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E C O L O G Y

Human impacts as the main driver of  
tropical forest carbon
Marcela Venelli Pyles1*, Luiz Fernando Silva Magnago2*, Vinícius Andrade Maia3,  
Bruno X. Pinho4,5, Gregory Pitta6, André L. de Gasper7, Alexander C. Vibrans8,  
Rubens Manoel dos Santos3, Eduardo van den Berg1, Renato A. F. Lima6*

Understanding the mechanisms controlling forest carbon storage is crucial to support “nature-based” solutions 
for climate change mitigation. We used a dataset of 892 Atlantic Forest inventories to assess the direct and indirect 
effects of environmental conditions, human impacts, tree community proprieties, and sampling methods on tree 
above-ground carbon stocks. We showed that the widely accepted drivers of carbon stocks, such as climate, soil, 
topography, and forest fragmentation, have a much smaller role than the forest disturbance history and functional 
proprieties of the Atlantic Forest. Specifically, within-forest disturbance level was the most important driver, with 
effect at least 30% higher than any of the environmental conditions individually. Thus, our findings suggest that 
the conservation of tropical carbon stocks may be dependable on, principally, avoiding forest degradation and 
that conservation policies focusing only on carbon may fail to protect tropical biodiversity.

INTRODUCTION
Tropical forests play a central role in the carbon cycle on earth, 
regarding not only carbon flows but also terrestrial carbon stocks 
(1). We currently know that forest carbon stocks are determined by 
tree species proprieties, environmental conditions, and anthropic 
disturbances. Different tree community proprieties can increase 
carbon stocks through a more efficient use of the available resources 
(e.g., species niche complementarity) (2) and through the carbon 
storage potential of the most dominant species (e.g., functional traits) 
(3). Climate and soil conditions (e.g., temperature and soil fertility) 
can not only directly affect forest carbon (4, 5) but also control spe-
cies composition, which in turn can affect the carbon storage poten-
tial of the forest (6, 7). Moreover, topography can influence carbon 
stocks through its influence on local soil conditions and sunlight 
incidence (8). Last, forest degradation and fragmentation not only 
cause the direct removal of biomass but also shift in species’ demogra-
phy and functional tree composition [e.g., wood density (WD) and 
maximum height], which can translate into long-term losses of 
carbon storage potential (9–11).

Although different studies have evaluated the effects of tree 
community proprieties, environmental conditions, and human 
impacts on carbon stocks, the existing evidence is more concentrated 
in relatively undisturbed forests [see, e.g., (12, 13)] and it is in-
consistent [see, e.g., (4, 5, 14, 15)]. Such inconsistency may be 
explained by differences in the role played by each driver across 

biogeographic contexts or in the methods used across studies, such 
as field protocols or carbon allometric equations (16). Furthermore, 
most studies have evaluated one or few drivers, which prevent more 
comprehensive assessments of their relative roles and of possible 
interactive effects among candidate drivers (17). Regardless of the 
reason, a better understanding of what drives forest carbon storage, 
especially in highly altered tropical forests, may anticipate the outcomes 
of global changes in more intact forests (e.g., Amazon) (18), optimize 
the efficiency of carbon conservation and restoration projects (19), 
and support nature-based solutions for climate change mitigation (19).

Here, we use a large dataset with 892 forest inventories to assess 
the relative role of tree community proprieties, environmental 
conditions, and human impacts as drivers of carbon stocks. We also 
assess the effect of field sampling methods on the estimation 
of above-ground carbon (AGC) stocks. We focus on the highly 
threatened Atlantic Forest (Fig. 1) (20, 21), which comprises a wide 
spectrum of environmental conditions and biogeographic and 
human intervention histories (22) and represents the present or the 
future of other tropical forests, providing a good testing ground to 
answer our questions. We use a causal mediation analysis, which 
allows for the simultaneous quantification of many different 
drivers, and the separation into their direct and indirect effects (23). 
On the basis of the present knowledge on forest carbon drives, we 
quantify the direct effects of tree community proprieties, environ-
ment, human impacts, and field methods and also the indirect 
effects of the environment and human impacts on carbon stocks 
through their effects on tree community proprieties. We address 
two questions: (i) what are the main drivers of the Atlantic Forest 
carbon stocks? and (ii) what are the direct and indirect effects of the 
different drivers? Last, we explore the implications of our results for 
the future of carbon stocks, projecting carbon losses and gains in 
scenarios of climate and human impacts changes.

RESULTS
The relative roles of carbon stock direct drivers
Human impacts, tree community proprieties, environmental con-
ditions, and field sampling methods (i.e., fixed effects) explained 
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34.76% of the total variance of the forest AGC stocks in the Atlantic 
Forest, with relative contributions of 39.95, 37.36, 13.05, and 9.76%, 
respectively (Fig. 2 and table S1). The within-forest disturbance level 
was the main driver of carbon stocks, with an effect that was at least 
30% greater than the climatic driver with the greatest effect, namely, 
temperature (Fig. 2 and table S1). Forests with heavy, high, and 
medium levels of human disturbance showed approximately 66, 76, 
and 96% of the carbon stocks found in fragments with low levels of 
human disturbance (Fig. 3 and tables S2 and S3).

The community-weighted mean (CWM) of seed mass (SM) was 
the second variable with the greatest effect size and partial pseudo-R2 
on carbon stocks (Fig. 2). Carbon stocks increased with the abun-
dance of large-seeded, large-leaved, hardwood species (Fig. 2 and 
table S1). Species functional evenness (FEve) had a negative effect 
on carbon stocks, while the functional divergence (FDiv) had a 
positive one. Potential maximum tree height and functional richness 
(FRic) had not displayed substantial effects on the carbon stocks 
(Fig. 2 and table S1). Carbon stocks decreased with temperature but 
were not affected by the climatic water stress (Fig. 2 and table S1). 
Soil quality and slope declivity did not have a significant direct 
effect on Atlantic Forest carbon stocks (Fig. 2 and table S1). The 
reduction of fragment size (at the local scale) and mean fragment 
size (at the landscape scale) both decreased the carbon stocks (Fig. 2 

and table S1). Last, it is noteworthy that the effects of the dbh 
(diameter at breast height) cutoff criteria and particularly of the 
perimeter-area ratio of the sampling units were equal or greater than 
some of the environmental, tree community, and human-related 
variables (Fig. 2 and table S1). The sampling effort did not have a 
significant effect on carbon stock estimates (Fig. 2 and table S1).

Indirect effects of environment and human impacts 
on carbon stocks
We found a considerable influence of the environmental conditions 
and human impacts on carbon stocks via effects on the tree com-
munity proprieties (Fig. 4 and Table 1). Therefore, in addition to 
their direct effects, temperature, mean fragment size, and within-
fragment disturbance level also presented indirect effects on carbon 
stocks. The stocks increased with mean fragment size, while they 
decreased with temperature and within-fragment disturbance level 
(Fig. 2). The indirect effects of within-fragment disturbance level on 
carbon stocks were predominantly negative (via SM, WD, and 
FEve), whereas the indirect effects of temperature and mean frag-
ment size in the landscape [via leaf area (LA), WD, FEve, and FDiv] 
were predominantly positive (Fig. 4 and Table 1). Although climatic 
water stress, soil quality, and slope declivity showed no significant 
direct effect on carbon stocks (Fig. 2), they affected the tree commu-
nity proprieties, resulting in significant but indirect effects on 
carbon stocks (Fig. 4 and Table 1). Climatic water stress (via SM, 
WD, LA, and FDiv), soil quality (via WD and LA), and slope declivity 
(via SM, WD, LA, FEve, and FDiv) indirectly decreased the Atlantic 
Forest carbon stocks (Fig. 4 and Table 1).

Carbon gains and losses to climate and forest human 
disturbance changes
Projecting the carbon losses, we found that an increase of the within-
forest disturbance level in 100, 50, and 25% of the Atlantic Forest 
fragments with low to medium levels of disturbance to heavy and 
high levels would represent losses of 15.24, 8.09, and 4.20% of 
Atlantic Forest carbon stocks (Table 2), respectively. If temperature 
increases 1.5°C without changes in precipitation, the regional 
carbon losses could be 5.12%, while an increase of 4°C in global 
temperatures may result in a decrease of 13.11% of carbon stocks 
across Atlantic Forest (Table 2). Projecting the carbon gains, if 100, 
50, and 25% of fragments with heavy and high levels of human 
disturbance advance in their successional trajectory to fragments with 
medium and low levels of human disturbance, the regional carbon 
gains would be 17.44, 8.42, and 4.03%, respectively (Table 2).

DISCUSSION
Given the global urgency to mitigate climate change, understanding 
the drivers of carbon stocks in tropical forests is increasingly im-
portant (24). Here, we found that widely accepted drivers of carbon 
stocks, such as climate, soil, topography, and forest fragmentation, 
have a much smaller role than forest human disturbances and tree 
functional proprieties. In the Atlantic Forest, the greatest driver of 
the variation in carbon stocks was the level of human disturbances 
within fragments, with a role two- to sixfold greater than any other 
variable included in the analysis (Fig. 2 and Table 1). The greater 
accessibility to forest fragments increases their exposure to fire, 
selective logging, and fuelwood extraction (25). In addition, the 
opening of the fragment canopy and microclimatic changes created 

Fig. 1. The distribution of the Atlantic Forest inventories included in this 
study. For each inventory (points), we present the estimated AGC stock separated 
by classes (colors). The inventory data were obtained from the Neotropical Tree 
Communities database (24).
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by disturbances can increase tree damage and mortality even after 
the disturbance has ceased (26, 27). Along with fragment distur-
bance, reductions in the fragment size and mean fragment size in 
the landscape also played an important role (Fig. 2 and Table 1). In 
small fragments, tree mortality is usually induced by stronger edge 
effects, which alter the fragment microclimate and increase wind 
turbulence (26). Furthermore, logging and forest ground fires can 
be aggravating sources of tree mortality in landscapes marked by 
high levels of forest fragmentation (28).

Tree community proprieties were also important, with larger 
carbon stocks found in forests dominated by heavy-seeded, large-
leaved, hardwood trees (Fig. 2 and Table 1). Hardwood species can 
accumulate not only more carbon per unit of biomass but also more 
carbon over time due to the lower inherent mortality, turnover, and 
stem breakage (29). SM does not directly affect species’ carbon 
storage potential, but it correlates well with species longevity (30) 

and carbon storage potential (31). In addition, if water availability is 
not a limiting factor, species with larger LAs can be more efficient to 
intercept light (32), an essential resource for the growth and thus 
carbon assimilation. It has been well documented that carbon stocks 
are determined by these functional traits. However, our result 
contrasts with those of other studies conducted in Amazonia, where 
WD was the main trait controlling the variation in carbon stocks 
(33–35). In Atlantic Forest, the functional trait with the greatest 
effect on carbon stocks was SM, with an effect at the least 40% greater 
than WD (Fig. 2 and table S1).

We also found that how species concentrate and diverge in their 
functional niche spaces matters for carbon storage. In the Atlantic 
Forest, the negative effect of FEve was substantially greater than the 
positive effect of FDiv on carbon stocks. Thus, we found more 
evidence supporting the mass ratio hypothesis, which proposes that 
carbon stocks are determined by the characteristics (traits) of the 
most dominant species in the community (3), than the niche 
complementarity hypothesis, which predicts that the dominant 
species in the community have opposite functional trait values (i.e., 
different ecological strategies) allowing to accumulate more carbon 
due to a more efficient use of the available resources (2). Therefore, 
we learned that not only the abundance of heavy-seeded, large-leaved, 
hardwood tree species (36) but also the concentration of species 
exhibiting similar strategies of resource use (i.e. lower FEve) (37) 
are important for determining higher carbon stocks.

We found smaller carbon stocks in sites with higher tempera-
tures, where the rates of most of the ecophysiological processes that 
control primary productivity (i.e. photosynthesis and respiration) 
are higher (38). In boreal and temperate forests, increases in tempera-
ture allow plants to come close to the maximum photosynthetic 
threshold, increasing their carbon assimilation (39). However, in 
the warmer conditions of tropical and subtropical forests, the 
increase in temperature leads to higher maintenance costs for trees 
(e.g., higher respiration costs) and, thus, to a decrease in their 
carbon storage potential (4, 38).

The effects of field sampling methodology on forest carbon esti-
mates are poorly documented (40) and, as far as we know, this is the 
first time that their effects are weighted against well-known drivers 
of carbon storage. Here, we found that field methods can be as 
important as some environmental and biological variables to explain 

Fig. 2. The main drivers of carbon stocks in the Atlantic Forest. (A) Standardized estimates of the coefficients from averaged models containing the effects of environmental 
conditions, human impacts, tree community proprieties, and sampling methods on carbon stocks. (B) Bars show the partial pseudo-R2 values for each of the covariables 
(table S1) included in the averaged models (n = 892 inventories). Drivers with significant effects (P < 0.05) are shown with asterisks. The error bars show standard errors 
for 95% confidence intervals of the mean parameter estimates.

Fig. 3. Individual covariable with the greatest effect on the Atlantic Forest 
carbon stocks. The effect of within-fragment disturbance level on AGC stocks 
(tables S2 and S3) was fitted with the optimum model (table S1). Within-fragment 
disturbance level is shown as a categorical variable (i.e., without ridit score trans-
formation). Different letters are significantly different group means (P < 0.05). Error 
bars represent the 95% confidence intervals (n = 892 inventories).
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the variation in carbon stock estimates. The effect of the dbh cutoff 
criteria was expected (due to the inclusion of more or fewer trees), 
and we reveal that the shape of the sampling units (i.e., plots) also 
plays an important role in carbon storage. Studies carried out using 
more elongated sampling units (i.e., higher perimeter-area ratio) 
tended to overestimate AGC stocks, which is probably related to the 
inclusion or exclusion of larger trees close to the plot limits (41). 
Therefore, we reinforce here that larger and less elongated sampling 
units (e.g. 20 × 20 m or higher) should be used to improve the accu-
racy of carbon stocks estimation (40, 42). More generally, sampling 
aspects other than the total sampling area should be accounted for 
while modeling biomass stocks, particularly when using data from 
datasets using different sampling strategies. Our results suggest that 
the simple standardization of carbon estimates by the sampling 
effort alone (e.g. (14, 15, 43) is not enough to guarantee unbiased 
interpretations of carbon stocks drivers.

Indirect effects of environment and human impacts 
on carbon stocks
While it has been documented that environmental conditions 
and human impacts affect forest carbon stocks, most studies have 
focused exclusively on direct effects, overlooking their indirect 
effects (43). Here, we found that indirect effects of human impacts 

on carbon stocks via changes in species functional proprieties were 
predominantly negative (Table 1). The heterogeneity of disturbed 
fragments or landscapes may exclude competitively dominant 
species (i.e., high FEve) (44) and favor the proliferation of pioneer 
species, which have relatively low WD and light SM, contributing to 
further reductions in carbon (9).

Temperature also presented both direct and indirect effects on 
carbon stocks. The abundance of heavy-seeded and large-leaved 
trees increased in warmer temperatures, resulting in a positive indi-
rect effect on carbon stocks. The positive relationship between 
temperature and SM is considered an adaptation to improve germi-
nation rates in higher temperatures (45). On the other hand, warmer 
climates tend to present a greater dominance of small-leaved 
species due to the increase in transpiration rates (46). In the Atlantic 
Forest, there probably is enough water available for an effective 
transpiration cooling, allowing large-leaved species to assimilate 
carbon even in warmer climates (47). Furthermore, the greater 
FEve among dominant species slightly decreased carbon stocks in 
warmer climates. But if we consider together all indirect effects, the 
overall effect of temperature on carbon stocks remained positive 
(Table 1 and table S1).

Climatic water stress [i.e., CWD (climatic water deficit)] decreased 
the abundance of heavy-seeded and large-leaved trees, while it 

Fig. 4. Causal mediation analysis describing the direct and indirect effects of multiple drivers on the carbon stocks (n = 892). Solid lines indicate positive significant 
effects (P < 0.05), whereas dotted lines indicate negative significant effects (P < 0.05). Environmental conditions with significant effects are indicated in orange, human 
impacts in purple, tree community properties in green, and field sampling methodology aspects in pink. Variables with nonsignificant effects on carbon stocks are 
indicated in gray. All model estimates are presented in table S4.
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increased the FDiv and the abundance of hardwood species (Fig. 4). 
Because the effect of the decrease in the abundance of heavy-seeded 
species was three times higher than any other indirect effects, the 
overall indirect effect of CWD on carbon stocks was negative 
(Table 1). Water stress conditions may favor the reduction of the 
functional similarity between co-occurring abundant species (in-
creases in FDiv), probably due to the higher influence of resource 
competition (9). Moreover, because of the fibers and thick-walled 
vessels, higher WD protects against vessel implosion and allows 
species survival during periods of water deficit (48). However, these 
positive indirect effects on carbon stocks were compensated by the 
higher abundance of light-seeded and small-leaved trees in forests 
under drier climates.

Although soil quality and slope declivity showed no significant 
direct effect on carbon stocks (Fig. 2), they affected the tree commu-
nity property variables (Fig. 4), which resulted in significant indi-
rect effects on carbon stocks (Table 1). Soil quality increased the 
abundance of hard-wood trees and decreased the abundance of 
large-leaved ones, resulting in an overall negative indirect effect on 
carbon stocks (Table 1). Although we showed that low-fertility soils 
have higher carbon stocks, as many findings of several other studies 
conducted in Amazonia (5), unlike many others, this negative effect 
is due to the greater dominance of species with greater LA in 
low-fertility soils. Steeper slopes had smaller carbon stocks (Table 1), 
mainly driven by the decrease in the abundance of species WD, LA, 
and SM and by the increase in FEve (Fig. 4). On steep slopes, soil 

Table 1. Indirect effects of environmental conditions and human impacts on carbon stocks. Standardized coefficients with a significance level (significant; 
P < 0 0.05) are given for all relationships. WD, CWM wood density; Seed mass, CWM seed mass; Leaf area, CWM leaf area; FEve, functional evenness; FDiv, 
functional divergence (n = 892). Climatic water deficit was −1 transformed, and WD, Seed mass, and Leaf area were transformed in the natural logarithmic scale. 
All models were fitted with scaled drivers. 

Driver Via Indirect effect P value

Climatic water deficit FDiv 0.00031 0.044

Climatic water deficit FEve

Climatic water deficit WD 0.00222 <0.0001

Climatic water deficit Seed mass −0.00723 0.006

Climatic water deficit Leaf area −0.00358 0.01

Slope declivity FDiv

Slope declivity FEve −0.00099 <0.0001

Slope declivity WD −0.00058 <0.0001

Slope declivity Seed mass −0.00661 <0.0001

Slope declivity Leaf area 0.00591 0.01

Within-fragment disturbance level FDiv

Within-fragment disturbance level FEve −0.00046 0.006

Within-fragment disturbance level WD −0.00059 0.004

Within-fragment disturbance level Seed mass −0.00637 <0.0001

Within-fragment disturbance level Leaf area

Soil quality FDiv

Soil quality FEve

Soil quality WD 0.00050 0.002

Soil quality Seed mass

Soil quality Leaf area −0.00144 0.048

Mean annual temperature FDiv

Mean annual temperature FEve −0.00076 0.002

Mean annual temperature WD

Mean annual temperature Seed mass 0.01180 <0.0001

Mean annual temperature Leaf area 0.01200 0.004

Mean fragment size FDiv

Mean fragment size FEve 0.00067 <0.0001

Mean fragment size WD 0.00047 0.008

Mean fragment size Seed mass 0.00346 0.038

Mean fragment size Leaf area
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leaching, water runoff, higher light incidence, and wind exposure 
filter out some plant strategies that are not already adapted to these 
conditions (49) and favor the proliferation and survival of individuals 
with a short life span (i.e., lighter WD and SM) (50).

Implications for carbon protection policies
Under the current global change scenario, the conservation and 
restoration of forest carbon have attracted unprecedented attention. 
Here, we provided a comprehensive assessment of the main drivers 
of carbon stocks for the Atlantic Forest with important implications 
for nature-based solutions to mitigate climate changes. First, the 
conservation of the Atlantic Forest carbon stocks is highly depen-
dent on avoiding forest degradation, which can generate carbon 
losses at least 30% higher than any future climate change. Moreover, 
emissions from forest degradation can jeopardize efforts of conser-
vation planning and climate change mitigation agreements (e.g., 
REDD+ and AICHI targets). For instance, the intensification of 
within-fragment disturbances could lead to carbon losses of up 
to 10.50  Mg ha−1 (−15.24%), while the carbon protection and 
enhancement could achieve carbon gains by 12.02 Mg ha−1 (+17.44%) 

(Table  2). Second, the Atlantic Forest carbon stocks are also 
threatened by climate changes, specifically increases in temperature 
and water stress. If global warming were constrained to 1.5°C above 
preindustrial levels, as suggested by Intergovernmental Panel on 
Climate Change [(IPCC-54) (51)], 3.53 Mg ha−1 (−5.12% carbon loss) of 
carbon would be released only from the Atlantic Forest. If global 
warming continues at its current rate, carbon emissions can exceed 
9.03 Mg ha−1 (−13.11% carbon loss) (Table 2). Third, initiatives 
aimed at mitigating climate change through the restoration of forest 
ecosystems could benefit from including species with greater WD, 
heavier seeds masses, and larger leaves. Fourth, the relationship 
between the taxonomic and functional diversity and carbon stocks 
was weak in Atlantic Forest, revealing that conservation policies 
focusing only on carbon may fail to protect biodiversity and high-
lighting the importance of separate add-on incentive mechanisms 
to achieve biodiversity conservation as well (52). Last, policies of 
carbon conservation should take into account the sampling 
methodology aspects across inventories, which can lead to biases in 
carbon estimation and, consequently, the misinterpretation of 
the efficiency of climate mitigation actions. Thus, the use of 

Table 2. Carbon gains and losses from forest human disturbance and climate changes. The predictions were obtained from the direct and indirect effects 
provided by mediation causal analysis (Fig. 3 and Table 1). Carbon change estimates are shown according to the difference between the current carbon stock 
estimates and the projected carbon stock estimates. Current carbon stock: 68.9 (Mg ha−1). MAT, mean annual temperature. 

Human impacts scenarios

AGC stocks (Mg ha−1) AGC stocks changes (%) AGC stocks (Mg ha−1)

Optimistic scenario

  100% of fragments with high and 
heavy levels of disturbances are 
recovered to medium and low levels 
of disturbances

80.92 17.44 12.02

  50% of fragments with high and 
heavy levels of disturbances are 
recovered to medium and low levels 
of disturbances

74.70 8.42 5.80

  25% of fragments with high and 
heavy levels of disturbances are 
recovered to medium and low levels 
of disturbances

71.79 4.20 2.896

Pessimistic scenario

  100% of fragments with low and 
medium levels of disturbances are 
degraded to high and heavy levels of 
disturbances

58.39 −15.24 −10.50

  50% of fragments with low and 
medium of disturbances are 
degraded to high and heavy levels of 
disturbances

63.32 −8.09 −5.57

  25% of fragments with low and 
medium of disturbances are 
degraded to high and heavy levels  
of disturbances

66.12 −4.03 −2.77

Climate impacts scenarios

AGC stocks (Mg ha−1) AGC stocks changes (%) AGC stocks (Mg ha−1)

MAT increases by 2°C 65.36 5.12 −3.53

MAT increase by 4°C 59.86 13.11 −9.03
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“good measurement practices to carbon stocks estimation” across 
forests (53) should be accounted for in carbon stock reporting.

MATERIALS AND METHODS
Forest inventories
We used forest inventory data stored in the Neotropical Tree 
Communities database [TreeCo (20,  21)] continuous effort to 
compile and organize plant community data in eastern South America 
(http://labtrop.ib.usp.br/doku.php?id=projetos:treeco:start). Here, 
we selected data from forest inventories with any type of stand 
biomass estimate [i.e., basal area (BA) or above-ground biomass 
(AGB)] conducted in any Atlantic Forest types. Aiming to reduce 
the noise in the dataset, we applied four filters to the inventory data: 
(i) a total sampling area equal or larger than 0.25 ha; (ii) a cutoff 
criterion of stem dbh above 4.8 cm (e.g., dbh ≥ 5.0 cm and dbh 
≥10.0 cm); (iii) data on species names, abundance, and biomass 
fully available and extractable; (iv) inventories with species trait 
data (see details below) that together made up at least 80% of the 
total community abundance. The first filter was applied to reduce 
common overestimation biases of AGC related to small sample sizes 
(16). The second filter was applied to avoid including tree regener-
ation and shrubs data. The third and fourth were necessary to calculate 
biotic metrics and ensure that they were representative of the 
community (54). In the end, we performed data analysis using a 
subset of 892 forest inventories (Fig. 1).

AGC stocks
Among the 892 inventories considered here, 365 contained only 
estimates of the stand BA (m2 ha−1) and 527 contained estimates of 
both BA and AGB (Mg ha−1). To make the most out of the available 
data, we built an equation based on the inventories that had both 
BA and AGB to obtain AGB from BA estimates (Eq. 1). To do this, 
we first calculated the AGC stocks (i.e., AGC or carbon stocks) by 
multiplying AGB by the conversion of 0.456 g of carbon per gram of 
AGB (55). Then, because inventories used 20 different allometric 
equations to estimate biomass (table S5), we converted the AGC 
values obtained using each of the equations to the value expected 
using a single and common allometric equation, which here was the 
one proposed by Chave et al. (18). To perform this correction, we 
used individual tree dbh and height measurements available from 
109 Atlantic Forest inventories available from the Minas Gerais 
Forest Inventory (56) to estimate the relationships between each of 
the 20 allometric equations and the one equation proposed by 
Chave et al. (18). A simple linear regression model was used to 
describe the relationship between each pair of allometric equations 
and for all pairs of equations; the variance explained by the model 
was above 93% (fig. S1). After obtaining AGC values using a 
common allometric equation for the 527 inventories with both BA 
and AGC (or AGB), we compared the performance of 2 linear and 
12 nonlinear candidate equations to select the one that best described 
the relationship between BA and AGC. The selection was based on 
the visual assessment of the residues and the lowest value of Akaike 
information criterion (AIC) (fig. S2 and table S6). The Gompertz 
equation had the best performance (fig. S3), and it was used to 
obtain AGC from BA for the all 892 of inventories

	​ ln (AGC) = ​5.067​​ *​exp . (− ​0.807​​ *​exp . (− ​0.058​​ *​BA))​	 (1)

where AGC is given in Mg ha−1 using the allometric equation of 
(18) and BA is given in m2 ha−1.

Preselection of covariables
A wide range of covariables associated with each inventory could be 
combined to explain the variation of AGC stocks, generating thou-
sands of possible models. To limit the number of possible models, 
we performed model construction and selection in two steps. First, 
we separated the available covariables in groups based on our a 
priori hypotheses (i.e., climatic, topographic, soil, biological, human-
related, and methodological covariables; fig. S4 and data S1). We 
then performed a preselection of the candidate covariables within 
each of these groups based on their individual contribution to model 
performance (i.e., AIC and R-squared of the models) and based on 
their biological meaning and ease of interpretation in the context of 
global changes. We constructed 54 candidate models including several 
possible combinations of the preselected candidate covariables 
related to environmental conditions (17 covariables), human-related 
impacts (7 covariables), tree community diversity (8 covariables), 
and field sampling methodology (3 covariables) (data S1). To select 
the best candidate covariables, each covariable was included indi-
vidually in the model, and its additional contribution to improving 
the model performance was evaluated by the decrease in the model 
AIC value, and in case of minimal change in the AIC value, we eval-
uated the increase in the full model explained variance, R2. At this 
point, the collinearity was not evaluated because our intention was 
only to select candidate covariables and not to estimate the regression 
coefficients. The final candidate covariables selected for modeling 
carbon stocks included four environmental [i.e., mean annual 
temperature (MAT), CWD, slope declivity, and soil quality], three 
human-related (i.e., within-fragment disturbance level, mean frag-
ment size in the landscape, and fragment size), seven related to tree 
community proprieties and diversity (i.e., CWM of tree maximum 
height, WD, LA, SM, FRic, FEve, and FDiv), and three related to the 
field sampling methodology used in the inventories (i.e., dbh cutoff 
criteria, perimeter-area ratio, and sampling effort).

Site descriptors
To describe local climate conditions, we extracted the MAT (°C) 
and CWD (mm) from the geographical coordinates of each inven-
tory. MAT was obtained from the maps provided by Alvares et al. 
(57, 58) at 100-m resolution and ranged in our dataset from 11.5° to 
25.6°C. For inventories from Paraguay and Argentina, not covered 
by Alvares et al. (57, 58), MAT was obtained from WorldClim 2 at 
1-km resolution (59). The long-term CWD was obtained from 
maps provided by Chave et al. (18) at ~4.5-km resolution (available 
at https://chave.ups-tlse.fr/pantropical_allometry.htm). This variable 
is calculated as the total rainfall minus evapotranspiration during 
the dry months, when evapotranspiration is equal or exceeds pre-
cipitation and is commonly used to reflect seasonal water stress. As 
CWD is by definition negative, we decided to multiply it by −1 to 
facilitate its interpretation. Thus, sites with higher CWD values are 
more seasonally water-stressed.

Slope declivity (°) was the selected covariable to describe site 
topography (range in the dataset: 0° to 44°), and it was calculated from 
the shuttle radar topography mission elevation data (~30-m resolu-
tion) (60). To represent the soil conditions, we used the soil quality 
index, which takes into account the soil depth, fertility, drainage, 
and aluminum toxicity for plant growth (21). Each soil attribute 
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(depth, fertility, drainage, and toxicity of aluminum) was classified 
with a value of 0 (worst quality for plant growth) to 4 (better quality 
for plant growth). Thus, this index ranged from 0 (worst quality) to 
16 (best quality). The soil type information necessary for the construc-
tion of this index was extracted from the original publication or, 
when absent, from local, state, and/or national soil maps. We used 
the database of soil profiles provided by Benedetti et al. (61) to ob-
tain mean soil physical properties.

To describe human impacts–related covariables, three were 
selected because they explained better the variation of carbon stocks 
in our dataset (see data S1): within-fragment disturbance level, frag-
ment size, and mean fragment size in the landscape. The within-
disturbance level of fragment was classified on the basis of the 
information about the type, intensity, and timing of human distur-
bances (i.e., selective logging, fire, hunting, and thinning) and/or 
forest successional stage (e.g., initial, early, and late secondary or 
advanced and old growth) provided by the authors of the inventories. 
Although we recognize that natural disturbance events can alter the 
carbon stocks of forest fragments, these events are rare, so we 
assumed that the major drivers of forest succession are related to 
human disturbances (e.g., clear-cutting, logging, and fire). Then, 
we considered four levels of within-fragment disturbance: heavy 
(N = 11), high (N = 423), medium (N = 285), and low (N = 173 
inventories). Heavy levels are represented by early secondary forest 
regrowing after clear-cut 10 to 20 years before the inventory, locally 
known as “capoeiras.” The high level represents chronically dis-
turbed fragments, typically disturbed less than 50 years before the 
inventory. The medium level represents lightly or sporadically 
disturbed fragments, and/or forests disturbed 50 to 80 years before 
the inventory. Last, the low level represents fragments without records 
of disturbances or those undisturbed for at least 80 years. We recog-
nize that this is a rather coarse classification, with substantial variation 
in forest conditions within levels; however, we were unable to refine 
this classification any further because of a lack of more objective and 
detailed information in the original publications. Still, this classifi-
cation has support in the legal classification of the Atlantic Forest 
(62) and is the best information available to take into account within-
fragment disturbances across the entire Atlantic Forest (21).

The size of the inventoried fragment was extracted from the 
original publications and double-checked by comparing it with 
other sources of information (63). The mean fragment size is the 
mean area of all fragments present in 4 × 4–km landscape subset 
centered on the coordinate of each inventory. Landscapes were 
obtained from vegetation cover maps [30-m resolution (64)], and a 
70% canopy closure threshold was used to classify landscapes into 
fragment or nonfragment pixels. Classified landscapes were then 
used to calculate mean fragment size and other landscape metrics 
not used for analyses (21). Smaller mean fragment sizes are indica-
tive of higher forest loss and lower habitat amount. Landscape 
metrics were extracted in R version 4.2.0 (2022) using the contributed 
packages “raster” and SDMTools (65).

To assess effects of tree community properties on AGC stocks, 
we used three types of metrics: (i) CWM of species trait values; (ii) 
functional trait diversity indices; and (iii) a taxonomic diversity 
index, namely, the Shannon-Wiener index. CWM represents the 
central tendency of the species traits in the community and was 
calculated as the mean of each trait weighted by the abundance of 
the species in each community. The abundance was chosen as a 
weighting factor because BA is strongly related to community 

biomass/carbon. We computed the CWM of four species-level traits 
that are considered important for carbon accumulation: maximum 
height (Hmax, m), WD (g cm−3), SM (g), and LA (cm2). The species 
maximum height was calculated as the 90th percentile height of all 
trees of the species, and species WD was obtained from the Global 
Wood Density database [filtered by Tropical South America (36)]. 
SM and LA values were obtained in the literature (21). For the 
species with no available WD, SM, and LA, we used the genera or 
family mean values. In the end, 100% of the species had values of 
maximum height and WD, 76% had values of SM, and 42% had 
values of LA. For WD, CWM was obtained after removing palms, 
palmoids, cacti, and tree ferns. For maximum height, we removed 
shrubs before the calculation of CWM. For SM, we removed tree 
ferns before the calculation of CWM.

We used three measures of functional diversity: FRic, FEve, and 
FDiv. Functional indices were calculated for each inventory based 
on Hmax, WD, SM, LA, and other species traits (i.e., leaf type and 
dispersion syndrome) available from the TreeCo database [see (21) 
for the full list of trait sources stored in TreeCo].

We included as many traits as available for computing indices so 
we could better describe the functional composition of the community, 
and not regarding those traits that are related to species carbon 
storage potential. FRic represents the amount of niche space filled 
by species in the community. FEve represents the regularity in the 
distribution of species dominance and reflects how thoroughly the 
resources available are being exploited by the plant community and 
is higher when the functional strategies of co-occurring species are 
evenly distributed in relation to resource use (37). FDiv represents 
the functional distance among the most dominant species and is 
higher when the dominant species have high functional trait differ-
entiation (37). For FEve and FDiv, species abundances were used as 
weights to generate species multivariate-trait spaces. CWMs and 
functional and diversity indices were calculated in R version 4.2.2 
(2022) using packages “FD” and “vegan” (66).

Last, we obtained for each inventory the sampling methods used 
to estimate carbon stocks. The dbh cutoff criteria were obtained 
from the original publications and ranged in our dataset from 4.8 to 
20 cm. The perimeter-area ratio of the sampling units was obtained 
from the dimensions of sampling units (range, 0.025 to 0.92), and it 
provides a simple quantitative description of the shape of the 
sampling unit: The greater the ratio, the more elongated the plot 
sample units are. Sampling effort was obtained from the original 
publications, and it ranged from 0.25 to 26 ha.

Statistical analysis
The statistical analysis was divided into two parts. First, we assessed 
the relative role and direct effects of environmental conditions, 
human impacts, tree community proprieties, and sampling methods 
on carbon stocks using an approach based on model selection and 
multimodel inference. In the second part, we assessed the indirect 
effects of environmental conditions and human impacts on carbon 
stocks mediated by tree community proprieties using causal media-
tion analysis. Although both analyses were based on regression 
models and causal mediation analysis may also provide the direct 
effects, the separation was necessary because it would be possible 
neither to achieve the variation in carbon stocks explained by each 
covariable nor to compare the effect of important but highly correlated 
covariables (Spearman’s Rho coefficient < 0.6), as fragment size and 
mean fragment size (fig. S5), avoiding multicollinearity issues.
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Model selection and multimodel inference were performed with 
all the candidate covariables selected in preselection (data S1). We 
constructed candidate models using all possible combinations of 
the covariables and ranked them based on the model AIC and 
performed a model selection based on the lowest AIC values 
(AICc ≤ 4) followed by model averaging to infer about the relative 
effects of individual variables. The selected models were constrained 
to have covariables with Spearman’s coefficients lower than 0.6 
(fig. S5) and low variance inflation values (VIF  ≤  4) (67). As no 
individual model had support from the data to be considered as the 
single best model (AIC weights < 0.10), the first 40 equally plausible 
candidate models (i.e., delta AIC ≤ 4 and AIC weights sum > 0.77) 
were averaged to address the uncertainty in the selection of the best 
candidate covariables (68). Last, to describe the relative variable 
importance of each covariable, we calculated the partial pseudo-R2 
(table S1), which represents the variance explained by each covari-
able taking into account the effects of other covariables present in 
the model.

Causal mediation analysis was performed because it allows the 
simultaneous computation of multiple paths [see, e.g., (23, 69)]. 
Linear mixed-effects models were created as the basis of the media-
tion analysis: first, models expressing variation in tree community 
property variables (i.e., mediator) in relation to environmental 
conditions and human impacts (the “mediator model”; table S4, 
A to E), and then a model expressing variation in carbon stocks in 
relation to the mediators, environmental conditions, and human 
impacts, considering the effects of all covariables (the “outcome 
model”; table S4F). Last, we constructed mediation models (effects 
of X via M on Y; fig. S5) to identify how much of the effect of envi-
ronmental conditions and human impacts were direct and how 
much were indirect, mediated by tree community property variables. 
Indirect effects represent the expected difference in the potential 
outcome when the mediator took the value that would realize under 
the treatment condition as opposed to the control condition, while 
the treatment status itself is held constant (70, 71). Given the im-
possibility to constrain highly correlated covariables (>0.6) in 
causal mediation analysis, mean fragment size in the landscape was 
included in this analysis rather than fragment size (fig. S5).

For the mixed-effects models and causal mediation analysis, the 
biogeographical subregions of the Atlantic Forest (72) were defined 
as random effects (to account a possible lack of independence 
between sites within the same biogeographical region). The carbon 
stocks of each inventory were ln-transformed to (i) achieve the 
residual normality and homoscedasticity assumptions, (ii) reduce 
the effect of outliers, and (iii) account for possible nonlinear rela-
tionships between variables. We also ln-transformed the CWM of 
functional traits before analyses. The within-fragment disturbance 
level, the only ordinal variable, was transformed into a continuous 
variable using “ridit scores” by assigning values of 0 (bottom of 
hierarchy, heavy level of within-fragment disturbance) to 1 (top of 
hierarchy, low level of within-fragment disturbance), reflecting the 
relative ranking of each level (73). All covariables were standardized 
to a mean of zero and an SD of one to allow comparisons of the 
strength of the effects among variables of the model.

Residual diagnostic plots were used to examine all model resid-
ual normality and homoscedasticity assumptions (fig. S7). We also 
used correlograms of Moran’s I to assess the spatial autocorrelation 
of model residuals. When the presence of spatial autocorrelation was 
significant, we added spatial filters to the models [Moran’s eigenvector 

maps (74)]. The “mediation” package does not provide a validation 
function to assess the goodness of fit of mixed regression models. 
In this way, the validation of the causal mediation analyses was 
achieved by ensuring the fit of all models included in the analyses 
(fig. S7 and table S4). Analyses and graphs were performed using 
R version 4.2.0 (2022) and the following packages: mediation (75), 
lme4 (76), MuMIn (77), and ggplot2 (78). The Moran’s I tests and 
correlograms were performed using the spDep (79) and ncf (80) 
packages.

Predicting carbon gains and losses to climate and forest 
human disturbance changes
We used the direct and indirect effects provided by mediation causal 
analysis (Fig. 4 and Table 1) to predict the impact of changes in 
climate and fragment disturbance on the future carbon stocks 
across Atlantic Forest. Predictions of fragment human disturbances 
were made for two different scenarios: an optimistic and a pessimistic 
scenario. In the optimistic scenario, we assumed a widespread 
decrease in fragment disturbance and projected carbon gains related 
to the advance of fragments with heavy and high levels of distur-
bance to medium and low levels of disturbance, respectively. In the 
pessimist scenario, we assumed an increase of fragment disturbances 
so that fragments with low and medium levels of disturbance are 
disturbed to heavy and high levels, respectively. Future climate 
changes were simulated on the basis of the IPCC Special Report 
(81), and as above, we simulated different scenarios: a stringent 
mitigation scenario [RCP2.6 (81)] and scenarios without additional 
efforts to constrain emissions (“baseline scenarios”) [RCP6.0 and 
RCP8.5 (81)]. The first scenario (RCP2.6) aims to keep global 
warming below 2°C of preindustrial temperatures (1850 to 1900), 
and in the second scenario, we assume an increase in mean 
temperature by 4°C of preindustrial levels (81).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abl7968
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