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ABSTRACT 

An important aspect of Mathematical Morphology is the description of set operators by a formal language, the Binary Mor­

phological Language (BML), whose vocabulary are dilations. erosions. antidilations. antierosioos. union 800 intersectioo. This 

language is complete (i.e. it can represent any set operator) and expressive (i.e. many useful operators can be represented as 

phrases with relatively few words). Since the sixties special machines. the Binary Morphological Machines (BMMach's), have 

been built to implement the BML with increasing efficiency. However. designing useful BMMach programs is not an elementary 

task. Recently, much research effon has been addressed to automaung the programming of BMMach's. The goal is to find suit• 

able knowledge representation formalisms to describe operations over geometric structures and to translate them into BMMach 

programs. We propose an approach for the automated programming of translation invariant operators: operators are described 

either by logical expressions or by sample input-output lists 800 translated into BMMach programs by semantic evaluation. 

probably approximately correct (PAC) learning or automated deduction over abstract operations. llie generated operators are 

optimized by transfonnauoos on their decompositioo structure. A priori knowledge is modeled by associating probability dis• 

tributions to occurrences of images. The design of optimal and suboptimal morphological filters can be seen as particular cases of 

the proposed approach. Some examples illustrate the main ideas presented. 

1. lNTRODUCTION 

Binary Image Analysis is an imponant tool for various areas, such as industrial process control. office automation, quantita­

tive microscopy. etc. 

A natural model of a procedure for Binary Image Analysis is a srr operator (i .e. a mapping over a powerset). MatMmaJical 

Morphology (MM) is a general framework to study operators over complete lattices 1, which includes set operators 2 3 . 1l1e 

central paradigm of MM is the decomposition of operators in tenns of four classes of elementary operators: dilations. erosions, 

antidilatioos and antierosions. 

The rules for the represeruauon of set operators in terms of the elementary operators can be described as a formal language 4• 

lhe Binary Morphological IAnguage (BML). The vocabulary of the BML are the four classes of elementary operators and the 

operations of uruon and intcrsecuon. A phrase of the BML is called a morphological operator. 1bc BML is complete (i.e. it C811 

represent any set operator) and expressive (i.e. many useful operators can be represented as phrases with relatively few words). 

Moreover. some morphological operators can be simplified imo equivalent operators that use a smaller number of elementary 

operators. An implementation of this language is called a Binary Morphological Machi~ (BMMach), and a program of ii 

BM Mach is an implementauon of a morphological operator on this machine. 

Nowadays, there are many commercially available BMMach 's implemented m hardware' 6 7 1 or emulated in software. 9 1< 
11 which have been intensively used for Binary Image Analysis 3. 

Programming a BMMach can be a very difficult task. In order to help the non expens in MM to use BM Mach's. some tooli 

have been proposed to automate the design of progran1s. These tools act as translators of the user knowledge about the problem 

expressed as high level abstract procedures. into morphological operators. 
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The existing systems are based on two main paradigms: rule-based expert rystems 12 13 14 and awomated deduction. 15 

Expen systems employ a combination of stored heuristics to generate a set operator. while automated theorem provers give a 
constructive proof that there exists an operator equivalent to a logical description. The steps in this constructive proof can be 
interpreted directly as apphcat1oos of the morphological operators. Each morphological operator generated by the expen system 
or the theorem prover can be incorporated to the system. respectively. as a new rule or lemma. So these systems can learn and 
improve their efficacy with use. · 

The nuun goal of this paper is to present a general model, based on formal approaches, to automate the design of programs for 
BMMach 's. The proposed model 1s composed by the following main steps: descnptioo of a set operator as a logical expression or 
as an input-output list of sample images; translation of this description into a morphological operator by semantic evaluation, 
PAC learning or automated deduction; simplification of the derived morphological operator using cootexrual informauon or 
transfonnatioo of decomposnion structures. For sake of simplicity, we stay restricted to the automatic programming of transla­
tioo invariant (t.i.) operators. 

An imponant characteristics of the proposed model is the symbiosis of three formal techniques of Artificial Intelligence: 
automated deduction. PAC learrung and program transformation via algebraic rewrite rules. A fundamental fact exploited for 
this integration is the Canonical Decomposition Theorem for t.i. operators 16. 

In secuon 2, we give some basic definitions and results from MM theory. In section 3, we present the PAC learning model. In 
section 4. we present our proposed model for automatic programming of BMMach's. [n section 5, we show an application exam­
ple. Finally, in section 6, we present some further discuss1on. 

2. MATHEMATICAL MORPHOLOGY 

For the automatic programmmg of BMMach 's some relevant aspects of the theory of MM oo sets are: the canonical decom­
positions of set operators, the optimal filter design and the transformation of decomposition structures. 

2.1 Canonical drcompositions 

Let ':P(E) be the collecuon of all subsets of a finite non empty subset£ (i.e. the collection of all bmary images). Let C be the 

usual inclusion relation on sets. Let X' be the complementary set of a subset X of£. We know that (31(£), C) is a complete 

Boolean la1tice. 17 The intersection and uruon of X, and X, e ':P(E) are, respectively, X, n X, and X, U X1. 

The set Eis assumed to be an Abelian group with respect to a binary operauon denoted by+. Toe zero element of(£. +) is 
denoted by o. Let X' be the1ranspose ofasubsetX, that is, X' • (y E £: y = - .r, .r E XJ. AsetX is said to besymmetricif 

X' • X. 

For any h e E and X C £, the set X + h = (y E £ : y • x + h . .r e Xj is called the translate of X by h. In particular, 
X."" X. 

A sr1operalor is any mappmg defined from :P(E) into itself. A set operatorv, is called lranslation invarianr (t.1.) 1f and only if 
Offi · 

The kernel :t{v1) of a 1.1. set opera1or v1 1s the subcollecuon of 'Y(E) defined by 

DEFlNITION 2.1 Let B e 9'(£) . The t.i . set operators J, and r I defined by 

J,(X) = t.r e £ : CB' + x) n X .. lit (X e ':P(E)) 
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and 

ta(XJ = f.r EE : (8 + .r) C X) (XE 9l(E)) 

are called, respectively. dilation and l!ro.rion by B. □ 

The Li. set operators J~ and t~ (i.e. the composition of the complement operator. respectively, with dilation and erosion) are 

called, respectively. antidilation and antitro.sion, Sid are dmoted J• 1 and,• 1 . The parameter B that characterir.es a dilation or an 

erosion is called a structurin1 l!lerMnt. 

A subcollection [A, BJ of <J>(E), with A C 8, is called a clostd intuval iff 

[A.BJ = IX E g'l(E): A C X C Bl. 

The sets A and B are called, respectively, the left and right extrtmities of the closed interval. 

A useful property of erosioos and antidilations is that they are sufficient to decompose any t.i. operator in standard forms. 

Banon and Barrera stated such propeny as the following theorem: 16 

THEOREM 2.1 (Canonical Decomposition Theortm) Let tp be a t.i. operator and~'/•) be its kernel. then 

V1(X) = LJ ltiX}nJ',..(X) : [A, Bl C ':JG(V,)) (XE :J'(E)). 0 

lbis representation theorem may lead to inefficient computational representations for most t.i. operators, in the sense that a 

smaller family of erosions and antidilations may be sufficient to represent the same operator. 

A closed intervel contained in a subcollection ~\j of 'J>(E) is called maximal in';\; if no other intervel contained in';\; properly 

contains it The set B(1/)) of all the maximel closed intervals contained m ~1") is called the basis of v,. 

Banon and Barrera also proved that ~V,) can be replaced by B(ip) in the dccompos1ti011 fomutla. 16 that is, 

y1(X) = LJ (riX)nJ'..,(X) : [A.BJ E B(y•)I (XE 1'(£)). 

In practice. the interesting operators are the ones that depend on a local neighborhood. A t.i. operator is called locally ckfinrd 

within a window W C E iff 

h E V,(X) - h e v•(X n (W + h)). 

for all h e E and X E: J'(E). 

If tp is a locally defined t. i. operator within the window Wand [A.Bl E B(V,). then A, tr E <J>(W). In other words. the 

structuring elements wtuch characterize the erosions and the antidilations used in the decomposition of locally defined operators 

are subsets of the window W. 

An imponant property of t.i. operators 1s that they are closely related to Boolean functioos. Let I 0. 11 ~,...., denote the set 01 

Boolean funcuons defined from 1'(W)to (0. l J. For each Boolean funcuon b E (0. 11"'.., we can associate lhe locallydefmcc 

t.i . operator 1/J b given by 

V'•(X) = Ix E: £ : b((X - .t) n W) "' I } (X E J'(E)) 

Conversely. for each locally defined t.i. operator v, we can associate the Boolean funcuon b, E (0.1 J.,....., given by 
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b,(X) = I ,. o e tp(X) (X E :P(W)). 

The mappings b ..... "'• and tp ..... b, are reciprocal functions. 

In the standard representation of b by a sum of minterms. each Boolean variable is associated with a point in W and each 
minterm corresponds to an element of the kernel of v,., The usual simplification of Boolean functioos of the switching theory 11 

can be applied to simplify the representation of 'h The detennination of the so-called prime implicanlS of the Boolean function 
b by the Quine-McCluskey method leads exactly to the basis of ip .. since the pnme implicants of b correspond to the maximal 
closed intervals contained in ':k;(V,). In a prime implicant, the Boolean variables not complemented and complemented define, 
respectively, the left extremity and the complement of the right exuemity of the closed interval. 

2.2 Optimal ftller design 

As shown by Dougherty 19 • the Canonical Decomposition Theorem can be useful to design optimal morphological fillers . To 
do so, we must put the morphological operators in the context of a theory of estimaticn: morphological operators are seen as 
statistical estimators that are a funcuoo of a random variable. 

Let the mapping X with values in :P(E) be a random set with probability distribution p(_X). Let '1 be a set operator over <J'>(E) 
which models the noise that corrupts the images. Let 1/1 be the set operator over <J>(E) which estimates the thrue image. 

Let 121 denote the cardinality of a subset Z of E. The mean absolute error (MAE) committed by the estimator IJ', when esti­
mating the random set X from the random set tJ(X), denoted MAE(V•), is given by 

MAE(,p) • I l(X n ,p(,1(X))') u (!J'(,,CX)) n X')l.p(X. y,(,,(X))). 

where p(X, V'('f(X))) is the joint probability distribution of the random sets X and !Jl('l(X)). 

The esumator operator tp is called an optimal estimator iff MAE(V•) s MAE(JJ). for any estimator operator/Jover :P(E) . 

Assuming that the esumatorv, is a locally defined t.i . operator within a window W with cardinality n. under statiooary condi­
tioo on X. the MAE expression simplifies to 

where .r,,.r1, .. . ,.r. are then Boolean random variables observed in the wmdow W • .r,., is the Boolean random variable to be 
estimated and p(.r,. x,, ... . .r,. ,) is their joint probab11i1y distribution. 

Hence. reducing the search of optimal estimators to the class of locally defined t.i . operators implies in the search of Boolean 
functions. that (as discussed in section 2.1) can be translated into canorucal decomposiuons of locally defined t.i. set operators. 
Oearly, the distribution p(x,,.r1, ••. ,.r.) is detennmed by the dmnbuuon p(X). 

lJ lransformation of decomposition structuns 

A set operator may be represented by an inf1111te number of BML phrases that are synonyms (i.e. different phrases which 
express the same operator). When 1mplemenung a set opera1or in a BMMach. we are mterested m cheap realtzations for the 
operator, that is. BML phrases which involve the smallest possible number of elementary operators. 

'There exists a bijecuon between the set of the t.i. operators and the set of subcollecuons .P('Y(E)). In other words, each sub­
collection in <J>(:P(E)) 1s the kernel of a unique t.i. operator. As. in the finite case. there exists a bijection between the set of 
collecuons o maximal intervals of the subcollectioos in .P(:P(E)) and :P(Jl(E)) itself. then there exists a bijection between the set 
of basis of t.i. operators and the set of 1.1. operators 11self. 
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Thus. for each operauon on the set of t.i. operators corresponds an equivalent one on the set of t.i . operator basis and con­
versely. As the BML can be reduced to compos11ioos of W11ons , d1lauons and complementauons (or. eqwvalemly, mtersecuons. 

erosions and complementauons). 11 suffices to understand the composmon of these operators wnh an arbitrary 1.1. operator to be 
able to construct transformations of decomposition structures oft. i. morphological operators . 

Let 'X be a collecuon of closed mterval m :P(:J"(E)). Let Max('.\.:) denotes the collecuon of maxunal closed intervals of u '.l. 

PROPERTY 2.1 Let V' and v,· be two arbitrary t.i . set operators . The following equal111es hold: 

l)B(J,111) = Max(([X + b.Y + b] : [.\'.Y] E 8(1J1).b e B'I); 

2) B(v• ') = Max(l[A.B] E '.J'('Y(E)) : 'v[X. Y] t:= B(v,). IA n Y'l = I and 18' n XI = 11); 

3) B(I/' V V•') = Max(B(V,) U B(V,')). LJ 

The Example 2.1 illusuates how 10 apply Propeny 2.1 m order IO compute the basis of any 1.1. set operatot from a synonym 
phrase in the BML. 

EXAMPLE 2.1 Let the operator l/' be defined by I/' = 1 11 £a' , where I denotes the 1dem11y operator (I e. 

1(X) = X. 'vX E ·:J>(E)) and B be a symmetnc subset which contains the on gin o. This operator can be represented in terms of 

W1ions, dilations and complementations as ,p = (1 ' v ,11'1')' . To compute the basis of 'I'• we compute incrementally the basis of 

the operator compositions from the basis of the identity operator: 

1) 8(1) = l[(ot. Ell ; 2) 8(1') = l[O, {ol 'll: 3) B(,l,,i ') = t[ll. { - bl'] : b e Bl. 

4) B(,l ,'1') = f[B. £]); 5) 8(1' v ,l,'1' ) = 1(8. El . (0. fol')L 

6) B(lJ•) = ([(ol, {bl'] : b t Bn lol ' I. _J 

The rules of Property 2.1 could also be used to solve the inverse problem. that 1s. to go from the canonical decomposmon 16 
simpler decomposiuon structures. However. this is a much more complex problem, since for each state of the algomhm (analo­
gously 10 the transition of states in a chess game) there Sie many possible next states Jones 20 studied this problem in the case of 

mcreasmg t.i . operators (i .e. t.i. operators IJ• such that X c Y = ~,(X) C ~•()1. VX. Y e .!'(£)). 

3. PAC LEARNING 

Computational Learning Theory 21 22 1s one of the first attempts to constnx:t a mathemaucal model for a cogmuve process . 

It proVldes a framework for studying a vanety of algonthnuc processes. such as those currently muse for 1rammg amf1cial neural 

networks. Here. we apply this framework 10 design set operators . 

We W1derstand concept as a subset of obJects m a predefined domam. An example of a concept 1s an object irom the domam 
together with a label mdicating whether the object belongs 10 the concept. If the obJect belongs 10 the concept. 11 1s a pos111ve 
example, otherwise 11 is a negative example. Concept learning 1s the process m which a learner consm1c1s a good approx1111at1on 
to an unknown concept, given a small number of examples and some pnor mfonnat1on on the concept to be learned In 1he follow­
mg. we formalize these ideas. 

Let! be a set. called the alphabet to descnbe examples. In thls paper.! will be the Boolean alphabet I 0. I } . We denote the 

set of n-ruples of elements of! by I• . Let X be a subset of I" . We defme a concept. over the alphabet :£, as a i1mcuon 

c : x--10.11 . 

The set X will be referred to as the example space. and its members as examples. An example _v t X for which c(_v) = I 1s 
lcnown as apomive example. and an example forwh1ch c(y ) = 01s lcnown as a nega11ve e.rample . So. provided that the domam 1s 

lcnown, c determines. and 1s determmed by. 11s set oi posm ve examples. So someumes 111s helpful 10 think of a concept as a set m 

that way. 
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The set of all possible concepts to be learned will be referred to as the hypothesis space and denoted by H. 'The concept r E H 
to be determined is called the target conupt. The problem is to find a concept h E H, called the hypothesis. which is a good 
approximation for r. 

A sample of length mis just a sequence of m examples, that is, an m-tuple x = {x,,x1, •••• x,.I in X"'. The sequence may 

contain the same value more than once. A training sample s is an element of X"' x I 0, 11, that is, 

where the x, are examples and the b, are O or I. The value of b, is given by a teacher and specifies whether x, is a positive or a 
negative example. There are no contradictory labels. so that if x, = x, then b, = b,. 

A learning algorithm is simply a function L which assigns to any training sample, for a target concept t E H a hypothesis 
h E H. We write h = L(s). 

Let11 be a probability distribution (or probability measure) on X. Given a target concept t E H, we define the error of any 

hypothem h t: H. wnh respect lot, as the probability of the event h(x) "' t(x), that is, . 

er.(h,t) = 11(x EX : h(x)"' t(x)I. 

When a given set Xis provided with the structure ofa probability space. the product set X'" inherits this structure fromX. The 
corresponding distnbution on X'" is denoted 11'". Usually, the components of the m-tuplc (x1,x1, ••• ,x.,) arc assumed to bc"inde• 
pendent" variables. each distributed according lo the probability distnbution11 on X. 

Let S(m, t) denote the set of training samples of length m for a given target concept:,. where the example:$ are drawn from an 
example space X. As there is a bijection t/> : X"' ..... S(m. t) for which q,(x) = s. the following equality hold 

/t'"ls e S<m,t) : s has property Pl = 11"'fx EX"' : t/>(x) e S(m.t) has property PJ . 

DEFINITION 3.1 We say that the algorithm Lis a probably approximately correct (PAC) learning algorithm for the hypothesis 
spaceH1f.giventworealnumbersrand,S(0 < r,J < l).thentherersaposiuvemtegerm0 = m0(r,J)suchthatforanytarget 
concept I e II. and for any d1s1nbutton /I on X. whenever m .? m0, 

11'"ls E S(m, t) ; er,.(L(s)) < r l > I - J . 

The function m, = m.,(,'.,I) is called example complexiry. :J 

A leammj! alj!onthm L for His consistent 1ff, given any training samples for a target concept r E H. the output hypothesis 
agrees with ton the examples ins. that rs. h(x,) = t(x,) ( I s i s m). For a given s e S(m . t), we denote by Hfs] the set of all 
hypotheses C0IISIStent with s. that is, 

H[s] = {h E H : h(.r.J = r(.r.) (I s I s m)J . 

Given r E (0, I). the set 

8, = lh EH: er.(h) ~ rt 

is called the set or£ · bad lnpothesis fort . 

We say that tl1e hypothem space His potentially learnable if. given two real numbers rand ,\ (0 < r ,J < I). there is a 
posllrve intej?er m0 "' m0(r. ,I) such that. whenever m ~ m0 
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for any probability distributionµ on X and any t E H. 

The following theorems are proved to hold: 22 

THEOREM 3.1 If His potentially leamable, and Lis a consistent learning algonthm _for H, then L 1s PAC. 

THEOREM 3.2 Any finite hypothesis space is potentially leamable. 

The following example presents an algonthm for learning concepts which are Boolean functions. 

_J 

_J 

EXAMPLE 3.1 Let D •J be the space of all those Boolean functions of n vanables which can be expressed as the disJW1c11on of 

monomials of length at most le (n ;a: le > I). The following leammg algorithm was proposed by Valiant: 21 

set h := disjunction of all monomials of length at most le. 

for i:=l tom do 
if b, = 0 and h(x,) = I 

then delete mononuals ..'lb for which .11.,(x,) = I; 
L(s) := h 

The hypothesis space D •J has cardinality bound above by 2,2n,. (i.e. ID •JI < 2''""). Thus. as Valiant 's al!!Onthm 1s consistent. 1t 1s 

a PAC learning algorithm. 

According to Anthony and Biggs. 22 the example complexity of Yaliant's algorithm 1s 

mo(r.J) = f (k/r) In 2n + (1/r) In (1/J)l , 

for any dJstnbution µ and with no restncuon in the hypothesis space H = D.,. _J 

4. A MODEL FOR AUTOMATIC PROGRAMMING OF BMMach's 

The proposed model for the automatic programming of BM Mach's 1s presen1ed as a daia flow diagram in Figure t . ll1e goal 

of !his model is to transla1e the usr:r knowkdgr: about the targr:t opr:raror and the application domam 1mo morphological opera­

tors or. equivalently, into programs/or BM Mach's. 

The user knowledge can be represemed by two disunct knowledge represeniauon formalisms : logical expressions or 111pur­

output lists of examples. Logical expressions are used altemauvely in two d1s11nct representations forms: full spr:c1jication of 

operators and abstract image operations. 

In full specification of operators, windowed images (1.e. X - h n W. h c £) and image operators are seen as propos111onal 

fom1ulae in wluch basic propositions are associated to points in a finite discrete square W of size (2n) ' . centered at the ongin o . In 

order to make the correspondence between images and propos111oos more natural, we index the propos1uons with the pos1uon of 

the corresponding points in W l1ie alphabet of this language consis1 of a finite set of basic propos111ons 

4> = lq0_o,P-•.-•• ... . p.,.I and the convenuonal connectives (1.e. ➔• -,, v and A). Proposmon p,, 1s associated to the pomt 

(i.J) of an windowed image (i .e. (X - h) n W), while propommn q0_0 1s associated to a po,nt of the output image (1.e. 

1/'(X) n I h I). Basic propositions correspond to black and white po,nts. respecuvely, when they are rrue and falsr: . Finally. a set 

operatbr is represented as a formula of the form P ..... q00, m which P con1ams only propos1uons p ,, (e.g. see Example 4 2). 

In abstr8CI image opera11ons. as presented m Joo 15 , morphological operators are structured in "packets" that charactenze 

• abstract operauons frequently employed in Blll81)' Image Analysis (e.g. difference between subsets, or some special operators 

like sieve filter) and geometncal properties hkc convexity, topological structure. or size. The abstract operauons and properties 

are encoded as first-order sentences. whose semanucs 1s given by the packed of morphological operators they represent (e.g. 

assuming subsets to be represemed by the cons1a111 symbols a. b. c, ... and variables X. Y. Z . .. .. differrnce can be represented as a 

funcuoo dilJ(X, n. whose in1erpre1at10n can be the subset X n r). nus parucular interpreiauon forces (m the model theory 
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sense) some relations between the resulting functions and predicates. From those, some relations are selected and encoded as 
either axioms or inference rules m a correspondmg first- order theory of MM, necessarily correci but not necessarily (lllld most 
probably not) complete. 

0 

Full 
1p«1f1catton 

,....,.,. 
o.c.....,. .... 

R,wn .. 

NIH 

0 
0 

Tarp1oper111er 
Domain 

0 
l/0 

lffllle llmpltn& 

0 
0 

Ab""" 
111111eope:r1110N 

AD•an 
~ormal Form 

""""'"" .......... 

""""'"" attmam011. 

Fig. 1 - A 1110..kl for th.: automatic programming of BMMach ·s 

• 

• 

• 

When the user does not have complete information to specify a first-order function or relation to descnbe 811 operator or'lt is 
to complex to do that, he can specify approximately this operator by a list of input-output examples. These examples are pairs 
consisting of 811 mput windowed image (i.e. (.\'. - h) n W) and the corresponding value in the output image (i.e. ip(X) n I h )). This 
list of examples feeds a learning algorithm, si1D1lar to the one presented in Example 3.1. The output of this learning algorrthm is a 
Boolean function which charactenzes a set operator that 1s consistent with the examples and sausfy the PAC quahty E, ;;._ 

TI1e following example illustrates the use of the learning algorithm of Example 3.1 to obtain a locally defined I.I . set opera­
tor. 

EXAMPLE 4.1 Let V' be a set operator locally defined within the honzontal window W = ((- 1.0),(0.0), (1.0)1, defined b; 
the mput- ontpnt pans of images of Figure 2a. The correspondmg Boolean funcuon /,, defined in Figure 2t1. i!, • • • 

.. 
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... 

lVhere Xi is associated to the pomt ( - l. 0), ... The canonical form of the corresponding set operator 1s 

Note that this set operator. which performs the extraction of vertical edges. is fully specified by the input- output image pain 

(X,,tJ•(X,)) and (X,.tJ1(X,)) . lfonly the p111r (X,. V•(X,)) were given the learned function would be f, □ 

• v• II -
X1 Xz x, f,(x 1 x1 x,) f, .(x, x2 x,) 

0 0 0 0 0 

0 0 1 0 0 

X1 y,(X ,) 0 I 0 I I 

I 0 0 0 0 

:B V' • -
0 I I I I 

1 I 0 I I 

I 0 I 0 I 

... I I I 0 0 

• 

,. 

• 

x, v•(X,) 

a b 

Fig. 2 - a) Input-output image pairs. b) Truth tabk of the Boolean function. 

Once created. the full specification of operators and the abstract image operations are nom1aliz.ed. The Boolean function: 

generated by the learning algorithm also are normalized into disjtmcuve normal fom1s. The normalizauon process build standarl 

inputs for the following processes and eliminate redundant logical expressions. A full spec1ficatton of an operator can be trans 

late by semantic evaluation into a Boolean function and conversely 

General descriptions m the form of normalized logical expressions or normalized Boolean functions may be simplified b: 

• context. which may be given either by further logical expressions or by a list of examples (1.e. a list of input images). By contex 

simplification we understand the appr~priate use of available a pnori infom1auon about the image domain in order to s1mplif 

the specification of the set operators. When a context is introduced (1.e . the domam of set operators 1s restricted) a large numbe 

of operators become equivalent, and we can choose an operator between simpler ones (i .e. ones corresponding to shorter expres 

sions). When the context is specified by a list of examples the logical descnpuon of the set operator acts as the ,~aC'hu in th 

learning process. When the context and the operator are specified by logical expressions symbolic sunplification can be used . 

The following example illustrate the context simplification. when both operator and context are given in the full spec1fica 

I tion-fom1 . 

EXAMPLE 4.2 Let's study the problem of recognizing 3 x 3 squares w1thm a 5 x 5 window. positioned arbitrarily in th 

~mage. The full specificauon for this shape. recogni1ion task is 

4 
/\ p,, 

- ,Is 1.j s I 
/\ -p,_2 " 

- 2s,s2 
/\ -P,-2 " 

- 2s,s2 
/\ -p,, " /\ -p _11 - 'loo 

- Is J '!i I 

The corresponding basis of the set operator V' is given by the smg.le interval [A.BJ. where A = I - 1.0. l I' an 

8 ' = ( - 2. - I, O. I. 21 1 n A'. Now assume that we know a pnori that the only occumng shapes m our mput images are 3 x 

squares and !' ~ 3 squares with a hole m the middle. ln other words. we know that whenever we find a Jx3 cross. the cross mu 

belong to the target shape. The context s1mplificauon gives (see 23 for details) 
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I\ P,, 
1E(-l.ll 

" I\ P,, " 
J E ( - I, I) 

lie basis of me simplified opera1orii reduce to the smgle interval [A' .B'], where A' = (( - l, 0),(1, 0). (0,0), (0, - I), (0, I)} 

nd B' = E. Observe lhat 111' = r A· is simpler man 11' .. r A A ,J• aa, since its decomposition involves jusl one erosion, while 11' 

lecompos1tion involves an erosion and an antidilation. D 

The generation of morphological operators from Boolean functions is straightforward (see sectioo 2.1 ), while me translatioo 

,r abstract logical descriptions into morphological operators can be done from constructive proofs of relations between proper­

ies of inpw and output images represented as first-order meorems. By using some automatic thcorem proving techniques (like 

he Resolution-based techniques adopted by Joo IS , or even more sophisticated techniques hke proof planning 24 ), given me 

pec1fication of a set operator task in tenns of expect relations between properties of input/output images, we can obtain an auto­

natically generated morpholog1cal operator mat perfonns me desired transfonnation. 

The struc1ure of me generated morphological operators could be changed by using program transformauon techniques 

which explore Property 2.1. 

This model should improve wnh use, since the set operators generated are incorporated to the model as new logical expres­

.ions. 

5. APPLICATION EXAMPLE 

Here. we illustrate thc use of PAC learmng m order to generate a simple set operator which pclfonns optimal images restora• 

ion. We take the image of Figure Ja and corrupt it with subtractive punctual noise. with an unknown dislribution (Figure 3b). We 

:hoose arbitrarily the3 x 3 cross as the wmdow. i.e. W = ( (0, I), ( - I. 0), (0,0). (0, I), (0, - 1 )I . From the original image and 

.he com1pted one. we build a frequency 1able which esuma1e the distribution of 'J'(W) x I 0. 11 , The elements of .Jl(W) are taken 

·rom the noise imagerJ(X) by the operauon (11(X) - h) n W. and the corresponding ideal restoration values (i .e. 0 or 1) are taken 

from the ongmal 1mageX by the rule (1 iff (ol n (X - h) .,_ 0). In order to establish atraming sample. for each subset m 9\(W) 

s d10~n the most frequent value associate (1.e. 0 or I). Figure 3c shows the frequency table generated from the images of Figures 

3a and 3b. This traimng sample feeds the PAC learmng algonthm of Example 3.1. 

For this problem, the example complexity. with t = J = 0.0l.1s m, = 1.61 I. The number of examples expenmemally 

used was 3.844 (i.e. 622) . 1bc learned Boolean funcuon is 

where x, is associated to the pomt (0, I), x1 1s associated to the pomt ( - 1, 0), .. . The corresponding set operator is 

tiserve that m the PAC learmng of the optimal restorauon operator a third quality parameter could be defined, besides f and~­

This parameter should reflect the correctness of the staus11cal decision done in order to establish the traming sample. Figure 3d 

presents the image of Figure Ja corrupted by other realizauon of the same nmse source. Figure Je presents the result of the resto­

rauon by the generated operator V'• 

6. CONCLUSION 

We introduced the use of PAC leammg theory m MM. by denvmg the canonical decomposuion of t.i . set operators through 

leammg of Boolean funcuons. The proposed methodology was applied to the problem of des1gnmg optimal 1.1. morphological 

filters . -
We defined the rules for the transformauon of decompos111on structures for the general case oft.I . set operators and showed 

how they can be used to compute the basis of any 1.1. set operator for which is known a representat10n as a BML phtase. 
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X1 Xz X3 x, X5 f,(x, ... xs) Frequency 

0 0 0 0 0 0 18 

-e---1}--0- tr-1' ---r-- --&-
0 0 0 0 I I 17 

0 0 0 l 0 0 17' 

a b 
0 0 l 0 0 I IS 

0 0 I 0 I I IS6 

0 I 0 0 0 0 17S 

0 I 0 l 0 0 1554 

I 0 0 0 0 l 18 

I 0 0 0 I I 152 

I 0 I 0 0 I 155 
I 0 I 0 I I 1403 

C 

d 

Fig . . , - Image: r~toration example:. a) TI1ruth ima~c: . h) Train ing noisy imag.:. c) Tahlc: of frc:qu<!ncy. 
J) Tc:st noisy image: . .: ) Rc:storc:d imag.: trom th.: t.:st noisy nnag.:. 

We presented a general model for the automatic programming of BMMach·s. based on formal approaches . The proposed 

model is supponed conceptually by results on set operator decompositions. PAC learning and applied automated deduction. and 

integrate logical descnpuons with sample based descripuons. 

The advantage of the generation of set operators via automated theorem proving 1s its ergonomicity. since image transforma­

tions and operators are presented m terms of intuitively sound concepts encoded as "packets" of morphological operators. Thus 

• being reliable. easy to check and generally efficient. Moreover. the generated procedures can suit be easily translated as proposi­

tional expressions and further normalized. producmg final 1mplementat1ons equally efficient to the ones resulting from Boolear 

specification or PAC learning. 

The main drawback of the theorem proving approach when compared to the full specification or learrung approaches is i~ 

inherent mcompleteness: the first-order theory of "packets" of morphological operators is nOI guaranteed to capture every t.i . se 

operator. even 1f we encode every possible relation between "packets" of operauons. 

This last observation charactenzes the complemencanty of the two approaches . and makes clear why we believe ti is impor 

tant that they coexist. · 
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