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Abstract: Background: Telomere length (TL) shortening process is associated with several known 
environment and individual determinants. DNA methylation is the most studied epigenetic process 
and may be associated with TL. We investigated the associations between DNA methylation and 
TL in peripheral blood. Methods: Methylation wide association study was conducted in 47 women 
(37.1±8.8 years) with different nutritional status. Association between TL and DNA methylation lev-
els were explored by univariate and multiple linear regression models, corrected by age and Body 
Mass Index. Corrections for multiple comparisons by Benjamini-Hochberg test was also performed. 
WEBGestalt was used to identify pathways that are responsible for regulating TL. Results: We found 
negative correlations between TL and BMI (r = -0.641; p = 0.001), abdominal circumference (r = -
0.622; p = 0.001) and fat mass (r = -0.656; p = 0.001). 44 CpGs sites were associated with TL, inde-
pendent of age and BMI. The most of these sites were negatively correlated with TL. For the 7 re-
mained sites, DNA hypomethylation were associated with shorter TL. These CpGs were related to 
nine different pathways, including thermogenesis, cancer, glutamatergic and serotonergic synapse. 
Conclusion: There is an epigenetic contribution in TL, independent of nutritional status and age. 
Genes related to TL are involved in important metabolic pathways. 
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1. Introduction 

Telomeres are DNA nucleoprotein structures located at the end of eukaryotic chro-
mosomes consisting of hundreds to thousands tandem repeats of TTAGGG [1,2], that play 
an important role in preventing chromosomes from erosion and end-to-end fusion, and 
thereby maintaining chromosome’s integrity [1]. Telomeres are shortened at each cell di-
vision and this mechanism decrease chromosomal stability. Also, telomere erosion be-
lieved to be accelerated by oxidative stress and inflammation [3,5], which increases risks 
for chronic diseases, cancer, cardiovascular disease, and overall mortality [6]. In line of 
this, there is a significant inter-individual variation in telomere length (TL) shortening 
rates throughout life [7]. TL shortening process is associated with several known environ-
ment and individual inherent determinants, including smoking [8], excessive alcohol con-
sumption [9], diet [10], physical activity [11], obesity [12] and chronic life stress [13]. In 
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addition, TL is also influenced by genetic variations. Recent genome-wide association 
studies (GWAS) have identified several polymorphisms associated with TL [14,15]. Fur-
thermore, recent studies in epigenetic research have demonstrated the contribution of 
DNA methylation levels in TL [16,19]. DNA methylation, one of the main mechanisms of 
epigenetic modification, consists in addiction of cytosine residues of cytosine-phosphate- 
guanine dinucleotides (CpGs), which plays an important role in gene expression control 
[20,21]. Importantly, both TL and DNA methylation process are involved in aging and 
disease development and global DNA hypomethylation was previously associated with 
TL in adults [16,22]. Despite the evidence, the epigenetic basis of TL remains largely un-
known. Therefore, we carried out this cross-sectional study to explore the DNA methyla-
tion profile in relationship with marker of TL in women. The present study, for the first 
time, tested the hypothesis that TL would be associated with DNA methylation level, in-
dependent of nutritional status and age. First, we performed Human Methylation 450 mi-
croarray analysis and measured TL in DNA from women patients. Also, we investigated 
the associations between methylation at CpG sites and TL in peripheral blood DNA.  

2. Results 
2.1 Phenotypic Characteristics and Telomere length measurements 
Phenotypic characteristics and TL of study participants are described in Table 1. We ob-
served that 48.9% of women had overweight or obesity. Also, we found negative correla-
tions between TL and BMI (r = -0.641; p = 0.001), abdominal circumference (r = -0.622; p = 
0.001) and fat mass (r = -0.656; p = 0.001). 
 

Table 1. Phenotypic and TL characteristics of study 
participants (n=47) 

Age (years) 37.1±8.8 
Weight (kg) 86.5±26.4 
BMI (kg/m2) 39.9±10.7 
Abdominal circumference (cm) 100.6±23 
Fat free mass (kg) 51.9±10 
Fat mass (kg) 33.3±16.7 
TL (T/S ratio) 0.93±0.11 
BMI: body mass index. TL: telomere length.  

 
2.2 Epigenome wide DNA methylation analysis  
After normalization by quality control, the experiment ends up with 410.586 valid probes. 
After linear regression, 176 CpG sites (located in 154 unique genes) were associated with 
TL at the conventional pvalue <0.05 and remained associated after adjustment for multiple 
comparisons (FDR corrected pvalue <0.05) (Supplementary Table).  
However, the identified CpGs did not remained associated with TL after adjustment for 
BMI and age. Thus, we identified 44 sites within 39 different genes that were associated 
with TL in whole blood DNA, independent of age and BMI (Table 2).  The most of these 
sites were in promoter region (68.1%), island (52.3%) and in chromosome 6 (18.2%).  
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Table 2. 44 CpGs sites related to telomere length after adjustment for BMI and age 

CpG Chromosome MapInfo Gene symbol Gene Region 

Chromosome 

Region 

Negative association 

cg05445839 

1 

 

27023088 ARID1A 1stExon Island 

cg03421104 5793847   S_Shore 

cg18973238 64169293    

cg10499166 23345815 KDM1A TSS200 Island 

cg07283098 3 

 

134514086 EPHB1 TSS200 Island 

cg15693898 183602556 PARL 1stExon Island 

cg16009381 5 173043599 BOD1 5'UTR Island 

cg01735621 

6 

 

74162051  C6orf150 TSS200 Island 

cg00309106 31865663 EHMT2 TSS200 S_Shore 

cg01702338 32812571 PSMB8 5'UTR S_Shore 

cg21128553 3163406   Island 

cg25760338 52860082 GSTA4 5'UTR;1stExon S_Shore 

cg24203851 111136481 CDK19 TSS200 Island 

cg26289450 32158233 PBX2 TSS1500  

cg22592140 7 

 

130132419 MEST 5'UTR Island 

cg14298577 100272703 GNB2 5'UTR Island 

cg27338396 

8 

 

26241120 BNIP3L Body S_Shore 

cg13551243 146052742 ZNF7 TSS200 Island 

cg16274098 92053265 TMEM55A TSS200  

cg23731089 141599208 EIF2C2 Body  

cg08446255 26434378 DPYSL2 TSS1500 Island 

cg15573846 11 126152723 TIRAP TSS1500 Island 

cg23766360 12 6193688 VWF Body  

cg02101876 13 40765110    

cg06488135 14 94641122 PPP4R4 Body Island 

cg25198579 

15 

 

67358136 SMAD3 TSS200 Island 

cg08370718 49913307 DTWD1;C15orf33 1stExon Island 

cg00036440 3507875 NAT15 5'UTR Island 

cg00239353 3115133 IL32 TSS1500  

cg08676730 17 

 

53828263 PCTP TSS200 N_Shore 

cg13893634 48229117 PPP1R9B TSS1500 S_Shore 

cg04349727 19 51457389 KLK5 TSS1500  

cg17064051 

20 

 

3713345 HSPA12B TSS200 Island 

cg16871527 20693360 RALGAPA2 TSS200 Island 

cg14263118 57463787 GNAS 3'UTR Island 

cg12818493 21 44527599 U2AF1 5'UTR Island 

cg04454272 22 31795531 DRG1 TSS200 Island 

Positive association 

cg01919885 4 3365330 RGS12 Body Island 
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cg13941682  702545 PCGF3 5'UTR S_Shelf 

cg03660010 48342263 SLAIN2 TSS1500 N_Shore 

cg17745803 6 29631321 MOG Body   

cg19916067 8 143389706 TSNARE1 Body  

cg12152384 12 47164566 SLC38A4 Body  

cg00989002 16 52225569    

 
For all 44 identified CpGs, 84.1% (37 CpGs) were negatively correlated with TL. For these 
sites, lower DNA methylation levels were associated with bigger TL. On other hand, for 
remained 7 CpGs sites, DNA hypomethylation were associated with shorter TL (Table 2). 
Enrichment analysis showed that these CpGs were related to nine different pathways (Ta-
ble 3), including thermogenesis, pathways in cancer, glutamatergic and serotonergic syn-
apse.  
 
 

Table 3. Enrichment results for CpGs sites related to telomere length 
Gene set Pathway Size 

hsa04926 Relaxin signaling pathway 130 
hsa05225 Hepatocellular carcinoma 168 
hsa04714 Thermogenesis 229 
hsa05032 Morphine addiction 91 
hsa04713 Circadian entraiment 96 
hsa05200 Pathways in cancer 526 
hsa04724 Glutamatergic synapse 114 
hsa04726 Serotonergic synapse 115 
hsa04611 Platelet activation 123 

 

3. Discussion 

As our mainly result, we identified multiple CpG sites in which DNA methylation levels 
were associated with leukocyte TL independent of nutritional status and age. For the ma-
jority of the identified CpGs sites, lower levels of DNA methylation were associated with 
bigger TL (negative association). These associated genes were involved in different meta-
bolic pathways, such as thermogenesis, circadian entrainment pathway and cancer path-
ways. In the same way, Buxton et al. 2014 [16] identified 65 CpG sites at which methylation 
levels associated with leukocyte TL, of these sites, 78% were positively associated. Also, 
authors evaluating global DNA methylation evidenced that Alu and/or LINE-1 DNA hy-
pomethylation were associated with shorter TL [25]. We evidenced that, when adjusted 
for age and BMI and age, the number of CpG sites that remained associated with TL de-
creased. This is the first evidence of the relation between these CpG sites and TL, however 
the reason of this association remained unknown. We consider two hypotheses: the loci 
in which these CpG sites are capable induce changes in telomere length or metabolic path-
ways, which the genes are associated is capable to affect telomere length. It is already 
known that epigenetic changes near telomeres could influence its length [16; 26]. Telo-
meric regions do not contain CpG substrates that are susceptible to methylation by DNA 
methyltransferases (DNMTs), but subtelomeric region has a high number of CpG sites, 
which can be methylated [27]. However, the 44 CpGs identified in the present analysis 
were not in subtelomeric regions, and thus, the present hypothesis cannot be confirmed. 
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An important pathway related to TL in the preset study was the circadian entrainment 
pathway. Previously results evidenced circadian rhythm as a mechanism underlying te-
lomere and telomerase activity [28]. The authors suggest that this association has essential 
clinical impacts, which a possible link between circadian desynchrony and telomere dys-
function [28]. Moreover, pathways in cancer appear as the major pathway related to TL in 
our results. According to some authors, in cancer development context, telomere shorten-
ing may have antagonistic outcomes that involve genome instability and prevention of 
cancer progression [29, 30]. Interestingly, there is an already known association between 
the both above pathway. The circadian clock seems to have an important role in multiple 
physiological processes, homeostasis and, for this reason may control several cancer hall-
marks [31]. Despite many evidence about the contribution of different metabolic strategies 
for energy homeostasis on TL (i.g green tea supplementation; diet; endurance, interval, 
and resistance training) [12; 32, 33], according to our knowledge, this is the first study 
showing the direct association between thermogenesis and TL. Here, different explana-
tions may be point out for this association. First, improvement of oxidative stress and in-
flammation have been associated with better measurements of TL [34,35].  On other 
hand, it is already known that phosphate is an essential mineral for body energy genera-
tion process and recent association has been made between higher phosphate levels and 
longer TL [36]. Other pathways evidenced in the present study have being described for 
the first time. The molecular mechanism that relaxin signaling pathway, platelet activa-
tion and glutamatergic/ serotonergic synapse pathway is associated to TL need to be fur-
ther investigate. Like epigenetic clocks, we expect that DNA methylation level may be-
come a useful biomarker for human aging in interventional studies. Considering that ep-
igenetic biomarkers are still in the nascent stage, we will highlight the importance of fu-
ture prospective study to confirm DNA methylation level as epigenetic biomarkers of TL 
and possible human disease. Strengths of our study include the wide analysis of DNA 
methylation by array technology. Limitations include the small sample size and the age 
range adopted in the inclusion criteria. However, despite the number of included partici-
pants, important associations were found. 

 4. Materials and Methods 

Study design and subjects 

We performed our methylation wide association study with 47 women (aged between 20 
and 60 years old) from an ethnic mixed population, on different nutritional status (accord-
ing to body mass index – BMI). We did not included patients a history of metabolic dis-
eases such as Cushing syndrome hypo or hyperthyroidism and those in use of antiobesity 
medications or hormone therapy. Also, men were excluded to avoid the possible biases 
due to the hormonal influences. For this cross-over study, patients were evaluated only 
once. Data collection included anthropometrics (weight, height, abdominal circumfer-
ence, and BMI) and body composition (fat mass and fat free mass) measurements and 
blood collection for genetic analysis.  

DNA extraction 

Genomic DNA was extracted from leukocytes using the Master Pure kit (Epicenter, Mad-
ison, WI). DNA fragmentation or RNA contamination was analyzed by 1% agarose gel 
electrophoresis. All samples were stored at -80°C until analyzed. 

Measurements of leukocyte telomere length 

Analysis for leukocyte telomere length were performed using the method developed by 
Cawthon et al. [23], with specific modifications [12]. Briefly, Real-time PCR was per-
formed using a 7500 Fast Real Time PCR System (Applied Biosystems). Assay method 
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was optimized for use of both telomere (T) and single copy gene (S) amplifications on the 
same 96-well plate, with reference standard DNA samples on each plate. Analyses were 
performed in triplicate PCR reactions. Amplification primers for telomeres included TelF: 
5’-GGTTTTTGAGGGTGAGGGTGAGGGTGAGGGTGAGGGT-3’ and TelR: 5’-
TCCCGACTATCCCTATCCCTATCCCTATCCCTATCCCTA-3’, and for 36B4u: 5’-
CCCATTCTATCATCAACGGGTACAA-3’ and 36B4d: 5’-CAGCAAGTGGGAAGGTG-
TAATCC-3’. The relative quantification of TL was determined using the telomere to single 
copy gene ratio (T/S) [2−(ΔCt(telomere) – ΔCt(Single copy gene) = 2−ΔΔCt], following the 
parameters of Scheinberg et al, 2010 [24]. For 2−ΔΔCt calculation, each sample was nor-
malized to the average T/S ratio of a reference sample, using the standard curve and vali-
dation sample as reference. 

Methylation assay 

Genomic DNA was bisulfate converted immediately before methylation analysis using 
EZ-96 DNA Methylation Kit (Zymo Research Corporation, Irvine, CA). Methylation chips 
manufactured by Illumina (Infinium Human Methylation 450 array, Illumina, San Diego, 
CA) were used for generating methylation data. Beadchips were scanned with the Illu-
mina HiScanSQ system, and image intensities were extracted with the Genome Studio 
(2011.1) Methylation Module (v1.8.5). Blood samples from each subject were hybridized 
to the same physical chip to minimize biases. The methylation level was expressed as a 
beta (β) value that was calculated as the intensity of the methylated channel divided by 
the total intensity [β = Max (SignalB, 0) / (Max (SignalA, 0) + Max (SignalB, 0) +100]. A 
threshold for the significant CpG sites based on Δbeta with a minimum value of 5% (value 
greater than 0.05 or less than -0.05) and p value < 0.001 was applied. 

 

Statistical analysis 

Descriptive statistics consisted of mean and standard deviation (SD) values. Shapiro-Wilk 
test was used to verify the data normality. t-test for independent samples was used for 
phenotypic variables and TL comparisons between obese and normal weight women. As-
sociation between TL and DNA methylation levels were explored by univariate and mul-
tiple linear regression models, in which outcome measurement was TL and confounding 
variables included age and BMI. Corrections for multiple comparisons by Benjamini-
Hochberg test was also performed.The significance level used for the tests was set at 
p<0.05. All analyses were performed by using SPSS Statistics 21.0 (SPSS Inc.).   

Pathway Enrichment Analysis 

WEBGestalt (WEB-based GEne SeT AnaLysis Toolkit) was used to identify pathways that 
are responsible for regulating TL. For this, the list of genes associated with TL was sub-
mitted for statistical overrepresentation testing (Fisher’s exact test) in KEGG (Kyoto En-
cyclopedia of Genes and Genomes). Pathways were considered over-represented where 
False Discovery Rate (FDR) p < 0.05. 

5. Conclusions 

The results of present study provide novel insights into the epigenetic contribution in te-
lomere length, independent of nutritional status and age. Also, DNA methylation levels 
of genes involve in important metabolic pathways such as circadian, cancer and thermo-
genesis are associated with TL. 
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