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Abstract

In this paper we assess Bayesian estimation and prediction using
integrated Laplace approximation (INLA) on a stochastic volatility
model. This was performed through a Monte Carlo study with 1000
simulated time series. To evaluate the estimation method, two criteria
were considered: the bias and square root of the mean square error
(smse). The criteria used for prediction are the one step ahead forecast
of volatility and the one day Value at Risk (VaR). The main findings
are that the INLA approximations are fairly accurate and relatively
robust to the choice of prior distribution on the persistence parameter.
Additionally, VaR estimates are computed and compared for three
financial time series returns indexes.

Keywords: Stochastic volatility models, quasi-maximum likelihood,
INLA, Bayesian methods.

1 Introduction

Stochastic volatility (SV) models have been applied with success in order to
model the time-varying volatility present in financial time series. To estimate
these models several estimation methods have been proposed in the literature,
quasi-maximum likelihood methods (Harvey et al. 1994), generalized method
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of moments (Andersen and Sorensen 1996) and Markov Chain Monte Carlo
Methods (MCMC) (Jacquier et al. 1994), to name a few. For an account
of recent developments in the estimation of SV models see Broto and Ruiz
(2004) and Shephard and Andersen (2009) and the references therein.

In particular, MCMC methods are considered one of the most efficient
estimation methods. However, its implementation can be very computation-
ally demanding and it requires a training to assess the convergence of the
chains. This could be very hard for practitioners interested in fast answers
and available computational programs.

In order to overcome the problems associated with MCMC methods,
Rue et al. (2009) have recently proposed a very fast, non-sampling based,
Bayesian methodology named Integrated Nested Laplace Approximations
(INLA). The INLA program is free for downloading and many examples
of applications in several fields have appeared in the recent literature. In
particular, in Martino et al. (2010) the use of this method is illustrated in
the analysis of two financial time series. However, to the best of our knowl-
edge, no study on the performance of this method in terms of estimation and
prediction on SV models has yet been made.

The first objective of this paper is to assess the efficiency of INLA method-
ology for estimating SV models in terms of parameter estimates and predicted
volatilities on simulated time series. Second, as a practitioner-oriented point
of view, we evaluated the method by estimating the value-at-risk (VaR) of
three financial time series returns indexes. VaR estimates are important
criteria in risk management. Moreover, in these applications we compare
the performance of INLA method with another fast estimation method, the
Quasi-Maximum Likelihood Estimation (QMLE) of Harvey et al. (1994).
Even though the QMLE method provides an approximated filter for the
volatility, it is widely used in applications because it is fast and is imple-
mented in commercial software. The focus of the paper is on the practical
side of the methods. The results show that Bayesian methods using the INLA
package provide accurate approximations to the model parameters in small
computing times. In particular, we observe that the VaR values obtained us-
ing INLA react very well to the up and down movements in the return series.
We also investigate the sensitivity of parameters and volatility estimates to
the choice of prior distributions.

The rest of the paper is organised as follows. In section 2 the methodology
is briefly presented. This is assessed through simulated time series in section
3 and through the statistical analysis of real-life time series in section 4.



Finally, some final comments are given in section 5.

2 Methodology

Let r, the continuosly compounded return on an asset between times ¢ — 1
and t, that is r, = In(P;) — In(P,_1), where P, is the price at time ¢. The
stochastic volatility model introduced by Taylor (1986) is defined as,

re = exp(h/2)ey, &~ NID(0,1) (1)
hy = v+ ohiy+m, M~ NID(OMTE,) (2)

where 7, is independent of 7, for all £ and s. In this model h; is an unnob-
served (latent) variable as well as o, = exp(h;/2), which is the wvolatility of
the asset.

The model parameters are (7, ¢, a%) or equivalently ¢ = (v, ¢, T) where
T =1/0}, ¢ € (0,1) is the persistence parameter and o is the volatility in
the log-volatility equation.

Following the Bayesian paradigm, we need to complete the model spec-
ification by specifying the prior distributions of the parameters in ¢. Here
we adopt a reparameterization that maps each restricted parameter space
onto the real line. This is important computationally since the algorithm to
be used for estimation involves optimization steps which work better in this
unrestricted space. For the log-volatility precision we simply take the loga-
rithm and assume that log(o,?) ~ logGamma(a,b) so that the prior mean
and variance of o, 2 are a/b and a/b* while for the persistence parameter we
take a logit type transformation and assume that

k = logit (%) = log(1 + ¢) —log(1 — ¢) ~ N(c,d™)

with reverse map given by ¢ = (e" — 1)/(e" 4+ 1). In the applications of
this paper, we choose the mean ¢ and the precision parameter d so that
the corresponding prior distribution for ¢ is roughly uniform in (0,1). The
hyperparameters a and b are chosen so that the log-precision has a relatively
vague prior distribution. Finally, the common mean parameter 7 is assigned
a vague normal prior distribution with mean zero and a large variance. The
basis for inference on model parameters and prediction of future volatilities
is provided by the posterior marginal distributions of v, ¢, 7 and h; given
Tiyeeoy T



The model in equations (1) and (2) can be rewritten as r|h; ~ N (0, e)
and hy = v + f, with fi|fi—1,..., f1,7,6 ~ N(¢f;-1,1/7). Now, defining
x = (v,h1,...,h,) and @ = (¢, 7) then x|0 ~ N(0,Q *(0)) so that x is a
Gaussian Markov random field (GMRF) with a sparse precision matrix Q(8).
The posterior marginal distributions are obtained from the joint posterior
distribution of (a,0) which is not available in closed form. However, the
numerical methods developed in Rue et al. (2009) (Integrated nested Laplace
approximations, INLA) can be applied for approximate inference in this class
of models. The INLA approach provides very accurate approximations to the
marginal posterior densities of h;, 7, ¢ and 7 in small computing times.

Going into the details of the approximations and associated numerical
issues is not the focus of the present paper and the interested readers are
referred to Rue et al. (2009) and Martino et al. (2010).

All the computations in this paper were implemented using the open-
source statistical software language and environment R (R Development Core
Team 2006). In particular, we used the add-on package INLA (Martino and
Rue 2009) which is freely available and can be downloaded from the website
www.r-inla.org.

3 Simulations

In this section, we perform a Monte Carlo study to evaluate the methodology
described in the previous section. We generated m =1000 replications of 1000
observations plus 5 from the SV model (1)-(2). The adopted setup for the
true parameter values is the same used in Jacquier et al. (1994).

The performance of the INLA method was assessed in terms of the quality
of parameter estimates and the quality of the volatility predictions. Thus,
for each generated sample, the estimation of parameters is made based on
the first 1000 observations. Then, using these estimates we calculated the
predictions of the volatilities and compared these values with the actual data,
the last 5 generated observations.

Bayesian estimation using the INLA methods was carried out using the
functions in the package INLA developed in R. The true parameter values
were considered as initial values in the estimation process and the prior dis-
tributions are as described in Section 2 with hyperparameters a =1, b = 0.1,
¢ =22 and d = 1/1.5. These choices lead to prior distributions for the
log-precision and persistence which are relatively vague and roughly uniform



in (0,1) respectively.

Finally, in order to get some assessment of the robustness of these sim-
ulations we repeated all procedures setting ¢ = 2.5 and d = 1/2 which
corresponds to a roughly uniform prior distribution for ¢ in (0.5,0.999). We
also analised this interval because financial time series returns usually exibit
high persistence (¢) values.

3.1 Parameter estimates

Let 0% the estimate of parameter 6 for the i-th replication, i = 1,...,m. To
evaluate the estimation method, two criteria were considered: the bias and
square root of the mean square error (smse), which are defined as,

1 o= 4
bias = —» 09—
ias m 2 : (3)
1 = (46 2
2 (@) _
smse - {0 9} : (4)

The results obtained with m = 1000 replications are reported in Table 1.
The main findings are,

(i) The bias for ¢ is very small. For fixed ¢ the worst results occur for low
oy, that is for the following (¢, 0,) cases: (0.90, 0.135), (0.95, 0.0964)
and (0.98, 0.0614). But even in those situations, the relative bias is
inferior to 10%. The bias of ¢ is negative except for the (¢,0,) =
(0.90,0.6750) case.

(ii) INLA severely overestimates o, with large biases for the cases listed in
(1).

(iii) INLA methods present large SMSE values for quS and &, in the cases
listed in (i).

(iv) When assigning a roughly uniform prior for ¢ in (0.5, 0.999) insted of
in (0, 0.999) the changes in both bias and smse are not dramatic. In
fact, the values of smse rarelly change for v, ¢ and ¢ and the bias for
estimation of ¢ tend to reduce slightly.

Table 1 around here



3.2 Predicted volatilities

Let 63 [k] be the estimated predicted volatility at time n + k based on data
{y1,--.,yn} and agk the true volatility for the i-th replication, i = 1,...,m.
To assess the quality of out-of-sample volatility predictions three criteria are
considered: the bias, the relative absolute error (rel.ad) and the square root

of the mean square error (smse).

I <~ :
bias = — Y 6D[k] -0l 5
1as m — Un [ ] an—i—kﬂ ( )
RING (0
1 n k -
rel.ad = — 7 H Tnth : (6)
m 0.(1)
i=1 n+k
1 & , N2
IR UL B 7
smse? = =5 {60k - ol (7)

The results obtained by applying the above criteria for m = 1000 repli-
cations with k£ = 1,2,3,4,5 are given in Table 2. When a roughly uniform
prior distribution in (0.5,0.999) was assigned, the results were practically the
same and are therefore omitted. The main findings are,

(i) Underestimation of the predicted volatility.

(ii) For each combination of parameters, the bias is almost the same for
each k, the prediction horizon, excepting for (¢, o)) cases (0.90, 0.675),
(0.95, 0.4835) and (0.98, 0.30) where the bias increases. That is, for
fixed ¢ the worst cases occur for large o,. This was expected.

(iii) For each ¢ we observe the smaller values of rel.ad for the lowest o.
On the contrary, the bigger values of rel.ad are observed for larger o.
These values are large for large k.

(iv) SMSE increases with & and also increases with o for all values of k.

Table 2 about here



4 Applications

In this section, the described methodology is applied to real financial time
series data. Specifically, we estimated the value at risk (VaR) of three stock
market indexes: the SP500 of USA, the FTSE100 of UK and the NIKKEI225
of Japan. The time series under study are the daily continuously compounded
returns in percentage, as defined at the beginning of Section 2.

The time series returns (Figures 1, 2 and 3) are calculated based on
the closing quotations from 2 January 2003 to 31 October 2007. Thus
we have 1216 returns for the SP500, 1222 returns for the FTSE100 and
1188 returns for the NIKKEI225. The SP500 time series was analized by
Martino et al. (2010). These time series were obtained from the website
http://finance.yahoo.com/.

Figure 1 about here
Figure 2 about here
Figure 3 about here

For each time series, we estimated SV models using INLA considering the
following three different distributions for the errors €; in (1), the Gaussian,
the Student-t with v degrees of freedom and the Normal Inverse Gaussian
(NIG) (Barndorf-Nielsen 1997) distributions. For the degrees of freedom
parameter in the Student ¢ distribution we take the transformation r* =
log(v — 2) and assume that v* ~ N(0,02.). The NIG distribution has a
skewness parameter  and a shape parameter ). These are assigned the
following prior distributions 5 ~ N(0,10) and ¢* = log(v) — 1) ~ N(1,0.5)
which are the INLA default specification.

The estimated posterior means and standard deviations for each param-
eter are shown in Table 3. We can observe high persistence estimates (quS)
In addition, we obtained moderate values of v the degrees of freedom in the
t Student distribution, indicating not too heavy tails.

For each time series we also estimated the one day 99% VaR for the last
252 observations (one stock market year approximately). To reproduce a
real scenario, the VaR estimates were calculated using the one-step ahead
predicted volatility. Thus given the observations ry,...,r, we estimated the
parameters and then calculated VaR, 1. In consequence, we estimated the
model 252 times.



In the Bayesian approach, the VaR calculation is based on the one-step
ahead predictive posterior distribution of the returns. This is given by,

p(rngalr) = /p(’rn-l—l|hn+1)p(hn+1|r)dhn+lv (8)

which is not available analytically and not directly computed by the INLA
program. Let h,[1] the posterior mean of h,; which is estimated by INLA.
We then calculated the Bayesian VaR as

~

VaR, 1 = qexp(h,[1]/2). (9)

where ¢ is the 99% quantile of the standard normal, ¢ or NIG distribution.
If the error distribution is ¢t or NIG the hyperparameters are fixed at the
estimated values of v, f and 1 given in Table 3.

Figures 4, 5 and 6 show the last 252 returns and the VaR estimates for
the INLA method. In 252 observations we expected 100/252 = 0.397% ob-
servations below the VaR. When using INLA estimates with Gaussian errors
we obtained 11 for SP500, 8 for FTSE100 and 8 for NIKKEI225. However,
when using a NIG distribution we obtained better results, obtaining 6, 6
and 3 observations outside the VaR limits, respectively. The VaR estimates
follow very well the volatility in the market and reacts well to extreme down
movements (large negative return values). Additionally, we have included in
Figures 4-6 the estimated VaR for the QMLE method of Harvey et al. (1994)
(assuming Gaussian errors). We note that the INLA estimates provide a bet-
ter reaction to the ups and downs while the VaR computed from QMLE are
sometimes unnecessarily large. Besides, the VaR values based on INLA esti-
mates for the three error distributions are very similar thus indicating some
sort of robustness in terms of choice of these distributions.

Figure 4 about here
Figure 5 about here

Figure 6 about here

5 Conclusions

In this paper we evaluated Bayesian methods to estimate the parameters in
a stochastic volatility model. We employed the Bayesian approach using the

8



numerical methods known as Integrated Laplace approximations (INLA) to
obtain the approximations to the posterior marginals of interest.

The approximations for parameters and predicted volatilities appear to be
accurate in terms of bias, mean square errors and relative absolute errors. In
terms of parameter estimation, the simulation results were relatively robust
to the choice of prior on the persistence ¢. Of course, as in any Monte Carlo
study, our results are limited to our particular selection of sample sizes,
prior distributions, etc. However, we note that these are typical choices in
most financial application and we hope that our findings are useful to the
practitioners.
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Table 1: Bias and square root of the mean squared error using INLA.®
estimates with restriction ¢ € (0,0.999),  estimates with restriction ¢ €
(0.5,0.999).

Parameters 0% o} o

~ o) o Bias SMSE Bias SMSE Bias SMSE

-0.7061 0.90 0.1350 “-0.0020 0.0661 -0.0961 0.1431 0.1568 0.1659
5.0.0007 0.0662 -0.0782 0.1322 0.1558 0.1652
-0.7360 0.90 0.3629 0.0093 0.1220 -0.0075 0.0302 0.4259 0.4335
0.0102 0.1221 -0.0053 0.0296 0.4259 0.4335
-0.8210 0.90 0.6750 -0.0009 0.2234 0.0022 0.0192 0.8323 0.8410
-0.0003 0.2234 0.0032 0.0194 0.8342 0.8431
-0.3530 0.95 0.0964 -0.0049 0.0744 -0.0842 0.1276 0.2017 0.2089
-0.0035 0.0744 -0.0676 0.1132 0.2001 0.2073
-0.3680 0.95 0.2600 0.0038 0.1692 -0.0082 0.0205 0.5228 0.5312
0.0050 0.1693 -0.0061 0.0195 0.5250 0.5336
-0.4106 0.95 0.4835 -0.0110 0.3143 -0.0044 0.0146 1.0000 1.0130
-0.0103  0.3144 -0.0032 0.0143 1.0097 1.0234
-0.1412 0.98 0.0614 -0.0067 0.1087 -0.0739 0.1196 0.2379 0.2445
-0.0052  0.1086 -0.0606 0.1196 0.2365 0.2432
-0.1472 0.98 0.1657 -0.0013 0.2675 -0.0110 0.0174 0.5746 0.5862
-0.0001  0.2674 -0.0090 0.0157 0.5830 0.5954
-0.1642 0.98 0.3082 0.0147 0.4682 -0.0064 0.0111 1.0975 1.1157
0.0154 0.4684 -0.0051 0.0104 1.1240 1.1441
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Table 2: Bias, mean absolute deviation and square root of the mean squared
error for predictions evaluation using INLA.

Parameters Measure Steps ahead
o) o 1 2 3 4 5
0.90 0.135 bias -0.0150 -0.0129 -0.0110 -0.0100 -0.0110
rel.ad 0.1149 0.1160 0.1182 0.1213 0.1229
smse 0.1451 0.1482 0.1494 0.1534 0.1554
0.90 0.363 bias -0.0760 -0.0852 -0.0832 -0.0869 -0.0923
rel.ad 0.2617 0.2826 0.2962 0.3086 0.3206
smse 0.4001 0.4254 0.4268 0.4505 0.4611
0.90 0.675 bias -0.1938 -0.2193 -0.2444 -0.2525 -0.2716
rel.ad 0.4399 0.5118 0.5592 0.6116 0.6549
smse 0.8676 0.9688 1.0293 1.0725 1.1092
0.95 0.0964 bias -0.0071 -0.0092 -0.0078 -0.0064 -0.0074
rel.ad 0.1167 0.1175 0.1207 0.1202 0.1210
smse 0.1467 0.1484 0.1523 0.1515 0.1526
0.95 0.26 bias -0.0604 -0.0677 -0.0677 -0.0677 -0.0620
rel.ad 0.2221 0.2324 0.2490 0.2620 0.2726
smse 0.3286 0.3437 0.3596 0.3766 0.3882
0.95 0.4835 bias -0.1185 -0.1342 -0.1348 -0.1744 -0.1841
rel.ad 0.3612 0.4024 0.4612 0.4849 0.5182
smse 0.7418 0.7995 0.8610 0.9678 1.1294
0.98 0.0614 bias -0.0138 -0.0145 -0.0125 -0.0130 -0.0138
rel.ad 0.1021 0.1032 0.1051 0.1055 0.1070
smse 0.1320 0.1332 0.1350 0.1362 0.1381
0.98 0.1657 bias -0.0498 -0.0513 -0.0520 -0.0454 -0.0499
rel.ad 0.1878 0.1970 0.2110 0.2186 0.2299
smse 0.2839 0.2950 0.3104 0.3156 0.3356
0.98 0.308 bias -0.1047 -0.1077 -0.1152 -0.1285 -0.1448
rel.ad 0.2799 0.3050 0.3307 0.3452 0.3681
smse 0.6464 0.7182 0.7479 0.7992 0.8697
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Table 3: Posterior means and standard deviations (in parentheses) for the
estimates of the selected time series using INLA.

Series  Model ~ 10} T=1/0? v B P
SP500 Normal -0.57 (0.18) 0.98 (0.01) 3.28 (0.98)

Student ¢ -0.51 (0.20) 0.99 (0.01) 3.60 (1.19) 10.75 (2.60)

NIG ~0.53 (0.20) 0.98 (0.01) 3.70 (1.24) -0.26 (0.16) 2.48 (0.70)
FTSE Normal -0.60 (0.21) 0.98 (0.01) 1.92 (0.49)

Student ¢ -0.54 (0.23) 0.98 (0.01) 2.03 (0.58) 14.70 (3.71)

NIG -0.57 (0.22) 0.98 (0.01) 1.93 (0.53) -0.25 (0.28) 5.40 (2.28)
NIKKEI Normal ~ 0.15 (0.16) 0.97 (0.01) 2.87 (0.77)

Student ¢ 0.21 (0.17) 0.98 (0.01) 3.28 (1.00) 11.50 (2.88)

NIG 0.19 (0.17) 0.98 (0.01) 3.42 (1.05) -0.43 (0.20) 2.67 (0.63)
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Figure 1: SP500 time series returns.
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Figure 2: FTSE100 time series returns.
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Figure 3: NIKKEI225 time series returns.
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