12%. 

O método dos estados limites parte da premissa 
de majoração dos esforços solicitantes e minoração 
das resistências (f) e rigidezes (E). A NBR 7190 
(ABNT, 2020) propõe essa redução através da 
utilização dos coeficientes de modificação (kmod) e 
dos coeficientes de ponderação das resistências (γw), 
conforme apresentado na Equação 11, sendo X o 
valor correspondente à resistência (f) ou à rigidez 
(E); kmod,1 o coeficiente parcial de modificação que 
leva em conta a classe de carregamento e o tipo de 
material empregado e kmod,2 o coeficiente parcial de 
modificação que leva em conta a classe de umidade 
e o tipo de material empregado. 
 

mod,1 mod,2
k

d

w

X
X k k

γ
= ⋅ ⋅  (11) 

 
Vale ressaltar que o coeficiente de ponderação 

das resistências (γw) assume valores distintos de 
acordo com a tensão atuante, sendo 1,4 para tensões 
normais e 1,8 para tensões cisalhantes. 

Com as resistências (f) e rigidezes (E) de cálculo, 
o dimensionamento e verificações são realizados de 
acordo com o tipo de solicitação atuante, conforme 
apresentado no Quadro 3.

 



 

 
 

Quadro 3 – Dimensionamento e verificações em função do tipo de solicitação atuante 
 

SOLICITAÇÃO DIMENSIONAMENTO/VERIFICAÇÃO 
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Quadro 3 – Dimensionamento e verificações de acordo com a solicitação atuante (continuação) 
 

SOLICITAÇÃO DIMENSIONAMENTO/VERIFICAÇÃO 

Esforços axiais (modelo 
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σMx,d e σMy,d: Tensões máximas devidas às componentes de flexão atuantes segundo os eixos principais da seção; fb,d: Resistência de cálculo na 
flexão; kM: Coeficiente de correção igual a 0,7 para vigas de seção retangular; τx,d e τy,d: Valores de cálculo das máximas tensões de cisalhamento; 
Vd: Valor de cálculo do esforço cortante atuante; S: Momento estático da parte da seção transversal (em relação ao seu centro de gravidade) situada 
abaixo (ou acima) da posição na qual se determina a tensão de cisalhamento; b: Largura da seção transversal na posição considerada; I: Momento 
de inércia da seção transversal no eixo indicado; fv0,d: Valor de cálculo da resistência ao cisalhamento paralelo às fibras; L1: Distância entre os 
pontos adjacentes com deslocamentos laterais impedidos; E0,ef: Valor efetivo (de cálculo) do módulo de elasticidade médio paralelo à direção das 
fibras; βM: Coeficiente em função da relação h/b, dado pela NBR 7190 (ABNT, 2020); fc0,d: Valor de cálculo da resistência à compressão paralela 
às fibras; σNt,d: Valor de cálculo da tensão atuante de tração; Nt,d: Valor de cálculo da força de tração; ft0,d: Valor de cálculo da resistência à tração 
paralela às fibras; σNc,d: Valor de cálculo da tensão atuante de compressão; Nc,d: Valor de cálculo da força de compressão. 

Fonte: NBR 7190 (ABNT, 2020). 

 
Peças solicitadas à compressão simples e à 

flexocompressão devem ser verificadas quanto à sua 
estabilidade. Isso se deve ao fato do surgimento de 
esforços de segunda ordem à medida que a esbeltez 
do elemento se eleva, originando excentricidades. A 

verificação do ELU de estabilidade proposta pela 
NBR 7190 (ABNT, 2020) é aquela apresentada no 
Quadro 4. Sua dispensa é permitida quando a 
esbeltez relativa (λrel) na direção crítica for menor ou 
igual a 0,3. 

 
Quadro 4 – Rotina de verificação da estabilidade de peças comprimidas e flexocomprimidas 

 
PARÂMETRO EQUAÇÃO 
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Fator para peças estruturais que 
atendem aos limites de divergência de 

alinhamento (βc) 

βc = 0,2 para madeira maciça serrada e peças roliças 
 βc = 0,1 para madeira lamelada colada (MLC) e madeira microlaminada 

(LVL) 
Ec0,m: Valor médio do módulo de elasticidade paralelo às fibras 

Fonte: NBR 7190 (ABNT, 2020). 

 
Por fim, os valores de deslocamentos (δinst e δfin) 

referentes ao ELS devem ser aferidos com os limites 
pré-estabelecidos pela NBR 7190 (ABNT, 2020), 
ressaltando que estes últimos estão em função da 
configuração estática da estrutura. Seus valores estão 
impresso no Quadro 5. 
 

Quadro 5 – Valores limites de deslocamentos para 
elementos correntes fletidos 

 
TIPO δinst δfin 

Vigas biapoiadas 
ou contínuas 

L/300 a L/500 L/150 a L/300 

Vigas em balanço L/150 a L/250 L/75 a L/150 
Treliças L/300 L/150 

Fonte: NBR 7190 (ABNT, 2020). 

 
Portanto, objetivando o uso de uma peça de 

madeira em um sistema estrutural, todos os 
requisitos mínimos estipulados pelas referidas 
normas técnicas devem ser atingidos. 
 
3 Material e métodos 

 
Como a pesquisa se caracteriza como um estudo 

numérico-analítico, a solução adotada para a 
obtenção dos resultados foi o desenvolvimento de 
uma ferramenta computacional. Os aspectos 
fundamentais (ações e carregamentos, análise 

estrutural pelo MEF, combinações de ações e 
dimensionamento) foram todos implementados no 
software intitulado iTruss, desenvolvido através da 
linguagem VB.NET – plataforma do Visual Studio 

Community 2019. Nos tópicos a seguir será 
apresentado um levantamento de dados de um 
projeto típico de treliça pré-fabricada de madeira, 
com vão de 14 metros, destinada a edificação 
industrial. Ressalta-se ainda que todo o processo de 
dimensionamento é baseado no documento 
normativo revisado da NBR 7190 (ABNT, 2020). 
 
3.1 Geometria e configuração das barras 

 
Por ser um tipo de cobertura recorrente em duas 

águas simétricas, a geometria adotada para a treliça 
foi a do tipo Howe. A disposição das barras depende 
da inclinação do telhado e do tipo de telha 
empregada. Portanto, para efeitos de projeto, foi 
adotada uma inclinação de 27%, com telhas de 
fibrocimento – espessura igual a 6 mm. Em consulta 
aos catálogos do fabricante, para sobreposição 
mínima entre telhas de 14 cm, balanço longitudinal 
máximo de 25 cm e terças distando em no máximo 
1,69 m, tem-se a configuração final das barras 
ilustradas na Figura 2, bem como o esquema de nós, 
barras e grupos. 

 
Figura 2 – Dimensões das barras e esquema de nós, barras e grupos (cotas em centímetros) 

 



 

 
 

 
Fonte: Elaboração própria. 

 
É importante ressaltar que, para o cálculo da 

estrutura, é necessário subdividir o plano de 
aplicação de cargas (banzo superior) em áreas de 
influência, calculadas através da divisão da distância 
entre as barras montantes (barras 29 a 37) por dois. 
Considerando uma distância entre treliças igual a 3 
m, o software gerou os valores das áreas de 
influência contidos na Tabela 1. 

Tabela 1 – Áreas de influência 
 

NÓ Ainf (m
2) 

1 = 20 1,384 
3 = 19 3,004 
5 = 17 4,155 
7 = 15 5,070 
9 = 13 5,070 

11 2 x 3,069 
Fonte: Elaboração própria. 

 
3.2 Ações e carregamentos 

 
As ações permanentes que atuam na treliça são 

aquelas provenientes do peso da estrutura de 
madeira e dos materiais de revestimento da 
cobertura. Para se estimar a ação devida ao peso 
próprio da estrutura, é comum a utilização de 
fórmulas empíricas ou dedução prévia de seções 
para as diferentes posições da treliça. Todavia, essas 
técnicas foram descartadas, haja vista que o software 

iTruss adapta seções mínimas para cada grupo de 
barras, atualizando automaticamente o peso próprio 
da estrutura a cada iteração. Portanto, as únicas 
cargas permanentes aqui estimadas são as devidas ao 
peso dos materiais fixados na estrutura, cujo valor 

foi estimado em aproximadamente 0,25 kN/m2 (peso 
das telhas = 0,18 kN/m2; 30% por absorção de água 
da chuva = 0,054 kN/m2; Ferragens = 0,010 kN/m2). 

No cálculo dos esforços e deslocamentos de 
cálculo, as ações permanentes foram consideradas 
conjuntamente, assumindo os seguintes coeficientes 
de ponderação, extraídos da Quadro 6 da NBR 8681 
(ABNT, 2003): γg = 1,40 para efeitos desfavoráveis 
(mesmo sentido da aceleração da gravidade) e γg = 
1,00 para efeitos favoráveis (sentido contrário à 
gravidade). 

As ações variáveis atuantes são as cargas 
acidentais devido ao processo de construção 
(pessoas), ação do vento e sobrecarga na cobertura. 
A revisão da NBR 7190 (ABNT, 2020) prescreve 
que, na ausência de cargas atípicas, deve ser prevista 
uma sobrecarga característica mínima de 0,25 kN/m2 
de área construída, em projeção horizontal. Como o 
cosseno de 15° (inclinação de 27%) é 
aproximadamente igual a 1, a decomposição desta 
carga no plano inclinado foi dispensada, mantendo-
se, portanto, seu valor puro de 0,25 kN/m2. 

Em coberturas de estruturas de madeira, as cargas 
acidentais decorrentes do processo de construção são 
aplicadas nas terças e nas barras do banzo superior, 
seguindo recomendações do item 6.4 da NBR 6120 
(ABNT, 2019). A referida norma também prescreve 
que esta carga deve ser considerada atuando de 
forma isolada das demais ações variáveis no cálculo 
das combinações. Para sua estimativa, a metodologia 
empregada foi a de carga uniforme equivalente, cujo 
valor encontrado foi de aproximadamente 0,22 
kN/m2. 



 

 

Sabendo que a carga acidental de pessoas-
construção é tratada separadamente nas combinações 
de esforços e deslocamentos, seu valor foi 
desprezado no cálculo da treliça, uma vez que é 
inferior ao da sobrecarga na cobertura de 0,25 kN/m2 
(0,22 < 0,25). Entretanto, para as combinações de 
esforços nas terças, verificou-se seu efeito no ponto 
mais desfavorável do elemento (meio do vão). 

Já a ação devida ao vento na estrutura foi 
calculada seguindo as recomendações normativas da 
NBR 6123 (ABNT, 1988), para edificações com 
planta retangular com telhado em duas águas 
simétricas. Na Figura 3 contêm a planta baixa, corte 
transversal e esquema de aberturas adotadas para o 
edifício. 
 

Figura 3 – Planta baixa, corte transversal e esquema de 
aberturas na edificação (cotas e dimensões em metros) 

 

 
Fonte: Elaboração própria. 

 
Os parâmetros utilizados no cálculo da pressão 

dinâmica do vento (q) estão contidos Quadro 6. 
 

Quadro 6 – Parâmetros para o cálculo da pressão 
dinâmica do vento (q) 

 
PARÂMETRO VALOR 

Finalidade Depósito de sacos de café 
Velocidade básica Alfenas-MG (V0 = 40 m/s) 

Fator topográfico S1 S1 = 1,00 
Dimensões da 

edificação 
0° – classe A (b < 20) 

90° – classe B (20 < a < 50) 
Fator S2 S2,0° = 0,91; S2,90° = 0,89 

Fator topográfico S3 Edificação grupo 3 ∴ S3 = 0,95 
Velocidade 

característica (Vk) 
Vk,0° = 34,41 m/s 
Vk,90° = 33,66 m/s 

Fonte: Elaboração própria. 

 
Portanto, a pressões dinâmicas finais (q), em 

ambas as direções (0° e 90°) são dadas pela Equação 
12. 

 
2
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2
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0,73
6,13 10

0,69
k

q kN m
q V

q kN m

°−

°

 == ⋅ ⋅ 
=

 (12) 

 
   Para determinar as cargas devidas ao vento no 

edifício, os valores de pressão dinâmica, para ambas 
as direções, devem ser combinados com os 
coeficientes de pressão e de forma. 

A NBR 6123 (ABNT, 1988) prevê coeficientes 
externos (Ce) para telhados e paredes. Para uma 
razão a/b (comprimento/largura) igual a 2,14, razão 
h/b (altura das paredes/largura) igual a 0,36 e um 
ângulo de inclinação de aproximadamente 15°, o 
software iTruss gerou os coeficientes de forma 
externos (Ce) das paredes e do telhado, extraídos das 
Tabelas 4 e 5 da NBR 6123 (ABNT, 1988), 
respectivamente. 

Já os coeficientes de forma internos (Ci) foram 
quantificados por hipóteses de abertura dominante 
em diferentes regiões do edifício. Admitiu-se que 
este se encontra perfeitamente vedado no encontro 
dos elementos, não possuindo aberturas fixas. 
Portanto, os coeficientes de forma internos (Ci) 
foram determinados conforme item 6.2.5 da NBR 
6123 (ABNT, 1988). 

Por fim, os carregamentos (wk) gerados pelo 
programa (Figura 4) foram calculados mediante 
Equação 13. 
 

( )k e i
w C C q= − ⋅  (13) 

 
Figura 4 – Forças devidas ao vento na cobertura 

 

 
Fonte: Elaboração própria. 

 
Nas combinações dos esforços e deslocamentos, 

diferentes das permanentes, as ações variáveis foram 
consideradas separadamente, assumindo os seguintes 
coeficientes, extraídos das Tabelas 4 e 6 da NBR 
8681 (ABNT, 2003): γq = 1,50; ψ0 = 0,7; ψ1 = 0,6; ψ2 
= 0,4 para sobrecarga na cobertura e γq = 1,40; ψ0 = 
0,6; ψ1 = 0,3; ψ2 = 0 para ação do vento. 
 
3.3 Modelos idealizados de análise estrutural 

 



 

 
 

Se tratando da tipologia de elementos finitos, na 
elaboração dos modelos idealizados, admitiu-se três 
possíveis hipóteses:  

• A: As barras são perfeitamente rotuladas 
(modelo treliça);  

• B: As barras estão perfeitamente engastadas 
(modelo pórtico); 

• C: Os banzos são contínuos, apoiados em 
cada encontro de barras. Barras diagonais-
montantes são perfeitamente rotuladas. 

Para todos as hipóteses, admitiu-se que a ação 
devida ao peso próprio é descarregada nos pontos de 
aplicação de carga (nós onde há terças). Para tanto, é 
calculado o somatório do produto da densidade x 
área da seção transversal x comprimento de todas as 
barras com posterior aplicação pontual nas 
respectivas áreas de influência, acrescido o peso das 
terças. A seguir, na Figura 5, são apresentados os 
esquemas estáticos de cada modelo. 
 

Figura 5 – Esquemas estáticos dos modelos idealizados 
 

 
(a) Modelo I (b) Modelo II (c) Modelo III 
Fonte: Elaboração própria. 

 
3.4 Perfis e dimensionamento 

 
A espécie de madeira adotada para as peças foi a 

do grupo das Folhosas, classe D40. Seus valores de 
resistência (fc0,k = 40 MPa e fv0,k = 6 MPa); rigidez 
(Ec0,m = 19.500 MPa) e massa específica aparente (ρ 
= 9,5 kN/m3) foram extraídos da NBR 7190 (ABNT, 
2020). Seguindo recomendações da referida norma, 
na ausência de caracterização das resistências à 
tração (ft0,k) e à flexão (fb,k), admitiu-se que ft0,k = fb,k 
= fc0,k. 

Os coeficientes de modificação (kmod) foram 
estimados de acordo com a classe de carregamento, 
tipo de material empregado e classe de umidade. 
Seus valores foram extraídos da NBR 7190 (ABNT, 
2020), considerando carregamento de longa duração, 
madeira serrada e classe de umidade (1). Nessas 

condições, o coeficiente de modificação (kmod) é 
0,70. 

Para iniciar de fato o processo de 
dimensionamento das treliças, é necessário 
determinar previamente os perfis que irão compor as 
terças. Embora façam parte do peso próprio da 
estrutura de madeira, devem ser dimensionadas antes 
da treliça, para que seu carregamento real seja 
previsto e aplicado adequadamente aos nós onde 
estão localizadas. O software iTruss contempla esse 
procedimento prévio, tratando esses elementos como 
vigas isostáticas biapoiadas, cujo vão teórico é igual 
à distância entre as treliças. 

Após o processamento, constatou-se que a seção 
de 6 x 12 cm atende a todas as verificações. Portanto, 
seu peso próprio é igual 0,2052 kN (9,5 ·  0,06 ·  0,12 
·  3). Logo, em cada nó onde há uma terça, aplicou-se 
uma carga pontual de 0,2052 kN, ressaltando que há 
duas terças no nó da cumeeira, assumindo, neste 
local, o valor de 0,4104 kN. 

Os processos de análise estrutural, combinações e 
dimensionamento foram executados para cada 
modelo de cálculo, via métodos iterativos. O critério 
áureo empregado no processo foi o de altura mínima 
do perfil (h). Para tal, fixou-se um valor mínimo de 
espessura (b = 5 cm) para uma seção transversal 
retangular simples. Em seguida, através de um 
código de repetição com passo de 0,10 cm, estimou-
se a menor altura (h) cuja área atendesse a todos os 
critérios de verificação. A rotina descrita pode ser 
melhor compreendida observando o fluxograma da 
Figura 6, ressaltando que a cada iteração, a carga 
devida ao peso próprio é atualizada, resultando em 
notável precisão nas dimensões encontradas. 
 

Figura 6 – Rotina do critério de altura mínima do perfil 
 

 
Fonte: Elaboração própria. 
 
3.5 Metodologia de validação dos resultados 

 
Para testar a confiabilidade do programa, os 

valores de análise estrutural foram aferidos com o 
software SAP2000

®. 
De forma a abranger todos os modelos de 

cálculo, optou-se por validar os esforços e 
deslocamentos decorrentes da ação devido ao peso 
próprio da treliça com terças inclusas. Assim, apenas 



 

 

para efeito de validação, foram fixadas seções 
mínimas de 5 x 10 cm em todas as barras, sem a 
preocupação de atendimento às verificações. Para as 
terças, a seção de 6 x 12 cm foi mantida. 
 
4 Resultados e discussão 

 
Neste capítulo serão apresentados os resultados 

de validação e simulação dos três modelos de 
cálculo para a tipologia apresentada, bem como 
resultados intermediários de esforços e 
deslocamentos de cálculo. 
 
4.1 Validação dos resultados de análise estrutural 

 
A análise matricial pelo MEF possui a vantagem 

de se processar a estrutura global em um único 
sistema linear. Dessa forma, é desnecessária a 
aferição de todos os elementos da treliça, haja vista 
que a confiabilidade do programa pode ser 
comprovada por meio de uma amostra de barras. 
Portanto, para fins de validação, selecionou-se 
aleatoriamente a barra 5. Considerando as diretrizes 
estabelecidas no item 3.5, os resultados obtidos 
pelos softwares iTruss e SAP2000

® estão impressos 
na Tabela 2. 
 
Tabela 2 – Aferição da barra 5 com o software SAP2000

® 
 

SOFTWARE-
MODELO 

δk,máx 
(mm) 

Nk,máx 
(kN) 

Vk,máx  
(kN) 

Mk,máx  
(kN · cm) 

iTruss-I -3,537 5,252 0 0 
iTruss-II -3,404 5,230 -0,009 1,357 
iTruss-III -3,429 5,239 -0,005 0,804 

SAP2000
®-I -3,537 5,252 0 0 

SAP2000
®-II -3,404 5,230 -0,009 1,357 

SAP2000
®-III -3,429 5,239 -0,005 0,804 

δk,máx: Deslocamento máximo da barra – trecho onde a rotação (θ) é 
nula; Nk,máx: Máxima força normal solicitante característica; Vk,máx: 
Máxima cortante solicitante característica; Mk,máx: Máximo momento 
fletor solicitante característico 

Fonte: Elaboração própria. 

 
4.2 Esforços e deslocamentos de cálculo 
 

Como mencionado anteriormente, o software 

iTruss dimensiona de acordo com os grupos de 
barras, ou seja, estima uma seção transversal mínima 
que atenda às verificações de todos os elementos 
naquela posição da treliça. Portanto, durante o 
processamento, haverá barras que se destacarão 
sobre outras, aqui chamadas de barras críticas. É 
importante ressaltar que nem sempre a barra crítica é 
aquela cujo esforço de cálculo é o maior de seu 
respectivo grupo. No processo de dimensionamento, 
existem outras variáveis em análise, como, por 
exemplo, a estabilidade, que por sua vez resulta da 

análise conjunta entre resistência e esbeltez dos 
elementos. Diante do exposto, cada modelo de 
cálculo apresentou barras críticas diferentes nos 
quatro respectivos grupos. Seus valores de esforços 
de cálculo estão impressos na Tabela 3. 
 

Tabela 3 – Esforços solicitantes de cálculo 
 

BARRA-
MODELO 

Nd 
+ (kN) Nd 

- (kN) Vd (kN) 
Md  

(kN · cm) 
BI 8-I 66,559 -52,878 0 0 

BS 18-I 49,259 -59,316 0 0 
D 25-I 11,116 -12,675 0 0 
M 33-I 14,678 -13,653 0 0 
BI 10-II 53,297 -46,727 -2,189 194,501 
BS 20-II 49,327 -55,762 -1,982 183,442 
D 28-II 3,668 -3,023 0,244 37,232 
M 37-II 2,788 -3,174 5,142 -71,833 
BI 10-III 57,759 -51,123 -1,387 120,049 
BS 19-III 57,800 -63,874 1,061 142,337 
D 25-III 11,304 -11,669 0 0 
M 33-III 13,588 -14,017 0 0 

BI: Banzo Inferior; BS: Banzo Superior; D: Diagonal; M: Montante; 
Nd 

+: Força normal solicitante de cálculo devida à tração; Nd 
-: Força 

normal solicitante de cálculo devida à compressão; Vd: Cortante 
solicitante de cálculo; Md: Momento fletor solicitante de cálculo 

Fonte: Elaboração própria. 

 
De forma a garantir que a treliça trabalhasse em 

regime elástico-linear, seus deslocamentos 
instantâneos e efetivos (δinst e δfin) foram restringidos 
aos limites estabelecidos pela NBR 7190 (ABNT, 
2020) de L/300 (δinst,lim) e L/150 (δfin,lim). A ação do 
vento sobre a estrutura não foi considerada nas 
combinações de serviço por ser de curta duração e 
não afetar o uso normal da estrutura. Portanto, os 
valores apresentados na Tabela 4 referem-se às 
combinações entre cargas de longa duração, 
considerando apenas ações permanentes e 
sobrecarga na cobertura. 
 

Tabela 4 – Deslocamentos instantâneos e efetivos 
 

BARRA-
MODELO 

δinst (mm) 
δinst,lim  
(mm) 

δfin (mm) 
δfin,lim  
(mm) 

BI 5-I -9,173 46 -13,831 93 
BI 5-II -14,551 46 -21,863 93 
BI 5-III -15,892 46 -23,870 93 

Fonte: Elaboração própria. 

 
Observando em primeira instância os modelos II 

e III da Tabela 4, nota-se uma contradição com 
trabalhos apresentados na literatura, como o de 
Sagara et al. (2017), cuja afirmação é a de que 
ligações rígidas configuram menores deslocamentos 
em relação às flexíveis. Porém, ressalta-se que nesta 
pesquisa é introduzida a variável dos perfis de 
madeira, em que simples mudanças desencadeiam 



 

 
 

diferentes deslocamentos, atualizando todo o sistema 
linear em função de seus momentos de inércia (Iz,i). 
 
4.3 Influência dos modelos idealizados de ligações 
 

Processada a estrutura, os perfis finais 
encontrados pelo software iTruss, em cada grupo de 
barras, para cada modelo de análise, são ilustrados 
na Figura 7. 
 
Figura 7 – Perfis dimensionados em função dos grupos de 
barras e modelos de análise (dimensões em centímetros) 

 

 
Fonte: Elaboração própria. 
 

Nota-se que os perfis pouco se alteram quando 
localizadas nas barras diagonais-montantes. Pela 
Tabela 3, verifica-se que os esforços combinados 
destes elementos são muito pequenos em relação aos 
outros grupos. Porém, fica evidente a expressiva 
divergência encontrada nas seções que compõem os 
banzos, exigindo, portanto, uma análise mais 
aprofundada para estes casos. Observando a grosso 
modo a Tabela 3, não é difícil supor que os modelos 
II e III possam apresentar perfis superiores em 
relação ao modelo I, visto que seus esforços normais 
são semelhantes entre si, porém, com incidência 
significativa de momentos fletores nos dois 
primeiros (II e III). No entanto, os resultados 
evidenciam o contrário, parecendo a estabilidade ter 
uma influência relevante quando comparada às 
resistências no modelo I. 

Com o intuito de atestar o fator decisivo nas 
diferenças encontradas, foram utilizados os 
seguintes códigos associados às verificações, que 
serão utilizados para a compreensão da Figura 8: 
Verificação da resistência à tração ou flexotração 
(VRT), verificação da resistência à compressão ou 
flexocompressão (VRC), Verificação da resistência 
ao cisalhamento (VRV), verificação da estabilidade 
em relação ao eixo x (VEx) e verificação da 
estabilidade em relação ao eixo y (VEy). 

Figura 8 – Verificações das barras do banzos 
 

 
Fonte: Elaboração própria. 
 

Em ambos os banzos, para o modelo I, o fator 
decisivo no dimensionamento foi a estabilidade, 
definindo valores de verificação muito próximos de 
1. No entanto, as seções para esses modelos não são 
totalmente aproveitadas, uma vez que há uma 
discrepância entre verificações de resistência e 
estabilidade. Sabendo que a condição crítica ocorre 
em relação ao eixo y, uma solução seria aumentar a 
espessura (b) da seção transversal, permitindo seu 
melhor aproveitamento. 

Já nos modelos II e III, as tensões normais e 
verificações de estabilidade são melhor distribuídas, 
configurando um bom desempenho do perfil 
dimensionado.  

De maneira geral, é possível apontar que as 
diferenças encontradas nos modelos, devem-se 
principalmente às verificações de estabilidade, mais 
especificamente pelo comprimento de flambagem 
(L0). Com a imposição de L0 = 0,65 ·  L para barras 
perfeitamente rígidas, seus vãos teóricos são 
drasticamente reduzidos, configurando um melhor 
desempenho estável da barra quando submetida a 
esforços de compressão. 
 
5 Considerações finais 

 
Este trabalho teve como objetivo principal avaliar 

a influência que os modelos idealizados de análise 
estrutural têm no dimensionamento de estruturas 
treliçadas de madeira para coberturas. Para tanto, foi 
desenvolvido um software de análise estrutural 
elástica linear, denominado iTruss, programado à luz 
do método dos elementos finitos (MEF) em conjunto 
com as rotinas de dimensionamento prescritas pelo 
novo projeto de norma da NBR 7190 (ABNT, 2020). 

Após a simulação de um caso real de projeto, foi 
possível apontar as seguintes considerações: 



 

 

• Quando aferida com o software SAP2000
®, a 

ferramenta computacional mostrou-se confiável 
para a geometria simulada. Ademais, garantiu-se 
a condição de trabalho em regime elástico-
linear. 

• Nos grupos do banzos, a divergência foi mais 
significativa que nas diagonais-montantes. As 
maiores diferenças percentuais estão na ordem 
de 51% na parte superior e 46% na inferior, 
evidenciando que os modelos que conferem 
rigidez perfeita configuram melhor 
aproveitamento dos perfis. O fator decisivo no 
dimensionamento foi a verificação da 
estabilidade, mais precisamente o comprimento 
da flambagem (L0). Quando este valor é 
reduzido em 35% no caso de ligações 
perfeitamente rígidas ou barras contínuas, as 
verificações de resistência e estabilidade são 
melhor distribuídas entre si. 

• É possível concluir também que, de fato, as 
ligações rígidas apresentam deslocamentos 
inferiores em relação às flexíveis, desde que os 
perfis que compõem as barras sejam os mesmos 
para as duas condições. Quando as dimensões 
nos modelos rígidos são reduzidas, as variáveis 
de rigidez das peças de madeira se modificam, 
produzindo deslocamentos superiores que no 
modelo perfeitamente flexível. 
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