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ABSTRACT

An important aspect of Mathematical Morphology is the description of set operators by a formal language, the Binary Mor-
phological Language (BML), whose vocabulary are dilations, erosions. antidilations. antierosions, union and intersection. This
language is complete (i.e. it can represent any set operator) and expressive (i.e. many useful operators can be represented as
phrases with relatively few words). Since the sixties special machines, the Binary Morphological Machines (BMMach’s), have
been built to implement the BML with increasing efficiency. However, designing useful BMMach programs is not an elementary
task. Recently, much research effort has been addressed to automating the programming of BMMach’s. The goal is to find suit-
able knowledge representation formalisms to describe operations over geometric structures and to translate them into BMMach
programs. We propose an approach for the automated programming of translation invariant operators: operators are described
either by logical expressions or by sample input-output lists and translated into BMMach programs by semantic evaluation,
probably approximately correct (PAC) leaming or automated deduction over abstract operations. The generated operators are
optimized by transformations on their decomposition structure. A priori knowledge is modeled by associating probability dis-
tributions to occurrences of images. The design of optimal and suboptimat morphological filters can be seen as particular cases of
the proposed approach. Some examples illustrate the main ideas presented.

1. INTRODUCTION

Binary Image Analysis is an important tool for various areas, such as industrial process control. office automation, quantita-
tive microscopy. etc.

A naturat model of a procedure for Binary Image Analysis is a sef operator (i.e. a mapping over a powerset). Mathematical
Morphology (MM) is a general framework to study operators over complete lattices !, which includes set operators 23 . The
central paradigm of MM is the decomposition of operators in terms of four classes of elementary operators: dilations, erosions,
antiditations and antierosions.

The rules for the representation of set operators in terms of the elementary operators can be described as a formal language 4,
the Binary Morphological Language (BML). The vocabulary of the BML are the four classes of elementary operators and the
operations of union and intersection. A phrase of the BML is called a morphological operator. The BML is complete (i.e. it can
represent any set operator) and expressive (i.e. many useful operators can be represented as phrases with relatively few words).
Moreover, some morphological operators can be simplified into equivalent operators that use a smaller number of elementary
operators. An implementation of this language is called a Binary Morphological Machine (BMMach), and a program of a
BMMach is an implementation of a morphological operator on this machine.

Nowadays, there are many commercially available BMMach’s implemented in hardware ¢ 7 ® or emulated in software. 9 K
11 which have been intensively used for Binary Image Analysis 3.

Programming a BMMach can be a very difficult task. In order to help the non experts in MM to use BMMach’s, some tool:
have been proposed to automate the design of programs. These tools act as translators of the user knowledge about the problem
expressed as high level abstract procedures. into morphological operators.



The existing systems are based on two main paradigms: rule-based expert systems 12 13 4 and gutomated deduction. 15
Expert systems employ a combination of stored heuristics to generate a set operator, while automated theorem provers give a
constructive proof that there exists an operator equivalent to a logical description. The steps in this constructive proof can be
interpreted directly as applications of the morphological operators. Each morphological operator generated by the expert system
or the theorem prover can be incorporated to the system, respectively, as a new rule or lemma. So these systems can leam and
improve their efficacy with use.

The maun goal of this paper is to present a general model, based on formal approaches, to automate the design of programs for
BMMach'’s. The proposed model is composed by the foliowing main steps: description of a set operator as a logical expression of
as an input-output list of sample images; translation of this description into a morphological operator by semantic evaluation,
PAC leaming or automated deduction; simplification of the derived morphological operator using contextual informauon or
transformation of decomposition structures. For sake of simplicity, we stay restricted to the automatic programming of transla-
tion invariant (t.i.) operators.

An important characteristics of the proposed model is the symbiosis of three formal techniques of Artificial Intelligence:
automated deduction, PAC learming and program transformation via algebraic rewrite rules. A fundamental fact exploited for
this integration is the Canonical Decomposition Theorem for t.i. operators 16,

In section 2, we give some basic definitions and results from MM theory. In section 3, we present the PAC leaming model. In
section 4, we present our proposed model for automatic programming of BMMach’s. [n section 5, we show an application exam-
ple. Finally, in section 6, we present some further discussion.

2. MATHEMATICAL MORPHOLOGY

For the automatic programming of BMMach’s some relevant aspects of the theory of MM on sets are: the canonical decom-
positions of set operators, the optimal filter design and the transformation of decomposition structures,

2.1 Canonical decompositions

Let P(E) be the collection of all subsets of a finite non empty subset £ (i.e. the collection of all binary images). Let C be the
usual inclusion relation on sets. Let X be the complementary set of a subset X of E. We know that (P(E), C) is a complete
Boolean lattice. !7 The intersection and uruon of X, and X, € P(E) are, respectively, X, N X, and X, UX,.

The set E is assumed to be an Abelian group with respect to a binary operation denoted by +. The zero element of (E. +)is
denoted by o. Let X' be the transpose of a subset X, thatis, X' = [y € E: y = — x, x € X]. Aset X is said to be symmetric if
X=X

Forany h< Eand X C Etheset X + h = [y € E: y = x + h, x € X} iscalled the transiate of X by h. In particular,
X.=X

A setoperator is any mapping defined from P(E) intotself. A set operatory is called translation invariant (1.1.}1f and only if
(iff)

X +h)=ypX)+h (X< PE) h<E)
The kernel X:(y’) of a t.1. set operator y is the subcollection of P(E) defined by
5(y) = (X € PE): 0 € p(X)}.
DEFINITION 2.1 Let B € P(E) . The t.i. set operators §, and ¢, defined by

X)={xEE: (B +0)0X =0 (X E PE)
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and

G = xEE: B+ CX] (XEPE)
are called, respectively. dilation and erosion by B. a
The t.i. set operators 8¢ and ¢5 (i.e. the composition of the complement operator, tespectively, with dilation and erosion) are
called, respectively. antidilation and antierosion, and are denoted 4%y and ¢*,. The parameter B that characterizes dilation or &n
erosion is called a structuring element. ’
A subcollection [A, B] of P(E), with A C B, is called a closed interval iff
[A.Bl= (XEPE): ACX CBL

The sets 4 and 8 are called, respectively, the left and right extremities of the closed interval.

A useful property of erosions and antidilations is that they are sufficient to decompose any t.i. operator in standard forms.
Banon and Barrera stated such property as the following theorem: 16

THEOREM 2.1 (Cancnical Decomposition Theorem) Let  be a Li. operator and (1) be its kernel, then
) = |J (£0008%) 1 [A, BICHW)] (X € P(E)). o

This representation theorem may lead to inefficient computational representations for most t.i. operators, in the sense that a
smaller family of erosions and antidilations may be sufficient to represent the same operator.

A closed interval contained in a subcollection % of P(E) is called maximal in 3 if no other interval contained in 9 properly
contains it. The set B(y) of all the maximal closed intervals contained in J6(y) is called the basis of .

Banon and Barrera also proved that J(y) can be reptaced by B(y) in the decomposition formula. 16 that is,
vX) = | [€4X)n8°(X): [A.B] € Bly)l (X E PEN.

In practice. the interesting operators are the ones that depend on a local neighborhood. A t.i. operator is called locally defined
within a window W C E iff

h € yp(X) & hEypXnW + h).
forall h € E and X € P(E).
If y is a locally defined t.i. operator within the window W and [A,B] € B(y). then A, B° € P(W). In other words, the
structuring elements which charactenize the erosions and the antidilations used in the decomposition of locally defined operators

are subsets of the window W.

An important property of t.i. operators is that they are closely related to Boolean functions. Let {0, 117 denote the set of
Boolean functions defined from P(W)to (0, 1}. Foreach Boolean function & € {0, 1}7™ we can associate the locally definec
t.i. operator 1, given by

W) = (xEE: KX —Daw) =1} (X € PEN

Conversely, for each locally defined t.i. operator y we can associate the Boolean function b, € [0.1}™® given by
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b(X) = lwoEyX) X EPW).
The mappings b ~» y, and y — b, are reciprocal functions.

In the standard representation of b by a sum of minterms, each Boolean variable is associated with & point in W and each
minterm corresponds to an element of the kemel of y,. The usual simplification of Boolean functions of the switching theory 19
can be applied to simplify the representation of y,. The determination of the so-called prime implicants of the Boolean function
b by the Quine~McCluskey method leads exactly to the basis of y,, since the pnme implicants of & correspond to the maximal
closed intervals contained in J(y). In a prime implicant, the Boolean variables not complemented and complemented define,
respectively, the left extremity and the complement of the right extremity of the closed interval.

2.2 Optimal filter design
As shown by Dougherty !° , the Canonical Decomposition Theorem can be useful to design optimal morphological filters. To

do so, we must put the morphological operators in the context of a theory of estimation: morphological operators are seen as
statistical estimators that are a function of a random variable.

Let the mapping X with values in P(E) be a random set with probability distribution p(X). Let  be a set operator over P(E)
which models the noise that corrupts the images. Let 1 be the set operator over P(E) which estimates the thrue image.

Let 1ZI denote the cardinality of a subset Z of E. The mean absolute error (MAE) committed by the estimator y, when esti-
mating the random set X from the random set #(X), denoted MAE(y), is given by

MAE(y) = z KX 0 y(p(X)IU (wnXD) 0 XWX, w(0(X))).
where p(X.y(7(X))) is the joint probability distribution of the random sets X and y(n(X)).
The esumator operator y is called an optimal estimator iff MAE(p) < MAE(g), for any estimator operator § over P(E) .

Assuming that the estimator y is a locally defined t.i. operator within a window W with cardinality n, under stationary condi-
tion on X, the MAE expression simplifies to

MAE@) = 3 Wye) = fy®0 Eae s ZPEL S a B ),

where x,,x,. ... .x, are the n Boolean random variables observed in the window W, X,., is the Boolean random variable to be
estimated and p(x,, x,.....x,, ) is their joint probabulity distribution.

Hence, reducing the search of optimal estimators to the class of locally defined t.i. operators implies in the search of Boolean
functions. that (as discussed in section 2.1) can be translated into canomical decomposinons of locally defined t.i. set operators.
Clearly, the distnbution p(x,,x,,...,x,) is determined by the distnbution p(X).

2.3 Transformation of decomposition structures

A set operator may be represented by an infinite number of BML phrases that are svnonyms (i.e. different phrases which
express the same operator). When implemenung a set operator in 8 BMMach, we are interested in cheap realizations for the
operator, that is. BML phrases which involve the smallest possible number of elementary operators.

There exists a bijection between the set of the t.1. operators and the set of subcollections P(P(E)). In other words, each sub-
collection in P(P(E)) 15 the kemel of a unique t.i. operator. As, in the finite case. there exists a bijection between the set of

collecuons of maximal intervals of the subcollections in P(P(E)) and P(P(E)) uself, then there exists a bijection between the set
of basis of t.i. operators and the set of t.i. operators itself.



Thus, for each operation on the set of L.i. operators corresponds an equivalent one on the set of t.i. operator basis and con-
versely. As the BML can be reduced to compositions of unions, dilations and complementations (or, equivalently, intersections.
erosions and complementations), it suffices to understand the composition of these operators with an arbitrary 1.1 operator to be
able to construct transformations of decomposition structures of t.i. morphologtcal operators.

Let ' be a collecuon of closed interval in P(P(E)). Let Max(:L) denotes the collection of maximal closed intervals of U L.
PROPERTY 2.1 Let y and ' be two arbitrary t.i. set operators. The following equalities hold:
1) Bgp) = Max([{X + b.Y + b] : [X.Y] € B(y).b < B'});
2) B(y*) = Max({[A.B] € P(P(E)) : VIX.Y] € B(y), ANYl = land 1B NXI = 1}),
3) By v y') = Max(B(y)U B(y")). u

The Example 2.1 illustrates how to apply Property 2.1 in order to compute the basis of any L.1. set operator from a synonym
phrase in the BML.

EXAMPLE 2.1 Let the operator y be defined by y = ¢ A ¢ , where ( denotes the idenuty operator (1e.
«(X) = X. VX € P(E)) and B be a symmetnc subset which contains the ongin o. This operator can be represented in terms of
unions, dilations and complementations as y = (¢ V 3,%%)*. To compute the basis of i, we compute incrementally the basis of
the operator compositions from the basis of the identity operator:

1) B@) = {[{o}. E]}, 2) BG®) = {[0. {o}1}. 3)BOx%) = {[0, { - &}'] : b & B},
4) B(d,°) = ([B. E]]. 5) B(* V 8,1) = {[B. E]. [0, [o}]}.
6) B(y) = ([lo}. {b]]: b € Bnlo}'}L a

The rules of Property 2.1 could also be used to solve the inverse problem. that 1s. to go from the canomical decomposition 6
simpler decomposition structures. However, this 1s a2 much more compiex problem, since for each state of the algorithm (analo-
gously to the transition of states in a chess game) there are many possible next states Jones 20 gtudied this problem in the case of
increasing t.1. operators (i.e. £.. operators Y suchthat X C Y= p(X) C (1. VX.Y < P(E)).

. 3. PAC LEARNING

Computational Learning Theorv 2! 22 5 one of the first attempts to construct a mathematical model for a cogniive process.
It provides a framework for studying a vanety of algorithmic processes. such as those currently 1n use for training aruficial neural
networks. Here. we apply this framework to design set operators.

We understand concept as a subset of objects 1n a predefined domain. An example of a concept 1s an object from the domamn
together with a label indicating whether the object belongs to the concept. [f the object belongs to the concept, 1t is a posinive
example, otherwise It is a negative example. Concept learning 1s the process in which a learner constnicts a good approximation
to an unknown concept, given a small number of examples and some prior information on the concept to be leammed In the follow-
ing, we formalize these ideas.

Let = be a set, called the alphabet to describe examples. In this paper, £ will be the Boolean alphaber {Q, | |. We denote the
set of n-tuples of elements of £ by Z". Let X be a subset of Z". We define a concept, over the alphabet =, as a function
c:X— (0.1}

The set X witl be referred 10 as the example space. and its members as examples. An example v < X for which ¢(v) = 11s
known as a positive example. and an example for which ¢(v) = O1s known as a negative example. So. provided that the domain i1s
known, ¢ determunes, and 1s determined by. its set of posiuve examples. So sometimes it 1s helpful to think of a concept as a set in
that way.



The set of all possible concepts to be leamed will be referred to as the hypothesis space and denoted by H. The concept 7 EH
1o be determined is called the target concept. The problem is to find a concept h € H, called the hypothesis. which is a good
approximation for ¢.

A sample of length m 1s just a sequence of m examples, that is, an m-tuple x = [x,X;,....X,} in X" The sequence may
contain the same value more than once. A training sample s is an element of X x {0, 1], that is,

s = ((x,.b)), (x5, 07, . . (xm5)).

where the x, are examples and the b, are 0 or 1. The value of b, is given by a reacher and specifies whether x, is a positive or a
negative example. There are no contradictory labels, so that if x, = x,then b, = b,

A learning algorithm is simply a function L which assigns to any training sample ¢ for a target concept € H a hypothesis
h < H Wewnte h = L(s).

Let ;¢ be a probability distribution (o1 probability measure) on X. Given a target concept ¢ € H, we define the error of any
hvpothesis h < H., with respect 1o 1, as the probability of the event A(x) = r(x), thatis, .

er(h.t) = jux € X : h(x) = t(x)}.
When a givenset X is provided with the structure of a probability space. the product set X ™ inherits this structure from X. The
corresponding distnbution on X™ is denoted ™. Usually, the components of the m-tuple (x,, x;. ..., X,,) are assumed to be “inde-

pendent” vaniables. each distributed according to the probability distnbution gt on X.

Let S(m, 1) denote the set of training samples of length m for a given target concept 7, where the examples are drawn from an
example space X. As there is a bijection ¢ : X™ — S§(m, ¢) for which ¢(x) = s. the foliowing equality hold

H™s € S(m,1) . 5 has property P} = x™{x € X™: ¢(x) € S(m.t) has property P).
DEFINITION 3.1 We say that the algorithm L is a probably approximately correct (PAC) leamning atgorithm for the hypothesis
space H if, given two real numbers r and § (0 < r,d < 1).thenthere s a positive integer m, = my(¢,d) such that for any target
concept ¢ & H. and for any distnbution st on X, whenever m 2 m,,
H"s € S(m1); er(L(s)) <) > 1 -4

The function m; = m,(r.9) is called example complexity. a

A learming algonithm L for H is consistent iff, given any training sample s for a target concept ¢ € H, the output hypothesis
agrees with 7 on the examples in s, that 1s. A(x,) = Kx,) (I < i < m). Foragiven s € S(m.r), we denote by H[s] the set of all
hypotheses consistent with s. that is,

Hisl={h€ H: hx) = t(x) (]l =is m}
Given r &= (0, 1), the set
B, ={h<c H:er(h) 2 ¢}

is called the set ot £ -bad hvpothesis for t

We say that the hypothesis space H is potentially learnable if, given two real numbers ¢ and d (0 < ¢,8 < 1). there is a
positive integer m, = m,(r.d) such that. whenever m = m,

n"s € Sim.1): HislnB, =4} > 1 -6



for any probability distribution p on X and any ¢t € H.
The following theorems are proved to hold: 22
THEOREM 3.1 If H is potentially leamable, and L is a consistent learning algonthm for /. then L s PAC. J
THEOREM 3.2 Any finite hypothesis space 15 potentially leamable. -
The following example presents an algonthm for learning concepts which are Boolean functions.

EXAMPLE 3.1 Let D,, be the space of all those Boolean functions of n vanables which can be expressed as the disjunction of
monomials of length at most k (n = k > 1). The following leaming algorithm was proposed by Valiant: 2

set i = disjunction of all monomials of length at most k.
fori=ltomdo
if b, = Oand h(x) = |
then delete mononuals .4 for which M(x) = 1
L(s):= h

The hypothesis space D, , has cardinality bound above by 29 (je. D, < 2"y Thus. as Vahant's algonthm is consistent. it 1
a PAC leaming algonthm.

According to Anthony and Biggs, 22 the example complexity of Valiant’s algorithm is
my(e.8) = [(kfe) In 2n + (1/e) In (1/8)] .
for any distribution p and with no restriction in the hypothesis space H = D,,. |

4. A MODEL FOR AUTOMATIC PROGRAMMING OF BMMach’s

The proposed model for the automatic programming of BMMach's 1s presented as a data flow diagram in Figure 1. The goal
of this model is to translate the user knowledge about the target operator and the application domain into morphological opera-
tors or. equivalently, into programs for BMMach’s.

The user knowledge can be represented by two disunct knowledge representation formalismis: logical expresstons of tnpul-
output lists of examples. Logical expressions are used alternanvely in lwo distnct representations forms: full specification of
operators and abstract image operations.

In full specification of operators, windowed images (1e. X — hnW.h < E) and image operators are seen as propositional
formulae 1n which basic propositions are associated to points in a finite discrete square W of size (2n)*, centered at the ongino. n
order to make the correspondence between images and propositions more natural, we index the propositions with the position of
the corresponding points in W. The alphabet of thus language consist of a finite set of basic propositions
® = {GogsP-n-m - -Pan} and the conventional connectives (i.e. —. —, v and A). Proposition p,, is assoclated to the point
(i./) of an windowed image (i.e. (X — h)NW), while proposition g, 15 assoclated to a point of the output image (1.€.
w(X) 11 | h)). Basic propositions correspond to black and white points. respectively, when they are frue and false. Finally, a set
operatdr is represented as a formula of the form P <> g,,, in which P contains only propositions p,, (e.g. see Example 4.2).

In abstract image operations, as presented in Joo '3, morphological operators are structured in “packets” that characienze
abstract operations frequently employed in Binary Image Analysis (e.g. difference between subsets, or some special operators
like sieve filter) and geometnical properues hke convexity, topological structure. or size. The abstract operations and properties
are encoded as first-order sentences, whose semantics 1s given by the packed of morphological operators they represent (e.g.
assuming subsets to be represented by the constant symbols a, b. ¢, ... and variables X. Y. Z. .... difference can be represented as a
function diff(X, Y), whose interpretation can be the subset X N 7). Thus parucular interpretauon forces (in the model theory



sense) some relations between the resulting functions and predicates. From those, some relations are selected an«_'i encoded as
either axioms or inference rules in a cotresponding first-order theory of MM, necessarily correct but not necessarily (and most
probably not) complete.

0

Aberact "
image opersnons

Full
speafication

Procedure
Normalzstion sbstraction
Baoiesn Absract
cxpresmon \__ Normal Form
Contesa-based
simplitication
1
Standard Procedure
decompostion generation

Fig. 1 — A model for the automatic programming of BMMach's

When the user does not have complete information to specify a first-order function or relation to describe an operator ort is
to complex to do that, he can specify approximately this operator by a list of input-output examples. These examples are pairs
consisting of aninput windowed 1mage (i.e. (X — k) N W) and the corresponding value in the output image (i.e. ¥(X) A {A)). This
list of examples feeds a learming algorithm, simular to the one presented in Example 3. 1. The output of this learing algortthm is a
Boolean function which charactenzes a set operator that 1s consistent with the examples and satsfy the PAC quality €, &.

The following example iHlustrates the use of the leaming algorithm of Example 3.1 to obtain a locally defined t.1. set opera-
tor.

EXAMPLE 4.1 Let y be a set operator locally defined within the honzontal window W = {(— 1.0),(0.0),(1.0)}, defined by
the input-output pairs of images of Figure 2a. The corresponding Boolean function f,., defined in Figure 2, i§

fx X x) = (X, A ) V(x; A —xy),
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where x, is associated to the point (— 1,0), ... The canonical form of the corresponding set operator 1s
Y= (l“,, A (5:‘_1.0“) Vv ( £ A (s;”m)).

Note that this set operator, which performs the extraction of vertical edges, is fully specified by the input-output image pairs

(X, (X)) and (X,.(X,)). If only the pair (X,.y(X,)) were given the leamed function would be f, [w]
111 TT1T
H a p 2 5 Xy X3 xy | flxy Xy x3) folxy x3 x4)
- s - u u 000 0 0
11T
e 00 I 0 0
X, pX,) 010 1 1
100 0 0
IHE I L1t1l 01 1 1 1
u ] Ui u . 110 1 i
- - —_> - -
H H = i~ 1 0 ! 0 1
111F T1T1 111 0 0
X, w(X,)
a b

Fig. 2 — a) Input—output image pairs. b) Truth table of the Boolean function.

Once created. the full specification of operators and the abstract image operations are normalized. The Boolean function
generated by the learning algorithm also are normalized into disjunctive normal forms. The normalization process buld standar
inputs for the following processes and eliminate redundant logical expressions. A full specification of an operator can be trans
late by semantic evaluation into a Boolean function and conversely

General descriptions n the form of normalized logical expressions or normahzed Boolean functions may be simplified b;
context, which may be given either by further logical expressions or by a list of examples (1.¢. a list of input images). By contex
simplification we understand the appropnate use of available a pnori information about the image domain in order to sumplif
the specification of the set operators. When a context is introduced (1 e. the domain of set operators 15 restricted) a large numbe
of operators become equivalent, and we can choose an operator between simpler ones {i.e. ones corresponding to shorter expres
sions). When the context is specified by a list of examples the logical description of the set operator acts as the teacher in th
leaming process. When the context and the operator are specified by logical expressions symbolic sunplification can be used.

The following example illustrate the context simplification. when both operator and context are given in the full specifica
tion-form.

EXAMPLE 4.2 Let’s study the problem of recogmzing 3 x 3 squares withina 5 x 5 window, positioned arbitranly in th
image. The full specification for this shape recognition task is

A p., A A -p2 A A -p,_, A A —p., N A —p_y, = e

—dsnjs 1 -2s:1s52 -2s:s2 -1 s;s1 B EYEN
The comesponding basis of the set operator y is given by the single interval [A.B), where A = { — 1.0,1}? an
B = [~ 2,—.1.0,1.2}*n A* Now assume that we know a pniori that the only occurring shapes in our input images are 3 X

squares and ¥x 3 squares with a hole 1n the middle. In other words. we know that whenever we find a 3x3 cross. the cross mu.
belong to the target shape. The context simplification gives (see 23 for detatls)
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t €{ - 11} 1 EL-LL

*he basis of the simplified operator y" reduce to the single interval [A'. 8], where A® = {(- 1,0),(1,0).(0,0).(0, ~ 1).(0. 1)}
nd B' = E.Observe that ' = £, is simplerthan y = ¢, A ", since its decomposition involves just one erasion, while y
lecomposttion involves an erosion and an antidilation. 0

The generation of morphological operators from Boolean functions is straightforward (see section 2.1), while the translation
if abstract logical descriptions into morphological operators can be done from constructive proofs of relations between proper-
ies of input and output images represented as first-order theorems. By using some automatic theorem proving techniques (like
he Resolution-based techniques adopted by Joo !5 ., or even more sophisticated techniques like proof planning 24 given the
pecification of a set operator task in terms of expect relations between properties of input/output images, we can obtain an auto-
naticaily generated morphological operator that performs the desired transformation.

The structure of the generated morphological operators could be changed by using program transformation techniques
vhich explore Property 2.1.

This model should 1mprove with use, since the set operators gencrated are incorporated to the model as new logical expres-
Jons.

5. APPLICATION EXAMPLE

Here, we illustrate the use of PAC leaming in order to generate a simple set operator which performs optimal images restora-
ion. We take the image of Figure 3a and corrupt it with subtractive punctual noise, with an unknown distribution (Figure 3b). We
‘hoose arbitrarily the3 x 3 cross as the window,ie. W = {(0,1),(— 1,0),(0,0).(0. 1),(0, = 1)}. From the original image and
he corrupted one. we build a frequency table which estimate the distribution of M(W) x {0.1}. Theelements of P(W)are taken
‘rom the notse image(X) by the operatton (37(X) — #) N W, and the corresponding 1deal restoration values (i.e. O or 1) are taken
irom the onginal image X by the rule (1 iff {e]N(X — A) = #). In order to establish a training sample, for each subset n P(W)
s chosen the most frequent value associate (1.e. 0 or 1). Figure 3c shows the frequency table generated from the images of Figures
3a and 3b. This traimng sample feeds the PAC learmung algonthm of Example 3.1.

For this problem, the example complexity, with ¢ = & = 0.01.1s my = 1.611. The number of examples expenmentally
used was 3.844 (i.e. 62%). The leamed Boolean function is

fu-(xnxzv"l‘xc--\’s) =5 VvV,
where x, is associated to the point (0, 1), x, 1s associated o the point (— 1,0), .. The corresponding set operator is
¥ = o Y foom V oy
Observe that n the PAC leaming of the optimal restoration operator a third quality parameter could be defined, besides ¢ and S.
This parameter should reflect the cormrectness of the statistical decision done in order to establish the training sample. Figure 3d
presents the image of Figure 3a corrupted by other realization of the same noise source. Figure 3e presents the result of the resto-
ration by the generated operator y.
6. CONCLUSION

We wntroduced the use of PAC learming theory in MM, by deniving the canonical decomposttion of t.i. set operators through

learning of Boolean functions. The proposed methodology was applied to the problem of designing optimal t.i. morphological

filters.

We defined the rules for the transformation of decomposition structures for the general case of t.1. set operators and showed
how they can be used to compute the basis of any t.1. set operator for which is known a representation as a BML phrase.
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Fig. 3 — Iinage restoration example. a) Thruth image. b) Training noisy image. ¢) Table of frequency.
d) Test noisy image. ¢) Restored image trom the test OISy UNAge.

We presented a general model for the automatic programming of BMMach's, based on formal approaches. The proposed
model is supported conceptually by results on set operator decompositions. PAC leaming and applied automated deduction. and
integrate logical descnipuons with sample based descnptions

The advantage of the generation of set operators via automated theorem proving Is its ergonomicity, since image transforma-
tions and operators are presented in terms of intuitively sound concepts encoded as “packets” of morphological operators. Thus
being reliable. easy to check and generally efficient. Moreover. the generated procedures can stll be eastly translated as proposi:
tional expressions and further normalized, producing final implementations equally efficient to the ones resulting from Boolear
specification or PAC leaming

The main drawback of the theorem proving approach when compared to the full specification or learming approaches is it:
inherent incompleteness: the first-order theory of “packets” of morphological operators is not guaranteed to capture every ti.se
operator. even if we encode every possible relation between "packets” of operations

This last observation charactenzes the complementanty of the two approaches. and makes clear why we believe 1t is impor
tant that they coexist.
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