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Abstract

The relaxation time limit of the one-point distribution of the spatially periodic totally asymmetric
simple exclusion process is expected to be the universal one point distribution for the models in the KPZ
universality class in a periodic domain. Unlike the infinite line case, the limiting one point distribution
depends non-trivially on the scaled time parameter. We study several properties of this distribution for
the case of the periodic step and flat initial conditions. We show that the distribution changes from a
Tracy-Widom distribution in the small time limit to the Gaussian distribution in the large time limit,
and also obtain right tail estimate for all time. Furthermore, we establish a connection to integrable
differential equations such as the KP equation, coupled systems of mKdV and nonlinear heat equations,
and the KdV equation.
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1 Introduction

The scaled height field of the models in the KPZ universality class is expected to converge to a universal
field in the large time limit. The limit, the KPZ fixed point, was constructed recently by Matetski, Quastel
and Remenik, [32] and also by Dauvergne, Ortmann and Virag [I7]. For the so-called step initial condition,
the one-point marginal Fxpy of the KPZ fixed point is given by (see, for example, [7, 28] [42] [5 [15]) the
scaled GUE Tracy-Widom distribution
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Fxpz(;7,7) = Fou <T1/3 + 474/3> (1.1)

where 7,7, x denote the time, location, and height parameters, respectively. From its expression it is apparent
that Fipz is invariant under the KPZ re-scaling (7,7, z) — (37, a?y, ax) for all a > 0.

In this paper, we study the analogue of the GUE Tracy-Widom distribution which arises when the infinite
line is changed to a periodic domain. The spatial periodicity introduces the following new feature. Let L
denote the period and ¢ the time. For the models in the KPZ universality class, the height functions at two
locations at the same time are critically correlated if the distance is O(t2/ 3). Hence, in the periodic case, all
points are critically correlated if t = O(L3/?), which is called the relaxation time scale. Since the periodicity
effect should diminish when ¢t < L3/? and amplify when ¢ >> L3/2 the scaled time parameter 7 = tL—3/2
measures the effect of the periodicity. As a result, the relaxation time limit of the one-point distribution
depends on 7 non-trivially and it is not invariant under the KPZ re-scaling.

The relaxation time limit (for both one-point and multi-point distributions) was evaluatecﬂ for the
periodic totally asymmetric simple exclusion process (TASEP) in [38] 8 31l @] 10]. Assume the periodic
step initial condition; this means that for the fixed density of particles p € (0, 1), we impose at time 0 that
consecutive pL are sites occupied, the next (1 — p)L unoccupied sites, and this pattern repeats, see Figure
The one-point distribution converges, as t = (’)(L3/ %) — o0, to a distribution F independent of p. This
limit was computed explicitly in a physics work [38] and a rigorous work [], and it takes the fornﬂ

. _ zA1(2)+TA2(2)+2B(2 dz
F(m,T,v)—%e 1(2)+7A2(2)+2B( )det(]l—]Kz)m. (1.2)
The contour is a small circle enclosing the origin in the complex plane. The functions Aq, A, B are given in
terms of polylog functions, and they are independent of the physical parameters 7,y and z. The last term
in the integral is a Fredholm determinant, and the operator K, = K,(z,7,7) depends on all the physical
parameters x,7,7 and also on the integration variable z. All these objects are introduced explicitly in
Section

It was shown that F'is a distribution function. Since it is a limit for a model in a periodic domain, the
distribution function F'(z;7,~) is periodic in «y, and its period is normalized so that F'(x;7,v+1) = F(x;T,7).
The function F' is expected to be the universal relaxation time limit of the one-point distribution of the KPZ
universality in a periodic domain for the periodic step initial condition. In other words, it is expected to
be the marginal of the periodic KPZ fixed point. The goal of this paper is to study several properties of

F(x;1,7).

1See [26] 20} [36], (241 25}, [16], 37] for other properties of periodic models in the KPZ universality class.
2We follow the formula of [§]. The formula obtained in [38] has a different form but recently [39] verified that the two
formulas are equivalent.
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Figure 1: The density profile and particle configuration for periodic step initial condition when p = 1/2.

1.1 Analytic structure of F' and Fxpy

The invariance of Fxpy through the KPZ re-scaling tells us that Fxpy can be recast as a function of one single
variable, namely , and all one needs to know about Fxpy is encoded in Fgug. In contrast, its periodic
counterpart F' does not enjoy the same invariance and truly depends on the three parameters (7,7, x).

For a better comparison between F' and Fxpyz, we unwrap the dependence of Fxpyz on the parameters
(1,7,2) from Fgug. Using the representation the distribution Fkpyz takes the form

FKPz(JS; T, ’y) = det(H — KKPZ)LZ(Opo) = det(]l — A—'yA'y)LQ(Opo) (1.3)
where Kxpz = A_, A, with A, being the operator acting on L?(0,00) with the kernel A.,,
A (s.8) = A (s +a+1)

and

i+£ 2

- +37 1 Lo

A(s) = Ay (s;7) 1= Ai< S ) / e Ful by (1.4)
A_

T1/3 713 7 4543 ) T 2w
Here Ai denotes the Airy function. Note that the function A, satisfies the KPZ scaling invariance: A, (s;7) =
a "t A,z (as;a®7). The kernel for the product operator Kkpyz is

Kkpz(s,t) :/ A (s+z+u)A,(u+a+t)du, s,t>0.
0

In (T.4), A_ is any unbounded oriented contour from e~*10c to €200 for some 61,0, € (7/2,57/6); see

Figure 2]
Let us now turn to a representation of F'. The definition (|1.2)) obtained in [8] involves the operator K,
which acts on the discrete space £2(S_), with (see Figure

S_=8_(2)={weC| e /2 = 2 Rew < 0} = {w = —/—2log z + 4mik, k € Z}. (1.5)
This set is a discrete subset of the hyperbola
A=A _(z)={weC| |e*w2/2| = |z|, Rew < 0} = {w € C| Re(w?) = —2log |z|, Rew < 0}
which we could use for . Our first result is the following.

Lemma 1.1. The identity
det(]I — Kz)g2(37) = det(]I — T—’)’T’Y)L2(07OO)

3The elements of the larger set S(z) := {w € C | e—w?/2 = z} that contains S_ are called Bethe roots since they arise in
the Bethe ansatz analysis for the periodic TASEP.



Figure 2: The left picture is an example of the contour A_. The right picture is the discrete set S_.

holds true, where T, : L*(0,00) — L?(0,00) is the trace class operator defined by its kernel

e~ 5E+FE+56-Q(6)
_5 ’

T, (s,0) = To(s ta+1), Tols)=Ty(sim2) =

£esS—

(1.6)

where Q(€) is a polylog integral whose formula is given in (2.3)).

We emphasize that Q(£) does not depend on any of the parameters 7,7,2 and z. Its exact expression
is not relevant at the moment. We also note that 7, depends on z through the set S_ = S_(z). Using the
above lemma, (1.2) updates to

: d
menzv):L%ezAﬂﬂ+m%@HﬁB&)¢%u__TivTﬁL%Omygj, (1.7)
T 2miz
where the kernel for the product T_, T, is
(s,t) »—>/ T A(s+z+u)Ty(u+x+t)du, s,t>0. (1.8)
0

If we were to neglect the term @ in (1.6, the formula of 7, (s) would be

2

ceS_

e FEHFE ¢

(1.9)
=<
The set S_ is a discrete subset of A_. The spacing between two neighboring points of S_ is approximately
2_45. Hence, (1.9) is a discretization of the rescaled Airy function A, in (1.4]), and this discretization depends
on the variable z because S_ = S_(z). Consequently, the formula (1.7) of F' is a linear superposition of
modified (due to Q) discrete versions of Fxpz(z;T,7).

The formula ([1.9) is a sum over a discrete set, so it is not invariant under the KPZ rescaling. However,

the discrete set explains the spatial periodicity: observing that e=€/2 = 2 for ¢ € S_ the identities
Toa(s) = 27" T(s) and Ty a(s) = 275 (s),

follow, and hence the product kernel (1.8)) is invariant under v — v + 1.



1.2 Integrable differential equations

In the previous subsection, we discussed Airy-like operator formulas for det(I — K,) and det(I — Kgpz). In
Lemmas [2.2] and [2:3] we will show that both determinants also admit a representation in terms of so-called
ITKS-integrable operators, and these in turn can be canonically associated to Riemann-Hilbert problems.
Exploring the connection of Riemann-Hilbert problems with integrable differential equations we obtain the
next result.

Theorem 1.2. The second log derivatives of the Fredholm determinants of K, and Kxpy decompose as
Oz log det(I — Kkpz) = Prpz (7,7, ) Rxpz(T,7,2) and Ogzlogdet(l — K,) = Poer (7,7, ) Rper (T, 7, T),

where (p,r) = (Pxpz, Rkpz) or (Pper, Rper) is a solution to the following two systems of differential equations.

(a) As a function of T and x, they satisfy a system of coupled modified Korteweg—de Vries (mKdV) equationﬁ

3pr + Prza + 6prp, =0,
pr+p prp (1.10)
31 + Toge + 6prry = 0.
(b) As a function of v and x, they satisfy a system of coupled nonlinear heat equations
= —Pzx — 2 27,,’
Py b D (1.11)
To = Tus + 2pr.
Finally, the symmetry property
p(y) = =r(=7) (1.12)

also holds.

The coupled systems and the symmetry (1.12)) imply that p itself solves non-local differential equations

3p7 (V) + Paaa(7) — 6p(7)2(—7)p2(7) = 0 (1.13)

and
P+(7) + P2z () — 2p(7)*p(—7) = 0. (1.14)

For the particular case when v = 0, which will be discussed in Theorem for the periodic TASEP with
flat initial condition, Equation (1.13)) becomes the defocusing mKdV equatiorﬂ 3pr + Puez — 6p°pz = 0.
It is simple to show (see Section that the compatibility of the two systems (1.10)—(1.11)) yield

Corollary 1.3 (KP equation). The second log derivative of the Fredholm determinants
Uper(T,7, &) = Oz logdet(I — K,), Ukpz (7,7, ) = Oz log det(I — Kkpy)
are solutions to the second Kadomtsev-Petviashvili (KP-II) equatz’oﬁ

120y + (120r + 120ty + Ugay), = 0. (1.15)

4The scale 7 — 37 changes the equations to more standard form pr + pzee + 6prpe = 0 and 7+ + Teze + 6prre = 0.

5The scale 7 — 37 transform the equation to the standard form pr + pzez — 6p2pz = 0. If the sign of the nonlinear term
changes, pr + Peez + 6p%pe = 0, the equation becomes the focusing mKdV equation instead of the defocusing mKdV equation.

6The scaled function v(7,~, ) = 2u(127, £27, x) changes the equation to more standard form 3A\vyy + (Vr + 60Uz + Vzzz)e
with A = 1. The equation with A = —1 is called the KP-I equation.



For u = Ukpy, Corollary was obtained recently by Quastel and Remenik [40]. The relation (L.1) tells
us that Ukpyz is a self-similar solution to (1.15)),

U g (L
kpz(T,7,2) =T %o 71/3+4T4/3 ’

for some function ¢g. Equation , in turn, gives us that ¢g = —@?, where ¢ solves the second Painlevé
equation, from which one can recover the Painlevé formula of Foug [41].

The above result is new for u = Uper. In this case, the results should be interpreted as that the equations
hold for (7,4, x) and z in a neighborhood of (79,70, o) and zp in which det(I — K,) # 0. The complement
of the zero set of this Fredholm determinant is an open set of full measure since the Fredholm determinant
is an analytic function of these four variables. Assuming that the solution exists for all z and decays to 0
sufficiently fast as  — oo, the function F' can be written as

F(m, . ’Y) — %61A1(z)+TA2(Z)+QB(Z)E(x’ v Z) 2dZ
Tz

o0
» B(r,v,m2) ==exp (/ (y — 2)Uper (7,7, y; Z)dy>
xr
where Upe: (7,7, @;2) is a complex solution of the KP equation with the initial condition determined by z.
This is a periodic analogue of the Painlevé formula of Foyug.

The solutions Uper, Pper and Rpe, above are infinite dimensional solitons (with complex velocities) since
the associated Riemann-Hilbert problem is discrete; see Section |7} This way, F' is a superposition of (the
tau function of the) solutions integrated over a parameter z which determines the initial/boundary condition
of the solution. In contrast, the purely continuous nature of the associated Riemann-Hilbert problem for
Uxpz, Pkpz, Rkpz indicate that these solutions are not solitons.

The KP equation was first introduced by Kadomtsev and Petviashvili [29] in 1970 and it is an universal
model for the study of two-dimensional shallow water waves that generalize the mKdV equation to two spatial
dimensions. The connection between the KP equation and the KPZ universality class was first observed by
Quastel and Remenik in [40]. They considered the one-time/multi-location marginals of the KPZ fixed point
on the infinite line with general initial condition, and proved that a log derivative of the distribution can
be expressed in terms of a matrix KP equation. This result was used to find large deviation results and
also further extended in [30]. As mentioned before, if we consider the one-point function and step initial
condition, Quastel-Remenik’s result is Corollary for u = UKPZE] In the context of periodic TASEP,
Prolhac [39] noticed that 9., det(I — K,) is “a reminiscent of soliton solutions for the KP equation”, and
that the analogue Fredholm determinant for the flat initial condition is connected to the KdV equation. Our
Corollary establishes a precise connection for 9., det(I —K,) with the KP equation, and in Corollary
we rediscover Prolhac’s observation for the flat initial condition.

Solutions of integrable systems consisting of infinitely many solitons have attracted a great deal of recent
interest, see for instance [21] 23] and the references therein.

We used the connection to an ITKS-integrable operator to derive integrable differential equations for the
step initial condition. This connection extends to the flat initial condition as well. However, it is not clear
if it extends to general initial conditions. Nonetheless, the authors in [40] [30] used differential identities of
the kernel to derive the KP equation for general initial conditions. As pointed out in [40], this method had
appeared in several papers in the past, among which are the papers [35] [34] that derive the KP equation
for a general class of kernels. It is straightforward to check that the general result of [34] is applicable to
the kernel T_, T for the periodic case and gives an alternative proof for Corollary .3} Indeed, it can be
used to derive the KP equation for general initial conditions for the periodic case. To state the result briefly,
we recall that in [10] an extension of was obtained for periodic TASEP with general initial condition

"The paper [40] used the notation y +— 27 so that the KP equation takes the form 3ty + (12ur + 12uts + Uges), = 0.



satisfying certain technical assumptions. The limiting distribution takes the form

oy d
F(z;7,7) = ]{ Eio(2)emA1(2)+742()+2B(2) ge(I — Ki)———, (1.16)
2miz
where the operator Ki° depends on z, z,v,7, and also on the initial condition. All these quantities will be
discussed in Section 2.5] below.

Theorem 1.4. The function
u = Uie(T,7,2) := O,y det log(I — KI)

solves the KP equation (|1.15).

The analysis just discussed in this subsection can be extended to multi-time, multi-location distributions,
and the results will be announced elsewhere.

1.3 Asymptotic properties of F

We also study in detail the distribution (|1.2)) in various asymptotic regimes.

1.3.1 Large time limit
The function F' depends non-trivially on 7. We consider the large 7 limit first.

Theorem 1.5 (Large 7 limit). For each fized x € R and v € R,

lim F LARYE L%y
im -7+ T T, = e 2 dy.
T—00 ( V2 7) 2w /_oo Y

This result was conjectured in [8 (4.14)] and the above theorem confirms it. This is a natural result
to expect since heuristically the model degenerates to a one dimensional random growth model along the
time direction when t > L3/2 in the periodic TASEP. However, the proof using the formula of F turns out
to be technical. The leading non-trivial contribution to the Fredholm determinant comes from the trace
of K,. We then still need to analyze the integral over z. To evaluate this integral asymptotically using
the method of steepest-descent, it turned out that we need to consider an analytic continuation of polylog
functions on a Riemann surface and the main contribution comes from a boundary point on a new sheet
of the Riemann surface. Recently motivated by the same function F(x;7,7), Prolhac [39] studied Riemann
surfaces associated to general polylog functions. In this paper, we carry out the analytic continuation directly
for polylog functions of positive half integer index.

1.3.2 Small time limit

Next result is the small 7 limit.

Theorem 1.6 (Small 7 limit for v = 0). For every xo € R, there exist constants C,c,e > 0 and 79 > 0 such
that

F(rY32;7,0) — Faug(z)| < Ce™™ e ¢l@™20) 0 < 7 < 79, 2 > 0.

In particular,
lim F(Tl/3$; 7,0) = Faug(x)

T—0

uniformly for x > xg.



When 7 is small, the periodicity effect becomes small, and hence in the limit 7 — 0 we expect that the
periodic model reduces to the non-periodic model on the line. Recall that the initial condition is given by
periodic step initial condition. Hence, if the model were the TASEP on the infinite line, the locations at
which the initial density profile changes from 0 to 1 generate shocks. At a shock location, the large time
limit of the one-point distribution is not given by Fgug but FéUE (see, for example, [22]). Based on this
observation, it was conjectured in [, (4.13)] that

2 F _1 < < 1
lim F (TI/SLL' o %;T, "Y> _ GUE(m)a , 5 ) Y 2 (117)
=0 T (Four(x))?, v =3

The above result confirms this conjecture when v = 0. The proof consists of showing that a conjugated
version of the operator K, converges to the Airy operator, and that e®41(2)+742(2)+2B(2) converges to 1
when z is scaled appropriately. The convergence to the Airy kernel becomes substantially complicated when
v # 0. Although we believe that our arguments could be improved to analyze the case when ~ is sufficiently
small, it is not yet clear how to extend the analysis to the case when |v| is close to 1/2.

1.3.3 Right tail estimate

We also study the right tail of the distribution function F. Recall that it is periodic in v with period 1, so
it is enough to consider v € (—=1/2,1/2].

Theorem 1.7 (Right tail estimate). For every fized 7 > 0 and vy, there is a constant ¢ > 0 such that

2

Cptar = (1 G a2 1 1
1 F(x,7,7)—<1 FGUE<T1/3+4T4/3>>(1+O(6 )) for 2<7<2

and
2

Pl —2(1- N el 1
1 F(9577'7’Y)—2<1 Feur <71/3 +4T4/3>> (1+O(e )) for~v = 5
as T — 0o.

The above result implies that

) ): (1_FGUE(1:))(1+0(eﬂl/2)), - 7<%,

1—F<Tl/3x—z7_;7',’y e
(lfFGUE (56)2) (1+O(e o )), v =

<
1
2 )
as ¢ — oo. This result is consistent with the conjectured small 7 limit (1.17]).

At this stage we cannot compare the above result with the large 7 limit in Theorem [I.5] as in order to
make the parameters in the same form we would need to consider the left tail as + — —oo, which we do not
pursue in this paper.

1.4 Flat initial condition

If the periodic TASEP starts with the flat initial condition, the limit of the one point distribution takes
a slightly different form. All of the above results have an analogue for the flat initial condition which we
discuss in Section [l



1.5 Organization of the paper

In Section [2[ we state the definition of the function F(z;7,~) and obtain alternative representations for it.
Lemma [I.J] and Theorem [T.4] are also proven in Section [2} Section [3] discusses several analytic continuation
properties of the polylog function, which we use in Section [ to evaluate the large 7 limit. These two sections
are the most technical part of this paper. We obtain the small 7 limit in Section [5|and the right tail estimate
in Section 6} The connection to integrable differential equations is discussed in Section [} The flat initial
condition is discussed in Section[§] Some proofs for auxiliary results used in Section [7] are given in Appendix

[A] and [Bl
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2 One point distribution

2.1 Periodic TASEP with step initial condition

We first review the limit theorem of the one point distribution of the periodic TASEP. Let NV and L be the
number of particles and fundamental period, respectively, where 0 < N < L. Consider the situation when
L, N — oo with density of particles N/L — p € (0,1). We take the periodic step initial condition; at time
zero, each of the sites —N +1,--- ,—1,0 is occupied by a particle and the sites 1,--- , L — N are empty, and
this pattern is extended periodically with period L. We denote by H(j,t) the height function at site j at
time ¢t. At j =0, it is defined to be 2 times the number of particles that have moved from the site 0 to 1 up
to time . For j > 1, it is defined to be H(j,t) = H(0,¢) + 327 _, (1 — 2;.(t)) where 7 () is the occupation
variable that takes value 1 if the site j is occupied and value 0 if it is empty at time ¢t. For j < —1, it is
defined to be H(j,t) = H(0,t) — 22: (T =2nx(2))-
It was shownﬂ in [8, Theorem 3.4]°| that with the scale of the position and time given by
s=~L, t= 7'7[13/2
p(1—p)

for parameters v € (f%, %] and 7 > 0, we have the limit theorem

o F ( —2p1/2(1 — p)1/2L1/2 <w)=F(z;77) (2.1)

L—oo

for any fixed z € R. The function F(z;7,~) is the one in (1.2)) and we describe it explicitly in the next
subsection. Note that the height at time ¢ is evaluated at the location j = ¢(1—2p)+ s, where s measures the

81t was also shown in a non-rigorous paper [35].

9Theorem 3.4 of [§] states the result in terms of the current, but it is easy to translate the results in terms of the height
function. Furthermore, the limit in Theorem 3.4 of [§] is given as F(Tl/3m; 7,7), but in this paper, we use a slightly different
scaling, which has the effect of changing 71/3z to . See Theorem 2.1 of [9] for the explicit statement in terms of the height
function.



relative distance from the location ¢(1—2p). The reason for this shift is that the periodic step initial condition
generate shocks that travel at speed 1 —2p, and we consider the moving frame along the shock direction. Also
note that the time, relative position, and average-adjusted height have orders O(L?/?), O(L), and O(L/?),
which are consistent with the 3 : 2 : 1 KPZ scale, and the time and period are related as t = O(L?/?) which
is the relaxation time scale.

2.2 Definition of the one point distribution function

We define the function F(z;7,v) in (1.2]) explicitly. Let Lis; be the polylog function; see Section [3| for their
properties. Set

z il 9 2
A(z) = —\/%Lig/g(z), As(z) = —\/% Lisa(), Bl(z) = %/0 (L/y(y))dy. (2.2)

To introduce the operator K, first define the function

[2 ¢ 3 5
)= ;/ Lil/g(e_sz/z)ds for Zﬂ- <argé < Zﬂ-, (2.3)
— 00

where the path of integration is contained in the sector arg(s) € (3m/4,57/4) so that e=*"/2 € C \ [1, 00),
and as such the polylog is well defined. Alternatively, the representation

i Jog(1 — =€ /2e%"/2) du  3r 5
— w2 o 2.4
Qe =- [ B TR e < O @4

also holds (see [8] (4.8)]). The function @ is analytic in the sector.
We set, for 3n/4 < arg§ < bm/4,

1
B(€) = B(E7,2) = —5 7€ + 2 — Q) (25)
and define the integral operator K, acting on functions over S_ via the kernel

(&) +2(M+3(E5-n%)

Kz(gla§2) :Kz(glaSQ;va}@ Z 5177(51 +n)(n+§2)

§1,62€ 8-, (2.6)

where S_ is the discrete set defined in . Note that the kernel depends on z since the set S_ depends
on z. Due to the growth properties of ®, it is direct to check that the series definition of the Fredholm
determinant det(I — K,) is well-defined even though the kernel does not decay fast enough as & — oo on
S_. It is also direct to check that det(I — K,) is analytic in 0 < |z]| < 1.

Definition 2.1. The function in (1.2)) is defined by

Flair, ) = j{exAl(z)+rA2(z)+2B(z) det(I — K.) dz

2.
2miz (2.7)

where the contour is a circle |z| = R with 0 < R < 1, oriented counterclockwise.

It was shown in [§] that F(x;7,v) is a distribution function, and it satisfies the spatial periodicity
F(a;my +1) = F(z;7,7).

10



The above kernel can be conjugated to a symmetric kernel (using the same notation)

e3®(E)+P(n)+5P(E)+T (67 -2n"+€3)

K.(&.6)= ) V=& + 1) (0 + E)V/—nvV=E’

nesS_

&6 €8, (2.8)

without changing the Fredholm determinant, and this kernel properly defines a trace class operator K, :
2(S_) — *(S-) (see Subsection . This kernel is symmetric but not self-adjoint since it is complex-
valued.

2.3 Proof of Lemma [1.1]

Lemma claims that det(I — K.)p(s_y = det(I — T_,T5)12(0,00) With T, being the operator on L?(0,00)
defined by the kernel ((1.6)). The rest of this subsection proves this claim.
From the formula ({2.8)), K, is the product of two operators

K, =JI" (2.9)
where J : £2(S_) — %(S_) has the kernel

3@+ (n)+3(62—n?)
V=EE+n)v=n

The operator JT : ¢*(S_) — ¢2(S_) is obtained from J from the kernel

J(&n) = §medsS_. (2.10)

I (0, &7) = I(Emy) = I(0,6 ). (2.11)
Using the identity ﬁ = — [T e* ) ds that holds for 1, € S_, we can write
J=-G_,G, (2.12)
where G, : L?(0,00) — ¢2(S_) is the operator defined by the kernel
e3P —FE7+s¢
— =

It is immediate that G, is Hilbert-Schmidt. Consequently, J ,JT and K, are all trace class operators. From
the decompositions above,

G,(¢ s) = for £ € S_ and s € (0, 00).

det(I - K.) = det(I - JJ7) = det(I - G_,GG,G".)) = det(I - GIG,G" G_,).
Setting T, = GZVG_W, we find that T, is trace class and its kernel is (1.6). This proves Lemma

2.4 Integrable operator formula

There is another representation for det(I — Kkxpyz) as well as det(I — K, ). These representations will be used
in Section [7] when we derive integrable differential equations.
For |z| < 1, recall the set S_ in (1.5), and also let A_ be an unbounded oriented contour from e 10
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Figure 3: The left picture is the set A = Ay U A_. In the right picture, the sets S4 and S_ are represented
by the squares and the dots, respectively. The dashed curves are the hyperbolas. Compare this figure with

Figure [2}

to e'%200 for some 61,60y € (/2,57/6). Define (see Figure [3)

S§=8(2):=8US_ with §; :=-5_, and

(2.13)
A=Ay UA_ with Ay :=—-A_.
In addition, set -
Vi) = Vlwry,2) = —gu’ + S’ fou, ueC, (2.14)

and denote by o3 the third Pauli matrix,

1 0 : : +1lv(we ei%V(u) 0
o3 1= (O _1>, so in particular, et3V(Wos — < 0 STV | -

Lemma 2.2. Let x4+ and x— be the indicator functions of Sy and S_, respectively, and define vector

functions
Y iv(uw)es = 1V(u)os =
flu)=e 2V fo(u) and  Glu) = €2V (7 Gy(u),
with
e3Q(u) (u) ) (W)
. X+ (u ———x-(u
folw) = | Yo and Go(w) = | 2w
e 2 e2
Then

det(]I - KZ)EQ(S,) = det(ﬂ — H)Zz(S)

where H is the trace class operator acting on (?(S) with kernel

—

H(u,v) = M, u#v, and H(u,u)=0. (2.15)

u—v

Proof. Recall that K, = JJ7 in (2.9) where J : £2(S_) — ¢2(S_) has the kernel J given by (2.10). Noting
that S, = —S_, we set W : £2(S;) — ¢%(S_) to be the reflection operator defined by (Wh)(u) = h(—u) and
write K, = J1Ja, where J; = JW : £2(S;) — (*(S_) and Jo = WTJT : 3(S_) — ¢*(S,). Since S_ and S

12



are disjoint, we have (2(S_) @ (*(Sy) = ¢*(S_US,), and

0 J
det(l — K. )p2(s_) = det <]1 - (J 01>> =det (I - H)ps us,)
2 2(S)®e2(Sy)

where H is the operator on ¢*(S_ US,) with the kernel

H(u,v) = x4 (u)J2(u, v)x— (v) + x— (u)J1 (u, v)x+(v)
e%@(v)—%{)(u)—i-%(vz—u?) e%@(u)—%@(v)-&-}(zﬁ—iﬁ)

= X () e e () e () e )

for u,v € S US_. Because J is trace class and W is bounded, the operator H is trace class. The result now
follows by inserting the formula ®(&) = —37% + 2€ — Q(€) (see . O

There is an analogue to the previous result for det(I — Kkpz). For the case when 7 = 1 and v = 0, the
next result is a particular instance of a known representation for the Airy, process [11], [12].

Lemma 2.3. Let xa, and xa_ be the characteristic functions of the contours Ay and A_ in (2.13)). Define
the vector functions

d(u) = e 2VWog (w), blu) = 2V Wb (w), with ao(u) = < Xay (1) ) . bo(u) = <XA(“)> .

—xa_(u) X, (u)
Then,
det(I — KKPZ)L2(O,oo) = det(I — F)Lz(A)
where F : L2(A) — L?(A) acts with kernel
F( )_LM 7§ d F( )_0 (216)
uv) =g, uFv an u,u) = 0. .

Proof. The definition of the kernel A in (1.4) gives the decomposition A, = IB%?IB%W, where B, : L?(0,00) —

L?(A_) acts with kernel
1

2me
where V is given in (2.14]). Manipulating the Fredholm determinants,

B,(n,v) = esVtm e A_v >0,

det(I — Kkpz) £2(0,00) = det(l — A_yA-) 12(0,00) = det(I — B,BY B_ BT 2(5) = det(I — BB") 2(n),

where B = IB,YIBZW. The rest of the proof follows exactly as in the proof of Lemma the role of K, is
played by BB” and the operator J is now B. O

The form ([2.15) or (2.16]) of the kernels is saying that the operators F and H are IIKS-integrable, which
is a class of operators that was first singled out by Its, Izergin, Korepin and Slavnov [27]. In Section [7| we
discuss and explore this structure in detail.

2.5 The periodic TASEP with general initial condition: proof of Theorem [1.4

The distribution function (1.16)) was obtained in [I0] in the context of periodic TASEP, and extends ([2.1)
to a large class of initial conditions. The prefactor Ei.(z) in (1.16) depends on the initial condition and also
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on the variable z but is independent of the parameters x, 7 and 7. The operator Ki¢: £2(S_) — (*(S_) is a
generalization of K, and acts with kerne]E

e 3 ®(E1)+2(n)+5(E2)+7F (67 -2n°+€3)

D D v oy g s WYt

nes_

£, €S8, (2.17)

where xic(—1, &2) = Xic(—n, &2; z) depends on the initial condition and on the parameter z but not on x, v, T

The class of initial conditions for which this formula is valid is stated in rather technical terms, and
verifying that a given initial condition falls into this class may be involved, even if the initial condition is
simple. The formulation of Ki¢ as above is enough for our purposes, so we refer the reader to [10] for more
details on these conditions. It is worth mentioning that this setting just introduced is valid for the step, flat
and step-flat initial conditions.

Similarly as in (2.9)), we write
KIZC — JJIC,

where J : 2(S_) — (*(S_) is as in and Ji¢ : (2(S_) — ¢%(S_) is defined by the kernel
JEn) = xie(=&mIT(En) = xie(=EmI(M,6),  Enes-.
We take advantage of the same decomposition and manipulate
det(I - K¥) = det(I + G_,GIJ*) = det(I — T*),
where T : L2(0,00) — L?(0,00) is the product T = —GZJ**G_,, and has kernel

Tic(u 1}) - _ XIC( 7, é) +2(n)+3 (&2 =n?)+untve w.v > 0.
’ EE+mn ’ ’

EnES—

It is convenient to rescale the kernel and consider the auxiliary operator
Tic = Ti(r, v, ) = ~T"(~37, 27, ) (2.18)

which has explicit kernel

—£,1)eQE)+QMm)
§€+n)n

r/_f'ic(u7 ’U) = Tic(u7 VT, Y, T Z XIC 67(53"1'773)4"7(52_n2)+(u+$)§+(”+z)n’ U,V > 0.

n,§€S—

In particular, the differential identities
arri‘ic = aur/fic + 61)r/fica 87Tic = auu’/fic - av1)rf[\‘ic7 a-r’f[\‘iC = auuur/fic + 81)1)1;Tic-

are of straightforward verification. By [34] Theorem 3.1], these identities imply that & = 9, log det(T+ 'JATiC)
satisfies the KP equation in the form

3y + (Uars + 12000, — 40,), = 0. (2.19)

In the definition of 'f‘ic(u, v; 7,7, x) we should only consider 7 < 0 to ensure the series is convergent. On
the other hand, the KP equation is an evolution equation in the time variable 7, so naturally with 7 > 0.

10The original formulation in [10] is a modified version of (2.6]), which can then be conjugated to ([2.17).
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Nevertheless, we are safe to apply [34], Theorem 3.1] here also for 7 < 0, as the arguments therein are of
algebraic nature, relying on 7 solely as a variable without physical meaning and no restriction on its sign.

Having in mind (2.18)), Theorem [1.4| now follows from (2.19)).

3 Analytic continuation of polylog functions

The formula of F(x;7,7) involves polylog functions Li; /o(2), Liz/2(2) and Lis/s(2). In the first sub-
section, we summarize some basic properties of polylog functions used in this paper. In the remaining
subsections, we establish some analytic continuation properties of polylog functions and their combinations.
The results of this section will be used only in Subsection for the large 7 limit of F(x;T,7).

Throughout this paper, log z denotes the principal branch of the logarithmic function with branch cut
along (—00, 0], and z* denotes 2~ = e 1987,

3.1 Polylog functions

For Re s > 0, the polylog function is defined by the series

o~

o k
Lis(z) =Y 2, |zl <1, (3.1)
k=1

and it extends analytically using the integral representation

Li,(2) = ﬁ /Ooo ett: —dt, zeC\[Lo0). (3.2)

From this representation, Paulsen [33] Proposition 3] showed that if s is not an integer, then

n!

. o1 > s S ¢(s —m)
Li(z) =T(1—s)(—log2)* " +{(s) + > (2= 1" Y == asz— 1, (3.3)

m=1

where ( is the Riemann zeta function and S%m) are the Stirling numbers of the first kind.
Observe that the function f(t) = (—t)*~! has branch cut along (0, +o0) and it satisfies the identity

(—t)57 — (=)t = 2i[¢|* sin(ws), >0,

where f1 (t) denotes the limit of f(¢ & ie) as e \, 0. Thus, for s € C satisfying s ¢ Z and Re(s) > 0, we can
rewrite the integral representation (3.2]) as a complex contour integral given by

Lis(z) = _ra 7.5)2 /A H)Hdt, z€C\[1,00), (3.4)

271 et —z

where we used the reflection formula I'(s)sin(ws) = = Here, A is an unbounded contour that starts
and ends at +o0, lies in the strip {t € C : |Im¢| < 7}, encircles the positive axis with counterclockwise
orientation, and separates the point log z from the interval [0, c0), see Figure

3.2 Analytic continuation

Define the set
Ri1=C\ ((—o0,0]U[L,00)).
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iR

R+

R—mt

Figure 4: The contours A and A used in the integral representations of Liy and Fj.

Figure 5: The two sheets R and Ro that constitute the Riemann surface R. They are glued along the
interval [1,400) but not along (—oo,0].

Let Ro be another copy of Rq and define a (non-compact two sheeted) Riemann surface R by gluing R, and
Ro along only [1,00), see Figure |5l The only branch poinﬁ of the surface is z = 1 and the local parameter
near z = 1 is given by z — 1 = w?, w € C. For j = 1,2, we occasionally use the notation p¥) to denote the
point on the sheet R; that projects onto p € C. This notion is well defined as long as p ¢ (—o0,0) U (1, 00).
In particular, 1) = 1(?) so we simply write 10) = 1 € R in this case.
Define the function
uo(z) := —(=2log2)'/2, zeR;. (3.5)

From the choice of the branch of the logarithm and the square root, ug(z) is analytic in R;. This function is
one of the Bethe roots, see (1.5). This particular Bethe root will play an important role in the large 7 limit.
Note that uoy(z) = —ug—(z) for x > 1.

Lemma 3.1. The function

 Juw(2), z€Ry,
Uo(z) := {—uo(z), CeR, (3.6)

is analytic on R. The only zero of Uy is the branch point z = 1, which is a simple zero. As a consequence,

11 The Riemann surface R here is bordered. We could extend R to a non-compact Riemann surface without boundaries which
is the fundamental covering surface for the polylog. In this extended surface 0(2) would also be a branch point. Hence we
sometimes refer to 0(2) loosely as a branch point.
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L is a meromorphic function on R with a simple pole at z = 1 and no other poles.

U()(Z)
Proof. The analytic properties of Uy are straightforward to check. The fact that Uy has a simple zero at
z = 1 is easily verified using the local coordinates z — 1 = w?. O

Now consider the polylog Lis. For the rest of this section, we assume that s is a positive half integer,

1
862"‘57 S>0,

which is the case relevant to our purposes. We use the formula (3.4) to extend the polylog to the Riemann
surface R. To this end, we introduce an auxiliary function

P.(2) :/ O e\ (—o0,0)
zet—z B

where A is a contour going from +oo + i0 to +oo — 40, encircling both the segment [0, +00) and the point

log z, and being contained in the horizontal strip | Im¢| < 7; see Figure The condition z ¢ (—oo, 0] implies

that log z is in the horizontal strip |Im¢| < 7, and hence we can indeed choose such a contour A contained

in the horizontal strip |Im¢| < 7. Note that unlike Lis(z), the function Ps(z) is analytic across the segment

[1,00). Given a point z € Ry, deforming the contour A in to A we obtain the identity

J G pio - g (GL) = R -am2

et —z t=logz \ et —z z

Hence, writing log z in terms of ug(z) in (3.5), we get

7I‘(1 )

oy 2Py(2) + 21T (1 — s)(—uo(2))* 2 for z € Ry. (3.7)

Lis(2) =

This formula implies the following extension result.

Lemma 3.2. Assume that 2s is a positive odd integer. The function

Li, € Ry,

La(z) o= 4 Hs®) Jorz e R (3.8)
Lig(2) — 227°T(1 — 8)(—up(2))* 2 for z € Ra,

is analytic on R for s # % For s = %, L1/ is meromorphic with a simple pole at z =1 and no other poles.

Proof. We set Lg(z) = —%Ps(z) + 217°T(1 — 8)(—Up(2))**~2 where Ug(z) given by (3.6). Using

(=1)%=2 = —1 and (3.7), we observe that this function is equal to (3.8) on each sheet. For s = 1/2,

we note that (—Ug(2))*72 = — Uol(z). O

3.3 Extension of the functions f; and f;

In the asymptotic analysis of F(x;7,) as 7 — oo in the next section, we need to extend several functions
involving polylog to the Riemann surface R. These functions are defined below as f1, fs, and E and appear
later in . In this subsection we discuss the analytic extension and properties of f; and f3, and postpone
the discussion of E to the next subsection.

The functions f1(z) and f2(z) are given by

1 L Lis/2(2) — 2uo(z) — gUO(Z)?’; f2(2) = 2uo(2) — L Lig/a(2).

fi(z) = NoTS Lig/a(z) — Jon 3 Nors
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Define

fi(2) = \/%ng(z) - \/%Ls/g(z) —2Up(2) — §U0(2)3
and
fo(2) = 2U L
2(2) == 2Ug(2) — E 3/2(2)-

These functions are analytic on R. They satisfy f; = f; and fs = f5 on the first sheet R;. For later
use, we state the formula on the second sheet explicitly. Using (3.6) and (3.8), and I'(—1/2) = —2/7 and
I'(—3/2) = 4/ /3, we find the following.

Lemma 3.3. The functions f; and fo are analytic on R and satisfy

1 1 1

fi(z) = Ner: Liz/a(2) — Lis/2(z) and fa(2) = NoTs

In addition, the functions f; and fa have continuous boundary values f1(z £ i0) and fa(z £i0) for z on the
interval (—o0,0) in the boundary of Ry.

Liz/a(2) for z € Ra.

3.4 Extension of the function F

We now consider the function
E(z) = £2B(2)—2Q(uo(2))

Changing the variables in the definition (2.3) of @ and using uj(t) = —1/(tuo(t)),

2 wo (z) ) B 2 z 14 t )
Q(uo(z)) = \E/OO Liyjo(e ™" /?)dy = \/;/O t;(/f(i))dt for 0 < |2| < 1 with z ¢ (—1,0),

where the integration contour for the second integral is in the same domain as z. Combined with the
definition (2.2)) of B, we have

Z2 14 5/2 T
2B(2) — 20(uo(2)) = % /0 ”f(t) (Li1 Jo(t) + w> dt (3.9)
for 0 < |z] < 1 with z ¢ (—1,0).
Define the function (o) 52
z 2 ™
g(z) := 12/;2 (Ll/g(z) + Uo(\z)f> for z € R. (3.10)

On the first sheet R this function agrees with the integrand of (3.9)). It is analytic on R except possibly at
the branch point z = 1 (note that z = 0 is not on R).
We look at the limit as z — 1. Using (3.3) and (3.8), we find that

g(2) = ——— + O(ug(2)"!) =
uo(z)

+0((z—1)"Y? (3.11)

as z — 1. In terms of the local coordinates z — 1 = w?,

g(2)dz = (i + 0(1)) dw,
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which implies that Res.—1 g(z)dz = 3. Due to the pole of g, the integral foz(l) g(t)dt depends on the choice of
the path on R. However, since the residue of g at the pole is an integer, exp (fozm g(t)dt) does not depend
on the choice of path.

Lemma 3.4. The function

E(2) == exp </0() g(t)dt) — exp (/0(> LIQ/%(ZZ) <L1/2(z) + 23/:(\5) dt)

is well defined and analytic on R. We have E(z) = E(z) on z € Ry satisfying 0 < |z| < 1. Furthermore, E
has a zero of order 3 at the branch point z = 1. Finally, E(z) has continuous boundary values E(z & i0) for
z on the interval (—00,0) in the boundary of Ri.

Proof. For z # 1, the value of E(z) does not depend on the choice of path of the integral on the Riemann
surface since the residue of g at the pole 1 is an integer. Being an integral of an analytic function, it is
analytic possibly except at z = 1. As z — 1, we have from (3.11)

z
/ g(t)dt = §log(z -1)+0(1),
o) 2
which implies that E(z) = (z — 1)%/2f(2) = w® f(1 4+ w?) for an analytic function f and the local coordinates
z — 1 = w?. This analysis shows that E is analytic near z = 1 and it has a zero of order 3 at z = 1.

The continuity of the boundary values of E follow from continuity of the boundary values for Li; /, and
ug away from z = 0. O

3.5 Behavior of the function E(z) near z = 0 on the second sheet

We conclude this section with the behavior of E(2) as z — 0(?) on the second sheet Ro. The following result
will be used in the proof of Lemma [4.9]in the next section.

Lemma 3.5. We have
E(2) = —dup(2)"(1+ O(2%)) as 2z — 0.

Proof. Fix a small real number e € (0,1). We evaluate the exponent fozm g(t)dt of E using a specific path
that consists of several pieces:

z e (1—e)® (1—e)®@ @ z
/ g()dt = / g(t)dt + / g(t)dt + / g(t)dt + / g(t)dt + / g(t)dt.
0 0 e (1—e)» (1—e)® e

The contours for the second and fourth integrals are straight line segments. The first and last integrals are
over contours such that |¢| stays small. The third integral is over a contour that satisfies that |t — 1| stays
small. Note that the first four integrals do not depend on z.

Consider the third integral. By and using the local coordinates 1 — ¢t = w?,

(1-9® —Ve g
lim g(t)dt = lim —dw = £37i,
e—0 (176)(1) e—0 \/E w

where the sign depends on the direction that the path goes around the branch point z = 1. Since E(z) is the
exponential of the integral and e3™ = e =3 = —1, both signs give the same contribution to E(z).
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Now consider the first and the last integrals. From and ( .7
25/2, /1

1. .
g(z) = 32 Liy /2(2) (Lll/Q(Z) + o) ) for z € Ry (3.12)
and 3/2, /7 3/2, /7
1 2 T 2 m
= — [ Li —— ) | Li - f . 1
g(2) 2 ( fi2(2) + up(2) ) ( i1/2(2) up(2) ) orzE R (3.13)
Since Lij j2(2) = z 4+ O(2?) (see (3.1))),
g(z) = — 2 +0(1) asz— 0
V7 (—log 2)1/2
and Liy o(2)
g(z) = zup(2)? 2z zlogz O(z) asz—0
Hence,
6(1) €
lim Wt = ——tim [ — 2 _d42—0
=0 Jom) & \/7?€—>0 0 (— ]ogz)1/2 ’
and for small enough |z| and e,
/ t)dt = 2/ —_— + O(22) + O(€*) = 2log(—log z) — 2log(—log €) + O(2%) + O(€?).
<2>

Finally, for the second and the fourth integrals, we have from (3.12)) and ( -7

(1—e)® e® 23/2 \/ﬂ dt
tdt+/ t)dt = — Li t) + —— .
[, & [ Ena =" ( 1ot uO<t)) o
A direction computation shows that
23/2 1—e 1—e dt
dt = -2 = —2log(—log(1 — 2log(—1 .
= =2 i = —2los(-loa(1 — ) + 21og(~ loge))

We postpone the computation of the remaining part of the integral.
Combining all together and taking ¢ — 0 first, we find that

E(z) = —(—log2)?(1 + O(z%))e”
as z — 0@, where
C=1 22 e Li di 21 log(1
= lim [ﬁ/e 11/2(t)m — 2log(—log(1 — e))} .

We now find the value of C' using the lemma below. We may replace log(—

log(1 — €)) in the integral in

the formula by log(e), and replace € in the lower limit of the integral by 0 because the integral is convergent

at t = 0. After that we change the variable ¢ to uo(t) = —(—2logt)'/? and find

|

93/2 —(—2log(1—¢))*/?

C = lim NG

e—0

20
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Since Lil/g(e_tz/Q) = Ot~ ') as t — 0, which follows from (3.3), we may replace the upper limit of the
integral by —v/2e. Changing v/2¢ = §, and using the evenness of the integrand, we find that C' = 41log 2 from
the lemma below. This completes the proof. O

Lemma 3.6. We have

lim Li1/2(87t2/2)dt + V27 log(d) = —\/zlog 2.

50t Js

Proof. Using the power series formula (3.1)) for the polylog and changing variables,

/oo . (e_tz/g)dt B i 1 /oo e_tz/th . /00 e_tz/gh ([t25_2]) dt
s e =1 k J ks

s
where h(n) :=1+ % +- 4 % is the n-th partial sum of the harmonic series. We have
h(n) =logn+ v+ €,

where 7 is the Euler-Mascheroni constant, and ¢, = O(n™') as n — oo. Set &, := €[,) + log[y] — logy and
note that there is a constant C' > 0 such that |€,| < % for all y > 1. Hence,

/ Lil/2(67t2/2)dt :/ 67t2/2 (log(t2572) +7+€t25—2)dt~
1) 5

o0 2 ™ ° 2 T
/ et /204 — \/; and / e—t/2 log(t?)dt = —\/;(7 + log 2).
0 0

On the other hand,
> —t%/2~ 2 t1 e —t2/2
e €t25—2dt S C(S ?dt + e dt = O(5>
5 s 1

Combining the above equations, we obtain the result. O

Note that

4 Large time limit

Recall the distribution function F' in (2.7). In this section we consider the large 7 limit of F(x,;7,v) with

al/4 s
Ty =—T+ —=x7"'7, x € R fixed, (4.1)

V2
and prove Theorem This section is split into four subsections. In the first subsection, we analyze the
asymptotics of the Fredholm determinant in the integrand of and show that all but the first two terms
of the Fredholm series expansion are exponentially small. In the second subsection, we show that the main
contribution to F(z,;7,7) comes from the integral involving the trace of the operator K, and then show
that the integral can be expressed as a single integral involving polylog functions. In the third subsection we
evaluate the integral using the method of steepest descent and, finally, in the fourth subsection we combine
all the ingredients to prove Theorem
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4.1 Asymptotic analysis of the Fredholm determinant

The formula (2.7)) of F(x,;7,7) is given by an integral of the variable z € D\ {0} where D denotes the open
unit disk. It is convenient to write

2= gl gibo()/2 g — g () = 2arg z, argz € [0, ],
—2(2m — argz), argz € (m,2m).

Note that 6y(z) € (=27, 27]. Using the above notation, the set S_ (recall ([1.5])), which is the set of solutions
of e7§°/2 = z with Re& < 0, can be enumerated as S_ = {uy}rez where

up = up(z) = —(—2log |z| + i6)'/?, O := —0o(z) + 4rk.
In particular
up(z) = —(—2log|2| + ifp)'/* = —(—2log 2)'/?

agrees with the previous definition in (3.5). We denote the real part and the imaginary part of uy by xx and
Yk:
up = ug(2) =z + iyp = 2x(2) + iy (2).

These values z and y; satisfy the relations

r; —y? = —2log|z, 2zryr = 0. (4.2)
Solving for %, we have
(z1(2))* = —log|z| + 1/ (log |2])2 + 62 /4. (4.3)
Also note that )
0
07 >4 <2k - 2“) 72 > 4020k| — 1)%x%  for k #0. (4.4)
T

Recall the formula (2.5) of the function ® appearing in (2.6). With the change = — z, in (4.1)), it

becomes

1 l
®r(8) = 8(§2,20,7) = -7 <3€3 +€> i

7 §— Q) (4.5)

where @ is defined in (2.3)). Using (4.2)), we write

T /4
Re @ (ux) = —<p= () + Tlﬂﬁxk — Re Q(uz) (4.6)
for ug = xg + iyr € S—, where

p2(w) = —2w® + 3w (1 — 2log |z|).

In the next few results, we estimate Re @, (u) for uw on S_. These results involve constants which are given
numerically to several digits and will be later combined to estimate a Fredholm determinant from its series.
The exact value of these constants, as they appear here, could be relaxed at the cost of estimating the very
first few terms of the series for the Fredholm determinant separately, taking advantage of the alternating
signs that appear when computing determinants. However, we opt for giving these precise values of the
constants and use only the first term of the series.
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Lemma 4.1. There is a constant 6 € (0,1) such that

oy {120
P2\TE\Z)) =
: 5.R1IKPY2, k£0,

for1 =6 <|z| <1.

Proof. From the definition of S_ we have zx(z) < 0. Thus, for all |z| that satisfies the inequality log |z| >

1(1-3-+v/2-0.71-0.71) ~ —0.00136,
P2 (zr(2)) > —224(2)% +3V/2-0.71 - 0.71zy(2) > —1.42.

Now, consider k # 0. Using (4.3, recalling x(z) < 0,and combining with (4.4)),

wi(2) < —v/—log|z[ + (2[k[ = )7,  k#0.

The function p,(w) decreases in w € (—oo,w.) with w, = —14/1—2log|z|. For k # 0, we see that
—y/—log|z] + (2]k| — 1) < w., and hence,

p=(2(2)) > pr(—v/—log|2| + (2[k| — 1))
= (4log|z| + (4]k| — 2)7 — 3) \/—log|z| + (2]k| — )7
> (4)k| — 2.9565)\/2|k| — 17%/2 > 1.04357%/2|k|3/?

provided log |z > % (3/7 — 0.9565) ~ —0.0012. This completes the proof. O
Corollary 4.2. There exists a constant 6 € (0,1) such that for every 6 € (0,9), we can find 79 > 0 so that

0.47347, k=0,

Re®, (up(2)) <
(i (=) {—1.9366|k3/2r, k#0,

foralll—6<|z|<1—06y and 7 > T19.

Proof. We use the formula and the last lemma. By and , for every € € (0,1), there is a
positive constant C' > 0 such that |z, (2)| < C|k|'/? for all k # 0 and € < |z| < 1. Using this and the fact
that x is a fixed constant, we find that the term L\gmzk of the formula is O(|k|'/271/2) uniformly
in € < |z] < 1. The remaining term of the formula, Re Q(ug(z)), is uniformly bounded in compacts of |z| < 1
as can be seen from the formula . Hence, we obtain the result for & # 0. The case k = 0 is similar. [

We also need estimates on the points in S_.

Lemma 4.3. For every fized 61 € (0,1), there exists ¢ > 0 such that

lur(2)] = eV/|k[+ 1 and  |u;(2) +ux(2)| = ev/]5] + [k] + 2
forall0 < |z| <1—01 and k,j € Z.

Proof. From ([.3)), z2 > —log|z| + |0k|/2 > —log(1l — 61) + |0k /2| > 0. From (&.4), |0x| > 2(2|k| — 1)7 for
k # 0. Thus, there exists ¢ > 0 such that |ug|? > 22 > ¢?(|k| + 1) for all k. This implies the first inequality.
The second inequality follows from the first inequality since x;,z; < 0, and hence

uj +uk| > —x; — xe > o/l + 1+ e[k + 1 > e/]j] + k] + 2.
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O
The kernel of the operator K, is given by (2.6)). With the change x — x, in (4.1)), the kernel becomes

e¢7(€1)+¢7(u)+%(557u2)

§ru(ér +u)(u + &)

K.(6,6)= ) for £1,& € S,

ueS_

where @ is defined in (4.5). We now estimate this kernel.

Lemma 4.4. There is a constant 0 € (0, 1) such that for every é; € (0,9), we can find 79 >0 and C > 0 so
that

N
Z ‘Kz(f,uék”z < (Clog N)eQReéT(£)+O.9468'r
k=1

forall £ € S_, for all N > 2 and distinct integers {1, ..., Ly, and for all 7> 19 and 1 — 6 < |z| <1 —4;.
Proof. Let 6,8, and 79 be the constants from Corollary Every £ € S_ satisfies e=¢/2 = z, and hence,
le=7€*/2| = |2|. Thus, using Lemma

Re®, (&) Re @, (u;)
e7]‘“(11) where f(u) := Z ¢ ’

JEZ

K- (& u)| < (4.7)

c3 luj + ul
for £&,u € S_, where the constant ¢ > 0 is from Lemma[.3] For u = wg, Corollary and Lemma [4.3[imply

that
£0-47347 e—1.9366j]°/27

flue) < + .
(ue) e/l + 2 %c\/|€\+|j|+2

for all 7 > 7. Adjusting the value of 7y if needed, the sum is smaller than the single term, and hence,

260'4734T
flu) € ———.
e/l +2
Inserting the above inequalities into (4.7)) and noting that Efj:l Wﬁ < log N since /¢y, --- ,{y are distinct
integers, we complete the proof. O

We are now ready to prove the main result of this subsection.
Proposition 4.5. Change x — x, as (4.1). There is a constant 6 € (0,1) such that for every §; € (0,9),
det(I-K,)=1-TrK, + O(e %) as T — oo,
uniformly for 1 —§ <|z| <1-—4;.
Proof. From the series expansion of Fredholm determinants,

(=n~
N1

Dy with Dy:= Y det(K.(ur,, ug)) o

det(I-K.)=1-TrK.+ »_
N=2 l1,...UNEZL

where the superscript * means that the sum is taken over ¢;’s that are distinct. For distinct ¢;’s, the
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Hadamard’s inequality and Lemma [4.4] give us that

N /N 1/2 N
|det(Kz(’U,[j,’Z,Lgk))§\’]k:l| < H <Z |Kz(ue_7,uek)|2> < (C'log N)N/2e0-4734rN HeReéT(u%).
=1 \k=1

Jj=1
Hence,

N
|DN| < (CIOgN)N/QeOA?MTN Z* HeRe(I)T(Wj)'
Ly, ,ANEZj=1

Considering the case when one of the indices ¢; is zero separately and using a symmetry,

Z* ﬁeRc'ib.,.(uej) _ Z* lj_\i[eRc'@T(u;,j)_’_NeRech(uo) Z* ﬂeR"‘b*(“‘%)

L1,.. . NEZ =1 L1, fNF#0 g=1 Lo,... . tN#075=2
N N-1
< (ZeRele(ug)) + NeRe‘I’T(uo) (Zé&e@w(uz)) .
00 00

Now, Corollary [£.2] implies that

26—1.93667’

o0
eRe®r(ue) < 9 6—14936663/27 < and  eRe®r(uo) < 047347
E: E: 1 _ ¢—1.93667

£€7\{0} =1

for all large enough 7. Therefore,
N
Z* H 6Re <1>,-(uzj) < C{Vefl.QBGGTNeQAIT

for a new constant C; > 0. Thus, adjusting the constant 7y if needed, we find that for a yet new constant

Cy >0
|IDn| < (\/W)Ne*1~46327N+2.41T

for 7 > 79 and N > 2. From this and using N! > (N/e)", we conclude that
o (DN
Z NI Dy
N=2

for a new constant C3 > 0, and hence we find that the sum is O(e=°-517). O

oo N oo
< Z ey/Cylog N 14632 N 2,41 o Z o~ 146327 N+2.417
< N <

N=2 N=2

4.2 From a Fredholm determinant integral to a polylog integral

Proposition [4.5] implies the following result for the distribution function.

Proposition 4.6. We have

r (IT; T, 7) -1 % ezTAl(z)+‘rA2(z)+QB(z) TI‘(KZ) dz 0(670'0027)

|z|=R 2miz
as T — oo for any R € (0,1).

Proof. Since the integrand in the result is analytic in 0 < |z| < 1, it is enough to prove the statement for
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R =1—6 where § > 0 is the constant from Proposition We insert the result of Proposition [£.5] into the
formula (2.7) of F (z;7,7). Since A;(z), A2(z), and B(z) are analytic in the unit disc, and they are all 0 at
z = 0, by the residue theorem, we obtain the term 1. We now consider the error term. Recalling (4.1)),

max Re (2, A41(2) + TA2(2) + 2B(2)) = \/—2? max Re(Liz/o(2) — Lisa(2)) + O(rY/2).

Using the series representation (3.1) of polylog functions,
| Li/s(2) — Lis/a(2)] < Z |2F (k%2 — k75/%) < ((3/2) — ¢(5/2) < 1.271.

Here ( is the Riemann zeta function. Hence,

|H|1§)I<z Re (z;A1(2) + 7A2(2) + 2B(z)) < 0.50717 (4.8)

for all large enough 7, and
7{ ¢mr A ()47 A2(2)42B(2) 0 (=0517) g, — (00027
|z|=R

and we obtain the result. O

Since the kernel of K, is given by a sum, Tr K, is a double sum. We show that the main contribution to
the trace comes from a single term of the sum.

Lemma 4.7. With the change © — x. in (4.1)), there is a constant § € (0,1) such that for every §; € (0,6),

2%+ (uo(2)

K, = ——7—-—F
PR 4ug(z)*

+ 0(671'46327) as T — 00,

uniformly for 1 —§ < |z| <1—0;.

A direct calculation shows that 2Re @, (ug(—1 £ 40)) ~ —3.87957, so the term singled out above is
neglectible when compared with the error term for z close to —1. However, the importance of the formula
above comes from its uniformity: when z moves away from —1, the formula is still valid, and for z sufficiently
away from —1 the contribution from the term ¢2®(#0(2)) above becomes dominant over the error term.

Later we will use the asymptotic formula above to compute the integral in Proposition [4.6] The major
contribution to that integral will come from a critical point z = z. of the exponent of the integrand and, at
this critical point, the contribution that will arise from the term e2®~(#0(2¢)) will indeed be larger than the
error term.

Also, the asymptotic formula above has to be interpreted carefully when considering z < 0, as the term
TrK, is analytic in 0 < |z] < 1, but ug(z) is analytic only in C\ ((—o0,0] U [1,00)). Nonetheless, it is
easy to check from the definition that wg(z) and (z) are bounded in any compact subset of the open
set {z : Rez < 0}, including on the line segment ( 00,0), and admit continuous boundary values when
z approaches (—o0,0) from above or below (although these boundary values do not coincide). Therefore,
as will be done later without further mention, these asymptotics can be used to integrate Tr T, along any
contour that intersects (—oo,0) only at its endpoints.
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Proof of Lemma[.7. By the definition of the kernel,

P27 (ur)+27 (u)+3 (uf—u3) 227 (uo)

TrK, = K. (u,u) = + REST
ugs:, 1%]% gy (uj + ug)? dud

where we have set
e‘I)T(Uk)-‘rCI)T(u])-i-%(ui—uf)

REST =
(k,j;om wet (1 + u)*

We estimate REST. Let 79 > 0 be the constant from Corollary Using |e%“i| = |z|7 and Lemma

|REST| Sc% Re @, (uo) Z Re @, (uj) Z Re @ (u) Z Re @, (u;)

§#0 k0 JEL

From Corollary |4.2] we have efte ®r(u0) < (047347

Re @ (ug) 1.9366|k|/2 ¢ 198067
k — 1.
Ze < 226 < 1 _ ¢—1.93667
k#0
and
Re®, (u;)  ,0.4734r Qe 193007

Ze Tze T —1.93667

JEZ
for all 7 > 75. Hence, |[REST| = O(e~146327) and we obtain the result. O

We arrived at the main result of this subsection. To state it, we define the functions

Lis/o(2) — 2uo(z) — %uO(Z)Sv

1 . 1
fi(z) == \/727% Lig/a(2) — \/—2?

1 . 4.9)
z) = 2ug(z) — —= Liz /2 (2), (4.
f2(2) 0(2) N 3/2(2)
E(z) = 2B(2)=2Q(uo(2))
for z € C\ ((—o00,0] U[1,0)), where B and @ are given in and (23).
Corollary 4.8. There is a constant € € (0,1) such that
E Tfl(z)-i-rl/zwfg(z) 7.‘_1/4}(
F(xy; O(e=0:0027 th & == 4.10
(xr57,7) 871'@/ () dz+ O(e ) with & 7 ( )

as T — 0o, where I' is any simple contour in the domain C\ ((—oo,0]U[1,00)) that starts at a —i0 and ends
at b+ 10, for any a,b € (=1 —¢,—1+¢).

Proof. Observe that the integrand of is analytic in C\ ((—o0,0] U [1,00)). Let R for the contour in
Proposition be any number in [1 — §,1) where § is the constant from Lemma We regard the contour
as an arc that starts at —R — 70 and ends at —R + i0. We insert the result of Lemma [£.7] into the formula
of Proposition By the definitions, e®r41(x)+742(2)+2B(2) times 22 (w0(2) is B(z)em1()+7/*2f2(2) anq
hence we obtain the result when the contour is an arc that starts at —R — i0 and ends at —R + ¢0. Since
the integrand of is analytic in C\ ((—o0,0] U [1,00)), we can deform the contour to any other simple
contour in the same domain but with the same end points —R — 0 and —R + 0.
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We now show that there is € > 0 such that for any —1 — ¢ < a1 < a2 < —1 + ¢, the integral over
the line segment from a; — 70 to as — 10 or the line segments from a; + 10 to as + i0 are exponentially
small in 7. This allows us to change the end points and still have the formula valid, thus concluding
the proof. Noting ug(—1 £ i0) = fli; 2m and using the numerical values Liz/p(—1) = —0.7651--- and

=
Lis/p(—1) = —0.8671- - -, we see that

1 1 i /T
—Li —1) — —1Li —1)+2 — = —3.8388---.
NGT: 3/2(—1) Jon 5/2(—1) +2v/m 3

Thus, by continuity of the integrand up to the boundary (—oo, 0) &0, we find that the integrand is O(e=>7)
in a neighborhood of z = —1, as we wanted. O

Re f1(—141i0) =

4.3 Asymptotic analysis of polylog integral

We now evaluate the integral on the right-hand side of as 7 — oo using the method of steepest descent.
It turns out that the main contribution to the integral comes from a point on the Riemann surface on which
the integrand admits analytic extension.

Recall the Riemann surface R introduced in Section 3.2l Define the one-form

E(z)erfl (z)+7'1/2£f2(z)
8mizUg(2)*

dz (4.11)

Wy =

on R, where E, f1,fs, Ug are extensions of E, fi, f2, up defined in Section[3] Using this notation, the equation

(4.10) becomes

F(zy;m,y)=1-— / wr + 0(670‘0027—) (4.12)
r

where I' is a contour in the first sheet R, which we now take to start at —1 — 0 and end at —1 + 0. We
will see that as 7 — 0o, the main contribution to the integral comes from a neighborhood of order 7—1/2
of the point z = 0® on the second sheet Ro. We deform I' to a new contour IV = I'y UT, U '3 defined as
follows (see Figure [6)).

e 'y = v U7 where 1 is a contour that starts from the point —1 — ¢0 in the lower half plane, moves in
the lower half plane of R; until it hits a point on the branch cut on (1, 00), and then moves to the upper
half plane in the second sheet Ro until it ends at a point in the upper imaginary axis. Concretely, we
use the contour

() = e 2E=mFVTE for _r <t < \/7/2,

where the part for —/m < ¢ < 0 lies on Ry and the part for 0 < ¢t < /7/2 lies on Rs. Note that
Y1 (=) = =1 —i0 and 7, (0) = e™/2 > 0. Also, 1 (y/7/2) = ie ¥ on R,.

e 'y = 5 U73, where 75 is the line segment on the imaginary axis in Ry joining the point vo(y/7/2) =

ie>™/8 and the point i7 /12,

e I's is a contour in R, joining the point i7—5/12 and —it—5/12. We take it to be the union of straight
line segments with a semicircle, namely

T3 ={z=7"12® —71/2 <0 <n/2}U{z =iyt /2 < |y| < 77512},

oriented downwards. As we will show, this part gives the main contribution to the integral.
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~~ B R1

1 /
Figure 6: The dashed curve in the first sheet is the original contour I'. The solid curve is the contour
I =T3 U, UT3. The contour I's is the arc on the second sheet that connects the two marked triangle

points. I's consists of two straight line segments each connecting one marked triangle point and one marked
square point. The remaining part of the solid curve is I';.

In the above, the notation 7; denotes the contour in R whose intersection with R is the complex
conjugation of v; N Ry.
We now evaluate the integral of w, on each part of ' =Ty Uy UT;.

. 1 01,2
lim Wy = —— e 2% du.
T—00 s 2T .

Proof. The contour TI's is on the second sheet R,. From the definition (4.11) of w,, Lemma and

Lemma [3.5]
1 d
s 27t Jp, z

Lemma 4.9. We have

( ) ( i ( ) i ( )) Vi i ( ) = 22 T O( 3) — 23 1/20( 2)
(z2): 1 4 1 z 1 z z z z 7 z
H o Liz/o Lis /o o Liz /o 8/ + o +

where the error terms are independent of 7. Using |z| < 775/12 for the error term and changing the variables
z = 771/25, we find that

1 12 e ~1/4yd
/ Wy = —5 68\153 J=s+0(1 )—5(1 + 0(7_75/6))'
I's s 7'1/2F3 S

The new contour 7'/2T'3 consists of the line segment from —i7'/12 and —i, the line segment i and ir'/'2,
and the half-circle, {z = €| — 7/2 < § < 7/2}. It is oriented downwards. Note that the pole s = 0 is

located to the left of the contour. Reversing the orientation, recalling & = ”12", and changing the variables

s = 27 /4y, we find that

. 1 [ 1 2 s .ds 1 12 . du
lim Wy = - e 2 —

T—00 I's 211 — 00 —o00
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where the contour of the middle integral goes around the pole s = 0 through the right half plane, and the
contour of the last integral goes around the pole © = 0 through the lower half plane. Changing variables

u — u — 1X, it is easy to show that the last integral is a function of x whose derivative is —\/%e‘xz/ 2 and
tends to zero as x — +o0o. Hence, we find that
1 ° 1,2 1 1,2
- e~ oUW —ixuTZ _ / e 3% du
2mi J_ o U Vor Jx
and we obtain the result. O
Lemma 4.10. We have
lim wr =0.
T—00 Ty

Proof. Since 'y = 5 U735, by symmetry, it is enough to consider 7 which is the line segment in Ro from
the point ie3™/8 to i7~5/12. From the definition of w, and Lemmas |3.1] and

. 37/8 .
/ o= E(ZifJ)4e—ﬁ(ms/g(iy)—mg/g(iy))—fj/;j Lis (i) gy
v 81 ) —s/12 Yyuo(iy)

By the integral representation ((3.2)),

. . 4
Re (L15/2(Zy) L13/2(zy \f/ th e <2t1/2 — 3t3/2> dt.

The integrand changes its sign at ¢ = 3/2. Splitting the integral into two, numerical evaluations show that,
for 0 < y < €37/8,

4
: . 1/2 3/2 3/2 _ o41/2
fe (L15/2(zy) L13/2(zy / et + 63”/4 ( o 3t ! ) dt = \f/ e2t ( vl 2 >dt

Y

VT

On the other hand, the function y +— Liz/s(iy) is continuous in the interval [0, e
Re Lig /o (iy) = Re(iy — % +0(y?)) = —% +O(y?) as y — 0. Hence, there is a constant ¢; > 0 such that

((0.06729 - - ) — (0.02600- - - )) > (0.02)y>

37/8] and has the behavior

| Re Liz o (iy)| < cy?  for every y € [0,€%7/8].

In addition, by Lemma and continuity, there is ¢ > 0 such that |E(iy)| < ca|uo(iy)|[* on the contour.
Combining together, we find that there is a constant ¢ > 0 such that

e/ =Ty’ 0o ,—eau®
/wTSCQ/ dy§02/ du
Ty T—5/12 Yy F1/12 U
and we obtain the result. O
Lemma 4.11. We have
lim wr = 0.
T—00 Fl

Proof. By symmetry, it is enough to consider only the part v; of I'; that starts on the lower half plane on
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Figure 7: The plot of Refy(y1(t)) for t € [—/7,/7/2]: the maximum is —0.104065 - - - at t = /7/2.

R1 and ends on the upper half plane on R5. We specified ~y; explicitly by its parametrization
)? ;
M) =e "2 = e 2WMHVAL where n(t) = t — iy/T for —/T <t < V/7/2,

and we take 71 (t) to be on the first sheet R; for —v/m < ¢ < 0, and on the second sheet Ry for 0 < ¢ < /7/2.
We note that v, (—+/7) = —1 — 0, 71(0) = ™2, and 7, (v/7/2) = ie3™/8. Tt is straightforward to check that
uo(71(t)) = n(t) for —/m <t <0 and ug(y1(t)) = —n(t) for 0 < t < y/7/2. From the definition (4.11)) of w,,

V72
/ o = L EC1(0) st 230200y (1)t (4.13)
" 8mi J_ 7 m(t)

We have |n(t)*| = |t —i\/m|* > 7%. Each of the functions |y} (¢)|, |[E(71(t))| and Refa(y1(t)) is bounded along
the contour: for 4 this is clear from its definition whereas for Refs and E this follows from Lemmas and
From the definition and Lemma [3.3]

\/%7 Lizo(11(t)) — \/% Lis /o (1 (1)) — 2n(t) — 3n(t)%, ¢ <0,

fi(n(t)) =
e {\/27 Lig 2 (11(¢)) — \/%Li:am(’h(t)% t>0.

Using this explicit expression one can check numerically that the function Ref;(y1(t)) for —/m <t < /m/2
has its maximum at ¢t = y/7/2, and the maximum value is negative, see Figure m One could also rigorously
prove that Ref;(y1(t)) < —0.03 in this interval by expanding the difference Liz/o(v1(t)) — Lis/o(1(t)) in
series and viewing the expression for f; above as a polynomial in 7(t) of degree 6 plus a small and controllable
error. Since this proof is straightforward but cumbersome, and the claim is clear from Figure [7}, we do not
provide the explicit calculations. Hence, the integrand of is O(e™°") for some ¢ > 0, and we obtain
the result.

O

4.4 Completion of the proof of Theorem [1.5

The only thing left to check is that it is possible to deform the contour I' in to IV. We thus need
to check that w; is analytic on R. Since fi, fo, E, Ug are all analytic on R, the only possible singularities of
w; come from the zeros of Ug. The only zero of Ug is the branch point z = 1, which is a simple zero (see
Lemma . Since E has a zero of order 3 by Lemma and dz = 2wdw has a simple zero using the local

coordinate z — 1 = w?, we find that w, has a removable singularity at z = 1. (Putting aside the terminology
E(z)emf1()+71/2052()

of Riemann surfaces, this simply means that the function has an integrable singularity

8mizug(z)?*
at the branch point z = 1). Therefore, w, is analytic on R, and we can deform T' to I in the integral in
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(4.12). The proof is then completed from Lemmas and

5 Small time limit

We prove Theorem [.6]

5.1 Small 7 limit

We set v = 0 as in Theorem Recall (&) = 7%753 + 2& — Q(€) from (2.F). Scaling s,t by 7'/3 in
Lemma the distribution function (2.7) can be written as

F(Tl/Sx,T 0) = %eTl/3IA1(z)+TA2(z)+QB(z) det(I — A2 ) dz
T ©T omiz’
where A, ; : L?(0,00) — L?(0,00) is the operator with the kernel
Aurls,t) = TR (35, 70 s, = 710 S0 e e e (0 (5.1)

£eS—

for s,t > 0. Observe that A, - depends on z since the set S_ depends on z.
We compare F(7'/32;7,0) with the GUE Tracy-Widom distribution, Fgur(z) = det(I — A2), where
A, : L*(0,00) — L?(0, 00) has kernel

A, (s, t) =Ai(s+x+1), s,t > 0.

Recall the integral representation of the Airy function

Ai(z) i/«e*u;*z“du, z € C, (5.2)
A

- 21

where A is an unbounded contour from ocoe™% to oce? for any 6 € (7/2,57/6).
We will show that if we scale z appropriately with 7 then in the limit 7 — 0 the term Q(€) vanishes and
the kernel A, -(s,t) converges to the Airy kernel along with its Fredholm determinant.

Lemma 5.1. For every e € (0,1), there is a constant ¢ > 0 such that

—2/3

QUr '3 =0( ) (5.3)

as T — 0 uniformly for ¢ satisfying Re(¢?) > 1 — € and Re¢ < 0.

Proof. From ([2.4)), after a change of variables,

ico _ o —=C2/(27¥3) u? /2 ico 2,2
log(1—e e""/?) du 1 log (1_6_;2/3> duC'
u—

Qe —- [

—73 : .
—ico u—T171/3¢ i i

—100

22 2 _ Re(¢?) _l-e
Uniformly for u € ‘R and Re(CQ) >1—¢ |e 2r2/3 | < |e 272/3} =e 2023 <e 223 5 0as T — 0, and

hence,

2 Re(¢?—u?) 1—ct|ul?

2y 2,2
log <1 — e 2:2/3 )‘ < 2‘6_ 2,2/3 ’ =2e 2:2/3 < 2¢  2-2/3
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Figure 8: The dots are the points in S_ and sit in the dashed parabola determined by |e=*"/2| = |z|. The
contours Aj, and Ay, are represented in solid lines.

Also note that |u — ¢| > |Reu — Re(| = /(Re()? > y/Re(% > /1 — ¢ uniformly for u € iR and ¢ as
assumed in the lemma. These two estimates complete the proof. O

Lemma 5.2. For every xg € R, there exist constants C,c, 79 > 0 such that
A (5,1) — Au (s, £)] < Ce— " emelstti—clz—r0)
for every x > xg, s,t >0, 7 € (0,79), and every z satisfying
1
|z| = e 2273, (5.4)

Proof. Define the function ;
_ — w4 2w (et s+t)—Q(w)
f(w) - Z—€7w2/26 3
for Rew < 0 in the sector %’“ <argw < %’“. Recall that this sector contains the set S_ (see (1.5)) and that
the function @ is analytic in this sector. The fraction in the formula for f has simple poles precisely at the
set S_ and

Res f = Lo-dretrPeatsn-a©) o Ees_.
3 £

Therefore, (see (5.1])) we can write

s +1/3 +1/3
Ay (s t) =~ = 5 dw — — d s .
+(s,1) T gezs: Rsesf 2mi )y f(w)dw 27 Jy f(w)dw (5.5)

—3mi/4

where A, and Ayt are two unbounded curves in C, both from ooce to ooe?™/4 lying in the sector

?jf <argw < %’r such that S_ is contained in the strip between A;, and Aqu. We also choose Aj, to be to
the left of Agys; see Figure

Let z satisfy (5.4). Changing the variables w = 771/3¢ we get the identity

71/3/ Fw)dw = [ %e*%C3+C(z+s+t)*Q(T’l/sC)dcy (5.6)
A z—e" T

in,out Ainout
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where the new contours Kin and /A\out are as follows. Since |z| = (fﬁ,
7138 c{ueC | Reu? =1, Reu < 0}.
Thus, for every ¢ € (0,1), the scaled set 7/3S_ lies between the contours
Ain:={C€C | Re(®=1+¢, Re¢ <0} and Agy:={C€C | Re¢>=1—¢, Re( <0}.

These contours lie in the sector 3& < arg ¢ < 5%, We choose the contours with any fixed € € (0 1).

Re
Note that since |z| = e 272/37 we have |ze272/3| =e 272/3 = €377 for ¢ € Ay and |ze2r2/3\ = 78
for ¢ € Aout Thus,

-1
o 1 PR ~
PEPECCON <1 - zemz/)) =1+0(e =), (€A, (5.7)
and »
% = _2642/(272/3) (1 — 2642/(2T2/3)> = (’)(e—ri/s ), Ce Kout (5.8)
z—e" T

as 7 — 0, uniformly for ¢ on the respective contour and z satisfying (5.4)).
Using A = A, in the integral formula of the Airy function in (5.2)) and (5.6)), we obtain

1 z _O(r—1/3 et (ats

Since s,t > 0 and = > 79, and —Re( = v/(Re()? > \/Re(2 = /1 + ¢, we have

,1/3

/ f(w)dw — Al(S-i—:C-i—t)‘

27

ReC(z+s+1t) < —vV1+elx—z9+s+t)+zoRe(, CeKinU/A\Om.

The integral [; e3 Re(€)=mo Re¢|d(| is convergent, and thus we find using (5.7) and (5.3) that there is a
constant ¢ > 0 which is independent of the parameters, and another constant C' > 0 which depends only on
Tg, such that

L1/3

o / fw)dw — Ai(s +x + )‘ < Ce—cm V? o= VITe(z—zotsti)
i

as 7 — 0. Similarly, we obtain using (5.8))

L1/3

/ f dw < Ce—CT /3 \/l—e(m—wo-i-s-i-t).
2mi Aout

The proof is now complete once we combine these estimates with ((5.5)—(5.6]). O

Corollary 5.3. For every xg € R, there exist constants C,c, 19 > 0 such that

|det (T—A2) —det (I—A2) | < Ceem Peelo=a0)

_ 1
for all x > xg, T € (0,70), and z satisfying |z| = e 27273 .

Proof. Denote by ||-||1 the trace norm and by |-||2 the Hilbert-Schmidt norm. Using

| det(I — Ky) — det(I — Ka)| < [[Ky — Ka||1 exp (|[Ky |1 + [[Kall1 + 1)
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and ||K;1Ks||1 < [|[Kyl|2||Kz]|2, we have

|det (- A7 ;) —det (I—A3) | < [[Asr — Allz (1Azrllz + [Asll2) exp ([1Azr 13 + [Asll2 +1)

Lemma [5.2] implies that

|Ag - — A;c”% < 0267267*2/36720(1710)/ / e—2e(s+t) Joqt — 0(672”7 .
0 0

On the other hand, ||A;||2 is uniformed bounded for & > z¢. Therefore, we obtain the result.

5.2 Completion of the proof of Theorem (1.6

The functions A;, A3 and B in (2.2)) are analytic on the unit disk and A;(0) = A2(0) = B(0) = 0. Thus, by

Cauchy’s Theorem,

F(r'32;7,74 = 0) — Fou(z) = j’{ e7 P ETT AN F2BE) (det(1 - A2 ) — det(I - A2)) S~

Taking the contour as the circle ([5.4)), the proof now follows from Corollary

6 Right tail estimate

In this section we prove Theorem It is convenient to reformulate the right tail of Fqug(z) and (Foug(z))?
in terms of an integral involving the Airy function. The Airy function Ai(x) has the integral representa-

tion (5.2) and

Ai(x 1+ (9(33_3/2)) , x — o0.

1 _23/2
)_ Qﬁxl/éle ’ (
We define -
Blzia)i= [ (- o)eAi@idy, ek

and denote in particular

B(x) = B(z;0).
Lemma 6.1. We have
. _ 1 az—3z3/2 o 3042 —3/2
B(x, Oé) = 7167mc3/26 3 (1 + 71/2 + E + O(.”L' )

as x — 00. Moreover, for any positive constants a and (3,

B

rt+ax
/ (y — z)e™Ai(y)%dy = B(x;a)(1 + O(e ™

1
o ), «— o0.

Proof. Inserting (6.1)) in (6.2)), and writing y = x + s, we have

Blaia) = /0 ( S ere 1 s (14 0a?))

Ty s+ x)l/Qe
eaw7%w3/2 1 6_%
_ as 72\/Esd <1 10) —-3/2 )
iz Sy 5 (Ut sjo)2€ s\1+ 0
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where for the second equality we changed the integral domain from (0, 00) to (0,1) since the integral over

3/2 Expanding the fraction in the

(1,00) only gives exponentially smaller error, and expanded (x + s)
integrand in power series and applying Watson’s lemma we obtain (6.3)) after routine calculations. Using a

similar calculation,

o} az—423/2
_ Y Aj 2d :e 3 O —caPt2
| =iy = o
for any positive constant ¢ with ¢ < 2a. Combining with (6.3]), we obtain (6.4)). O

Noting that Tr(A2) = B(z), the right tail of the GUE Tracy-Widom distribution satisfies
1= Faun(a) = B(z) (1+0(e~30792"")) (6.5)
as x — oo, for any € > 0 fixed. This implies that

1 — (Fous(z))? = 2B(x) (1 + O(e%ﬂff)r“)) . (6.6)

Now we turn to the function F(z;7,7). Recall Lemma

dz

Flai7,7) = j{eml(zwmz(zww(z) det(I =T, T,)5— (6.7)
Tz

where the contour is any circle |z| = R with 0 < R < 1. We take  — 400 with the choice of contour
|z| = e 7.

We prove the following result.

Proposition 6.2. For every vy € [—1/2,1/2], there exists a constant 0 < € < 1 such that the Hilbert-Schmidt
norm of T, satisfies

IT, ||z < e 30-95" 7% g5 5 o0,

uniformly for |z| = e~ 2.

We also need to evaluate the leading term asymptotics for Tr(T_, T, ). This will be done with a careful
control of the Laurent expansion of the kernel for the product T_, T, at z = 0. As a result we will see that
for |y| < 1 the Laurent coefficient for 20 is the leading one, whereas for |y| = 1/2 the coefficients for z*! and
29 all contribute to the same order as z — oco. For the precise statement, set

2 2
—g(" v —g(* ooy 1
b(t,v,z) =B <71/3 + 474/3) , by(r,v,x) =B (7-1/3 + 474/3’:t27—2/3> .

Proposition 6.3. For each v € [-1/2,1/2], there is ¢ > 0 such that the following result holds as © — oo
uniformly for |z| = e"27 : if |y| < 1/2,

Tx(T-,T,) = b(r,7,2) (1+0(™"")),
and if vy = +1/2,

Tr(Tl/QTfl/Q) = (Qb(7-7 1/2a -T) + Ze_ﬁb_k (7'7 1/2, J,‘) + Z_leﬁb_ (T, 1/27 l‘)) (1 + O(e—crl/z)) )

36



Z

Lemma implies that by (r,1/2,z) = e*(F T52:2)p(7,1/2, 2)(1 + O(x~1/2)). Hence, for |2| = e~ 3,
Zb+(7—7 1/27 $) = O(b(Ta 1/27 LE)), Zﬁlb— (7_7 1/27 iL’) = O(b(Ta 1/27 x))’ (68)

so the three terms in Tr(T;,2T_;/2) have the same order.
We prove the two propositions in the following subsections. Assuming them, we now obtain Theorem [I.7]

Proof of Theorem[I1.7 The functions A;, Ay and B are analytic (see (2.2))), and using (3.1)) we see that

+7)z
E(2) = "1 () +742(2)42B(2) — 1 _ L + 022 as z — 0.
) o)
Hence,
dz dz dz T+T
E =1 E =0 B = ——. 6.9
f{ gz = 1 ]{Z () gmiz =0 ]{Z () 5mia Nor (6.9)

We also have E(z) = O(1) for |z| = e~27 as & — co. On the other hand, using || T_,T|j1 < [|T—|l2/|T, ]2
and Proposition [6.2

_ 8(1—e)a3/2

det(]I - T—WT“Y) -1+ TT(T—WT’Y) = O(HT—VTWH%) = O(e arl/2 )

. —z
as ¢ — oo uniformly for |z| = e~ 27. Hence,

dz _ 8-/
1—F(x;7,y) = ]{ E(z) Tr(’]I‘,V']I‘ﬂ,)% +O0(e 32, (6.10)

|z|=e~ 27

Thus, for |y| < 1/2, Proposition and (6.5) imply the theorem. For v = £1/2, Proposition the
equation , and imply that the integral in (6.10)) is

(x+ T)eﬁ 12
20(t,z,1/2) - ————b_(1,2,1/2 14+ 0(e™ .
( (r,1/2) = S =b (o 1/2) | (14 0@

Since b_(7,1/2,z) = O(e~37b(7,1/2,z)), we obtain the result from (6.6). O

In Section [6.1] we first analyze the kernel of T.,. We then prove Propositions [6.2 and [6.3] in Sections [6.2]
and [6.3] respectively.
6.1 Analysis of the kernel T,
The kernel of T, is given by Lemma [I.T] and we recall it here,

e~ FETTEHYE-Q(E)

— (6.11)

Ty(s,) =Tz +s+1), T =Tmzar) =)
£esS—

for s,t > 0. The function @ is defined in (2.3). In this subsection we find the asymptotic behavior of 7 (y)
as y — 00.
Fix 7 > 0 and define the Airy-like function

redn d
Aly;p) = / e‘553+552+?’f‘Q(f)2—§. (6.12)
A ™
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5mi/4 3mi/4

where A is any simple unbounded contour from oce to ooe contained in the sector 3w /4 < argé <
5m /4, the latter condition being imposed so that @ remains analytic along A. Without the term @, the

above function is a scaled Airy function,

3
“'72_)'_#?! 9
Crgpueryye A6 e [y I
/Ae ’ ’ omi 71/3 Al F1/3 + 47473 |- (6.13)

The function 7, (y) in (6.11) looks like a discretization of A(y;~y). The factor %5 is close to the spacing

between the points in the discrete set S_, which is not uniformly spaced. A precise comparison between
T,(y) and A(y;~) is in Proposition below.

6.1.1 Asymptotics of A(y;u)

Lemma 6.4. There are constants ¢ > 0 and yo > 0 such that

. - 61‘2“72—"_% . y /_}/2 —cy
Aly; ) = 173 Al <T1/3 RvE (1+0(e™))
forally > yg and p < 2,/7y.

Proof. The proof follows from the standard steepest descent analysis, accounting for the factor ) in the
exponent. Introduce the change of variables £ — w for (6.12) and (6.13)),

) 1 2\ 1/2
fzsw—i—%, with s::ﬁ(y—l—ﬁ;_) > 0.

In terms of the new variable,

1/3
71/36_%_%“%“) A2 — T1/3s / eq—s?’(_%u;3+w)(efQ(E(w)) ~ 1)dw.

2 J}

To evaluate the integral as s — 0o, we need to take a contour of steepest descent. The relevant critical point
of the function —w?/3 4w is w = —1 and its path of steepest descent is a contour from 00ed™/3 o coe?™i/3,
it is on the hyperbola 322 — y? = 3. However, Q(&(w)) is analytic in the sector 37/4 < argé(w) < 57/3,
which is approximately 37/4 < argw < 57/3 when w becomes large, and consequently we cannot deform
the contour to the path of steepest descent. Nonetheless, since the functions involved are explicit, we find
that there is a contour in the sector that is “steep enough” and passes the critical point z = —1. We use the

following concrete choice:
A=A UAy:={—1+4bi|—02<b<02}U{a+bi|a®—b>=—145a—0.49, a < —1}.

This contour is locally the same as the path of steepest descent near the critical point z = —1. To verify that
the method of steepest descent applies, it is enough to show that (1) Re(—w?® 4+ w) decreases as a = Rew
decreases along /AXQ and (2) the factor e~ @EW)) _ 1 is exponentially small uniformly on the contour.

For (1), it is direct to check that for w = a + bi € As,

w3

2
Re ( — 5+ w) = ga?’ +1.45a* + 1.49a

and its derivative is 2a2 + 2.9a + 1.49 > 0 for all a.

38



For (2), we use the integral representation (2.4) of Q. For w =a+bi € Kg,

2\ 1 /1‘2 2 = K = H

Note that the above function depends only on ¢ = Re(w), not on b = Im(w). The assumption p < 2,/7y
implies that A < 1/ V/2 which in turn gives 2\ — 1.45 < 0. Hence, the above function takes its minimum

when a = —1, and for this value of a we have b = 4+0.2 since a + ib is on /AXQ.
On the other hand, for w = a+ib € Ay, Re(£(—1+4bi)?) is equal to —s2b? plus a term which is independent
of b. Hence, the minimum of Re(¢(w)?) over w € A; is achieved at the end points w = —1 4 0.24.

Thus, we found that Re(¢(w)?) > Re(&(—1 + 0.2i)2) for any w € A. Now, noting that the function
f(v) := v? — 2v + 0.96 is a decreasing function for v < 1, we have f(\) > f(%) = 1.46 — /2 > 0, and
therefore,

Re(£(w)?) > Re(€(—1 £ 0.2i)?) = s2f(\) > (1.46 - \/i) 2 for w € A.

Combined with Re(¢(w)) < 0 from the definition of {(w), we find that &(w) is in the sector 3w/4 <
arg(&(w)) < 5w /4 for all w € A, and also,

|e=€(W)* /2| = = Re(6(@)®)/2 < o—cly+47)

with ¢ = (1.46 — v/2) /7. With arguments similar to the ones in Lemma we obtain
2
Q(E(w))| = O™+ 5)) (6.14)

~ 2 ~
as y — oo, uniformly for w € A. Hence e~ Q) — 1 = O(e~¢w+457)) uniformly for w € A.
Thus, the method of steepest-descent applies. Since the integral without the term (e*Q(g(“’)) — 1) is the

same as Ai(72/3s%), the asymptotic formula is the same as that of the airy function multiplied by an error
from (e~ QE) —1). From (6.14) we find that

1/3 )
T _S / e’ (-3witw) (e_Q(g(w)) — 1Ddw = 0(Ai(71/382)€_c(y+é)).
2mi JR

This completes the proof. O

By (6.1), the above lemma implies that

1 PP\ T e e () -
M) = g v+ ) FEEOE (Lroum) e

for all y > yp and p < 2,/7y.

6.1.2 Truncated series expansion of 7, (y)

Note that 7,(y) depends on S_ which, in turn, depends on the complex variable z that appears in the
integral in (6.7). To compare 7, (y) with A(y;v), we start with the following formula.
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Lemma 6.5. There are positive constants xq and C such that

o0

— Y Ay — k)| <
k=—K

for ally > xg, 0 < |2] <08, and K > 1.

()

The values 0.8 and 0.9 are chosen solely for convenience. The proof will show that the condition |z| < 0.8

K
can be changed to |z| < r for any fixed r € (0,1) with the bound changed to (%) for any R € (1, 1).

Proof. Using the fact that S_ is a set of zeros of the equation e=€/2 = 0, we can write (cf. the proof of

Lemma
o 5 HUE-QE) df
z—e 52/2

Out

where we take Aoy = {€ : |e’E 2| = 0.9]z], Re(¢) < 0} and Ay, = {¢: |e*E 2| = 0.9, Re¢ < 0}. Both
contours lie in the sector 37/4 < arg & < 57 /4 and they extend from 00e™4 to coe? /4. The points of S_
lie between these two contours since |e=€"/2| = |z| for all £ € S_ and 0.9|z| < |z| < 0.9.

Since [z71e=¢"/2| = 0.9 < 1 for £ € Aoy, the geometric series implies that

1 - d
1 7 ECHIEHE-QE) g = Zz*k/ L Ol i)

- —£2/2 .
2mi Jp,, z—e €/ prs Aous 2mi

The integral is A (y;y — k). On the other hand, for £ € A;,, we write

K
_ k k52/2 ( z ) z
o ——— Z \emen) T —on

Since |e*§2/2| = 0.9 for £ € Ay, and |z] < 0.8,

1 z \K z 2| _ _Re(zed
il FE+3E%4ye-Q(¢ 1=l ¥ Re(3£°4+Q(8))
27_”; /Ain (6_52/2) y— 6_52/2 df‘ <0 9> (09) /Am e 3 |d£|
where we use the fact that Re(£) < 0 on Aj,. The last integral does not depend on z, y, or K. Hence, we
obtain the result. O

We use the above result when |z| = ™27 with 2 — co. We will also choose K = K (y) depending on y
in a specific way; see ((6.21]).

Corollary 6.6. There are positive constants xo and C such that
= —k _ 9K
T — Y. 2 *A(yiy — k)| < Cem (6.16)

k=—K

for all 0 < |z| < e™ 27, y > x > g, and any choice of K = K(y) > 1.
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6.1.3 7,(y) when y is close to z

We show that the main contribution to the sum in Corollary [6.6] comes from only one or two terms.

From (6.15), for |z| = e~ 37,

px 2y3/2 p—k 1_ =z
6F+ 3T f(%/ﬁ’l ayr)

Var(dry + (1 — k)2))!

|z " Ay p— k)| = i (1 + O(y*3/2)) (6.17)

as y — oo, uniformly for p and k satisfying u — k < 2,/7y, where
3
flus \) == + Shu—(1+ u?)3/2, (6.18)

This function f(u;A) is strictly concave for every A. It is strictly increasing when A > 1, and when A < 1 it
has the unique maximum

A) = s A) = — 31— 2 4 Ly _ A

We are interested in the case when z <y < z + (’)(xl/z) and x — o0o. In this case, A=1—%2 — 0 as

x — 00, and hence the maximizer u. of f(u;1— %

(6.19)

) is close to 0. We may expect that the main contribution

to the sum in Corollary comes from the term corresponding to & at which the function f (2“\/_%, - %)

becomes the largest. Since f is concave and k is a discrete index, the maximum may occur either at one
value of k or two values of k. We will show that the main contribution to the sum comes from the term
k =0 when || < 1/2, from the terms k = 1,0 when v = 1/2, and from the terms k = 0, —1 when v = —1/2.
For this purpose, we first analyze the function f. We use the next result when s = O(z) — oc.

Lemma 6.7. The function f defined in (6.18) satisfies the following inequalities.

(a) For alla < 1/2, >0, and A > 0,

(o) (2 > M)

s 252

3(1420)%+1 142«
(b) For all a > —1/2, 525(?02@7 and 0 <\ < ES ,

f(j;)\)f<a;rl;>\> > 1+2a.

8s2

Proof. (a) Since u® and %)\u are increasing functions of u, we have

. _1y2\ 3/2 2\ 3/2
f(j;k)—f(asl;k)z(ur(a;) —<1+Z‘2) .

Using the inequality (1 + a)3/2 >1+ 37“, which holds for all a > 0, the above is equal to

a?\*? 1—2a\*? a?\ 3(1-2a)  3(1-2a)
1+ < 1+—=2) 1) >(1+< = .
< +s2) < +a2+82> _( +:32>2(042—i-32) 252
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(b) From the formula of f,

a a+1 \  o®—(a+1)° 3\ 3/2 1420 \*?
f(s’)\)_f( s ’)\)_ 3 _%—i_( +7) 1+a2+32 1

From the assumption on s,

o —(a+1)*  3(1+20)*+1 S 5(1 + 2«)

s3 453 - 452

Using the inequality (1 + a)?/? > 1+ 37“ for a > 0 again,

a a+1 5(14+2a) 33X 3(142a)
f(s’)\)_f( s >\> = 12 25 | 29

From the condition A < 13; we conclude the proof. O
Lemma 6.8. Fix 7 > 0.

(a) For each fized u < 1/2, there exists xo > 0 such that

1-2u+2k, 1/2

T Ay p— k= 1) <27 S 2TRA(y; p— k)|

for all |z| =e 27, y > x> g, and k > 0.
(b) For each fixed > —1/2, there exists xg > 0 such that

14242k 1/2

[ Ay p+ b+ 1)] < 2e a2 2R A (ys o+ )|

or all |z| = e~ 2 and x > xo, and for all y and k satisfying r <y < z + 2ut2k /o and 0 < k<
24/T
K(y) = [{3v7Y)-

Proof. (a) The formula (6.17)) applies since p—k < p < 24/7x < 2,/7y holds if z is large enough. Note that
(p—k)? < (u—Fk—1)2 for all k > 0 since u < 1/2. Also noting that the error term in (6.17) is uniform in y
and k, we find that for all large enough y > z,

—k—lA u—-k—=1 23/2 _
& : (y;p—k—1)] gzexp{— y1 i (f<u k;l_w> f(u k — 71_30))}.
|~ A(y; 1 — k) 37t/ 2yTy’ oy 27y y
Applying Lemma (a) witha=pu—k, s=2,/ty,and A\=1— %, we obtain the result.
(b) Since p+k+1<pu+1+ K(y) <2,/7y if y > x and z is large enough, the formula (6.17) applies.
By the same argument as the part (a), the result follows from Lemma [6.7] . ) with @ = p+ k, s = 2,/7y,

and A =1 — 5 if these values satisfy the conditions of the lemma. Clearly, « > —1/2 since pp > —1/2 and
k> 0. The condltlon 0 < A < 122 s satisfied since

_ 1/2
Ogl—fzy x§(1+2u+2k)x S1—1—2u—i—2k:1—|—20z
Y y 24:/Ty 24,/Ty 12s

Finally, to verify the condition on s we observe that for z large enough so that /72 > 6(1 4+ 2u) + ﬁ,

3 1 3 1 1 2 6

‘14204 < (14 2u+2K) + 6(1+2 °K <

s H20)+ gy S+ 2+ 2K+ 5o s 10<( +20) + 1+2u>+5 =9
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since K < % Ty and z < y. Hence, Lemma (b) applies and we obtain the result. O
The above estimates imply the following result.

Proposition 6.9 (7,(y) when y is close to z). Fiz 7 > 0. For any fized v € (—1/2,1/2), there exists ¢ > 0
such that

To(v) = A7) (1+ 0™ (6.20)

as x — oo uniformly for y € [:E,x + %} and |z| = e~ 27. For v = +1/2, there is ¢ > 0 such that

9Ky

Torja(y) = (Alys £1/2) + 271 Ay 1/2) (14 0(") ) + O 1)

as x — oo uniformly for y € [I,er %} and |z| = e"2r.

Proof. We use the truncated series formula for 7, (y) given in Corollary with

k() = | 3v7] (6.21)

Consider first the case when —1/2 < < 1/2. For k > 1, using Lemma [6.§] (a) k times,

—k A —clyl/2 k . L 1- 27
|27 A(y;y — k)| < (2e VAL a=
for all y > x. For —K <k < —1, using Lemma (b) |k| times,
N —cay 2\ K| . 142y
Ay = Rl < e ) PIAG L e= o

24
the sum and with ¢ = min{cy, ca},

forz<y<z+ % With (6.16]) in mind, this implies that & = 0 term gives the main contribution to

_ 9K ((y)=

To(y) = Alys) (14 0(e"™)) + 0@ 5)

as x — oo uniformly for y € [x,x + %} and |z| = e"2r. We compare the two error terms. From

IK (y)x

(6.21) and y > x, we see that O(e~ 197 ) is (super-)exponentially smaller than A(y;~v) (see (6.15)). Hence,
the additive error can be replaced by a multiplicative error and we obtain (6.20)).
Consider now the case v = 1/2. For k > 2, we use Lemma[6.8] (a) k — 1 times to obtain

1/2

1y 1—-2v+42 1
k—1 1 . I —
) ‘Z A(i% _1/2)|, C1 = 47_3/2 - 27_3/27

|2 A(y;1/2 — k)| < (26

for all y > z. For —K < k < —1, we use Lemma (b) |k| times to obtain

1/2 1+2 1
VA 1/2)],  cpi= —) =

—k . _ —cC2y — -
|27"A(y;1/2 — k)| < (2¢ = URe32 T 2432

forz<y<az+ 15(%. Proceeding as before and replacing the additive error by the multiplicative error we
obtain the result in this case.
Finally, consider the case when v = —1/2. For k > 1, we use (a) k times and estimate of |zFA(y; 1/2+

k)| in terms of [A(y;1/2)] for all y > x. For —K < k < —2, we use[6.8| (b) |k| — 1 times and find an estimate
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of |27FA(y;1/2 + k)| in terms of |2A(y; —1/2)|, which are valid for z <y < x + %\};2\/5 =z+ % We

now obtain the result in the same way as before. O

6.1.4 Uniform estimate of 7,(y) for all y > =

Although valid for all y > x, the next result will only be used for y > z + O(z'/2).

Proposition 6.10 (Uniform estimate of 7, (y) for y > z). Fiz —1/2 <~y < 1/2 and 7 > 0. There exist
positive constants C and xy such that

2 VE@By—z)  9K(y)= 19

e e A

for ally > x>z and |z| = e~ 37.

Proof. We use (6.16). Since Lemma (a) holds for all y > x, using the same argument of the proof of
Proposition [6.9] we find that for some ¢; > 0,

o~ - —eyy/? —
Sl Ay - ) <1272 Axy - 2] (1+ 0l ")) < 20272A(5 - 2)]
k=2

for all y > x as * — oco. Thus,

KA (v — )| < —KA () m
) EK( )IZ Alysy =R < 2(K(y) +3) _ max [z Aly;y = )l
=—ny

for all y > x as © — co. Hence, from (6.17)) we obtain that there are C' > 0 and ¢ > 0 such that

5 et 1< 0 o g 1 2]
B 3r1/2 Ty y
k=—K(y)

for all y > & > xg. Inserting the formula (6.19)) of the maximum, we obtain

oo

¢ _ VEG@y—e)
STl FAGyy + k)| < CytieE TR
k=—K(y)
Remembering the error term in (6.16)) we obtain the result. O

6.2 Proof of Proposition [6.2
From the formula (6.11]),

nmﬁzﬁ A|ﬂ@+»uwwﬁ=/ (v — 2)|T, (v) Pdy

T

1—2y
2471/2

We split the integral into two parts: one for z < y < x+cy/x and the other for y > z+c¢y/z, where ¢ =
for |y| < 4 and ¢ = 127%/2 for v = +£3. Equation (6.15)) implies that there is 0 < € < 1 such that

4 (1_£)y8/2
Al )P 2P Ay F )P < e amtima
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as x — oo, uniformly for x <y < z + ¢y/x. Thus, for the first part of the integral, Proposition and the
equation ([6.15]) imply that for every e € (0, 1),

a:+ca:1/2

z+e/T
/ (y . :c)|7iy(y)|2dy < / (y o x)e*#(lf Sy 3/2dy <e 3\F(1 €)a3/?
for all large enough x. For the second part of the integral, applying Proposition we have

o o0 x By—z)v@ Yz
[ w-amwrazc [ <y—@(1””'”%m-+f“ﬂ?>dygaw¢u%nw
T4c\/T z+cy/T

for all large enough z. This completes the proof.

6.3 Proof of Proposition
From the formula (6.11]),

. m):/o /0 ’T_W(J;+s+t)7;(x+s+t)dsdt:/x (y — )T ()T () dy

We split the integral into two parts; the part I; for z < y < x + a+/x and the second part I for y > z+a+/z
1-2
where a = 24\}}‘ when |y| < 1/2, and a = ﬁ when v =1/2.

Consider the first part I;. Proposition [6.9]implies that for v € (—=1/2,1/2),

1/2

rtazx /
L= - oAwm)AG -y (1+0E"),
and for v = £1/2,
r+ax /2 L
L= / (y — ) (2A(y: 1/2)A(y; —1/2) + 2A(y; 1/2)? + 27 A(y; —1/2)%) dy <1 + O )) .

From Lemma [6.4] and Equation ([6.4)),

2

r+ax /2
z Y —czl/?
[ - aammau-a =5 (=5 + ) (14 0 ).

z+ax /2
_ . 2 . -1 T 1 . 1 —cz/?
/z (y —2)A(y;1/2)°dy = e” %2 B (7_1/3 + 1674/3° 27.2/3) (1 +O(e )) )

and

z+ax
L 9, 1 x 1 L 1 eal/?
A (y - LL')A(y, 1/2) dy =e%? 8 (,7_1/3 + 167-4/3’ 27_2/3) (1 + O( )) )

Consider the second part /3. Using Proposition (which holds for v € [-1/2,1/2]) for each of T (y)
and 7_,(y), we need to consider four integrals. Noting the cancellation of the terms —3% and 3%, the first

integral is bounded by a constant times

oo VT :
/ (y — x)yl/zej("g%ﬁ)fdy =0 (a?tf#ﬂ?iw) )
T+a\/T
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cT

for some ¢ > 0. As we will see in a moment, this extra decay e~ “* is relevant. Two of the remaining three

integrals are bounded by a constant times

oo 3 €

[ e R gy o ()
z+a\/T

for some € > 0 due to the term involving K (y). The final integral is bounded by a constant times

o K(y)e FICERD P
/ (y — x)e_lgwg dy =0 <e VT ) .
z+a\/T

Thus, I = O(ze” v 7”). We compare this with I;. Using Lemma the leading terms in I; are of

4

_ 3/2
order B (TI/B 16%#’») =0 (e ENVC ) Hence, I, is exponentially smaller than I;, completing the proof.

7 Integrable differential equations

As mentioned before, from Lemmas and we learn that the operators H and F are IIKS-integrable
[27], and it is now the time to explore this structure.

It is known that the resolvent of an integrable operator can be evaluated in terms of a canonically
associated Riemann-Hilbert problem (RHP) [27, [I8]. The main difference of F and H is that F acts on a
space L? with absolutely continuous reference measure, whereas H acts on a space £2 with discrete reference
measure. Consequently the RHP for the former is continuous (involves only jump conditions) whereas the
RHP for the latter is purely discrete (involves only residue conditions). The survey paper [I§] reviews many
aspects of the theory of continuous ITKS operators. Properties of discrete IIKS integrable operators were
analyzed by Deift, in a work of Borodin [I3] Section 4]. In this Section we explore this integrable structure
to obtain Theorem [[.2]

Riemann-Hilbert problems, whether discrete, continuous or mixed, often arise in the inverse scattering
transform in integrable differential equations. The common cubic polynomial factor V' in is the key
to recognize the associated Riemann-Hilbert problems for H and F both as the ones that arise from coupled
mKdV equations and coupled nonlinear heat equations, yielding Theorem [I.2 This approach of using
integrable operators and Riemann-Hilbert problems for finding differential equations was also used in many
other problems; see, for example, [19] 18], T3] 14, [TT].

7.1 Riemann-Hilbert problem

As a first step, we describe the Riemann-Hilbert Problems (RHPs) associated to F and H. For that, recall
that A and S were defined in , V was defined in and the functions f, g,d and b appear in
Lemmas 2.2 and 2.3

The RHP asks for finding 2 x 2 matrices X (which is associated to H) and Y (which is associated to F)
with the following properties.

RHP(a) The entries of X are analytic on C\ S and the entries of Y are analytic on C\ A.

RHP(b) X has a simple pole at every £ € S, and its residue satisfies

Res X (s) = lim X (s)Rx(s),
s=¢£ s—&

46



with

Rx(s):=f()3(s)" = | —awrves) N
fX—(S) 0

The matrix Y has continuous boundary values Y4 (s) as s approaches A from its +-side, and they
are related by
Yi(s) =Y (s)Jy(s),
with Ves)
L7 1 —e= " xa, (s)
=1 —d(s)b(s)" = *
)= 1=aH = (vt 1Y),

where [ is the 2 x 2 identity matrix.

RHP(c) As s — oo the matrices X and Y admit asymptotic expansions of the form

X Y
X(s)~1+z?f and Y(s)~I+> = (7.1)
k=1

for matrices X and Y}, that are constant in s.

The condition RHP(c) for X should be understood as s — oo uniformly away from S.

For v =0 and 7 = 1, the RHP for Y above coincides with a particular case of the ones studied in [IT], 12].

Since 7(s)T f(s) = 0, we find that Rx (s)2 = 0. This implies that the limit lime s X(§)Rx (s) in RHP(b)
converges. The residue condition can also be stated in a different way. The following basic result is essentially
in [I3, Lemma 4.4].

Lemma 7.1. Let X(§) be an r X r matriz function with a simple pole at a point s € C. Let R be a constant
r x r matriz such that R? = 0. The following statements are equivalent.

(i) ResX = lim X(§)R
s E—s
(i1) The product X (&)( — 5% +1) is analytic at = s.

Proof. Without loss of generality, assume s = 0 and write X (§) = Xgl + Xo+ O() as £ - 0. Then

R X 1R X_1-—XoR
X(f)(—u):- =+ S 0(1), €0
3 3 3
This means that (ii) holds true if and only if X 1R = 0 and X_; — XoR = 0. Since R? = 0, these two
equations are equivalent to the single equation X_; = XoR, which is equivalent to the statement (i). O

We now state the solvability of the RHPs.

Lemma 7.2. For any real values of x,~v and 7, the RHP for'Y has a unique solution. The RHP for X has
a solution for all (1,7v,z) and 0 < |z| < 1 satisfying det(I — K,) # 0 which is an open set of full Lebesgue
measure in the space of parameters (1,7v,x,z). Also, if X exists, then it is unique and det X = 1.

Proof. From Lemma we know that det(I — F) = det(I — A_,A,), and the latter is never zero because
it coincides with the classical Airy determinant (see ([1.3))). Consequently I — F is invertible and by [I8] the
RHP for Y has a unique solution.
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By [13], the RHP for X has a unique solution if T — H is invertible. Hence, the first statement for X
follows since det(I—IK,) is analytic in all four variables. On the other hand, from Rx(s)? = 0 we obtain that
det(I — (¢ —s)"'R) = 1 and Lemma implies that det X (§) is an entire function. Because det X (§) — 1
as & — oo, Liouville’s Theorem implies that det X = 1. O

Since det X = 1 and detY = 1, from RHP(c) we find that Tr X; = 0 and TrY; = 0. We denote the
entries of X; and Y7 as

Qper  Pper ) (QKPZ Pxpy, )
Xy = , and Y = 7.2
! <Rper 7Qper ! RKPZ 7QKPZ ( )

where Qper; Pper, Rper are functions of x,~, 7, and also z, whereas Qkpz, Pkpz, Rkpz are functions of x,v, T
but not of z.

If the integrable operator has some additional structure, then the logarithmic derivative of the Fredholm
determinant can be expressed directly in terms of the solution to the associated RHP. In our case, we show
that the logarithmic derivative of the Fredholm determinants in the x variable can be expressed in terms of
as in the next lemma.

Lemma 7.3 (Deformation formula). We have
Oy logdet(I — H) = Qper and 0y logdet(I —F) = Qkpz. (7.3)

Proof. The proof is standard, and various versions of this formula for continuous RHPs have appeared, for
example, in [19, [13] 12]. For convenience of the reader in Appendix [A] we provide a proof in the discrete
case. O

7.2 Coupled integrable differential equations

From the explicit form of the vectors @, b, f and § given in Lemmas and the matrices Rx and Jy
can be brought to the form

Rx(s) = @—%V(s)a:sRo(S)e%V(s)ng and Jy(s) = e—%v(s)o'gJO(S)e%V(s)o'g

for matrices Ry(s) and Jo(s) which do not depend on 7,7, 7, and the choice V(s) = V(s;7,v,z) with V as
(12.14)).

For general V, the dressing method for RHPs consists of, starting from a residue or jump matrix as
above, finding an integrable differential equation related to the solution W = XY as follows. Setting
Wy = We=V93/2 the new matrix W, has the residue matrix Ry (or jump matrix Jo) which does not depend
on the parameters of V. So the derivative of W with respect to these parameters satisfies the same RHP
as W itself, apart from different asymptotics as s — co. This implies that (OWy)W, ! has only removable
singularities, and using Liouville’s theorem, we find linear differential equations for Wy on the parameters of
V. When these differential equations for two different parameters are combined they form a Lax pair for W.
The specific form of this Lax pair depends solely on V but not on whether W solves a discrete or continuous
RHP. After some work, the compatibility condition for this Lax pair reduces to nonlinear equations/systems
on the entries of W7 = X1,Y].

Carrying out the general ideas just outlined, by picking different rational exponents V one can pro-
duce different integrable systems, including (modified) Korteweg-de Vries equation, nonlinear Schrodinger
equation, or even more generally the AKNS system [I] that contains the former and many other integrable
differential equations.
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In our specific context, we can suppress the v term from V into Ry and Jy and write

RX(S) = 67%(*§53+x5)03Rl(s)eé(*§53+$5)03 and Jy(s) _ 67%(7§s3+ms)03Jl(s)eé(7%53+zs)ag

for matrices Ry (s) and Ji(s) which do not depend on 7 and . The formalism just mentioned then produces
that the entries of X; and Y7 solve the coupled mKdV system claimed in Theorem If, on the other
hand, we suppress the 7 term and write

Rx(s) = e—%(%SZ-HCS)UBRQ(s)e%(%serwS)Us and Jy(s) = e—%(%s2+$5)03Jz(s)e%(%82+$5)03

for matrices Ra(s) and Ja2(s) which do not depend on 7 and x, then we obtain the nonlinear heat equations
in Theorem We stress that these arguments do not rely on the choice of R;, Rs, J1, J2 but solely on the
choice of the conjugating exponential factors in the above.

In either of the two situations above, for X we are dealing with a purely discrete RHP with infinitely many
poles, which indicates that Pyer and Rper are infinite soliton solutions. Also, we considered the parameter z
that defines the set of poles S to be fixed. In terms of the integrable systems for X, the dependence of P,
and Rper on z appears in the initial/boundary conditions, and since this set of poles is not, for general z,
symmetric under the real axis, these solutions Pper and Rper are, also for general z, complex-valued.

The equations in Theorem should be supplemented by appropriate initial /boundary conditions, which
should be read off from the RHP. Finding these initial/boundary conditions is a challenge of its own, and
we do not pursue it in this paper.

The calculations that lead to the exact form of the systems 1.107 is a folklore in integrable systems
theory, for convenience of the reader we include them in the Appendix

In concrete terms, the outcome of this discussion is summarized as the next result.

Proposition 7.4. The entries ¢ = Qkpyz, r = Rxpz and p = Pxpz of Y1 in (7.2)) satisfy
qz = PT. (74)

The pair (p,r) satisfies a coupled system of nonlinear heat equations,

2Dy = —Paax — 20°T
P p p (7.5)
2r.y = ryy + 2pr?
and also a coupled system of mKdV equations
3pr + Praa + 6prp, =0
Dr T D prp. (7.6)
3r: + Tyge + 6prry = 0.

The same is true for the entries ¢ = Qper, ¥ = Rper and p = Pper of X1 in (7.2)), provided the solution X of
the RHP exists.

7.3 From the coupled systems to the KP equation: proof of Theorem and
Corollary

For u = Uper, Ukpyz as in Corollary we take the derivative of the equation ([7.3)) and use Lemma (for
u = Uper) or Lemma (for uw = Ukpz), combined with (7.4), and write

U = (g = PT,
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with ¢ = Qkpz, Qper etc. Thus, Proposition implies Theorem except (1.12)) which we prove in the

next subsection.

We now show that the pair of coupled systems (7.5) and (7.6]), when combined together, yield the KP

equation, hence proving Theorem Using (7.5), we have 2u, = pryy — oo = Oz (pry — p2r). Using (7.5)
again and noting pr(pr; + p,r) = uu,, we find that

Ayy = Oy (Praze + Paoaat + 4ty — (P272)z) -

On the other hand, multiplying the first equation in (7.6) by r and the second by p, and adding the results,
we get, using pr(pry + p.r) = uu, again,

3Ur + Proge + Pree’ + 6uu, = 0.
Finally, the third derivative evaluation of u = pr is given by

Uggz = Praza + Praal + 3(Pata)e-
We combine the above three equations to remove pryg. + Pree” and (pzry), and obtain the KP equation
120y + (Ugas + 120y, + 12u, ), = 0.
This proves Theorem

In summary, the calculations above show that any RHP with residue or jump matrix of the form

M(s) = 6_% —§s3+%s+x3)03MO(8)6%(—§ss+%s+xs)a3

with a matrix My(s) which do not depend on 7,7, z is associated to the KP equation. Rigorous analysis of
the scattering transform for the KP equation has been carried out for classes of real solutions that decay
sufficiently fast as x,7 — o0, except possibly along a line (see [4] and the references therein). In these
situations, the inverse scattering transform always involves a so-called d-bar problem component, possibly
also with poles, and a continuous RHP, all for scalar functions instead of matrix-valued functions. Our
RHP for Y is nothing but a dressed-up version of the RHP for the Hastings-McLeod solution to PII, which
is well understood. In contrast, our RHP for X is a purely discrete matrix RHP. Hence, the KP solution

encoded in our discrete matrix RHP falls outside the class of the just mentioned works. Determining the
exact growth/decay properties of our KP solution is a separate task of interest.

7.4 Symmetry
We start with the discrete RHP for X. Define
X(&7) = 01X (=& )01, with o1 =(9}).

This matrix tends to the identity matrix I as & — oo.
A direct calculation shows that the residue matrix for X satisfies the symmetry property

Rx(—s;—7) = —01Rx(s;7)o1.
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Hence, X(f; ) satisfies, for every s € S,

> Rx(s;7) Rx(=s;—7)
X (& <+I = X&) | ————F—= +1) o1
G\ S g e 1)
By the RHP for X and Lemma [7.1] the above formula is analytic at £ = s. Hence, Lemma [7.1] again shows
that X (&;7) satisfies the same residue condition as X (&;+). By the uniqueness of the solution to the RHP,
we find that X (§) = X (&), thus obtaining the symmetry property

X (&) = 01X (=& —7)or.

Inserting this into the asymptotic expansion (7.1)) we find that X = (—1)*o; Xi(—7)o; for all k > 1. When
k = 1, this means that the coefficients in (7.2)) satisfy p(y) = —r(—7), proving the symmetry (1.12). We also

have ¢(7) = q(—).
The proof for Y is similar: the jump symmetry is now

o1y (=s;—y)o1 = Jy (s;7) 7,

and this implies that o1Y (—s; —y)o1 = Y'(s;7), which then from yields the symmetry .

We discussed in Section[I.2]that using the symmetry, the function p itself satisfies the non-local differential
equations and (1.14). The equation is a non-local nonlinear Schrédinger (NLS) equation with
complex time variable. The appearance of the non-local NLS from the AKNS system was obtained relatively
recently in [3], and the inverse scattering transform of this non-local NLS equation has also recently been
analyzed (see [2] and the references therein) for a class of initial conditions with finite amplitude as z — oc.
Among other distinguishing features, in these works the poles of the discrete RHP were symmetric under
reflection onto the imaginary axis, which is not the case for our discrete RHP.

8 Flat initial condition

All of the results for the step initial condition extend to the flat initial condition, and we now discuss them.
The limit of the one point distribution with the flat initial condition does not depend on the location
parameter 7. It is given by the formula [§]
dz

Filei7) = 7{ A1 )4 A2+ A3 ()4 B(2) g (T — ng)rm, (8.1)
where the integral is a small circle around the origin in the counterclockwise direction. The functions

A1, Ay, B are the same as in the step initial condition case, and As(z) = *% log(1 — z). The operator
K& ;g2 (S_) — £%(S-) is defined via the kernel

KU(E,6) - KD o) = e g es (8.2)
z 1,82) — z 1,62, 4, - 51(§1+£2) ’ 1,62 — .
where the function ¥ is given by
1 1 1
(E) = W(Ew,7) i= —5 7€ + a — SQ(E) = SB(E:20,27) (33)

compared with the function ® in ([2.5)). We have the following results.
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Theorem 8.1 (Large 7 limit; flat case). For each fizred z € R,

7T1/4 1 x 42
T—00 1( \/§ m . y

Theorem 8.2 (Small 7 limit; flat case). For every xg € R, there exist constants C,c,e > 0 and 79 > 0 such
that

2/3 _plme
e cl@=o) 0<7<719, x>0,

‘Fl (71/396;7) - FGOE(22/3J])‘ <Ce
where Fgog is the GOE Tracy-Widom distribution. In particular,
}ii% Fy (7' 32;7) = Faop(2¥/%2).
Theorem 8.3 (Right tail estimate; flat case). For every fixed 7 > 0, there is a constant ¢ > 0 such that

1— Fi(z;7) = (1 — Faor(2¥37732)) (1 + (9(67“1/2)> ) T — 00.

The above result shows that the leading term of the right tail of Fl(Tl/SJJ; 7) does not depend on 7, and
it is the same as the right tail of Fgop(2%/3x), which can be found, for example, in [6].

Theorem 8.4 (Integrable differential equations; flat case). The kernel KW with z, 7 replaced by 5,5 sat-
isfies

9z Indet(I — K|«

[N
[N

) = 3R(7,2) + 2Q(r,)

where R(T,2) = Rper(7,0,2) and Q(7,2) = Qper(7,0,2) in terms of the functions in Theorem and
Proposition . The function R satisfies the (defocusing) mKdV equation

3R; + Ryzs — 6R*R, =0 and Q, = —R>.

As a consequence, we rediscover a connection with the KdV equation that was first pointed out by Prolhac
[39] Section 2.6.3], albeit in different form.

Corollary 8.5. The function
— 1
U(r,x) 1= 20y, Indet(I— K| =)
satisfies the Korteweg—de Vries equation (KdV) equatiorﬂ
3Ur + Uyggy + 6UU, = 0.

Proof. We have U = R, + Q, = R, — R?. Tt is straightforward to check that if R satisfies the mKdV
equation, then U satisfies the KAV equation. Indeed, this is a well-known Miura transformation. O

We prove the above theorems in the following subsections.

12The scale T+ 37 changes to a standard form of the KdV equation Ur 4 Uggy + 6UU, = 0.
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8.1 Large 7 limit
For z, as in (4.1)), we use (8.1)-(8.3) and write

Fi(es)2:7)2) 7{ A F AL AT o (T — KD ar 5 )

N‘\‘
MH

2miz’
emphasizing the explicit expression

eééf(gl)""%q)‘r(f?)

K |TT (&,6) = m,

§1,62€ S5,
with @, () := ®(& 2,, 7) as in ({4.5).

As in Lemma let S— = {ug}trez and let 41, -+, £y be distinct integers. Corollary and Lemma
imply that

e eRe P (ug)

1
< Re @, (&) cS_
= 626 kzgioo |k“+2 S ’

K| ’
Z 5.5 (& ue)

and we further estimate

e eRe P, (ug) 047347

<
k[+2 — 2

o0
—1.9366|k|>/%7 0.47341
+2 e <e

k=— k=1

for all large enough 7 and every z as in Corollary [£:2] Thus, there are 75 and C > 0 such that

< CeRe®r(§)+0.47347

N 2
Z ‘K(1)|272 f’uek)

uniformly for £ € S_ and 7 > 7¢; this estimate is similar to Lemma [4.4] Similar arguments as used in the
proof of Proposition .5 now show that

det(I — Kgl)gé) =1- Tr(Kgl)| )+ O(e=0:2557)

33
as 7 — 0o, uniformly for 1 —§ < |z| < 1—4; for some ¢ € (0,1) and any fixed §; € (0,d). Here, the exponent
in the error is half the one from Proposition due to the change from @, to %(DT in the kernel.

We look now at the proof of Proposition The estimate (4.8)) implies that for every R € (0,1 — 67),

Tr T
SR Re (7141(2) + 5 A2(2) + A3 (2) + B(Z)) < 0.2547

for sufficiently large 7, and Proposition [4.6 changes to

e

Fi(z,/2,7/2)=1— FAUDHFA)FA3()+BE) (KW |«
2miz

4 0(6—0.0017)

l\)‘_‘
ol

as 7 — oco. From the formula of K, the version of Lemma [4.7| now follows from the simpler estimate

e®r(uo(2)) @ (uk) e®r (uo(2))

RO e, - = 4 c = + O(e197),
202 2ug(2)2 k:ezz\;{o} 2u? 2ug(2)2

where we error term was obtained using Corollary and Lemma
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Plugging in the formulas and using the notations (4.9)),

D (ug(z 1 1. z +l'rl/2:i’ z
j/e%%A1@>+5A2@)+A3@)+zxz>6 (o= dz 31.j/<E()(Z)62 netarTen®
2ug(2)? 2miz  4mi zug(z)?

. 1/4
where £ = == as before, x € R fixed, and

E(Z)1/2

(1) — pA3(2)+B(2)—Q(uo(2)) —
FE (Z) =€ - (1—2)1/47

E(z) = ?P(2)72Q(0(2) 45 before.

The functions f; and fs have analytic extensions, f; and f2, on the Riemann surface R (see Section. On
the other hand, the function E(z) also extends analytically on R and has a zero of order 3 at z = 1 (see Section
. Combined with (1 — z)~ %4, we see that E(M)(z) extends analytically on R and it has a zero of order 1
at z = 1. We denote the extension by E(V(z). Recalling Lemma, E(z) = —4dug(2)* as z — 0. Tt is also
direct to verify that (1 —2)~'/* = —i as 2 — 0(2). Combining everything, EM)(2) = —2ug(2)?(1 + O(2?)) as
z — 0). Define the one form (cf. (£.11]))

o E(l)(Z)egfl(z)JrTlgzzh(Z)
W =

T 4mizUg(2)2 dz

on the Riemann surface R. Using this notation, we just verified that (cf. (£.12))
Fl(x'r/2,7-/2) =1- / OJ7(_1) + 0(6—040017')
r

where I' is the same contour that was used in . We evaluate the integral following Section The
contour is divided into three parts. The proofs of Lemma and [£.10] for the parts I'; and T'y apply
with minimal changes, and contributions from these parts tend to zero as 7 — oco. On the other hand, for
the contour I's, which is a small semicircle about the origin in the second sheet of R, most of the proof of
Lemma does not change, but in the last steps we find

100 N 1 2 . [e%s) 2 .
lim M) 1 ef(ﬁs—,%ﬁ)ﬁ 1 —ul i du

o 1 1,2
= - = — e 2 V22— = 7\/ e zU du,
o0 Jp, 21 )i s 21 J_ U Vor =

where for the second inequality we changed variables s = i23/27/4y and used that & = 7'/%x/y/2. Having
in mind the explicit expression for x, in (4.1), we just obtained that

T/t x o127 T/t x 1 Va2
lim F. _74_44747(}) ,) :1hnF’(—T+—TUaT>::L/ e” T du,
750 1( 27 V2 V2 \2 2 =0 V2 V2 Vor ) o

valid for any x € R fixed. This finishes the proof of Theorem

8.2 Small 7 limit
After a simple conjugation, we may replace the kernel Kgl)(ﬁl, &) in (8.2)) by (using the same notation)

SV (EDHT(E)

REEIGERS)

KM (¢1,6) = &,6 €S-,

54



without changing the Fredholm determinant. Using (8.3 and the notation from (2.10]), we see that

3@ (&x,7)+52(n5w,T)
x T ez 2 ,
- ) = =-J(&, n;x,y=0,7), thatis, K(Zl)gé = —J|y=0. (8.4)

22 V=&/=n(E+n)

Now from (2.12)) we have J|,—o = —GoG{, and recalling that T, = G G_, we find that

K" (&n;

det(I — KMz z) = det(T — Tp) (8.5)

37
where Ty has kernel as in Lemma, with v = 0. Thus, changing = to 7%/3z, we find that

1/3 £1/3, . d
Fl (7—21" 72—) - fBTAI(Z)+§A2(Z)+A3(Z)+B(Z) det(]I - Aac,‘r)%
Tz

where the operator A, ; is defined by . Recall that Fgogr(z) = det(I— A,). Lemma established the
convergence of A, . to the operator A, with an explicit error bound for the kernel. Hence, we find that the
Fredholm determinant converges as well with the same error bound as in Corollary [5.3] Taking the integral
(see Section [5.2)), we find that

3 7
Iy < > — Fgor(z)| <

2 2

Changing 7 — 27, and = — 22/3z, and renaming the constants, we conclude the proof of Theorem [8.2

8.3 Right tail

From (8.5)),
dz

2miz

Fi(z/2;7/2) = fe%Al(Z)+5A2(Z)+A3(Z)+B(Z) det(I — Tp)
As in Section @ we take the contour |z| = e~27. Proposition implies that we may change the Fredholm
determinant to 1 — Tr(Ty) plus an error term. The kernel is given by T¢(s,t) = To(z + s + ) (see (6.11))).

Proposition [6.9] and allow us to replace To(z + s +t) by A(z + s + t;0) whose asymptotic formula is
given in Lemma [6.4] Thus, after performing the trivial z-integral, we find that

(oo}
: = ! 1 -1/3 —cacl/2
1= Fi(z/2:7/2) _/x A (2 ) dy (14 0@ ).
We have
oo 1 1 S "
| (e )y = [ Ay dy=Tr(ks) = (1 - Foos(@) (1+ O ).
x x

Scaling « and 7 completes the proof of Theorem [8.3]

8.4 Integrable differential equations

From (8.4)),
det(I— KM |z z) = det(I + J|y=o).
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The operator for the step initial condition case satisfies K, = JJ7 (see (2.9)). Because of the symmetry

JT|, =J|—5 (see (2.11))), we find that
_ 2
Kz|’y=0 - (v]”’y=0) :

For all the computations in the rest of this section we set v = 0, and in particular for simplicity we write
K, |y=0 and J|,=o simply K, and J. Also, we use the notation 9 = 0.
We have

dlndet(I - KM |z 1) = dIndet(I+J) = Tr((I+J)~'0J) = Tr((I — J*)~ (I — J)aD).

Using that (I — J?)~! and J commute, we write

Olndet(I — KW|s 2) = Tr((I - J2)~18J) — % Tr((I - %) (3(8T) + (O1)]))

33
=Tr((I—J?) o)) + %8ln det(T — J?).
From Lemmas 2.2] and [Z.3] we know that
Olndet(I — J?) = dlndet(I — K.) = dIndet(I — H) = Qper (7,0, 7)
Hence, it is enough to consider
Tr((I - J*)~tad).
We use the following lemma.

Lemma 8.6. Let Hqi and Ho be two Hilbert spaces. Suppose that Ky : Ho — Hi, Ko : Ho — Hiy, and
Ks : H1 — Hiy are trace class operators. Set H = Hy @ Ho. We extend Ky, Ko, Kg to operators on H in a
natural way, and we use the same notations. Let Py, Py : H — H be the projection operators to Hy and Ha,
respectively. Then,

Tr((I — KiKy) 7' Ks) g, = Tr((I — PiK Py — PoKoPy) P K3Py )

Proof. 1t is enough to show that the non-zero eigenvalues of both operators are the same. This is straight-
forward to check, we skip the details. O

In the proof of Lemma [2.2} we set W : £2(S,) — £2(S_) to be the reflection operator (Wh)(u) = h(—u)
and used the decomposition J? = K, = J1Jo where J; = JW and Jo = WTJT = WTJ, with the last equality
being valid because v = 0. Recall the definition S = S U Sy and observe that (2(S_) @ (*(S;) = £2(S).
Denoting by P4 the projections onto S, the above lemma implies that

Tr((I—J%) 0D ez(s )y = Te((L — P_JiPy — Py JoP_ ) 'P_OIP_)p2(s) = Tr((I — H) 'P_OJP_)2(s)

where H = P_J P} + P, JoP_ is the same operator as in Lemma [2.2] (with v = 0).

Since ®(s) = —57s* + s — Q(s) and recalling that & = 9,, we find from direct differentiation that

1 e32(u)+52(v) 1
(v) = 3 Fa(w)as (v),

X— ()0 (u,v)x—(v) = §X7(U)WX7 v
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where f; and g; are the components of the vectors f and ¢ in Lemma Hence,
1
Te((I-J%) 70D ) = 7 (T~ H) ™ f2® g1).
Using the notation F := (I — J)~! f, the above equation becomes

1
Te((I—J*) ' 0D)e(s.y = *Tr (F> @ g1) ZFQ 5)g1(s
SES

In formulas and (A.4), we will show that > ¢ F(5)§(s)T = Xy is the residue matrix in (7.2). There-

fore,
TI‘((]I—.,]]Q) 8J)g2(3 )— (Xl)

Recalling the notation (X1)21 = Rper in (7.2) and combining with , we obtain

1

1
9 Indet(I - KMz ) = 5Rper(r,o,ac) + 5Qper(f, 0,).

The coupled system of mKdV equations (1.10) and the symmetry Pper(v) = —Rper(—7) in (1.12)) implies

that R(7, ) := Rper (7,0, x) satisfies the mKdV equation
3R; 4+ Ryga — 6R*Ry = 0.
On the other hand, the equation implies that Q(7,x) := Qper(T, 0, z) satisfies
Q. =R

The proof of Theorem [8:4] is completed.

A  Proof of Lemma [7.3

We prove the lemma. It is a fundamental property of integrable operators [18, [I3] that the vector
Fi=O-H)"'f

can be obtained from the RHP by the formula

—

F(s) = lim X(¢)(s)

E—s

where the limit converges. Now, the solution of the RHP satisfies the identity

—

X(g):Iwa for € € C\ S,

sES 5_5

(A.3)

with F (s) given by (|A.2)). This equation can be seen by checking directly that the right-hand side satisfies
the conditions RHP-X (a), (b), and (c) of the RHP for X, and using the uniqueness of the solution. For the
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condition RHP-X (b), note that

Res (1 -3 W) = F(w)(w)" = lim X (&) f(w)F(w)" = lim X (&)Rx (w).

E=w s E—w E—w
Considering the asymptotic behavior as £ — oo, (A.3)) implies that

X1 =) Fs)i(s)"

sES

From the formulas of f and g, we see that

— —

O f(u) = —gagf(u) and 0,g(u) = gUgg'(u).

Thus,
2T oo
o1, 0) = BTV + T ougte) 1

and using ,
Te((1—H)~' ' ® (039))

F(s)"034(s).

Oy log det(I — H) = — Tr((I — H)~*9,H) =
1 = 1
=5 Tr(F ® (039)) = 5

O;M m\»—l

On the other hand, from (A.4)),

Tr(Xy03) = Y Te(F(s)g(s) o3) =Y _ G(s) 03F(s) = > F(s) o35(s)
seS

seS seS

Equating the last two formulas, we obtain the lemma.

B Proof of Proposition

We prove Proposition focusing only on X. The proof for Y is similar: we define W = Ye~Vs/2

similarly

as in (B.1]) below and obtain the Lax equations in Lemma in the standard way for continuous Riemann-
Hilbert problems. Having the Lax equations at hand, all the remaining arguments are algebraic and can be

repeated for Y, line-by-line, as below, simply replacing X and Xy by Y and Y}.

B.1 The Lax systems

Define the new matrix function

Then, W satisfies the following RHP:
RHP-W 1: W :C\ S — C?*? is analytic.

RHP-W 2: The points in S are simple poles of W with residue matrix

s s 1,Q(s)
Rw<s>evé'>ost<s>eVé“fs< 0 +° 0X+<5>) for s € S,

1@y (s)



RHP-W 3: As £ — oo,

The jump matrix does not depend on the parameters 7, v, x. This has the following consequence.

Lemma B.1 (Lax equations). The matriz W satisfies linear differential equations
RW(E) =AOW(E),  0-W(&) =BEOW(E),  9W(E)=DEW(E), (B.2)
for some polynomial matrices

A(§) = EAx + AL + Ay, B(§) =& B3 + By + £B1 + By, D(&) = &D1 + Do

_1
1

o3, By = 103, and Dy = —103, and other matrices A;, B;, D; do not depend on &.

where Ay = G 5

Proof. Since det X = 1, det W = 1. Hence, W is invertible. Let 0 be the partial derivative with respect
either 7, or z. For s € S, Lemma implies that

26 =wie) (-4 11)

is analytic at & = s. Since Ry (s)? = 0, we have det Z(£) = 1, and hence Z(£)~! is also analytic at £ = s.
Since Ry does not depend on the parameters, the derivative becomes

dZ(€) = oW (&) (— ERW + I) .

— S

Hence,

1 _ Bw LBw -1 -1
EWEWO " =ow(e) (-2 4 1) (P 1) wio) = 0ze)2(6)

is analytic at £ = s. Thus, (W (£))W (€)1 is an entire function.
The asymptotic condition, RHP-W 3, implies that

_ _ ov _ _
ow©W© " = o) - ZE 11 o ))e(r + o)
as & — oo. Since
£ &
8"/V(§) = ?7 87‘/(6) = _E, ag;V(f) =¢,
the Liouville’s theorem implies that (OW (£))W (€)1 is a polynomial with the leading term —w 3. We
thus obtain the result. O

We now insert (B.1)) and the asymptotic series condition (7.1]) into the equations (B.2)) to obtain sequences
of relationships between A;, B;, D; and X;. We find that

4A; = —6By = 2Dg = [03, X1] =: C1,
4A¢9 = —6B1 = —[Ug,Xl]X1 + [0'3,X2] = C%
—6By = [037X1]X12 - [037X2]X1 - [03,X1]X2 + [037X3] =:C3
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and for k > 1,

40y Xy = —|o3, Xppa] + C1.Xpq1 + C2 X, (B.3)
—60; Xy = —[03, Xpy3] + C1Xpr2 + CoXpy1 + C3X, (B.4)
20, X, = —[U3,Xk+1] + C1.X}, (B.5)

where the bracket denotes the commutator [P, Q] = PQ — QP.
Using (B.5)) when k = 1,2, we may remove the commutator terms in Cy and C3 and express them as

- %Cg =0,X; and -— %Cg = (0, X1)X1 + 0. Xo. (B.6)
Recall the notation . The diagonal entries of the equation with k = 1 gives us the identity
Gz = pr- (B.7)
This proves of Proposition

B.2 Coupled nonlinear heat equations

We find a partial differential equation for X; in the variables x and - and prove (7.5)) of Proposition
The k =1 case of equation (B.3) becomes, using for Cs,

40, X1 = —2(0, X1) X1 + [03, X1] X2 — [03, X3].
We remove [o3, X3] using the k = 2 case of the equation . The equation becomes
20, X1 = — (0, X1) X1 + 0: Xo. (B.8)
This equation contains X5 which we remove as follows. The z-derivative of the k = 1 case of is
[03, 05 X2] = =205, X1 + 05([03, X1]X1).

We solve for 9, X5 in (B.8) and insert it to the above equation and arrive at an equation involving only Xj.
Using the general commutator identity [A, BC] = [A, B]C + B[A, C], the equation can be written as

2[03,3,YX1} = —20,. X1+ [O’3,X1](81X1) — (azXl)[O';g,Xl]. (Bg)

We insert the entries ¢,p,r of X7 in (7.2) into . The diagonal entries simply give the z-derivative
of (B.7)). The off-diagonal entries give two non-trivial equations, which after inserting g, = pr become ({7.5)
of Proposition

B.3 Coupled mKdV equations

We find a partial differential equation for X; in the variables z and 7 and prove ([7.6) of Proposition In
this section, we set
Q = [0'37X1} and R:= [O’3,X2] = —23EX1 + QXl

where the second equality in R follows from the k =1 case of (B.5). Consider the k =1 case of (B.4). The
equation contains [o3, X4]. We remove it using the k = 3 case of (B.5]). Further inserting the formula ,
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the k = 1 case of (B.4)) becomes
0: X3 = (0, X1) X2 + (0, X2) X1 — (0. X1) X7 — 30, X1.

The k = 2 case of (B.5]) is
[03, X3] = =20, Xs + QXo. (B.10)

Taking the z-derivative of this equation, and then inserting the formula of 0, X3 above, we find
(03, (0:X1) X2 + (0:X2) X1] — [03, (0:X1) XT] — 30, Q = —2020 X5 + 02(QX>).

We use the general commutator identity [A, BC| = [A4, B]C + B[A,C] for the first term on the left-hand
side and move the term 9,(QX2) to the left-hand side of the equation. Since Tr X; = 0, the matrix X?
is diagonal, and hence [03, X?] = 0, implying that [03, (0, X1)X?] = [03,0.X1]X? = (0.Q)X?. Hence,
recalling the notations @ and R, the above equation can be written as

(0:X1)R+ (0, R) X1 + (0, X2)Q — Q(0:X2) — (0,Q) X7 — 30,Q = —20,,X5.
Taking the commutator with o3,
(00, (O X)) R+ (0. R)X1] + [73, (0. X2)Q — Q0. X2)] — [o3, (0. Q)X2) — 30, 0,Q) = ~20,, k. (B.11)
We express [03, (0, X2)Q — Q(9,X2)] in terms of @ and R using the next lemma.
Lemma B.2. We have
2[03, (0, X2)Q] = —QRQ and  2[o3,Q(0,X2)] = Q°R.
Proof. The equation gives 20,Xs = QX» — [03, X3]. Observe that since [o3, X3] and Q = [03, X1]

have zero diagonal entries, [03, X3]Q is a diagonal matrix, and hence [o3, [03, X3]@] = 0. Similarly we have
[o3, Q[os, X3]] = 0. Therefore,

2[03, (0, X2)Q] = [03,QX2Q — [03, X3]Q] = [03, QX2Q)]

and
2[03, Q(0:X2)] = [03,Q* X2 — Qloz, X3]] = [03, Q°X).

Now, since @ = [o3, X1], we have 03Q + Qos = 0. Using this identity, we can write

[03, QX2Q] = —Q[o3, X2]Q = —QRQ and (03, Q*X2] = Q%[03, Xa] = Q*R.

O
The equation (B.11]) thus becomes an equation only of Xj:
2[03, (0. X1)R + (8:R) X1] — Q(RQ + QR) — 2[03, (9:Q) X7] — 6[03,0,Q] = —49,, R. (B.12)

We now insert the entries (7.2]) of X;. The entries are

_la P _ 10 2 _ 0 —2ps — 2pq
Xl_[r —q] and Q_{—% 0] and R_[—2Tm—2rq 0
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where we used for the diagonal entries of R. It is useful to observe that

RQ + QR = —4(rup — p,r)I and X12 = (q2 + pr)l.

Inserting these into (B.12), the diagonal entries of the equation give trivial identities. The off-diagonal
entries, on the other hand, imply, using ¢, = pr, (7.6|) of Proposition
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