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Insulin secretion following ingestion of a carbohydrate load affects a multitude of

metabolic pathways that simultaneously change direction and quantity of interorgan

fluxes of sugars, lipids and amino acids. In the present study, we aimed at identifying

markers associated with differential responses to an OGTT a population of healthy

adults. By use of three metabolite profiling platforms, we assessed these postprandial

responses of a total of 202 metabolites in plasma of 72 healthy volunteers undergoing

comprehensive phenotyping and of which half enrolled into a weight-loss program over

a three-month period. A standard oral glucose tolerance test (OGTT) served as dietary

challenge test to identify changes in postprandial metabolite profiles. Despite classified as

healthy according to WHO criteria, two discrete clusters (A and B) were identified based

on the postprandial glucose profiles with a balanced distribution of volunteers based on

gender and other measures. Cluster A individuals displayed 26% higher postprandial

glucose levels, delayed glucose clearance and increased fasting plasma concentrations

of more than 20 known biomarkers of insulin resistance and diabetes previously identified

in large cohort studies. The volunteers identified by canonical postprandial responses that

form cluster A may be called pre-pre-diabetics and defined as “at risk” for development
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of insulin resistance. Moreover, postprandial changes in selected fatty acids and complex

lipids, bile acids, amino acids, acylcarnitines and sugars like mannose revealed marked

differences in the responses seen in cluster A and cluster B individuals that sustained over

the entire challenge test period of 240min. Almost all metabolites, including glucose and

insulin, returned to baseline values at the end of the test (at 240min), except a variety

of amino acids and here those that have been linked to diabetes development. Analysis

of the corresponding metabolite profile in a fasting blood sample may therefore allow

for early identification of these subjects at risk for insulin resistance without the need to

undergo an OGTT.

Keywords: dietary challenge test, metabotypes, OGTT, postprandial metabolism, insulin resistance

INTRODUCTION

Subjects with insulin resistance display impaired phenotypic
flexibility as a consequence of a reduced capacity for insulin-
stimulated glucose uptake into muscle and adipose tissue and
insufficient suppression of hepatic gluconeogenesis (1, 2). The
oral glucose tolerance test (OGTT) is an effective assessment
method for identification of an insulin resistant state, a pre-stage
for multiple chronic diseases, including diabetes type II. Insulin
by its pleiotropic actions affects interorgan fluxes of almost all
nutrient classes and in turn, insulin resistance results in impaired
metabolite partitioning and that may therefore contribute to
metabolic dysregulation (3, 4).

The application of metabolic profiling attempts in human
studies are often limited to biosamples that can be easily
collected such as urine or plasma/serum. Yet, these metabolite
patterns can provide insights into physiological control
processes or the establishment of diseases (5, 6). Metabolic
profiling techniques applied in human studies have led to the
identification of plasma metabolite signatures associated with
insulin resistance dominated by branched-chain amino acids
(BCAA), acylcarnitines, gluconeogenesis precursors, bile acids
(BA), ketone bodies and specific lipid groups (7–9). When
applied together with a dietary challenge such as the OGTT
these techniques may identify adaptive response patterns as well
as biomarkers and pathways that describe the flexibility of the
metabolic system or its impairment and role in the development
of non-communicable chronic diseases (6, 10). Following
digestion of food and absorption of nutrients, individual
organs are provided with these substrates in processes mostly
regulated by insulin. These processes also reveal a high individual
variability with the term “metabotype” introduced to describe the
different patterns of metabolic response or different “metabolic
phenotypes” (11, 12). The characterization and classification
may contribute to the development of new interventions in the
framework of personalized nutrition (13). Unfortunately, most
human studies that employ metabolite profiling technologies,
assess subjects in the overnight fasting condition only, therefore
lacking phenotypical information derived from the response to
a meal. This creates a significant gap of information as humans
with safe access to food spend most of their waking hours in the
postprandial state.

We previously identified distinct metabotypes within a
healthy study population, identified based on their response to
a mixed meal, revealing a co-regulation of different physiologic
processes, allowing early detection of metabolic impairments and
susceptibility to the beneficial effects of energy restriction (14).
In the present study, we aimed at identifying markers associated
with differential responses to an OGTT in the same population
of healthy adults. In this exercise, we describe the close
association of several metabolites in plasma with the insulin-
dependent postprandial responses employing 3 metabolite
profiling platforms. The analysis enabled the identification of new
biomarkers to be identified that are linked to the body’s insulin-
responsiveness.

MATERIALS AND METHODS

Ethics Approval and Study Registration
The intervention study was conducted under the umbrella of
the “NutriTech” project and was carried out at NIHR/Wellcome
Trust Imperial Clinical Research Facility at Hammersmith
Hospital of Imperial College London. The study was approved
by the Brent Ethics Committee (REC ref: 12/LO/0139) and
registered at clinicaltrials.gov record: NCT01684917. NutriTech
was funded by the European Union Framework 7 program.

Study Population and Experimental Design
The data presented here was obtained from one out of the
three dietary challenges (OGTT) performed in the NutriTech
study. Participants attended a health-screening visit at the
research facility that included measurements of height, weight,
body composition by bioelectric impedance, blood pressure,
electrocardiogram and markers of clinical chemistry: glucose,
insulin, glycated hemoglobin, plasma lipids, hematocrit, liver
and kidney functions. A total of 72 subjects (38 women and 34
men) that displayed no signs of metabolic diseases judged by
the clinical assessment during screening completed the study. All
female participants were post-menopausal. The individuals were
overweight/ obese, with BMI ranging from 24.7 to 35.5.

All volunteers underwent an oral glucose tolerance test
(OGTT). Subjects were instructed to avoid alcohol consumption
and strenuous exercise prior to each study visit. The OGTT
started at 09:00 am following a 12-h fasting. Upon arrival,
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participants had a catheter placed in the antecubital vein by
a trained nurse and a fasting blood sample was obtained. The
test consisted in the ingestion of 75 g of glucose dissolved in
250mL of water and blood sampling at 0, 15, 30, 60, 90, 120
and 240min. The cannula was flushed with saline between blood
collections and 3mL of waste was drawn first to allow for the
saline diluted blood before the blood was taken for analysis.
Plasma (from heparin coated tubes) and serum were separated
after centrifugation at 1,800 rpm and stored at −80◦C for
future analyses.

Measurement of Markers of Intermediate
Metabolism and Inflammation
Serum insulin concentration was measured by
radioimmunoassay using a Human Specific Insulin RIA
Kit (Millipore Corporation) accordingly to manufacturer’s
instructions. Glucose levels in serum were measured by an
enzymatic method using an Abbott Architect ci8200 analyzer.
Plasma glucagon was measured with a RIA kit (GL-32K
Sigma-Aldrich). PYY and GLP-1 were also measured using RIA,
following previously established methods (15, 16). Non-esterified
fatty acids (NEFA), albumin, ammonia, urea, creatine, aspartate
aminotransferase, gamma-glutamyl transpeptidase, total
cholesterol, HDL-cholesterol, LDL-cholesterol, triacylglycerides,
and uric acid levels, where measured using standard enzymatic
methodology according to manufacturer’s instructions.
Leptin levels in plasma were assayed by a sandwich enzyme
immunoassay (ELISA) (BioVendor, Czech Republic). The
cytokines and other inflammation markers like CRP, IL-8,
IL-10-, IL-18, ICAM-1, MCP-1 were measured by Vitas AS
(www.vitas.no) using ELISA technology. IL-8, ICAM-1, IL-10,
sE-selectin, TNF-α, CRP, adiponectin and IL-1β in plasma were
analyzed using ELISA kits (Invitrogen Corporation, USA).
MCP-1 and sVCAM-1 in plasma were analyzed using ELISA kits
(Life Technologies, USA).

Plasma fatty acids (FA) were measured by 2 independent
groups with different methodologies. One of the groups (Vitas
AS, Oslo, Norway) quantified FA in the fasting state using
GC-FID providing data expressed as µg/mL and a FA profile
expressed in percentage (17), while the other group analyzed FA
concentrations in plasma sampled during the OGTT using GC-
MS.

Assessment of Body Composition and
Physical Activity
Adipose tissue content and distribution, as well as liver and
muscle fat content were assessed using magnetic resonance
imaging (MRI) and spectroscopy (MRS), on a 1.5T Phillips
multinuclear system as previously described (18). Briefly, single
voxel spectra (2 x 2 x 2 cm3; TE/TR= 135/1500ms) were obtained
from the liver using a PRESS sequence for measurement of
intrahepatocellular lipid (IHCL). Spectra were also acquired from
the Soleus and Tibialis muscles to measure intra-myocellular
lipid (IMCL). Body fat was assessed using a whole-body rapid
T1-weighted spin echo sequence. Participants were scanned from

head to toes by acquiring 10mm thick transverse images with
10mm gaps between slices.

In order to assess the level of physical activity, participants
were asked to wear an accelerometer (BodyMedia SenseWear,
USA) on the non-dominant arm for 7 days. Final value was
presented as day average in metabolic equivalents (METs).

Mass Spectrometry-Based Plasma
Metabolite Profiling
All plasma samples were randomized to exclude batch variation.
Quality control plasma samples (Recipe chemicals and
instruments, Munich, Germany) were included into each
set of samples to control for instrument drifting and other
technical issues during measurements.

Acylcarnitines (19) amino acids (20), biogenic amines
(12), glycerophospholipids (90), and sphingolipids (15) were
quantified in plasma using the LC-MS/MS based AbsoluteIDQ R©

p180 Kit (biocrates life sciences AG, Innsbruck, Austria),
following the manufacturer’s protocol and excluding metabolites
below the limit of detection. Additional acylcarnitines (21) were
quantified after sample extraction with methanol in the presence
of deuterated standards and butylated prior to analysis using
LC-MS/MS coupled to a Sciex 5500MS (Sciex, USA) following
a previously described method (22). The 13 most abundant
bile acids in plasma were quantified using an adaptation of the
method previously described. Briefly, 10 µL of plasma were
mixed with deuterated internal standards and after methanolic
extraction, the samples were evaporated to dryness, reconstituted
in methanol:water (1:1) and injected into the LC-MS/MS system
as described (23).

For the GC-MS analysis, metabolites were extracted from
40 µL plasma aliquots using ice-cold methanol:H2O (8:1) in
a ratio of 1:10 (sample:solvent). After centrifugation (13,200 g,
4min, 4◦C), 200 µL of supernatant was completely dried
under vacuum. A 2-step derivatization was performed using
an autosampler (Agilent 7693, Agilent Technologies, Germany)
by incubating the samples with methoxyamine hydrochloride
(20 mg/mL in pyridine) for 30min at 45◦C, followed by the
addition of N-methyl-N-trimethylsilyl-triflouroacetamide, and
a second incubation for 30min at 45◦C. Each sample was
thereafter immediately submitted to GC–MS analysis (Agilent
6890N GC coupled to an Agilent 5975C inert XL - Agilent
Technologies, Germany). The gas chromatograph was equipped
with a 30m DB-35MS capillary column (Agilent J&W GC
Column). Metabolites were eluted by a temperature gradient
starting at 80◦C and rising by 11◦C/min to 325◦C with 5min
hold at 325◦C. Metabolite identification and quantification
was accomplished using the Metabolite Detector software.
Metabolites were identified according to their retention time and
spectra similarity against the Golm metabolome database.

Data Analysis
The aim of this study was to assess metabolic differences in
subjects that display differential glucose responses to an OGTT.
Our first approach was to check for different patterns of glycemic
response to the OGTT using a hierarchical cluster analysis (HCA)
based on glucose concentrations measured at 7 time points
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during the test. The analysis identified 2 clear clusters of subjects
or patterns of response (Supplementary Figure 1). Cluster A was
comprised of 33 subjects of whom 14 were female (42%), whereas
cluster B had 39 subjects of whom 24 were females (61% female).
A Chi-square test ruled out the gender discrepancy between the
two groups (p= 0.10, Table 1).

A partial least squares discriminant analysis (PLS-DA)
was performed including all measured variables, except
for glucose and insulin to compare clusters A and B and
identify discriminant variables. A list with all metabolites
and other variables used in the analysis is presented in
Supplementary Table 1. The model was built with 1,222
variables classified into the following 14 categories: bile
acids, acylcarnitines, oxidative stress markers, amino acid
metabolism markers, signaling molecules, biogenic amines,
body composition, lipid metabolism markers, inflammation,
leucocytes, markers of glucose metabolism, glycerophospholipids
and sphingomyelins (Supplementary Table 1). In case of
variables measured in all 7 plasma samples collected during
the OGTT, each data point was considered as an independent

variable. The variables with Variable Importance in the
Projection (VIP) value ≥ 1 were further analyzed in univariate
statistical analysis, except when only one data point of a given
metabolite measured during the OGTT received a VIP value
>1. In these cases, the metabolite was not considered of
relevance and was not further analyzed. The selected variables
are presented as line graphs, if considered different between
the clusters after a mixed-effects analysis. Additionally, a
Pearson’s correlation analysis was performed between all selected
variables that were statistically different between clusters A and
B with the average glucose concentration during the OGTT
(postprandial glycaemia).

Depending on the nature of comparisons, ordinary one-
way ANOVA or a mixed-effects analysis (in case of variables
measured in samples collected during the OGTT) were used to
test differences between the groups. Multiple comparisons were
tested using Tukey’s post-hoc test. Differences with p < 0.05 were
considered as significant. Shapiro-Wilk test was used to assess
normality (p < 0.05). In cases where outliers were removed,
their detection was done using the ROUT method. Pearson’s

TABLE 1 | Characteristics of the study population.

A B t test

Mean SD N Mean SD N p-Value

Age (years) 60.2 3.26 33 58.3 4.66 39 0.063

BMI (kg/m2 ) 29.39 3.02 33 29.01 2.53 39 0.565

TAT (kg) 31.52 10.20 29 30.97 7.93 39 0.806

TAT (%BW) 36.00 9.32 29 37.92 9.05 39 0.395

DBP (mmHg) 77.89 6.76 33 77.31 10.14 39 0.778

SBP (mmHg) 126.64 10.38 33 126.74 14.08 39 0.971

Fasting glucose (mmol/L) 5.58 0.42 33 4.81 0.39 39 <0.000001

Fasting insulin (mIU/L) 19.09 8.42 31 13.12 4.13 39 0.0002

HOMA-IR 4.53 1.79 30 2.81 0.90 39 0.000002

Cholesterol (mmol/L) 4.83 0.93 32 4.90 0.83 37 0.736

HDL-chol (mmol/L) 1.62 0.15 32 1.69 0.20 37 0.088

LDL-chol (mmol/L) 2.53 0.86 32 2.69 0.77 37 0.414

GGTP (U/L) 28.72 21.79 32 22.22 22.08 37 0.224

AST (U/L) 20.84 7.06 32 21.76 9.60 37 0.659

AP (IU/L) 77.44 20.44 32 72.32 23.18 37 0.338

Uric acid (µmol/L) 319.94 90.28 32 286.32 72.04 37 0.090

TSH (mUl/L) 1.68 0.76 32 1.81 0.96 39 0.546

T4 (pmol/L) 13.47 1.46 32 13.23 1.37 39 0.481

Leptin (ng/mL) 15.72 8.32 32 14.53 8.02 38 0.547

TNF-α (pg/mL) 3.31 1.12 33 3.57 2.08 39 0.526

IL-18 (pg/mL) 266.42 88.40 33 235.82 105.30 39 0.191

VCAM (ng/mL) 1,909.76 980.45 33 1,674.46 709.51 39 0.243

CRP (ng/mL) 674.61 709.68 33 1,198.10 2,529.50 39 0.254

Female (N) 14 (42%) 24 (61%) X2 p-value = 0.10

As a recruitment criterion, participants of the study were considered healthy after a medical assessment. Data presented as mean ± standard devdiation. The bottom row provides

the gender distribution in each cluster, which was found not to be different, according to a Chi square test (p = 0.10). AST, aspartate aminotransferase; AP, alkaline phosphatase;

BMI, body mass index; CRP, C-reactive protein; DBP, diastolic blood pressure; GGTP, gamma-glutamyl transpeptidase; HDL, high density lipoproteins; HOMA-IR, Homeostatic model

assessment for insulin resistance; IL-18, interleukin 18; LDL, low density lipoproteins; SBP, systolic blood pressure; TAT, total adipose tissue; TNF-a, tumor necrosis factor-alpha; TSH,

thyroid-stimulating hormone; T4, thyroxine; VCAM, vascular cell adhesion molecule.
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multiple correlation analysis was performed assuming that most
of the variables followed a normal distribution. GraphPad Prism
Software (version 9.0) was used for these analyses and preparing
most of the figures. PLS-DA was performed using SIMCA
software (version 16) after data scaling using unit variance.

RESULTS

The study population was considered overweight/obese
according to the WHO (average BMI = 29.2), but did not
present high blood pressure nor hyperlipidemia, despite the
mean age of 59.2 years old. The presence of obese individuals
(BMI > 29.9) was proportional in both groups: 45% in group A
and 36% in group B. There were also no differences in the plasma
concentrations of thyroid hormones, leptin or inflammatory
markers between clusters A and B (Table 1).

The focus of this study was to identify markers of metabolic
responses to an OGTT, and the chosen approach included a
hierarchical cluster analysis considering glucose concentrations
measured throughout the test, resulting in the identification of
two groups of volunteers, named clusters A and B. As seen in

Figure 1, cluster A displayed higher fasting and postprandial
plasma glucose levels and an exaggerated insulin response,
indicating a certain state of insulin resistance, also confirmed
by the HOMA-IR values that were 60% higher than those of
individuals in cluster B (Table 1). A PLS-DA model comparing
clusters A and B in search of discriminant variables revealed
differences between these 2 groups (the model has 1 component,
R2 = 0,5 and Q2 = 0,27). A cross-validation performed using
the K-fold method (Supplementary Figure 1) indicates robust
differences between the two groups and the analyses of variance
of the cross-validated residuals returned a p value = 0.000028 as
statistical significance of the model.

The next step of our analysis was an univariate statistical
test among the variables that received a VIP value > 1 in the
PLS-DA model. Table 2 reports these variables obtained in the
overnight fasting state only. Despite the absence of differences
in the BMI between groups (Table 1), the content of intra-
abdominal adipose tissue (IAAT) was 35% higher in cluster A as
well as internal body fat and liver fat associated with cluster A.
Liver fat content appeared as particularly relevant, as it revealed
a strong correlation with the average glucose concentrations
during the test (r = 0.69; p = 1.77E-10) and was 3.1-fold higher

FIGURE 1 | Handling of glucose and other sugars and sugar-derivatives. (A–G) Plasma glucose and insulin concentrations during the OGTT and levels of pyruvate,

gluconate, threitol, mannose and meso-erythritol (AU = arbitrary units). Data are presented as the means and standard errors of the mean. Results from mixed-effects

analysis indicated in each graph.
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TABLE 2 | Discriminant variables measured in fasting state.

A B t test Pearson corr x Glucose A/B

Mean SEM N Mean SEM N p-Value q value rho p-Value

Plasma fatty acids (µg/ml)

C14:0 37.48 2.99 33 23.49 1.79 39 0.0001 0.0007 0.44 0.0001 1.60

C15:0 7.13 0.36 33 5.79 0.29 39 0.0040 0.0072 0.31 0.0077 1.23

C16:0 766.45 39.79 33 606.54 22.03 39 0.0005 0.0024 0.40 0.0005 1.26

C16:1 n-7 86.85 6.20 33 60.05 4.97 39 0.0011 0.0038 0.33 0.0044 1.45

C18:0 218.52 8.92 33 187.38 4.94 39 0.0022 0.0056 0.31 0.0091 1.17

C18:1 c11 61.94 3.49 33 51.18 2.20 39 0.0089 0.0131 0.30 0.0109 1.21

C18:1 c9 707.03 38.67 33 566.62 19.66 39 0.0012 0.0038 0.40 0.0005 1.25

C18:1 t6-11 41.58 3.19 33 32.67 2.29 39 0.0236 0.0258 0.23 0.0486 1.27

C18:3 n-3 24.12 2.08 33 18.87 0.81 39 0.0149 0.0203 0.31 0.0081 1.28

C20:1 n-9 5.10 0.28 33 4.33 0.17 39 0.0190 0.0220 0.33 0.0049 1.18

C20:2 n-6 7.89 0.50 33 6.51 0.32 39 0.0190 0.0220 0.25 0.0349 1.21

C20:3 n-6 44.21 2.17 33 38.49 1.72 39 0.0398 0.0402 0.24 0.0406 1.15

C22:5 n-3 21.36 1.02 33 17.26 0.53 39 0.0004 0.0023 0.31 0.0081 1.24

C22:6 n-3 80.73 4.95 33 69.13 2.82 39 0.0380 0.0394 0.14 0.2343 1.17

Plasma fatty acids (%)

C14:0 1.07 0.05 33 0.79 0.04 39 2.30E-05 0.0004 0.49 1.15E-05 1.37

C16:0 22.45 0.29 33 20.77 0.25 39 2.80E-05 0.0004 0.50 9.91E-06 1.08

C16:1,n-7 2.51 0.12 33 2.00 0.13 39 0.0057 0.0089 0.28 0.0198 1.25

C18:1,c9 20.58 0.46 33 19.46 0.32 39 0.0458 0.0440 0.38 0.0012 1.06

C18:2,n-6 22.24 0.52 33 25.13 0.50 39 0.0002 0.0011 −0.45 0.0001 0.89

C20:0 0.26 0.01 33 0.28 0.01 39 0.0187 0.0220 −0.34 0.0042 0.91

C22:0 0.58 0.02 33 0.67 0.02 39 0.0036 0.0068 −0.39 0.0008 0.87

C23:0 0.29 0.01 33 0.34 0.01 39 0.0054 0.0088 −0.39 0.0008 0.85

C24:0 0.63 0.02 33 0.71 0.02 39 0.0081 0.0123 −0.38 0.0011 0.88

C24:1,n-9 1.12 0.04 33 1.38 0.04 39 4.10E-05 0.0004 −0.49 1.37E-05 0.81

Body composition/anthropometric variables

Waist (cm) 102.24 1.77 33 97.30 1.70 39 0.0489 0.0459 0.39 0.0008 1.05

IAAT (%BW) 5.37 0.28 29 4.14 0.22 39 0.0009 0.0038 0.46 0.0001 1.30

IAAT (%TBF) 15.78 1.02 29 11.70 0.84 39 0.0028 0.0062 0.43 0.0003 1.35

IAAT (kg) 4.70 0.29 29 3.48 0.23 39 0.0012 0.0038 0.52 6.50E-06 1.35

IAAT:ASAT 0.80 0.07 29 0.53 0.05 39 0.0016 0.0046 0.39 0.0010 1.51

Internal (%TBF) 26.96 1.45 29 21.34 1.14 39 0.0030 0.0062 0.39 0.0011 1.26

Internal (%BW) 9.19 0.36 29 7.65 0.29 39 0.0014 0.0042 0.39 0.0010 1.20

Internal (kg) 8.04 0.42 29 6.38 0.33 39 0.0023 0.0056 0.47 0.0001 1.26

Internal: subcutaneous 0.38 0.03 29 0.28 0.02 39 0.0032 0.0063 0.37 0.0018 1.37

Liver lipids 7.40 1.15 29 2.38 0.28 38 0.00001 0.0004 0.69 1.77E-10 3.11

NAIAT (%TBF) 11.18 0.56 29 9.65 0.38 39 0.0225 0.0254 0.22 0.0702 1.16

NAIAT (kg) 3.34 0.17 29 2.90 0.13 39 0.0454 0.0440 0.27 0.0246 1.15

Soleus m. IMCL 18.06 1.58 29 14.73 0.88 39 0.0534 0.0480 0.21 0.0950 1.23

Tibialis m. IMCL 8.11 0.61 29 6.72 0.42 39 0.0582 0.0504 0.18 0.1507 1.21

ASAT (%TBF) 21.08 0.70 29 22.99 0.50 39 0.0260 0.0276 −0.21 0.0931 0.92

NASAT (%TBF) 51.96 1.01 29 55.67 1.00 39 0.0127 0.0179 −0.38 0.0014 0.93

SAT (%TBF) 73.04 1.45 29 78.66 1.14 39 0.0030 0.0062 −0.39 0.0011 0.93

Metabolism markers

HbA1c (mmol/mol Hb) 37.64 0.61 28 35.53 0.43 38 0.0049 0.0084 0.38 0.0017 1.06

MDA (µmol/L) 2.44 0.15 32 1.96 0.13 38 0.0186 0.0220 0.36 0.0025 1.24

s-E-Selectin (ng/mL) 41.85 3.81 33 29.33 3.52 39 0.0185 0.0220 0.34 0.0032 1.43

Adiponectin (µg/mL) 13.32 0.96 33 16.67 1.39 39 0.0589 0.0504 −0.40 0.0007 0.80

Only variables with a VIP value > 1 in the PLS-DA model are depicted in this table. The differences between the two clusters were tested with a T-test and their correlation (Pearson) with

the average glucose concentration during the OGTT presented. The right (last) column presents the ratio of each variable between clusters A and B individuals. Highlighted rows indicate

variables associated with cluster B. Variables that were not considered different between the two clusters after the T-test are not included in the table. ASAT, abdominal subcutaneous

adipose tissue; AT, adipose tissue; IAAT, intra-abdominal adipose tissue; IMCL, intramyocellular lipids; MDA, malondialdehyde; NAIAT, non-abdominal internal adipose tissue; NASA,

non-abdominal subcutaneous adipose tissue; SAT, subcutaneous adipose tissue. Total internal AT (Internal) was subdivided into Intra-abdominal AT (IAAT) and non-abdominal internal

AT (NAIAT). Total Subcutaneous AT (SAT) was subdivided into abdominal subcutaneous AT (ASAT) and non-abdominal subcutaneous AT, with the abdominal region defined as the

region between the top of the liver and the femoral heads. Adipose tissue was expressed relative to total body weight (%BW) or relative to total fat mass (%TBF).
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in subjects from cluster A, as compared to cluster B individuals.
Interestingly, the proportion of non-abdominal subcutaneous
adipose tissue (NASAT) to total body fat was higher in cluster
B, suggesting that given the same amount of body fat, its higher
presence in the subcutaneous depotmay provide some protection
from insulin resistance (Table 2). As expected, higher HbA1c
concentrations were associated with cluster A, as it was also the
case for malondialdehyde and s-E-selectin concentrations.

Several fatty acids (FA) displayed higher overnight fasting
concentrations in cluster A as compared to cluster B subjects.
Myristic acid (C14:0) deserves particular attention, as its
concentration, despite corresponding to only ∼1% of total FA,
was 60% higher in cluster A and had the highest correlation
among FAwith the average glucose concentrations during the test
(r = 0.44; p = 0.0001). Palmitic acid (C16:0) revealed a similar
behavior, but even oleic (C18:1c9) and linolenic (C18:3n3) acids -
often classified as beneficial FA - were most abundant in cluster A
(Table 2). In the composition of the FA profile (as % of total), very
long chain fatty acids such as lignoceric (C24:0) and nervonic
(C24:1n9) had around 15% higher concentration than cluster A
and their level was negatively correlated (r = −0.38 and −0.49;
p < 0.001) with the average glucose concentrations during the
OGTT (Table 2).

Peak plasma glucose reached Cmax at t = 30min in both
groups but individuals in cluster A displayed a 77% increase in
comparison to fasting values, whereas in cluster B it increased
by only 50%. After 120min, plasma glucose levels in individuals
from cluster B already returned to fasting values, whereas in
cluster A these values were still 32% higher (p = 0.0001) than
fasting levels (Figure 1A). Plasma insulin concentrations reached
also Cmax at 30min in cluster B but kept increasing till t =
60min in cluster A, reaching values 65% higher (p = 0.0005)
than in cluster B (Figure 1B). The concentrations of pyruvate,
mannose, gluconic acid, threitol and meso-erythritol were also
higher in individuals from cluster A (Figure 1 and Table 3).

We previously reported that markers of lipid catabolism
in response to mixed meal tolerance test could be used
as the basis for the separation of individuals into different
metabotypes (14). In the present dataset, a similar observation
was made. Postprandial plasma concentration of non-esterified
fatty acids (NEFA) as well as individual FA such as palmitic
and oleic acids and 3-hydroxy-butyrate ranked highest amongst
metabolites that discriminate clusters A and B (Figure 2). As
seen in Table 3, palmitate and stearate were ∼17% higher in
cluster A during the OGTT and were positively correlated
to postprandial glucose concentration (r = 0.31, p = 0.008).
Plasma concentration of several acylcarnitines derived from
metabolization of FA displayed similar responses. Of note,
miristoylcarnitine (C14) and hexanoylcarnitine (C6) displayed
throughout the OGTT consistently lower plasma concentrations
in cluster B, in comparison to cluster A, but positively correlated
with postprandial glycaemia (Figure 2 and Table 3).

The amino acids BCAA, glutamate, tyrosine, tryptophan,
alanine and phenylalanine were found at higher concentrations
in plasma of individuals in cluster A (Figure 3) and confirm that
they are linked to insulin action. These amino acids all displayed
strong correlations with postprandial glucose concentration with

r-values ranging from 0.3 for phenylalanine to 0.64 for glutamate
(Table 3). Similarly, plasma concentration of those acylcarnitines
that are derived from the degradation of amino acids such
as propionylcarnitine (C3), isovaleryl-carnitine (3-M-C4) and
succinylcarnitine (C4-DC) had higher levels in subjects from
cluster A than from cluster B (Figure 4). Isovalerylcarnitine
plasma levels were 25% higher in the plasma of subjects from
cluster A and displayed a strong correlation with postprandial
glucose levels (r = 0.56, p = 0.0000004) (Table 3). Finally,
glutamine, glycine and serine, showed 8–17% lower plasma
concentration in subjects from cluster A than B, confirming
also previous findings in their association with insulin sensitivity
(Figure 3 andTable 3). Amongst the biogenic amines spermidine
and spermine were also found in higher concentrations in cluster
A, as it was the case for urea, suggesting an altered amino acid
handling during the OGTT in cluster A or B individuals. The
average concentration of these metabolites across all 7 samples
collected during the OGTT are given in Table 3.

Several bile acids (BA) were amongst the metabolites
identified in the PLS-DA model as most discriminant between
clusters A and B. In both groups, the sum of BA reached Cmax at
t = 60min. While concentrations started to decrease in cluster
A participants after this time, in cluster B the concentration
of total BA were kept at maximum levels until the end of the
test, remaining 38% higher in comparison to cluster A (p =

0.02) as shown in Figure 5. A similar pattern was observed for
the sum of glycine-conjugated and secondary BA as well as
for the unconjugated and glycine-conjugated forms of cholic,
chenodeoxycholic, deoxycholic and ursodeoxycholic acids and
the taurine-conjugated forms of deoxycholic and lithocholic
acids. Interestingly, individuals from cluster A displayed a
higher proportional (percentual) fraction of unconjugated BA,
deoxycholic and tauroursodeoxycholic acids (Figure 5), and a
lower fraction of glycine-conjugated BA and a lower ratio of
conjugated: unconjugated BA (Figure 4). Glycine-conjugated BA
were negatively correlated to postprandial glycaemia (r=−0.26,
p= 0.02) (Table 3).

In addition to metabolites other differences between clusters
were observed in blood cell sub-populations during the OGTT.
In both groups of subjects, the numbers of leucocytes in blood
increased during the test, with total counts of white blood cells
(WBC) reaching 23% higher counts in the 4th h of the test
as compared to the fasting values (p < 0.0001) (Figure 6). On
average across the 7 blood samples collected from each subject,
26% higher counts of WBC were found in cluster A and 37 and
27% higher numbers of neutrophils and monocytes, respectively.
The levels of s-E-selectin were 43% higher in subjects from cluster
A in comparison to cluster B (p= 0.018).

Figure 7 displays summary of the major differences
between groups A and B considering anthropometric and
body composition data, markers of clinical chemistry, and
metabolites assessed in different metabolomics platforms.
It clearly indicates which metabolites or other phenotypical
features could be used for the “diagnosis” of glucose homeostasis.
It compiles well known markers such as glucose concentration
itself and liver lipids, but also less discussed markers such as
different classes of BA or very long chain fatty acids.
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TABLE 3 | Discriminant variables measured during the OGTT.

A B t test Pearson corr x Glucose A/B

Mean SEM N Mean SEM N p-Value q value rho p-value

Bile acids

TUDCA (%) 0.33 0.06 30 0.20 0.02 35 0.021 0.087 0.06 0.6505 1.67

Unconj. BA (%) 38.59 2.83 33 31.36 2.67 39 0.068 0.132 0.24 0.0414 1.23

Conj./ Unconj. BA 2.95 0.41 33 4.44 0.53 39 0.034 0.088 −0.31 0.0079 0.66

Gly-conj. BA (%) 51.85 2.26 33 60.36 2.28 39 0.011 0.068 −0.28 0.0179 0.86

Gly-conj. BA (nmol/L) 1,597.61 127.71 33 2,345.40 273.06 39 0.022 0.087 −0.26 0.0262 0.68

GCDCA (nmol/L) 853.72 79.15 33 1,164.85 106.33 39 0.026 0.087 −0.25 0.0380 0.73

Fatty acid-derived acylcarnitines

C14 (µmol/L) 0.02 0.00 33 0.02 0.00 39 0.028 0.087 0.35 0.0028 1.18

C16 (µmol/L) 0.11 0.01 33 0.10 0.00 39 0.033 0.088 0.39 0.0007 1.14

C18 (µmol/L) 0.03 0.00 33 0.02 0.00 39 0.039 0.096 0.31 0.0083 1.16

C3 (µmol/L) 0.34 0.02 33 0.26 0.01 39 0.004 0.055 0.47 3.13E-05 1.28

C4 (µmol/L) 0.07 0.01 33 0.05 0.00 39 0.018 0.087 0.37 0.0014 1.37

C6 (µmol/L) 0.04 0.00 33 0.03 0.00 39 0.018 0.087 0.39 0.0008 1.34

Amino acids and amino acid-related metabolites

Isovaleryl-carnitine (µmol/L) 0.08 0.01 33 0.06 0.00 39 0.011 0.068 0.56 4.00E-07 1.25

Spermidine (µmol/L) 0.18 0.03 33 0.12 0.01 39 0.041 0.097 0.41 0.0004 1.53

Spermine (µmol/L) 0.25 0.06 33 0.13 0.01 39 0.031 0.087 0.33 0.0052 1.90

Urea (mmol/L) 5.94 0.21 33 5.34 0.20 39 0.047 0.100 0.13 0.2626 1.11

Free carnitine (µmol/L) 39.65 1.49 33 35.94 1.30 39 0.064 0.129 0.26 0.0290 1.10

Glu (µmol/L) 51.52 4.43 33 31.41 2.39 39 0.0001 0.0017 0.64 1.39E-09 1.64

Ile (µmol/L) 59.61 2.20 33 53.16 1.90 39 0.029 0.087 0.56 3.31E-07 1.12

Leu (µmol/L) 114.85 4.51 33 101.89 3.12 39 0.018 0.087 0.52 2.21E-06 1.13

Phe (µmol/L) 53.84 1.38 33 49.93 1.09 39 0.028 0.087 0.30 0.0114 1.08

Trp (µmol/L) 54.19 1.26 33 49.66 1.20 39 0.011 0.068 0.33 0.0051 1.09

Val (µmol/L) 202.08 6.18 33 186.47 4.78 39 0.046 0.100 0.53 1.30E-06 1.08

Gln (µmol/L) 575.08 11.52 33 622.93 12.04 39 0.006 0.056 −0.29 0.0140 0.92

Gly (µmol/L) 206.06 9.64 33 247.27 12.05 39 0.011 0.068 −0.31 0.0077 0.83

Ser (µmol/L) 92.49 2.74 33 101.72 3.18 39 0.035 0.088 −0.22 0.0602 0.91

Glucose metabolism

Glucose (mmol/L) 7.62 0.21 33 5.64 0.09 39 <0.000001 <0.000001 1 1.35

Insulin (mIU/L) 80.99 5.94 33 49.65 4.13 39 0.00003 0.00130 0.56 2.87E-07 1.63

Mannose (AU) 0.82 0.05 33 0.69 0.05 39 0.056 0.116 0.47 2.95E-05 1.18

Meso-Erythritol (AU) 1.42 0.10 33 1.18 0.05 39 0.030 0.087 0.24 0.0413 1.20

Threitol (AU) 1.41 0.10 33 1.17 0.04 39 0.023 0.087 0.27 0.0225 1.21

Pyruvate (AU) 1.22 0.10 33 0.98 0.07 39 0.042 0.097 0.37 0.0013 1.25

Lipids

Palmitic acid (AU) 2.35 0.12 33 2.01 0.09 39 0.029 0.087 0.31 0.0080 1.17

Stearic acid (AU) 2.13 0.09 33 1.81 0.07 39 0.005 0.055 0.32 0.0060 1.18

Cholesterol (AU) 2.57 0.19 33 2.09 0.14 37 0.045 0.100 0.16 0.1951 1.23

Triglycerides (mmol/L) 1.52 0.08 33 1.09 0.06 39 0.0001 0.0017 0.52 2.37E-06 1.39

Leucocytes

Monocytes (giga/L) 0.50 0.03 33 0.39 0.02 39 0.005 0.055 0.25 0.0340 1.27

Neutrophils (giga/L) 3.88 0.46 33 2.83 0.14 39 0.023 0.087 0.23 0.0518 1.37

White blood cells (giga/L) 6.31 0.49 33 4.98 0.18 39 0.008 0.068 0.27 0.0206 1.27

The variables measured in samples collected during the OGTT that received a VIP value > 1 in the PLS-DA model at a minimum of two time points are presented with the average

concentration during the test. The differences between the 2 clusters were tested with a T-test and their correlation (Pearson) with the average glucose concentration during the OGTT

is presented. The right (last) column presents the ratio of each variable between cluster A and B individuals. Highlighted rows indicate variables predominantly associated with cluster

B. Variables not considered different between the two clusters after the T-test were not included in the table.

Frontiers in Nutrition | www.frontiersin.org 8 June 2022 | Volume 9 | Article 898782



Fiamoncini et al. Metabolomic Signatures of Glucose (in)Tolerance

FIGURE 2 | Lipid metabolism. (A–O) Plasma concentrations of the sum of non-esterified fatty acids, free palmitic, oleic and stearic acids, free carnitine and fatty

acid-derived acylcarnitines, triglycerides, cholesterol and 3-hydroxy-butyric acid (AU = arbitrary units). Data are presented as means and standard errors of mean.

Results from mixed-effects analysis indicated in each graph.

DISCUSSION

According to the Word Health Organisation, impaired fasting

glycemia (IFG) is characterized by fasting glucose levels between

6.1 and 7 mmol/L, while impaired glucose tolerance (IGT) is

diagnosed when glucose levels are > 7 mmol/L at fasting and

between 7.8 and 11 mmol/L at t = 120 minutes after the intake
of 75 g glucose (24). Based on the WHO classification, only 3
subjects (4.6% of the study population) could be classified as
impaired fasting glucose (IFG) and nobody fulfilled the criteria
for IGT. Nevertheless, the PLS-DA model revealed 2 clear
clusters that displayed distinct glucose concentrations after an
overnight fasting and in the postprandial state (Table 1 and
Figure 1).

All volunteers were thoroughly phenotyped including
anthropometrics, clinical parameters, whole body MRI. The
comprehensivemetabolite profiling with hundreds ofmetabolites
from various chemical classes revealed as one of the key findings
that cluster A individuals–separated from cluster B solely by
the glycemic response–had altered plasma levels of almost all
known biomarkers of insulin resistance previously identified in
large cohorts including increased levels of the BCAA and related

acylcarnitines, reduced glycine levels and numerous altered
lipid species.

Other additional marker metabolites, seldom included in
other metabolite platforms are sugars and sugar-derivatives
such as mannose, meso-erythritol, threitol, gluconate and
pyruvate. Mannose has recently been identified in an OGTT
as a monosaccharide that behaving like glucose with insulin-
dependence and altered levels in prediabetic and diabetic
volunteers (20). Mannose levels were strongly correlated with
glycaemia (r = 0.47, p < 0.0001) and such a correlation between
plasma mannose and glucose in the fasting state was previously
described and response of plasma levels of mannose to an
OGTT has also been reported (19, 25, 26). Meso-erythritol
was recently associated with adiposity gain in healthy subjects
and pyruvate is the ultimate precursor of liver gluconeogenesis
which is important for glycemic homeostasis in the fasting state
(21, 27). In both clusters, during the OGTT, pyruvate reached
Cmax at t = 60min and thus 30min later than the glucose
peak with average postprandial pyruvate concentration exceeding
those in cluster B individuals by 25% in subjects from cluster
A (Table 3) as also observed by Meyer et al. (28) and Wang
et al. (29).
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FIGURE 3 | Amino acid metabolism. (A–F) Plasma concentrations of selected amino acids that may serve as markers of insulin resistance. (G–I) Plasma

concentrations of amino acids associated with insulin sensitivity. Data presented as the means and the standard errors of mean. Results from mixed-effects analysis

indicated in each graph.

The higher postprandial insulin increase as well as its delayed
return to fasting concentrations in subjects from cluster A
might have a direct effect on the postprandial concentration
of markers of lipolysis and catabolism of fatty acids. Elevated
insulin concentrations suppress lipolysis in the adipose tissue,
leading to a decrease in NEFA levels during an OGTT that
reach their nadir at t = 120min, followed by a rebound to
fasting levels at t = 240min. This characteristic postprandial
kinetic profile of fatty acid and their catabolic products is due
to the coordinated regulation of hormone sensitive lipase (HSL)
and lipoprotein lipase (LPL), both timely altered in activity
by insulin in the postprandial period (30). Levels of NEFA,
palmitic, oleic, and stearic acids were all higher in cluster A
compared to B in the early phase of the OGTT (until t =

120min) whereas after reaching the nadir, the rebound was
faster in cluster B individuals. Both observations are suggestive

of a more efficient and precise regulation of lipolysis by
insulin, or higher metabolic flexibility in cluster B individuals.
Acylcarnitines derived from fatty acid β-oxidation and 3-OH-
butyrate (Figure 2) also revealed this higher responsiveness
in cluster B. Fatty acids and fatty acid-derived acylcarnitines
in the fasting state were increased in patients with impaired
glucose tolerance as compared to individuals with normal glucose
tolerance (31, 32). Nowak et al. (33) observed a decline in
plasma levels of fatty acids and acylcarnitines during a glucose
challenge that was blunted in participants with insulin resistance
as compared to insulin sensitive individuals (33).

The increased glucose uptake into muscle, adipose tissue
and liver followed by storage in glycogen (liver and muscle)
or conversion into long-chain FA (liver and adipose) but
also increased flux through glycolysis and TCA, cause a
transient increase in plasma levels of long-chain acyl-carnitines
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FIGURE 4 | Amino acid degradation. (A–E) Plasma concentrations of acylcarnitines derived from the degradation of amino acids. (F) Plasma concentrations of urea.

(G,H) Plasma concentration of spermidine and spermine. Data presented as means and standard errors of mean. Results from mixed-effects analysis indicated in

each graph.

(>16 carbon) although levels of the corresponding free FA
decline simultaneously by inhibition of lipolysis. The efflux
of mitochondrial-derived acylcarnitines into plasma seems to
represent an overflow of substrates for oxidation (9). Although
the carnitine palmitoyl transferase (CPT)-system in the inner
mitochondrial membrane operates as an exchanger, the transport
pathway for the cellular exit is less effective but it may also
be of an exchange character as it was previously shown that
free carnitine and acyl-carnitines in plasma under anabolic and
catabolic conditions always behave mirror-like (4).

Elevated plasma BCAA levels and their degradation-derived
acylcarnitines (C3 and C5) are established markers of insulin
resistance, prediabetes and future onset of type 2 diabetes
associated with an altered flux through BCAA catabolic pathways
in obesity (34, 35). BCAA play a central role in insulin resistance
and appear detrimental to insulin sensitivity in animals and
humans (36). Amino acids may also affect a variety of other
processes involved in glucose homeostasis (37). It has also been
shown that amino acids influence the distribution of GLUT4-
containing vesicles indicating that the insulin-dependent glucose
influx mediated by an increase of GLUT4 density in the plasma
membrane may already be compromised (38). It is interesting

to note that troglitazone was able to increase amino acid uptake
into preadipocytes, suggesting that amino acid uptake into
adipose tissue is under insulin control (39). The response to
the OGTT is characterized by a rapid decrease in circulating
BCAA levels. We observed higher plasma BCAA concentrations
among the individuals from cluster A compared to cluster B in
the fasting state, which was subsequently maintained throughout
the entire challenge, with the exception of the time point t =
240min, when the differences among the two groups were no
longer visible. Yet, plasma levels 4 h after the intake of glucose
were still considerably below initial fasting levels. These effects
may be due to a dysregulated BCAA uptake via system A
transporters in the plasma membranes of insulin target organs
and by changes in activity of BCAA catabolizing enzymes (40).
A previous study identified expression of genes that regulate
the initial, rate-limiting steps of BCAA oxidation (including
BCAA transaminase 2 and inner-mitochondrial enzymes from
the branched-chain alpha-ketoacid dehydrogenase complex) as
dependent on the degree of insulin resistance in subjects (41).
Since plasma levels of several amino acids decrease in circulation
up to t = 120min and start increasing after that time point only
in individuals from cluster B, we can speculate that the absence
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FIGURE 5 | Bile acids postprandial kinetics. (A–C) Bile acids associated with cluster A provided as % of the total pool of plasma bile acids. (D–Q) Plasma

concentrations of most abundant bile acids in subjects from cluster B. Data are presented as means and standard errors of the mean. Results from mixed-effects

analysis indicated in each graph.

of a rebound in subjects from cluster A is a response to the
higher levels of insulin. It is possible that the higher levels of
insulin that are kept higher for a longer time in these subjects
is keeping the values of some amino acids (Ile, Leu and Phe) at
a lower concentration even at t = 240min. Impaired sensitivity
to insulin could also be the reason behind such responses,
given that membrane density and/or translocation of amino acid
transporters is insulin dependent.

The PLS-DA model also identified significantly elevated
plasma levels of glutamate, tryptophan and phenylalanine in
cluster A subjects (Figure 3). Mean glutamate concentrations
during the OGTT were 64% higher in subjects from cluster
A compared to cluster B and were positively correlated with
postprandial glycemic profile (r = 0.64, p = 1.39E-09) (Table 3).
Aromatic amino acids in plasma are also related to insulin
resistance, and emerged as predictors of future development of

type 2 diabetes (42, 43). We found reduced levels of glycine and
serine in cluster A as compared to cluster B individuals. Elevated
levels of plasma glycine and serine have previously been linked
to increased insulin sensitivity, with an association between high
plasma glycine and decreased odds of abnormal HOMA-IR.
In a recent review, White et al. (44) postulated a mechanism
underlying the inverse association between glycine and BCAA
levels which is based on increased nitrogen load in tissues by
elevated BCAA levels which is dissipated by using glutamate
to form alanine from pyruvate by alanine transaminase (44).
The depletion of pyruvate in these pathways can be replenished
from glycine by serine dehydratase and serine hydroxymethyl
transferase, thereby reducing glycine and serine levels during
insulin resistance or obesity.

Higher plasma triglyceride concentrations as observed in
cluster A subjects confirm and extend previous findings with

Frontiers in Nutrition | www.frontiersin.org 12 June 2022 | Volume 9 | Article 898782



Fiamoncini et al. Metabolomic Signatures of Glucose (in)Tolerance

FIGURE 6 | Counts of circulating leucocytes. (A–D) Cell counts of white blood cells, monocytes, neutrophils, lymphocytes; (E) IL1-RA levels in postprandial blood.

Data are presented as means and standard errors of the mean. Results from mixed-effects analysis indicated in each graph.

higher levels and predictive quality for insulin resistance (45,
46). Although cluster A subjects had higher concentrations
(µg/mL) of NEFA in the fasting state, very long-chain fatty acids
(VLCFA) were consistently more abundant among individuals
from cluster B and displayed a negative correlation with the
average glucose concentration during the OGTT (Table 2). These
observations can also be extended to linoleic acid. Previous
studies have described such an association between VLCFA and
lower incidence of diabetes, but we here show that even in healthy
individuals, the percentage of these compounds within the entire
plasma fatty acid profile is associated with an improved glycemic
response during the OGTT (47, 48). Whereas, mechanistic
explanations are still missing, the higher proportion of VLCFA
has been linked to lower de novo lipogenesis or changes in
sphingolipid metabolism (49).

High-fat and high-carbohydrate meals can trigger an acute
increase of plasma inflammatory biomarkers such as IL-6 and
TNF-α in the first hours of the postprandial period (50, 51).
In parallel, the number of leucocytes such as macrophages and
neutrophils increase, probably participating in this transient
inflammatory response to the meal (52–54). This postprandial
inflammation might be an important risk factor for the
development of chronic diseases such as type 2 diabetes and
cardiovascular disease and depends on meal composition and
lifestyle factors (52, 55, 56). We report increased numbers of
WBC, monocytes, lymphocytes and neutrophils in the subjects
from cluster A compared to cluster B, suggesting increased
inflammation in the first group. Although changes in the plasma
levels of inflammatory cytokines were not observed in our study
(Table 1), s-E-selectin concentrations were higher in subjects

from cluster A in comparison to B, supporting the notion
of an inflammatory state in cluster A individuals (Table 2).
Previous reports identified an association between s-E-selectin
with obesity, insulin resistance and metabolic inflexibility (57–
59).

BA are released from the gallbladder following a meal
by contraction mediated primarily by cholecystokinin. That
glucose can elicit as well a BA secretion with an increase
in plasma that follows glucose appearance has been shown
before and BA are now considered to play an important role
in coordinating metabolic responses during the postprandial
period (60). In addition to their well-established function in
facilitating dietary lipid emulsification and absorption, BA may
be important signaling molecules able to exert pleiotropic
physiological effects on different organs (61). Insulin resistance
has been previously associated with increased plasma levels of
deoxycholic acid and its conjugated forms and increments in
the ratio of unconjugated/conjugated BA were attributed to
subjects with high plasma concentrations of insulin, NEFA, and
triglyceride levels (62). Other studies have reported higher levels
of BA in diabetic patients in fasting and in the postprandial
state and it has been reported that BA hydrophobicity can
influence insulin resistance. In fact, DCA (a hydrophobic
secondary BA) administration decreased insulin signaling and
endoplasmic reticulum homeostasis, exacerbating impaired
glucose homeostasis in mice (63–65). The relationship between
BA and glucose metabolism is long known, but the mechanisms
by which BA affect glucose homeostasis and vice versa are not
yet understood. In our present study with healthy individuals,
there were no differences in fasting plasma BA concentrations
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FIGURE 7 | Graphical representation of the phenotypical differences between cluster A and B. Radar plot of the variables identified in the PLS-DA model as

discriminant between individuals from cluster A and B and whose concentration was considered different after a T-test. Data presented as z-scores.

between the two groups of individuals, but higher concentrations
of BA were observed in subjects with a better glycemic response
in the OGTT (cluster B) beginning 1 hour after the start of the
OGTT (Figure 5). Similar results were observed by Higgins et al.
(66), reporting that obese adolescents had reduced postprandial
plasma BA concentrations in comparison to lean controls, despite
similar fasting BA levels. Mantovani et al. (67) demonstrated
also that postprandial BA concentrations were distinctly different
between healthy and diabetic individuals (66, 67). Since BA

concentrations in plasma increased similar in both clusters in the
initial phase of the OGTT (Figure 1) their absorption from the
intestine seems not to be different between cluster. However, in
cluster B individuals BA levels did not decline over time as fast
as in cluster A subjects suggesting that either their removal is
slower than in less healthy individuals or that there is a higher
flux through the enteric-hepatic cycle providing higher plasma
BA levels higher throughout the test in more healthy volunteers.
To find an explanation for this discrepancy more studies are
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needed in healthy and compromised individuals with proper
reporting of time-dependent changes during an OGTT or a
mixed meal test.

CONCLUSION

According to their glycaemia during an OGTT, healthy adult
individuals could be classified into two subgroups characterized
by a multitude of metabolites with altered plasma levels. These
altered metabolite levels included many known markers of
obesity, insulin resistance and type 2 diabetes, that were increased
in cluster A individuals already in the fasting state. Most of the
plasma concentrations of these marker metabolites remained as
different during the 240min of the test, demonstrating that the
time-dependent measurements during the OGTT provide no
particular benefit for a sub-clustering according to metabotype.
Most of the discriminant metabolites can be linked to insulin
effects on uptake and utilization of glucose, amino acids and fatty
acids with the alterations in plasma levels given as a signature
of impaired insulin response. Differences between the clusters
also included BA concentrations for which a mechanistic basis
for the association cannot be provided. Moreover, higher number
of leucocytes were observed in cluster A. These individuals also
displayed major differences in body fat stores and fat distribution
for which associations with impaired insulin signaling have
been reported before. The present study reveals that a panel
of metabolites in fasting plasma allows the identification of an
individual as “pre-pre-diabetic” and at increased risk for diabetes
that is still otherwise classified as healthy according to the
definitions of the WHO.
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