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Abstract

To analyze the effects of high body energy reserve (BER) within the oviductal envi-
ronment and its composition, Nellore cows were fed two different nutritional plans to
obtain animals with moderate BER (MBER) and high BER (HBER). After obtaining
the groups with different BERs, all animals were subjected to oestrus synchronization
and artificial insemination, and 120 hours after ovulation induction, the cows were
slaughtered, the reproductive tract was removed, and the ipsilateral oviduct to the
corpus luteum was collected and dissected. Analyses were performed only for ani-
mals that had an 8-cell embryo in the isthmus. After embryo identification, we evalu-
ated the molecular profiles of extracellular vesicles from oviductal flushing (OF-EVs)
and luminal epithelial cells (OV-Cell) and performed histomorphological analysis of
oviductal tissue from the ampullary and isthmic oviductal regions. The HBER group
presented higher concentrations of ampullary extracellular vesicles (AMP-EVs) and
larger sizers of isthmic extracellular vesicles (IST-EVs). The miRNA profile of AMP-
EVs showed that the differentially expressed miRNAs were predicted to regulate
pathways associated with cell growth, migration, differentiation and metabolism, with
the HBER group being more susceptible to insulin modulation. The MBER animals
showed greater ampullary vascularization than the HBER animals did. Additionally,
the miRNA profile and differential gene expression (DEG) data obtained for ampullary
(AMP-Cell) and isthmic (IST-Cell) luminal epithelial cells revealed pathways related
to insulin metabolism. Thus, elevated BER may lead to oviductal insulin resistance,
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affecting normal functioning and, probably, embryo metabolism during early develop-
ment, thus impacting gestational rates in these animals.

Introduction

Until pregnancy establishment, gametes and embryos undergo several molecular,
biochemical and morphological processes within the ovary and the oviduct before they
reach the uterus for further development. Despite being a small anatomical structure,
the oviduct has high relevance to reproductive function due to the dynamic and unique
microenvironment important for reproductive events, such as final oocyte maturation,
fertilization and early embryonic development [1]. The oviduct is composed of three
different anatomical regions: the infundibulum, ampulla and isthmus and three cellular
layers: mucosa, muscle and serosa [1,2]. The mucosa layer has ciliated and secretory
cells [1,3] that, together with the oviductal fluid, allow gametic-embryonic transport and
nourishment, composing the oviductal microenvironment [4—6].

Substrates and cofactors such as glucose, galactose, lactate, pyruvate, growth
factors, amino acids, glycoproteins, serum albumin, enzymes and hormones [5,7,8]
are components of the oviductal fluid produced by secretory epithelial cells, which
is a transudate from systemic circulation in addition to follicular fluid resulting from
ovulation [6,9]. Additionally, small extracellular vesicles (EVs) are present in oviductal
fluid [10] and enable bidirectional cell communication between mothers (oviductal
epithelial cells) and gametic-embryonic cells. EVs are biological nanoparticles that
use extracellular fluids to diffuse and interact with target cells by transferring their
cargo [11,12] and acting as biological vectors modulating receptor cell functions,
delivering transcripts, microRNAs (miRNAs) and proteins that may affect target cells
[13,14]. This is because EVs contain bioactive materials, such as proteins, lipids,
mRNAs, and miRNAs, which partially represent the secretory cell content [15,16].
Thus, EVs can participate in gametic-embryonic development and play important
roles in these processes [16—18]. Since EVs harboring miRNAs have powerful sys-
temic access to various distant cells, they can have autocrine, paracrine and endo-
crine signaling functions [11] and may function as fine-tuners in reproductive events
such as early embryo development.

All oviduct structures are under the influence of ovarian cyclicity. Hormonal
changes across the estrous cycle result in alterations in histomorphology and epithe-
lial cellular composition in the ampulla and isthmus [3,19] and modifications in EVs
cargo from oviductal flushing [20,21]. In addition, the presence of an embryo modu-
lates not only the molecular profile of oviductal epithelial cells but also the oviductal
flushing and EVs content [8,22,23]. This indicates that external (ovarian cyclicity)
and internal (embryo presence) processes modulate the response of the oviductal
microenvironment [5]. Associated with external processes, nutritional management
influences body energy reserves (BERs), which affect animal metabolism, physiology
and the endocrine system [24—26]. Therefore, BER can modulate ovarian function,
embryonic quality and further pregnancy establishment [27,28]. Compared to those
with moderate BER, cows with elevated BERs have a greater reproductive failure
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rate and greater risk of metabolic diseases [29,30], suggesting that reproductive deficiency may be related to other ana-
tomical structures in addition to the ovary. In a recent study performed by our group, HBER cows presented a lower ovula-
tion rate and an even lower embryo recovery rate, possibly due to hyperinsulinemia [31]. Usually, high-genetic merit cows
used as donors of oocytes and embryos are usually animals with high BERs and reproductive problems. The bovine can
be used as a biological model for human studies due to its similar embryo development characteristics [32,33]. In addition,
in modern human society, obesity and overweight are increasingly common among women of reproductive age. Studies
aiming to understand the effects of high BER on the oviductal microenvironment and composition should be carried out to
increase our understanding of the possible reproductive consequences in subsequent pregnancy. In this way, the hypoth-
esis for this work is that increased BER alters the oviductal environment and composition, compared to moderated BER
cows, providing a negative environment for embryo development.

Materials and methods

The experiment was performed at the Laboratory of Morphophysiology and Molecular Development of the Department of
Veterinary Medicine, both of which are located at the University of Sdo Paulo (Campus of Pirassununga, SP, Brazil). All
the experimental procedures were approved by the University of Sdo Paulo Research Ethics Committee (protocol number:
1522231019). This study is reported in accordance with ARRIVE guidelines. All methods were performed in accordance
with relevant guidelines and regulations.

Animal model and sample collection

Nellore cows (n=21) were randomly divided into two experimental groups and subjected to two different nutritional plans:
moderate (n=9) or high (n=12) body energy reserve (BER), as previously described by Bastos et al. [31]. Briefly, 21
Nellore multiparous, non-lactating and not pregnant cows (510,67 + 15,55 kg of body weight, 6,06 £ 0,54 years old and
1,44 £0,0083 m of withers height) with a mean body condition score (BCS) of 5,5+0,21 (1-9 scale, according to NASEM
[34]), were used in the experiment. The different BERs were achieved in 70 days, including an adaptation period to the
finishing diet (21 days) using different feeding programs as previously described [31]. In order to monitor the maintenance
and progression of energy reserves in MBER and HBER cows, the animals were weighted weekly as well as evaluated
for fat thickness and serum metabolic hormones as previously described [31]. Before the end of the feedlot period animals
were subjected to oestrus synchronization, artificial insemination approximately 120 hours after ovulation induction using
semen from a single bull, as previously described [31]. Briefly, on the first day, Nellore cows received 2 mL of estradiol
benzoate (Sincrodiol®, Ourofino Agronegécio) intramuscularly, 2 mL of PGF2a (Sincrocio®, Ourofino Agronegécio) intra-
muscularly and insertion of an intravaginal progesterone device (1g; Sincrogest®), Ourofino Agronegécio) which was
withdrawn on the 8th day (D8). Still on D8 sync, animals received 2mL of intramuscular PGF2a at the time of removal

of the intravaginal progesterone device. In D10 sinc 2.5mL of GnRH (Sincroforte®, Ourofino Agronegdcio) was adminis-
tered intramuscularly, the diameter of the dominant follicle (DF) was analyzed by ultrasound (MyLab Delta, Esaote, Italy),
and after 12 hours of GnRH administration it was performed the artificial insemination. All animals were inseminated with
semen from a single bull with previously known fertility. Confirmation of ovulation was performed 12 hours after fixed-time
artificial insemination (FTAI) by ultrasound. Approximately 120 h after ovulation induction, cows were slaughtered and,
upon slaughter the reproductive tract was removed and immediately transported to the laboratory [31]. Briefly, the ipsi-
lateral oviducts to the corpus luteum were collected and dissected, and the oviductal portions of the ampulla and isth-
mus were separated through the ampullary-isthmic junction before oviductal flushing [23,31]. A total of 6 of the 21 cows
(MBER: n=9; HBER: n=12) presented an 8-cell embryo within the flushing fluid; therefore, sample collection and analysis
were performed at the MBER: n=3 and the HBER: n=3. Oviductal tissue, oviductal luminal epithelial cells and oviductal
flushing fluid were collected for histopathological and molecular analysis, and extracellular vesicle isolation was performed
for the ampullary and isthmic oviductal regions, respectively.
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Isolation of small extracellular vesicles from oviductal flushing

After the oviducts were obtained, the ampullary and isthmic portions were individually flushed with 1 mL of phosphate-
saline solution calcium and magnesium free (1xPBS) and subsequently used to obtain oviductal small extracellular
vesicles (OF-EVs) as previously described by Mazzarella et al. [23]. Briefly, the samples were centrifuged at 4°C and
300 x g for 10 minutes to remove cells, at 2000 x g for 10 minutes to remove cell debris, and at 16500 x g for 30 minutes
to remove larger extracellular vesicles. To obtain a pellet enriched in small extracellular vesicles (smaller than 200 nm),
200 pl of the resulting supernatant was diluted in 1 x PBS to 1 mL, filtered through a 0.20 uym pore filter (Corning) and
ultracentrifuged at 119700xg for 70 minutes at 4°C (Optima XE-90 Ultracentrifuge; 70 Ti rotor; Beckman Coulter). Then,
the obtained pellet was washed in 1 x PBS and ultracentrifuged again at 119700xg for 70 minutes at 4°C. The pellet
enriched with small extracellular vesicles was eluted in 20 pl of 1 x PBS for further characterization and miRNA content
analysis.

Characterization of small extracellular vesicles from oviductal flushing

OF-EVs characterization consisted of nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM) and
flow cytometry. To perform the TEM, slaughterhouse samples were used to avoid wasting OF-EVs from the experimental
samples, which were subsequently subjected to NTA, flow cytometry and miRNA content analysis.

Nanoparticle tracking analysis. OF-EVs ampullary (AMP-EVs) and isthmic (IST-EVs) small extracellular vesicles
were isolated from 200 pl of oviductal isthmic flushing fluid. Upon AMP-EVs and IST-EVs isolation, 5 pl of the eluted pellet
from both oviductal portions was diluted in 495 ul of 1x PBS each and used for particle size and concentration evaluation
via a NanoSight device (NS300; NTA 3.4 Build 3.1.45; Malvern). Five 30-second videos were taken at a controlled
temperature of 38.5°C and a camera level of 13 considering a threshold of 5. The size and concentration of each video
were considered for statistical analysis.

Transmission electron microscopy. After isolation by serial centrifugation, the EVs pellets were diluted in fixative
solution (0.1 M cacodylate, 2.5% glutaraldehyde, and 4% paraformaldehyde; pH 7.2—7.4) for two hours before being
ultracentrifuged again and resuspended in 20 pyl of ultrapure Milli-Q water. The analyses were performed at the Multiuser
Laboratory of Electronic Microscopy of the Department of Cellular and Molecular Biology, Faculty of Medicine of Ribeirdo
Preto, using a transmission electron microscope (FEI 200kV, model Tecnai 20, emitter LABG).

Flow cytometry analysis. After the EVs isolation protocol, samples were stained with the following antibodies as
positive markers: PE-conjugated mouse monoclonal CD81 (ab81436; 1:20), mouse monoclonal Syntenin (sc-515538;
1:50), and Alexa fluor 488 goat anti-mouse polyclonal as secondary antibody (A11001; 1:2000). Calcein-AM (Sigma-
Aldrich; 17783; 1uM) was used as a marker for cytoplasm containing nanoparticles. Calcein-AM positive events were
used as inclusion factors for the analysis of CD81. As a marker to detect cell contamination in the isolated EVs, Calnexin
(sc-23954; 1:50) was used. For sample preparation, pools of AMP-EVs and IST-EVs, from MBER and HBER group,
were incubated with the antibodies for 2h at room temperature in a shaker. For Syntenin and Calnexin, before the
incubation the EVs samples were incubated with 0.001% Triton X- (X100, Sigma-Aldrich) solution for 15min at room
temperature. For Syntenin, the primary antibody was added and incubated with the samples for 30 minutes. Following,
Alexa fluor 488-conjugated secondary antibody was added to the samples (100 uL) and incubated for further 1:30 h.
After the incubation, samples were diluted in 200 pL of 3 xfiltered PBS and analyzed by Cytoflex (Beckman Coulter).
The flow cytometry instrument was optimized for nanoparticle detection by the violet SSC channel (V-SSC- 405/10) and
for PE and FITC fluorescence, depending on the fluorophore conjugated to each antibody. The gain for V-SSC was 100,
FITC 450 and PE 600. The threshold was set primarily for V-SSC at 500 and secondarily for FITC at 600. The number
of events per seconds was maintained around 2000 and abortion rate was 8%. Approximated size of the nanoparticles
was determinate using a mixture of fluorescent Megamix-Plus SSC and MegamixPlus FSC beads (BioCytex) which have
different sizes (100, 160, 200, 240, 300, 500, 900 nm). Using the control (negative samples), gating was organized so
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unlabeled particles and negative samples were not detected. The acquisition was programmed to occur slowly (10ulL/
min) for 5min/sample. Thus, the number of events within the set gates was used to determine the presence or absence
of markers.

Histomorphology analysis

After oviductal flushing, tissue samples from the ampulla and isthmus were collected and fixed in 10% buffered formalin
for 48 hours. Then, the samples were routinely processed for histology. Four-micron cross-sections were obtained from
each sample. Digital images of the ampullary and isthmic sections were obtained using a microscope coupled to a digi-
tal camera (Leica DM500 and Leica ICC50HD, Leica Microsystems; Heerbrugg, Switzerland). Masson’s trichrome stain
was used to identify collagen fibers as blue. The mucosa total area and the collagen area were measured to calculate the
collagen percentage (collagen area/total area). These values are presented as percentages (%). To determine vascular-
ization, blood vessels were detected using immunohistochemistry (rabbit polyclonal anti-von Willebrand factor antibody
(VWF), Abcam, code ab6994) at 40x magnification for both oviductal regions. The mucosal area without the lining epithe-
lium was obtained, and the vessels positive for VWF were counted for vascularization determination (vessels/mm?). The
luminal epithelial perimeter (mm) was obtained by drawing the luminal epithelial lining with the “trace-wand” tool in the
Image-Pro Plus software (version 4.5 for Windows, Media Cybernetics; Silver Spring, MD, USA), as previously described
by Gonella-Diaza [19], on the slides used to analyze the degree of collagen.

Luminal epithelial cell collection for molecular analysis

Oviductal luminal epithelial cells (OV-Cell) from the ampulla (AMP-Cell) and isthmus (IST-Cell) were obtained by squeez-
ing the tissue with a sterile glass slide [23]. The cells were immediately frozen in liquid nitrogen for further molecular
analyses.

Total RNA extraction

Total RNA was extracted from OF-EVs and OV-Cell using a miRNeasy Mini Kit (QIAGEN, Hilden, Germany) according to

the manufacturer’s instructions. The RNA quantity and quality were analyzed via spectrometry (NanoDrop 2000, Thermo

Fisher Scientific; absorbance ratio 260/280nm), and the RNA was treated with DNasel (Invitrogen; Carlsbad, CA) accord-
ing to the manufacturer’s instructions. After extraction, the RNA was stored at -80°C until use.

miRNA analysis

Total RNA was transformed into cDNA using the miScript Il RT Kit (QIAGEN) and miScript HiSpec Buffer to obtain mature
miRNAs in OV-Cells and into miScript HiFlex Buffer to obtain mature and precursor miRNAs in OF-EVs, similar to previ-
ous methods [18]. OV-cell reactions contained 100 ng of total RNA, while OF-EVs reactions were performed with 200 ng of
total RNA. Both procedures were performed in a thermocycler (Life Technology) at 37°C for 60 minutes, followed by 95°C
for 5 minutes. RT-PCR was used to quantify the transcripts according to Da Silveira et al. [35], in which at least 0.2ng of
cDNA and 1 ul of forward primer were obtained from the mature bovine miRNA sequences available in the mirBase soft-
ware (http://www.mirbase.org). The temperature was 95°C for 15 minutes, followed by 45 cycles of 94°C for 15 seconds,
55°C for 30 seconds and 70°C for 30 seconds. For each sample, an expression analysis of 383 bovine miRNAs was
performed [35]. The miRNAs were considered to be present when they presented a cycle threshold (CT) lower than 37

in all biological repetitions and an appropriate melting curve. The CT data generated by amplification were normalized to
the geometric means of bta-miR-99b, Hm/Ms/Rt T1 snRNA and RNT43 snoRNA for OV-Cells and bta-miR-99 for OF-EVs
[17]. The miRNAs differentially expressed between groups were evaluated by miRWalk software version 3.0, and the
predicted regulatory pathways were identified. Pathways were considered significant when the Benjamini—Hochberg (BH)
adjustment was P<0.05.
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RNA library preparation and sequencing

Sequencing libraries of OV-Cells were prepared using the TruSeq Stranded mRNA Kit (lllumina). In brief, poly-A RNAs
were captured using poly-T oligo-attached magnetic beads. Poly-A RNAs were then fragmented, subjected to double-
strand cDNA synthesis, ligated with dual-index adapters, PCR enriched and purified to create the final cDNA library. A
High Sensitivity DNA Kit (Agilent) was used to confirm the library length (~300bp) and lack of dimers. Finally, the libraries
were quantified via quantitative PCR using the KAPA Library Quantification Kit (KAPA) and pooled, and the final library
concentration was adjusted to 1nM based on the Qubit dsSDNA HS Assay Kit (Thermo Fisher Scientific). Sequencing was
performed on a NextSeq 550 instrument (lllumina) using 1.8 pM of pooled libraries and a NextSeq 500/550 High Output
Kit v2.5 (75 cycles).

The quality of the reads was assessed using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).
The 76 bp reads were mapped using star [36], and identification and quantification were performed using ARS-UCD1.2
(Ensembl and NCBI) as a reference genome and featureCounts implemented in the Rsuberead package [37,38] for
gene count. Once the genes were identified, differential expression analysis was performed between groups using
DESEQ2 [39] considering a padj<0,10 and an absolute log2Folchange >0.5. Additionally, we considered genes to
be differentially expressed if they were exclusive, expressed in one group (expressed in all samples from the same
group) or not expressed in the other group (zero counts in all samples from the same group) within comparison and
using the function filterByExpr from the edgeR package [40]. We estimated the hub genes using CeTF [41] based on
the regulatory impact factor (RIF) and partial correlation and information theory (PCIT) [42,43]. Gene Ontology (GO)
analysis was performed using clusterProfiler [44], and pathways were explored using Pathview [45]. The data were
visualized using R software, in which we primarily observed the classification, intensity, and difference in expression
between groups.

Statistical analysis

The OF-EVs size and concentration, miRNA expression of OF-EVs and OV-Cells and histomorphology analysis data were
analyzed using the fixed effect of the body energy reserve, whose means were adjusted by the least squares method

and compared using the probability of difference determined via Student’s f test. All the analyses utilized the program
“JMP” (version 7.01; Statistical Analysis Software Institute, SAS®, Inc., Cary, NC). A significant difference was defined as
P<0.05.

Results

The size and concentration of small extracellular vesicles in the oviductal region are affected by body energy
reserves

After oviductal flushing was obtained, to confirm the effectiveness of the EVs isolation protocol, AMP-EVs and IST-EVs
were isolated and characterized. The size and concentration of the particles were determined via NTA analyses. For

the ampulla, there was no difference in size (MBER: 151.41+6.60nm; HBER: 153.53+4.47nm, P=0.7929; Fig 1A);
however, the AMP-EVs concentration was greater in the HBER animals (MBER: 6.30 x 109+ 4.80 x 108 particles/mL;
HBER: 9.50 x 10°+8.54 x 108 particles/mL, P=0.0028; Fig 1A). For the isthmus, the HBER IST-EVs were larger (MBER:
116.67+2.16 nm; HBER: 140.05+8.50nm, P=0.0126; Fig 1A), and there was no difference in particle concentration
(MBER: 5.15x10°+7.68 x 108 particles/mL; HBER: 4.29x 10°+8.50 x 108 particles/mL; P=0.3373; Fig 1A). Transmission
electron microscopy images showed the presence of OF-EVs (Fig 1B). Flow cytometry analyses verified the presence of
specific proteins in OF-EVs. The CD81 and Syntenin proteins were found in the OF-EVs lysate with no significative events
for negative control (S1A Fig), while the endoplasmic reticulum marker protein (Calnexin) was found only in oviductal cells
(S1B Fig; S1 Table), confirming the use of the isolation protocol (Fig 1C).
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Fig 1. Oviductal flushing extracellular vesicles characterization from cows with different body energy reserve. A. Extracellular vesicles size and
concentration in ampulla and isthmus analyzed by NTA. Mean = standard error. P-value is on the right top of the figure. B. Transmission electron micros-
copy images show (white arrows) the extracellular vesicles presence in oviductal flushing. C. Flow cytometry representative results show positive events
inside the gates created based on the unlabeled particles and negative control for each marker.

https://doi.org/10.1371/journal.pone.0326138.9001

miRNA analyses of small extracellular vesicles from oviductal flushing fluid identified differences only in the
ampullary region

To understand the influence of BER on the oviductal environment, the OF-EVs miRNA content was analyzed with a 383
custom miRNA profiler plate (S2 and S3 Tables for AMP-EVs and IST-EVs, respectively). The AMP-EVs miRNA content
presented a mean repeatability of 0.76 and 0.75 for the MBER and HBER, respectively. There were 82 common miRNAs
between the groups (Fig 2A; S4 Table), two of which were upregulated in the MBER animals (bta-miR-494 and bta-
miR-1224; Figs 2A and 2B), and five were upregulated in the HBER animals (bta-let-7e, bta-miR-132, bta-miR-188, bta-
miR-486, and bta-miR-664a; Figs 2A and 2C). For the IST-EVs, the mean repeatability of the samples was 0.80 and 0.85
for the MBER and HBER, respectively. There were 150 common miRNAs between the groups; however, we were not able
to detect significant differences in the expression of these miRNAs (S5 Table).

Enrichment analysis of differentially expressed miRNAs from AMP-EVs associated with metabolism and cell-to-
cell interactions

To determine the predicted biological functions regulated by miRNAs differentially expressed in AMP-EVs, we performed
bioinformatics analysis. Among the 283 predicted pathways (S6 Table) regulated by the two miRNAs upregulated in the
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Fig 2. miRNAs expression in extracellular vesicles from ampullary flushing (AMP-EVs) from cows with different body energy reserve. A. Venn
diagram demonstrating the 82 common miRNAs between groups which 2 were up regulated in MBER group and 5 up regulated in HBER group. B.
Relative expression of up regulated miRNAs in AMP-EVs in MBER group. C. Relative expression of up regulated miRNAs in AMP-EVs in HBER group.
Mean t standard error. P-value is on the right top of the figure.

https://doi.org/10.1371/journal.pone.0326138.9002

MBER group, 51 were significant, 10 of which were involved, with the highest percentage of genes predicted to be modu-
lated by those miRNAs, as shown in Fig 3A. Among the five miRNAs upregulated in the HBER group, there were 313 total
predicted pathways (S7 Table), 42 of which were significant, and the 10 pathways related to the genes with the highest
percentage of genes predicted to be modulated by those miRNAs are represented in Fig 3B. Our results demonstrated
that the miRNA-containing AMP-EVs cargo in the MBER group was predicted to regulate among others pathways such as
glycerophospholipid metabolism, regulation of the actin cytoskeleton, GnRH signaling and TGF-beta signaling pathways,
while the miRNAs present in the AMP-EVs cargo in the HBER group were involved in endocytosis, insulin resistance, the
Hippo and ErbB signaling pathways and cell-to-cell interaction pathways.

Histomorphology revealed greater vascularization in the MBER animals

Histomorphology analyses were performed to determine the collagen concentration (Fig 4A), degree of vascular-
ization (Fig 4B) and luminal perimeter (Fig 4C) of the ampullary (Fig 4D) and isthmic (Fig 4E) oviductal regions. In
the ampulla, there were no differences between the groups in terms of the collagen percentage or luminal perim-
eter; however, the MBER animals had greater ampullary vascularization than the HBER animals did (P=0.0351;

Fig 4D). The collagen percentage, vascularization and luminal perimeter did not differ among the groups at the
isthmus.

miRNA analyses of oviductal epithelial cells demonstrated the effects of increased body energy reserve

To determine the influence of BER on oviductal epithelial cells and OV-cell miRNA levels, we analyzed 383 miR-
NAs in each sample (S8 and S9 Tables for AMP-EVs and IST-EVs, respectively). The AMP-cell miRNA contents
presented mean repeatability values of 0.90 and 0.90 for the MBER and HBER, respectively. There were a total of
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210 common miRNAs between the groups (Fig 5A; S10 Table), and 10 exclusive miRNAs were found only in HBER
animals (bta-miR-133b, bta-miR-193b, bta-miR-196b, bta-miR-21-3p, bta-miR-212, bta-miR-411c-3p, bta-miR-431,
bta-miR-432, bta-miR-658, and bta-miR-1193; Fig 5A). Among the common miRNAs between the groups, a total

of eight miRNAs were upregulated in HBER animals (bta-miR-100, bta-miR-101, bta-miR-190a, bta-miR-19b, bta-
miR-30b-5p, bta-miR-30e-5p, bta-miR-425-5p, and bta-miR-99a-5p; Figs 5A and 5B) compared to those in MBER
animals.

For the IST-Cell, the mean repeatability of the samples was 0.80 and 0.85 for the MBER and HBER, respectively.
There were 242 common miRNAs between the groups (Fig 6A; S11 Table), and one exclusive miRNA (bta-miR-138) was
present only in the HBER animals. Among the common miRNAs between groups, a total of 13 were upregulated in HBER
animals (bta-miR-106a, bta-miR-101, bta-miR-148a, bta-miR-18b, bta-miR-192, bta-miR-186, bta-miR-20b, bta-miR-210,
bta-miR-28, bta-miR-296-5p, bta-miR-30a-5p, bta-miR-365-5p, and bta-miR-1271; Figs 6A and 6B) compared to those in
MBER animals.
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Enrichment analysis of miRNAs differentially expressed in oviductal cells predicted that they regulate pathways
involved in the insulin response

To determine the predicted biological functions regulated by miRNAs differentially expressed in OV-Cell, we performed
bioinformatics analysis of the unique and differentially expressed miRNAs. In AMP-Cell, a total of 315 predictive path-
ways were regulated by the 10 exclusive miRNAs in the HBER group (S12 Table), 16 of which were significantly different
according to BH values, and 10 were selected as pathways with the highest percentage of genes predicted to be modu-
lated by those miRNAs (Fig 7A). Among the 199 pathways predicted to be regulated by the 8 miRNAs upregulated in the
HBER cohort (S13 Table), 19 were significantly different according to BH values, and 10 of those genes were predicted to
be modulated the most (Fig 7B). Our results demonstrated that the exclusive miRNAs in HBER AMP-Cell are predicted to
regulate pathways such as the glucagon, insulin and oxytocin signaling pathways, while the upregulated miRNAs in HBER
AMP-Cell are predicted to be involved in proteoglycans in cancer and ErbB and VEGF signaling pathways.

The 14 miRNAs upregulated in the HBER IST-Cell cohort were predicted to regulate 314 pathways (S14 Table), 48
of which were significantly different according to their BH values, and 10 of which had the highest percentage of genes
predicted to be modulated by those miRNAs (Fig 8). The upregulated miRNAs in the HBER IST-Cell line were related to
endocrine resistance, insulin resistance and the insulin signaling pathway.

Differentially expressed genes in oviductal epithelial cells modulate metabolism and hormone response

With the aim of understanding the influence of BER on the RNA profile and biological processes, RNA-seq was performed
in OV-Cell. We evaluated differentially expressed genes (DEGs) between different comparisons, and our results revealed
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figure.
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a differential RNA profile in OV-Cell from cows with different BERs. Briefly, in AMP-Cell, there were 11 DEGs, 6 of which
were upregulated in the MBER group (ENSBTAG00000049543, PDYN, EPPK1, NQO2, SCG5 and IQCE; S2A Fig, red),
and 5 of which were upregulated in the HBER group (KRT80, TPMT, SFMBT2, MFAP2 and CA10; S2A Fig, green dots).
Heatmap analysis demonstrated the differences within samples within each group (S2B Fig). The DEGs were involved in
biological pathways such as neuroactive ligand—receptor, cytokine—cytokine receptor interaction, glycine, serine and thre-
onine metabolism, cysteine and methionine metabolism, the Hedgehog signaling pathway and the Wnt signaling pathway
(S2C Fig).

In the IST-Cell cohort, there were a total of 17 DEGs, 8 of which were upregulated in the MBER group (LOC112444164,
BCL2L14, CLDC, D2HGDH, TBC1D8, VCAN, NTS, and ALAD; S3A Fig, green dots), and 9 of which were upregulated
in the HBER group (LOC78706, ENSBTAG00000049543, TMEM246, VNN2, LOC112447728, EPPK1, ADH6, AIM2, and
PDYN; S3A Fig, purple dots). Heatmap analysis demonstrated the differences within samples within each group (S3B
Fig). These DEGs were involved in biological pathways such as neuroactive ligand—receptor interaction; the calcium sig-
naling pathway; the cAMP signaling pathway; vitamin digestion and absorption; alanine, aspartate and glutamate metab-
olism; carbohydrate digestion and absorption; the estrogen signaling pathway; and vascular smooth muscle contraction
(S3C Fig).

Discussion

Genetic donor cattle, which can have high BERSs, frequently suffer from reproductive problems. In another context, due
to modern human lifestyles, the number of women of childbearing age who are overweight or obese has significantly
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https://doi.org/10.1371/journal.pone.0326138.9006

increased over the years, representing an important problem to be solved [46]. These metabolic conditions affect women'’s
health and reproductive function, which may negatively affect fetal outcomes [47,48]. However, the biological and molec-
ular causes of metabolism and, consequently, the BER responsible for reproductive disorders and the consequences for
embryo development in animals and humans have not yet been fully elucidated. Once the oviduct is a dynamic structure
that, under ovarian hormone control, provides the ideal microenvironment for fertilization and embryo development, this
work aimed to evaluate the composition of the oviduct environment as well as epithelial cells from cows with different
BERs. To our knowledge, this is the first study connecting BER with oviductal effects as well as evaluating the different
oviduct regions (ampulla and isthmus). To do that, we subjected Nellore cows from the same herd to a feedlot period to
obtain cows with moderate BER and elevated BER. Once the animals had different BERs, the cows were subjected to
oestrus synchronization and slaughter, and the ipsilateral oviducts to the corpus luteum were collected and dissected;
only from animals that had an 8-cell embryo were the samples collected. Thus, we evaluated the oviductal (ampulla and
isthmus) environment through the use of oviductal flushing extracellular vesicles, histopathology and oviductal epithelial
cell miRNAs and mRNAs to predict the biological pathways involved in this phenotype. It is important to declare that in the
present work our sample number seems to be small. However, samples used in the present manuscript are from a larger
sample size and only samples from pregnant animals containing an 8-cells embryo were used. Thus, the samples used
here allow us to determine the physiological and molecular response related to the phenotype.

Extracellular vesicles, which compose the oviductal fluid, are key mediators of oviductal dynamism and communication
between mothers and embryos, suggesting their important role in reproductive function. In the present work, the size and
concentration of OF-EVs were evaluated, as was their miRNA content. We found that HBER induced the increase in AMP-
EVs concentration and IST-EVs size. At this point, we suggest that the body’s energy reserve influences EVs concentra-
tion and size, and its effects remain unknown. Cells under stress conditions as oxidative and metabolic stress secretes
higher EVs amounts [49,50]. Women embryos produced in vitro with positive pregnancy outcomes secreted fewer EVs
compared to non-pregnant women embryos [51]. The authors also observed that EVs secreted from non-pregnant women
embryos were bigger that EVs from positive pregnancy outcomes [51]. The EVs size is negatively correlated with embryo
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https://doi.org/10.1371/journal.pone.0326138.9g007

quality, which increased EVs size is related to poorly embryo quality [52]. Additionally, in regard to differences in concen-
tration, a previous study conducted by our group has demonstrated that in vitro derived embryos produce a larger number
of EVs/ml in comparison to in vivo produced embryos [53]. In our case we don’t believe that the number of EVs is affected
by the quality of the embryo but by the HBER environment, which is inducing an increase in the EVs in the ampulla region
of the oviduct. Similarly, in another manuscript investigating the number of EVs secreted by an embryo exposed to 20%
or 5% oxygen tension, we observed that in 5% O, D3 embryos secreted a higher number of EVs in comparison to a 20%
O, environment, suggesting that the environment can influence EVs secretion [54]. Thus, due to the low vascularization
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in the HBER ampulla we can postulate that oviductal cells are affected by the lower O, apport and are secreting a higher
amount of EVs in the lumen. This finding suggested that the HBER may promote a stressful ampullary environment and
influence embryonic quality in the isthmus, where the 8-cell embryo is located. Additionally, BER induced changes in the
AMP-EVs miRNA content but not in the miRNA content in IST-EVs. Despite the physiological importance of oviductal EVs
in reproduction, the understanding of oviductal EVs cargo from different oviductal regions is still limited. Importantly, previ-
ous studies have demonstrated that during the estrous cycle [20,21,23] and in the presence of embryos, the miRNA cargo
from oviductal EVs can be modulated and that oviductal EVs can modulate metabolism-related genes in embryos upon
supplementation in vitro [55]. Our data showed that BER changes the miRNA cargo in AMP-EVs. The functional enrich-
ment analysis of differentially expressed miRNAs in AMP-EVs predicted that these miRNAs regulate pathways related to
cell growth, migration, differentiation and metabolism. The upregulated miRNAs in HBER AMP-EVs (bta-miR-664a) are
predicted to regulate transcripts such as INSR and GLUT4 (MirWalk version 3.0), which play important roles in insulin
signaling and insulin resistance pathways. Thus, these data suggest that insulin pathway disturbance in the ampulla of
HBER animals could impact oocyte fertilization and early embryo development. Importantly, analysis of oviductal EVs from
the isthmus region did not reveal any differences in the levels of these miRNAs, thus supporting the idea that the major
disturbance might occur in the ampulla region. Once the bovine embryo also secretes EVs [53,54], in our study the 8-cell
stage embryo presence in both groups may masked a metabolic effect coming from BER in isthmus. However, EVs are
composed by many other biological molecules that were not analyzed in this study, and it is possible that their profile is
altered by BER.

In women and other animals, metabolic problems such as high DMI, elevated BER and hyperinsulinemia can cause
remodeling in many biological tissues [56—58]. The main alteration related to metabolic problems is vascular dysfunction
affecting peripheral vascular resistance and substrate delivery [57]. This is probably due to the extracellular matrix, which
acts as a physical barrier for metabolite diffusion and can remodel itself in diverse situations. In response to elevated
BER and in hyperinsulinemia conditions, the extracellular matrix can remodel itself and accumulate collagen deposition,
increasing physical barriers to glucose, insulin and fatty acid transport and decreasing vascular delivery [58]. Additionally,
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maternal obesity impairs placental angiogenesis and blood vessel density, promoting hypoxia, hypoglycemia and hypo-
insulinemia in fetuses [56,59—61]. However, data showing the effects of BER through oviductal histomorphology are still
limited. Our data revealed that the HBER impaired ampullary vascularization. Thus, the HBER negatively affects vascular-
ization in the ampullar region which may contribute to a harmful environment.

The cell molecular profile that composes the oviductal epithelium became an interesting type of sample for under-
standing the possible ways in which metabolism affects this tissue. The molecular profile of oviductal epithelial cells
can be altered through the estrous cycle [62], by ovarian hormones [63], by the presence of embryos [22,23] and by
lactation [64,65]. Additionally, the nutritional plan influenced the ampullary epithelial cell protein profile in goats [66].
In this way, we evaluated the miRNA content in OV-Cell to investigate the effects of BER on the molecular architec-
ture of oviductal epithelial cells. When analyzing the OV-cell miRNA profile, we observed that BER changed miRNA
expression in the ampulla and isthmus cells. There were a total of 10 miRNAs whose expression was exclusively
in the HBER AMP-Cell cohort. The predicted pathways related to those miRNAs are mainly associated with metab-
olism, such as the glucagon and insulin signaling pathways. Interestingly, the exclusively detected bta-miR-21-3p
and bta-miR-432 were predicted to regulate the INSR transcript, and miR-432 was also predicted to regulate the
GLUT4 transcript (MirWalk 3.0 version), suggesting that HBER may regulate AMP-cell insulin metabolism. Our data
revealed that, in the HBER ampulla, the miRNA-containing EVs are involved in insulin resistance, similar to what has
been observed in AMP-Cell, and we suggest that the insulin pathway is disrupted within the ampulla of HBER ani-
mals. Briefly, according to the literature, insulin is important to maintain glucose homeostasis and regulate carbohy-
drate, lipid and protein metabolism influencing these macronutrients stores [67,68]. Thus, insulin signaling regulates
important biological processes such as synthesis and uptake of glucose, gluconeogenesis, lipid metabolism, protein
synthesis, cell growth and differentiation [69,70]. Furthermore, the expression of a total of 8 miRNAs was elevated
in the HBER cohort; these miRNAs are predicted to regulate pathways related to cell proliferation, differentiation
and vascularization. The VEGF signaling pathway is associated with vascular development in which its family mem-
bers are glycoproteins known to regulate vasculogenesis and angiogenesis processes in embryo development and
pathological conditions [71]. In bovine oviduct, the VEGF property appears to be related to vascular permeability,
epithelial cell secretion and motility providing the ideal supply of factors and nutrients and gametes/embryo transport,
acting as a fine regulator of the oviductal environment [72,73]. The main modulator of the VEGF expression is insulin
[74], and the increase in BER is also kwon do down regulate the VEGF signaling pathway [75]. This suggests that
the impaired vascularization related to the down regulation of the VEGF signaling may be associated with an insulin
resistance condition. Additionally, these data corroborate our histomorphology results showing decreased vascular-
ization in the HBER ampulla. Thus, we speculate that an impaired insulin pathway has an important role in ampullary
physiology in HBER animals.

In IST-Cell, 14 miRNAs, such as those involved in endocrine resistance, insulin resistance, and insulin and gluca-
gon signaling, were upregulate HBERs. bta-miR-20b and bta-miR-28 are predicted to regulate the INSR transcript,
while bta-miR-30a-5p and bta-miR-365-5p are predicted to regulate the GLUT4 transcript (MirWalk version 3.0). This
finding suggested that the regulation of insulin effects may play an important role in HBER isthmus cells. Additionally,
the bta-miR-138 present only in HBER IST-Cell is predicted to be involved in proliferation inhibition [76], apoptosis
induction [77], and inflammation [78]. Despite these well-established functions, studies have reported that miR-138
may be related to alterations in glycolysis [79,80]. Additionally, miR-138 expression is related to carcinogenesis due
to elevated BER [81]. It is important to emphasize that the isthmus samples collected in this study had a single 8-cell
embryo. At this development stage, dramatic changes occur within the embryo. Once major gene activation occurs in
8-cell embryos [82], as well as metabolic changes involved in support embryonic development. Thus, simultaneously,
early embryos using pyruvate for oxidative phosphorylation slowly switch to glycolytic metabolism as the mitochondria
mature [83,84]. Since these are important ultrastructural changes that can interfere with later developmental stages, the
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metabolic status of the developing embryo and the environment surrounding this embryo may have important contribu-
tions to the following steps.

To increase our understanding of the effects of elevated BER in OV-Cell, we used RNAseq analysis to identify DEGs.
Previous studies identified a significant number of DEGs modulated by ovarian hormones [63] and embryo presence [22].
Our data revealed 11 and 17 DEGs in AMP-Cell and IST-Cells, respectively, suggesting that BER has a slight effect on
the DEGs in OV-Cell. However, the impact and effects of these processes must be considered. In AMP-treated cells, the
biological pathways affected by DEGs are related to cell metabolism, proliferation and development and are associated
with the molecular response to the oviductal environment. According to its physiological role, after ovulation, the oviductal
structure prepares itself, generating an extremely secretory environment [19]. Given the time at which the samples were
collected (120 hours after ovulation induction), we expected the ampulla to change its cellular constitution, decreasing
the number and activity of secretory cells and increasing the number and activity of ciliated cells [3]. However, under high
BER, the natural physiological responses to these processes may be altered due to changes in the molecular response
of the epithelium. Like in AMP-Cell samples, in isthmus samples, the DEGs were involved in biological pathways associ-
ated with molecular responses focused on cell metabolism. Analysis of the DEGs in IST-Cell suggested that the carbohy-
drate digestion and absorption pathway is affected by BER, possibly leading to alterations in sugar metabolism caused
mainly by insulin, as already noted by miRNA analysis, at an important developmental period for embryonic metabolism
transition [85]. In addition, for IST-Cell, the DEGs influenced pathways related to embryo transport, such as the estrogen
signaling pathway and vascular smooth muscle contraction. Besides all the important functions in the reproductive tract
controlled by ovarian hormones, the oviduct is responsible for the gametes and embryo transport through smooth muscle
contractions, ciliated cells beating, and oviduct fluid flow [4]. Thus, estrogen can induce muscle contractions, faster ciliary
beat and increase in oviductal fluid in order to advance the transport [19,86]. However, these oviductal functions must
be orchestrated along with the embryo development, otherwise, the lack of synchrony between oviduct and embryo may
result in ectopic pregnancy or failure in embryo development [3,4,87]. Thus, we speculate that even with a small number
of DEGs in oviductal epithelial cells under different BERs, these genes might have a relevant impact on the normal phys-
iological function of the oviduct. Therefore, our data reveal that elevated BER may alter oviductal metabolism, possibly
leading to local insulin resistance, affecting normal function and, probably, embryo metabolism during early development,
impacting gestational rates in these animals.

Conclusions

HBER alters the oviductal environment and cell contents, possibly compromising oviduct physiological function. Elevated
BER may impair normal embryonic development and later pregnancy stages. Our experiment’s analysis demonstrated
that elevated BER induces changes in EVs size and concentration, as well as vasculature, miRNAs and transcripts within
the different regions of the oviduct. Importantly, the changes appear to be associated with the time after ovulation and
oviduct location. In conclusion elevated BER can negatively impact reproductive performance based due to significant
changes in the oviduct.

Supporting information

S1 Fig. Oviductal flushing extracellular vesicles characterization by flow cytometry from cows with High (HBER)
and moderate body energy reserve (MBER). A. EVs samples from different regions of oviduct, ampulla (AMP) and isth-
mus (IST), stained with antibodies as positive (Syntenin and CD81) and negative markers (Calnexin); the positive events
are shown inside the gates created based on the unlabeled particles and negative control for each marker. B. Positive
control with permeabilized oviductal cells; Hoechst (nuclear marker) positive events were used as inclusion factor for the
analysis of Calnexin (endoplasmic reticulum marker).
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affected by DEGs in IST-Cell.

(TIF)
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