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Numerical experiments of the statistical evolution of an ensemble of nzéinteracting particles in a time-
dependent billiard with inelastic collisions, reveals the existence of three &§tatigtical regimes for the evolution
tial decay and stagnation. These

of the speeds ensemble, namely, diffusion plateau, normal growth/exp
regimes are linked numerically to the transition from Gauss-like to
ther, the different evolution regimes are obtained analytically thro
these calculations the asymptotic root mean square of speed, initi
for intermediate number of collisions are determined in terms
culations match the numerical experiments and point to a d
inelastic collisions and a high-dimensional phase space lead ig a
wards a stationary distribution function with a kind of
oscillation amplitude and the restitution coefficient.

Itzmann-like'speed distributions. Fur-

ﬂ'j systemn parameters. The analytical cal-
amical mechanism for thermalization, where
unded diffusion in the velocity space to-
servoir temperature determined by the boundary

Billiards are systems that represent the back- ;g\-icles‘)hen a time perturbation to the boundary was

ground of the statistical physics and the the-
ory of dynamical systems. Because of their ric

dynamical properties and the easy understaﬁs\
der

branches of physics. In this work, w

rodticed. The conjecture was tested in a number of
billiagds being therefore validated®%. A counter example
f such conjecture was observed in an elliptic billiard??3,
se structure is integrable in the static form, but that

dependence is introduced on the billiard boundary.

ing, the billiard models can be applied in orde W
to describes several problems in many di&i{rr\w'esents an unlimited diffusion of energy when a time-
e t

S
billiard theory to study the statistical e Lkmvoa‘
of the speeds from an ensemble of non interact-
ing particles in a time-dependent bi %%\ en
inelastic collisions are observed. ent, nu-

r
merical and analytical explanation K%ﬂkstages
of the speed ensemble evolution untilsthe ther-

malization state is reached. o demonstrate
that this final state of th aliza}'on, actually,
perature, which

arameters of

works as a kind of reseryoir t
is characterized by th
the time-dependent syste

e(‘)gAkinshin (LRA) conjecture?
pt to foreseen what would hap-

time dependent billiard®? whenever
acteristics of the phase space of the

iard with static boundary was claimed by the con-
to be a sufficient condition to produce unlimited
energy'growth, also known as Fermi acceleration?, of the
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The physics behind the unlimited energy growth is un-
derstood and is mainly related to the diffusion of ve-
locities as a function of time” !0, Different regimes of
growth are related to different shapes of the speed distri-
bution function. The counter-intuitive fact that Hamil-
tonian dynamics may lead to an unlimited energy growth
in chaotic billiards comes from the higher dimension of
the dynamical system and such a growth appears to con-
tradict what is expected from thermodynamics. How-
ever, this only states that there is not a well defined
temperature for the moving boundary, which works here
as the energy reservoir, i.e. the wall is not in a ther-
modynamic equilibrium. In a regular situation, a gas
of non-interacting particles with an initial low tempera-
ture Ty will increase its energy if introduced in a, previ-
ously empty, recipient with walls at ambient temperature
T, > Ty. The opposite will happen if the gas is at an ini-
tially larger temperature Ty > T,'!. This thermalization
process, in general, manifests as a monotonic change in
temperature as time advances, leading to an asymptotic
state of thermal equilibrium.

In contrast, consider a conservative chaotic billiard
with an oscillating boundary, such that unlimited energy
growth is observed. Since the billiard energy is essentially
kinetic, the growth of energy leads also to the growth of
the temperature. The type of interaction of the parti-
cle with the boundary is the reason of such behavior.
Elastic collisions preserves both momentum and kinetic
energy in the moving referential frame of the boundary,
which does not imply conservation of energy for the in-
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&e other hand, inelastic collisions preserve only
momentum, and the dissipation introduced produce dras-
tic topological changes in the phase space. When inelas-
tic collisions are taken into account, the Liouville mea-
sure is no longer preserved and attractors can develop
in the phase space'?. Considering that the attractor is
located at finite values of the velocity, and its basins of
attraction contains most of phase space, it is clear that
the individual trajectories will converge to the attractor,
and the average speed will saturate leading to a sort of
thermodynamical equilibrium for the perturbed billiard.

Until now, important results have been obtained in
the characterization of the unbounded energy evolution
for particles in chaotic billiards. Our contribution in this
context, is the statistical description of the evolution to
a final equilibrium, and the close connection of this be-
havior with thermal equilibrium. To our knowledge this
problem has not been addressed elsewhere and offers a
significant analogy between dynamical and thermal equi-
librium.

In this paper we discuss the dynamics of an ensemble

online). Sketch of two consecutive collisions
icle in a time-dependent oval-billiard with

articlﬁyt ajectory and the tangent line to the bound-

\V,,| is the velocity magnitude. Figure 1 shows in

of particles moving in an oval billiard with a periodical arysat (On,t,), after the n' collision with the wall, and
N,
T

the particles with the boundary and explore the behavio

oscillating boundary. We consider inelastic collision%)\

the probability distribution function of the speeds.

sketch of a typical trajectory of a particle at differ-

Given that there are no additional potentials inside the

of the root mean square of speed considering the S%nt times in the model.

we show that the presence of dissipation leads t
towards an asymptotic stationary state, which,
sis on its statistical properties, we argue i
equivalent of a thermodynamical equilibrium?

The paper is organized as follows.
cuss the equations that compose the billia
time-dependent boundary, then in-Sec. IIT wesshow the
statistical analysis of the speed§ and the diffusion pro-
cess in the system. In Sec. I resent an analytical
derivation of the time evol 'dot mean square

of the speeds in terms ofsthe, control parameters of the
problem. In Sec. IV vsg ffer a“g¢onnection between the
asymptotic dynamics_of dissipative'time-dependent bil-
liards and the concept of thermalization. Finally, in the

last section we present our conclusions and final remarks.

£
ENI}ENT BILLIARD

We start onside%mg a time-dependent oval-billiard!'3
with Boundar ¢ribed in polar form as

(6, e,}, a,p) =1+ €[l +acos(t)] cos(pb), (1)

kﬁb is the boundary radial coordinate, 6 is the polar
€ measures the oval deformation, t is the time, a
undary oscillation amplitude and p is a positive
integer!®.

The trajectory of a particle inside of the billiard can
be described using a nonlinear four-dimensional map-
ping H : R* — R*, such that (6,11, ani1, Vs, tnr1) =

billiard, each particle moves with constant speed along a
straight line between collisions. The radial position of

the particle is given by Ry (t) = |/ X2(t) + Y,2(t), where

X,(t) and Y,(t) are the rectangular coordinates at time
t, which are given by

Xp(t) = X (s tn) + [Va| cos(u) [t — ta], (2)
Yy(t) = Y (O, tn) + |Vl sin(u) [t — t], (3)

with u = (@, + ¢p) and ¢ = arctan(Y’(0,t)/X'(6,1)),
where Y'(6,t) = dY/df and X'(0,t) = dX/db.

The new dynamical variable 6 at collision n + 1 is
obtained through the numerical solution of the implicit
equation Ry(0p41,tn+1) = Rp(On+1, tns1), with the time

tn41 given by
\JAXZ 4+ AY?
P P
(4)

b1 =ty + —————,
[Val

where AX, = X,(0nt1,tnt1) — X(0n,tn) and AY, =
Y;D(en—i-la ﬁn-i-l) - Y(Gn, tn)

The reflection laws for each collision of the particle
with the boundary can be obtained by applying conser-
vation of momentum in an instantly inertial frame where
the contact point of the billiard is at rest. In our case,
the reflection laws are

L L
i1 Tnp1 =8V, - Thp

=, — =, =
v 41 Nn_;,_l = —KJVn . Nn_;,_l

n
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T J”“A = cos(¢n+1)i + sin(¢p41)j and Npy1 =
—sin(d,. +1)t + cos(¢nt1)j are the tangent and normal
tl vertors, V' is the particle velocity measured in the
non-inertial frame, and £, x € [0, 1], are the tangent and
normal restitution coefficients respectively.

After collision n + 1, the tangent and normal compo-
nents of the velocity are

—

VnJrl 'TnJrl = (1 - 5)‘/17 'TnJrl + §‘7n . fn+1a (5)
VnJrl ' NnJrl = (1 + ’{)‘/b : NnJrl - H‘_}n : ]\771+1) (6)

!

where

- dhs(?) [c0o8(Ont1)i + sin(Ongr)j],  (7)

Vs dt

tn41

is the boundary velocity at time ¢,11. The magnitude of
the particle velocity after collision n + 1 is

Woitl = VWotr - T + Fas - Noia2, (8)

and the reflection angle ay, 41 is

‘_/' 1 N 1
Q1 = arctan lH

(9)
Vn+1 . Tn—i—l

1. SYSTEM EVOLUTION AND SPEED
DISTRIBUTION

e-de
interagtion

In contrast to the static situation, in a ti
billiard, particles can gain or lose energy up

with the moving boundary. For an ensemble of paxticles,
the individual gains and losses do not ily com-
pensate and the mean energy can change i _time. The

o understand rates
we start with a simple
road} aspects of the

1( mean quadratic speed

First of all, consider tha
changes, by an amoun \/\&fi cH collision. We con-
ollisi

details of this process can be relev;
of change in the energy but he
heuristic analysis that revea,
energy evolution.

sider here a situation in which there'is an small fractional
loss of energy afterac characterized by some
restitution coefficie 1, then the mean energy after
roximately

(V2 + ). (10)

gardless of the initial configuration,
ny collisions, it is expected that the quadratic
ill approach a stagnation value Vg, given

v (11)

‘/sta = 1_ ~y .
Notice for elastic collisions v — 1, the stagnation speed

diverges, which is consistent with the phenomenon of
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FIG. 2. (Co « (a,b) Plot for Vims vs n for different

initial Speeds andsparameters.

Ao . . . .
ermi_acceleration, where there is an unlimited growth
ofieriergy“as the time evolves”10:15,

To illustrate numerically the stagnation process we

consider the root mean square of the speed distribution
for an ensemble of non-interacting particles in the time-

N

\l‘mmerical fluctuations, in addition to the instantaneous

ndent oval-billiard described in Section I. To reduce

ensemble average, we consider also the time average of

w the quadratic velocity for the ensemble of particles
ndent«

1 ¢ &
Vims = 1| — V2o, 12
M;nﬂgl 2, (12)

where \7” is the velocity of the i*" particle after collision
j. The first summation is made over an ensemble of dif-
ferent initial conditions randomly chosen in ¢ € [0, 27],
a € [0,7] and 6 € [0,2x], where all the particles have
the same initial speed V[, while the second summation is
made over the individual orbits. In our simulations we
considered an ensemble of M = 10° particles colliding
107 times with the boundary.

The numerical evolution of V,,,s is presented Fig.
2(a,b) for two different restitution coefficients , and var-
ious initial configurations with different V. These curves
in Fig. 2 exhibit three different evolution stages for each
initial speed. Initially, for speeds around of the maximum
speed of the boundary V.. = ae, Vs has a plateau,
whose extension depends on the initial speed of the parti-
cles. After a first crossover, the system enters the growth
regime following a power law with exponent 8 ~ 1/2 of
the number of collisions n. Finally, a second crossover is
observed after which the V., saturates at V. It can
also be observed that when Vy > ae, V,.,,s decays expo-
nentially to the stagnation regime in agreement with the
heuristic discussion in Sec. III.

However, to understand in a more detailed fashion the
growth rates and transition values we need to take into
account the diffusion of particles in the velocity space
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FIG. 3. (Color online). (a) Plot of the evolution of the speed di tri&ﬁon @ction pn(V) for an ensemble of 10° particles, with

initial speed Vi = 0.5, after different numbers of collisions n and
ributionyfunction after different number of collisions. The purple

b2 (black curve in both figures) respectively, for the speed d

c) plot of the measurement of the kurtosis b; and skewness

and pink dashed lines are the values for the kurtosis anw ss for the Normal and two-dimensional Maxwell-Boltzmann

~

distributions respectively.

(Vie, V)16, At the initial stage, all particles
circle of radius Vj. After a collision, each particléyjufmps«
by a small amount (6V;, §V,)) in some direct i
there are more available states in the velocit,

semble when the initial radius Vg is bel

the initial growth rate is ve 1 because the initial

distribution of particles hagfto relax rds a Gaussian

distribution before exl?&in the u?al growth rate for
u

a random walk Srw =A/2. Such relaxation process re-
sults in an initial plate )%Nt\iilo ger for larger initial
ti%velom igs Vo > Visia, the initial

ande fashion, but the probability of

speeds. For large i
plateau occurs in th
moving inwardsfis largerbecause with each collision the
particles must ‘@ive dp an amount of energy proportional

Vsta. However,

to V2. Alt h there are also losses for small velocities,
the diffusion there dominates because the characteristic
value of § than the energy lost after each col-

ion py, (V') as the number of collisions increases.
" collision corresponds to the plateau region of
2(a) (for Vo = 0.5) where a spreading Gauss-like
distribution preserves its mean around the initial speed
until it reaches V' = 0 at the left side. At the 25" col-
lision the system is in the growth regime and finally, for
the 1000 and 10000*" collisions the speed distribution

does not change appreciably because the system reached
its stagnation regime. Thus, comparing Fig. 2(a) and
Fig. 3(a), we can follow, for Vj = 0.5, the V,,,s and
pn (V') evolution as n increases

In order to characterize quantitatively the shape evo-
lution of the speed distribution with the number of col-
lisions, we calculated the kurtosis by and skewness by for
pn (V') as functions of the number of collisions with usual
definitions'”, given by

M —14

1 Vi—-V
- 1
b Ml-_l{ - } (13)

M =13

1 Vi—-V
bz_Mzi_l{ - } (14)

where oy = 1/(V2) — (V).

Figure 3(b,c) shows the evolution of b; and by for the
speed distribution function presented in Fig. 3(a). This
figure also shows the values of b; and by, for the Nor-
mal (purple dashed line) and a two-dimensional Maxwell-
Boltzmann (pink dashed line) distributions, which differ
from ours because of the stochastic nature of their asso-
ciated processes.

Notice that after p, (V') reaches the stagnation regime
(about 100 collisions), the kurtosis measurement (b =
2.87) is close to that of a Normal distribution, while the
skewness measurement (by &~ 0.30) is an intermediary
value between the Normal and the Maxwell-Boltzmann
distributions.
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¢ s I\p(ll IETIC ANALYSIS

PUbIIS'H(QIgI ler that the quadratic speed of a single particle,

V2, changes by an amount ¢(c,8,t,V) after colliding
with the boundary at position # with incidence angle a
at time ¢,

V3, 0,t,V) =V + (0,1, V), (15)

where V2 and V2 are the quadratic speeds before and af-
ter collision. In an ensemble of M particles, there are
approximately MF,(«,0,t,V)dadfdtdV particles with
variable x between z and x + dz, where © = {a,0,V,t}.
Then, it is possible to describe the mean quadratic speed
after the n*” collision of an ensemble of particles as

Vr?qu = V_n2 + 5‘/_7%7 (16)
where
VZ = [Z[2T 2T [T V2F, (a,0,t,V)dadddtdV, (17)

SVE = [ZL2T 27 [T (o, 0,8, V) Fu(e, 0,8, V) X
dadfdtdy, (18)

and F,(a,0,t,V) is the full phase space distributio
function after collision n. In our case, we can factor thi
distribution as

‘Fn(aa 95 tv V) = F(Gv a)pv (t)pn(V),
where F(a,6) are the angles distribution, p

collision time distribution and p, (V') is the speed digtric,
bution function.

As observed in Fig. 4(a-f), the angles F'(ayf)“and‘¢ol-
lision time distributions py (t), are almgstaunafiected by
the amplitude of the boundary oscillations Conse-
quently they are almost independent of the index n and

on the initial speed values. Thi§ can«be understood in
terms of the phase-space projecti :‘Oﬁy, that retains
important features of the unpertur problem, which is
independent on the velocitef thé partieles and contains
large regular regions WZJ inv.

lant ﬁ)rii that modulate

the size of the chaotic #egion as afunction of the angles
0 — «, in a way consiStent wi ig. 4.
On the other hand, as discussed in the previous section,

unction p, (V) (see Fig. 3(a))
and the index n.

), we want to find an analyt-
eScribes the behavior of the root
speed{shown in Fig. 2(a,b). As discussed
.deterpine £he behavior of the mean quadratic
is not, necessary to describe the evolution of the
istribution function, but only to know the evo-
st momenta. Therefore, replacing the Eq.
(199, in q,\(l?), and defining the partial mean

in",
speedlit

21 p2m

WP 575" o (e, 0,8, V) F(6, 0)py (t)dadbdt, (20)

we can write a more compact expression for the change
of the mean quadratic speed as

OVZ = [ pulVIW(V)aV. (21)

& In order to determine the partial mean W (V'), we first

As detailed in'?, if we make a second-order expansion
of the W (V') around the mean speed V,, of the speed
distribution function p,(V'), we obtain

_ _ — 1 _ _

W(V) & W (Vo) + W (V) (V= Vo) + 5 W (V) (V = V2).

(22)

Inserting the Eq. (22) in Eq. (21), we obtain an ap-

proximation for the change of the mean quadratic speed
using the second-ordergexpansion, as follows

ﬁ?=(é?%¢ﬁ®ﬁ—ﬁ»

Notice also ghe Bq. (22) is accurate only around the
distribution me As'we get far from the mean value
iination becomes poorer. However, p, (V) in
he Eq. (21) drops for large and small
ced, So the integrand is small where the
is not accurate. The interested reader
can finl more)otaﬂs about these approximations in'°.

Fin acing the Eq. (23) in Eq. (16), we find
&;CO order approximation for the mean quadratic
speed Z-fd} collision n, as follows
= 1
w1 = Vi £ W) + gW (Ve (V2 - V).

(23)

(24)

need to find 9(q,0,t), which depends on the particu-
lar problem. In this case, the equations of the time-
dependent oval-billiard lead us to
Y(a, 0,t) = (k% — 1)VZsin?(a) +
+ (14 K)*(ae)? cos®(ph) sin®(t) +
+ 2Vkae(1l + k) sin(a) cos(pd) sin(t).

(25)

Assuming that the collision time distribution py () is
approximately uniform, i.e

pv(t) = (26)

E)
and replacing the Eq. (25) and Eq. (26) in Eq. (20), we
obtain

W) = (2 = V2 4+ 51+ 900, (27)
where

m =[] sin®(a)F(c,0)d0do, (28)

2 = [ cos?(ph) F (e, 0)déda, (29)

which after inserted in the Eq. (24) result in

~—

Vi = V2 =m(s? = V2 + (1 + k)% (ae)*n2. (30)

N =

Considering the approximation of continuous limit

Gni1 — Gn = dG(n)/dn, we found a solution for the
mean quadratic speed

V2= W+ (V2= W) ent=n, (31)
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FIG. 4. (Color online). (a,b,d,e) Plot of the numerical distribu

amplitude of oscillations and two initial speeds. The con

) funigtibns po(0) = [ F(0,a)da and pa(a) = [ F(0,a)do,

are € = 0.08 and p = 3.

while (c¢,d) plot of the numerical collision time diStribuﬁ% s py(t) for the time-dependent oval-billiard at various
| paramete,

where To conclude this analytical approach, we consider a few

2 m 1—k
To compare with the previous numerical Nl ns

we need to average over the ensemble

U= (a6)2@<1+—”>. \\

the history of velocities of all particles. need
to average the previous instant us mean along the
history of all quadratic means.
n
V2= 2 (32)
i=0

Provided that the ag

ents the exponential are
negative, their sum ion conyerges to

1 eHDm(s-1)
‘ (33)

1 on(2-1)
(33?{111 Eq. (31), we obtain

7 %2_4’)

- n+1

1 et Dm(s*=1)
o |- (39

inal expression that describes the root mean
volution is

Vi — W\ [1 - entm(x*~1)
\/\M( 1 ) [ T enten | (39)
which corresponds to the continuous line (blue) in Fig.

(2)(a,b) in excellent agreement with the numerical results
for the analyzed cases.

relevant limit cases for the Eq. (35) that give us relevant
insight on the overall behavior of the obtained solution.
When n = 0, we have

‘/rms == ‘/07 (36)

and for n — oo we obtain the finite stagnation value

1 (1
Vs — aey | =22 (225, (37)
27’]1 1—«x

Finally, we consider the intermediate values of n for
small initial speeds Vy << v/U. In the limit of k ~ 1 we
can expand to a first order the exponential denominator
in the Eq. (35), while the numerator is taken to the sec-
ond order due to the factor n+ 1 that contributes further
to its nonlinearity. After a short algebra we obtain

Vs gae\/%(l—i-n')(n—i-l), (38)

which for n > 1 can be approximated to

Vs 2 ac, /%(1 + K)nl/2. (39)

which leads to the observed growth rate in the numer-
ical treatment of the system, and also depends on the
boundary oscillation amplitude, the angles distribution
contained in 7y, and on the restitution coefficient .
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FIG. 5. (Color online). Plot of the diffusion speed in thedyelocitiesyspace after (a) 10 collisions; (b) 25 collisions; 7c) 1000
collisions and (d) 10000 collisions for an ensemble of 10° particles with tandom positions and locations but with the same initial
speed Vo = 0.5. The logarithmic scale of colors represents the density of velocity in the velocities space, where the most dense

regions are shown in red, while the less are in black.

V. CONNECTION WITH THERMODYNAMICS

As a final remark, we present an gnalogy Detween
dynamical diffusion and the stagnatiom ofwthe mean
quadratic speed with the concept of thermalization. We
start by borrowing the concept of temperature in a gas
of non-interacting particles inside of a“glosed region as
being proportional to the meah of $he quadratic peculiar
velocities, which, in our cage is simply, the mean of the
quadratic velocities becau§e the eandvelocity of the gas
is zero. In this sense, high tempezratures are linked with
high speeds, while the-opposite is also true'®.

We consider the diffusion process in the velocity space
(Vz, Vi) to undergtanddhdw the ensemble modify with col-
lision. In orderfto charaeterize such diffusion, we evolve
an ensemble of ¥° Particles in the velocity space, where
each one statrted with, thé same velocity at some point in a
circle withfradius 1§ =%0.5 and random angular position
in the billiard.

Figtire 5(a-d)“shows the (V,,V,) space after 10, 25,
1000 and 10000 collisions, respectively. The color scale
nfeasures'the density of particles. Note that, after 10 col-
listgns™(see Fig. 5(a)) the velocities become distributed
around the original circle of radius V) = 0.5, with con-
centrated the higher density until the particles start pop-
ulating the velocities near zero. This behavior is in agree-
ment with the previous discussion of the initial plateau
discussed in the previous section (see Fig. 2(a). After
25 collisions the velocities become more spread, and the

high concentration circle increases its radius, in agree-
ment with the mean speed growth observed when the
speed distribution becomes asymmetrical. Finally, af-
ter 1000 and 10000 collisions, the distribution does not
change much, which, expectedly, corresponds to the stag-
nation state, for which the individual velocity fluctua-
tions do not affect the distribution function (Fig. 3(a)).

It is interesting to notice that, the velocity fluctua-
tions are responsible to change the mean value of the
ensemble of velocities in the space (V,V,), where these
fluctuations might be estimated as the measure of the
variance

ot = (77%) - (¥)?, (40)
where the mean velocity () is zero because the particles
are inside of a non-translating closed billiard, while the
same does not apply for <17 2>, which can be identified as
the Eq. (31).

Given that we know how is the diffusion process in
the system, we can define an analogous quantity to
the temperature named dynamical temperature Ty, that
takes into account the characteristics of dynamical sys-
tem studied. This quantity can be written as

Ty o V2, (41)

where the equality comes after the introduction of a suit-
able constant K4, which leads us to

m 2
- |y 2 _ i} m (K —l)n:|
Tu= g U+ (W - 0)e . (42)
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FIG. 6. (Color online). Plot of evolution of the dynamical
temperature for a gas of non-interacting particles in a time-
dependent oval billiard in function of the number of collisions.

with m being the mass of each particle, and K4 plays the
role of the Boltzmann constant in our dynamical ensem-
ble.

Figure 6 shows the numerical evolution of the dynam-
ical temperature T, as a function of the number of colli
sions n, for two restitution parameters close to ome. As
can be seen, when the initial speed V; is less tha
the dynamical temperature of the gas increase

th t
collisions until it reaches the stagnation regime, %ﬁ\

remains for the rest of the simulation. The, stagnation
regime in our context is analogous to a syst\ndﬁci al-
ization with a heat reservoir at constant{t erature, s,
which emerges from the interplay betweee%sgillating
boundary and the inelastic collisions.

Provided there are no additioda.
side of the billiard the particl

entials acting in-
ergy 1§ purely kinetic
amgcal temperature

& NK,Ty, (43)

where N is th 1uéxber of particles. Expectedly, due
to the definitien o nﬁical temperature, we recover an
energy equation analogeus to an ideal gas at temperature

Ty.
-

Cc LUSIONS

Ir}is\work we have described both numerically
lytically the development of different evolution
regimes for the root mean square of speed an ensemble
of non-interacting particles in an oscillating billiard with
collision losses. The analytical treatment was based in
the diffusion process in the velocity space and resulted

in a consistent description for all the regimes of the sys-
tem evolution with considerable accuracy. The velocity
plateau occurs due to the relaxation of the initial configu-
ration, then, for small initial velocities, the energy grows
with a characteristic exponent close to 1/2, characteris-
tic of normal diffusion otherwise, it will decrease expo-
nentially for velocities larger than the saturation speed.
Finally, the ensemble reaches an stagnation state inde-
pendent of the initial configuration.

The stagnation rezze is analogous to a thermalized
state, where the distributien function becomes stationary
and its temperatufe can be used to characterize the en-
ergy reservoir, here encompassing the vibrating boundary
and the restitdgion stant. A dynamical temperature
was defined to m a c
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