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Abstract. The first objective of this paper is to study the Darboux integrability of the

polynomial differential system

ẋ = y, ẏ = z, ż = −y − x2 − xz + 3y2 + a,

and the second one is to show that for a > 0 sufficiently small this model exhibits two small
amplitude periodic solutions that bifurcate from a zero–Hopf equilibrium point localized at
the origin of coordinates when a = 0.

1. Introduction and statement of the main result

In the qualitative theory of differential equations it is important to know if a given differential
system is chaotic or not. One might think that it is not possible to generate a chaotic system
without equilibrium points. The answer to this question was given by Chen and Wang in [19]
where the authors introduce the following polynomial differential system in R3

ẋ = y,

ẏ = z,

ż = −y − x2 − xz + 3y2 + a,

(1)

where a ∈ R is a parameter. They observe that when a > 0 system (1) has two equilibria
(±

√
a, 0, 0), when a = 0 the two equilibria collides at the origin (0, 0, 0) and for a < 0 system

(1) has no equilibria but still generates a chaotic attractor, see for more details again [19].

The first objective of this paper is to study the integrability of system (1). We recall that
the existence of a first integral for a differential system in R3 allows to reduce its study in one
dimension. This is the main reason to look for first integrals. The second objective is to study
the zero–Hopf bifurcation which exhibits the polynomial differential system (1).

Let U be an open and dense subset of R3, we say that a non–locally constant C1 function
H : U → R is a first integral of system (1) on U if H(x(t), y(t), z(t)) is constant for all of the
values of t for which (x(t), y(t), z(t)) is a solution of system (1) contained in U . Obviously H
is a first integral of system (1) if and only if

y
∂H

∂x
+ z

∂H

∂y
+ (−y − x2 − xz + 3y2 + a)

∂H

∂z
= 0,

for all (x, y, z) ∈ U .

The first main result of this paper is:

Theorem 1. The following statements holds.

(a) System (1) has neither invariant algebraic surfaces, nor polynomial first integrals.
(b) All the exponential factors of system (1) are exp(x), exp(y), and linear combinations

of these two. Moreover the cofactors of exp(x) and exp(y) are y and z, respectively.
(c) System (1) has no Darboux first integrals.
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Theorem 1 is proved in section 4. See section 2 for the definition of invariant algebraic
surface, exponential factor and Darboux first integral.

The second main objective of this paper is to show that system (1) exhibits two small ampli-
tude periodic solutions for a > 0 sufficiently small that bifurcate from a zero–Hopf equilibrium
point localized at the origin of coordinates when a = 0.

We recall that an equilibrium point is a zero–Hopf equilibrium of a 3–dimensional autonomous
differential system, if it has a zero real eigenvalue and a pair of purely imaginary eigenvalues.
We know that generically a zero–Hopf bifurcation is a two–parameter unfolding (or family) of
a 3-dimensional autonomous differential system with a zero–Hopf equilibrium. The unfolding
can exhibit different topological type of dynamics in the small neighborhood of this isolated
equilibrium as the two parameters vary in a small neighborhood of the origin. This theory of
zero–Hopf bifurcation has been analyzed by Guckenheimer, Han, Holmes, Kuznetsov, Marsden
and Scheurle in [8, 9, 13, 14, 17]. In particular they shown that some complicated invariant
sets of the unfolding could bifurcate from the isolated zero–Hopf equilibrium under convenient
conditions, showing that in some cases the zero–Hopf bifurcation could imply a local birth of
“chaos”, see for instance the articles [2, 3, 4, 7, 17] of Baldomá and Seara, Broer and Vegter,
Champneys and Kirk, Scheurle and Marsden.

Note that the differential system (1) only depends on one parameter so it cannot exhibit a
complete unfolding of a zero–Hopf bifurcation. For studying the zero–Hopf bifurcation of system
(1) we shall use the averaging theory in a similar way at it was used in [5] by Castellanos, Llibre
and Quilantán.

In the next result we characterize when the equilibrium points of system (1) are zero–Hopf
equilibria.

Proposition 2. The differential system (1) has a unique zero–Hopf equilibrium localized at the
origin of coordinates when a = 0.

The second main result of this paper characterizes the Hopf bifurcation of system (1). For
a precise definition of a classical Hopf bifurcation in R3 when a pair of complex conjugate
eigenvalues cross the imaginary axis and the third real eigenvalue is not zero, see, for instance
[15].

Theorem 3. The following statements hold for the differential system (1).

(a) This system has no classical Hopf bifurcations.
(b) This system has a zero–Hopf bifurcation at the equilibrium point localized at the origin

of coordinates when a = 0 producing two small periodic solutions for a > 0 sufficiently
small of the form

x(t) = ±
√
a+O(a), y(t) = O(a), z(t) = O(a).

Both periodic solutions have two invariant manifolds, one stable and one unstable, each
of them formed by two cylinders.

The paper is organized as follows. In section 2 we present the basic definitions and results
necessary to prove Theorems 1 and 3. In section 2 we prove Theorem 1, and in section 4 we
present the proof of Proposition 2 and Theorem 3.

2. Preliminaries

As usual C[x, y, z] denotes the ring of polynomial functions in the variables x, y and z. Given
f ∈ C[x, y, z]\C we say that the surface f(x, y, z) = 0 is an invariant algebraic surface of system
(1) if there exists k ∈ C[x, y, z] such that

(2) y
∂f

∂x
+ z

∂f

∂y
+ (−y − x2 − xz + 3y2 + a)

∂f

∂z
= kf.
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The polynomial k is called the cofactor of the invariant algebraic surface f = 0 and it has degree
at most 1. When k = 0, f is a polynomial first integral. When a real polynomial differential
system has a complex invariant algebraic surface, then it has also its conjugate. It is important
to consider the complex invariant algebraic surfaces of the real polynomial differential systems
because sometimes these forces the real integrability of the system.

Let f, g ∈ C[x, y, z] and assume that f and g are relatively prime in the ring C[x, y, z], or
that g = 1. Then the function exp(f/g) ̸∈ C is called an exponential factor of system (1) if for
some polynomial L ∈ C[x, y, z] of degree at most 1 we have

y
∂ exp(f/g)

∂x
+ z

∂ exp(f/g)

∂y
+ (−y − x2 − xz + 3y2 + a)

∂ exp(f/g)

∂z

= L exp(f/g).

(3)

As before we say that L is the cofactor of the exponential factor exp (f/g). We observe that in
the definition of exponential factor if f, g ∈ C[x, y, z] then the exponential factor is a complex
function. Again when a real polynomial differential system has a complex exponential factor
surface, then it has also its conjugate, and both are important for the existence of real first
integrals of the system. The exponential factors are related with the multiplicity of the invariant
algebraic surfaces, for more details see [6], Chapter 8 of [10], and [11, 12].

A first integral is called a Darboux first integral if it is a first integral of the form

fλ1
1 · · · fλp

p Fµ1

1 · · ·Fµq
q ,

where fi = 0 are invariant algebraic surfaces of system (1) for i = 1, . . . p, and Fj are exponential
factors of system (1) for j = 1, . . . , q, λi, µj ∈ C.

The next result, proved in [10], explain how to find Darboux first integrals.

Proposition 4. Suppose that a polynomial system (1) of degree m admits p invariant algebraic
surfaces fi = 0 with cofactors ki for i = 1, ..., p and q exponential factors exp(gj/hj) with
cofactors Lj for j = 1, ..., q. Then, there exist λi and µj ∈ C not all zero such that

(4)

p∑
i=1

λiKi +

q∑
j=1

µjLj = 0,

if and only if the function

fλ1
1 . . . fλp

p

(
exp

(
g1
h1

))µ1

. . .

(
exp

(
gq
hq

))µq

is a Darboux first integral of system (1).

The following result whose proof is given in [11, 12] will be useful to prove statement (b) of
Theorem 1.

Lemma 5. The following statements hold.

(a) If exp(f/g) is an exponential factor for the polynomial differential system (1) and g is
not a constant polynomial, then g = 0 is an invariant algebraic surface.

(b) Eventually exp(f) can be an exponential factor, coming from the multiplicity of the
infinity invariant plane.

We also present a result from the averaging theory that we shall need for proving Theorem
3, for a general introduction to the averaging theory see the book of Sanders, Verhulst and
Murdock [16].

We consider the initial value problems

(5) ẋ = εF1(t,x) + ε2F2(t,x, ε), x(0) = x0,
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and

(6) ẏ = εg(y), y(0) = x0,

with x , y and x0 in some open subset Ω of Rn, t ∈ [0,∞), ε ∈ (0, ε0]. We assume that F1 and
F2 are periodic of period T in the variable t, and we set

(7) g(y) =
1

T

∫ T

0

F1(t,y)dt.

We will also use the notation Dxg for all the first derivatives of g, and Dxxg for all the second
derivatives of g.

For a proof of the next result see [18].

Theorem 6. Assume that F1, DxF1 ,DxxF1 and DxF2 are continuous and bounded by a
constant independent of ε in [0,∞) × Ω× (0, ε0], and that y(t) ∈ Ω for t ∈ [0, 1/ε]. Then the
following statements holds:

(1) For t ∈ [0, 1/ε] we have x(t)− y(t) = O(ε) as ε → 0.

(2) If p ̸= 0 is a singular point of system (6) such that

(8) detDyg(p) ̸= 0,

then there exists a periodic solution x(t, ε) of period T for system (5) which is close to
p and such that x(0, ε)− p = O(ε) as ε → 0.

(3) The stability of the periodic solution x(t, ε) is given by the stability of the singular point.

3. Proof of Theorem 1

To prove Theorem 1(a) we state and prove two auxiliary results. As usual we denote by N
the set of positive integers.

Lemma 7. If h = 0 is an invariant algebraic surface of system (1) with non–zero cofactor k,
then k = k0 −mx for some k0 ∈ C and m ∈ N ∪ {0}.

Proof. Let h be an invariant algebraic surface of system (1) with non–zero cofactor k. Then
k = k0 + k1x + k2y + k3z for some k0, k1, k2, k3 ∈ C. Let n be the degree of h. We write h as
sum of its homogeneous parts as h =

∑n
i=1 hi where each hi is a homogenous polynomial of

degree i. Without loss of generality we can assume that hn ̸= 0 and n ≥ 1.

Computing the terms of degree n+ 1 in (2) we get that

(−x2 − xz + 3y2)
∂hn

∂z
= (k1x+ k2y + k3z)hn.

Solving this linear partial differential equation we get

hn(x, y, z) = Cn(x, y)(x(x+ z)− 3y2)−k1+k3− k2y
x − 3k3y2

x2 exp
(
− k3z

x

)
,

where Cn is an arbitrary function in the variables x and y. Since hn must be a homogeneous
polynomial we must have k2 = k3 = 0 and k1 = −m with m ∈ N ∪ {0}. This concludes the
proof of the lemma. �

Lemma 8. Let g = g(x, y) be a homogeneous polynomial of degree n with n ≥ 1 satisfying

(9) k0xg + (x2 − 3y2)
∂g

∂y
− xy

∂g

∂x
= 0.

Then g = 0.
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Proof. We write the homogeneous polynomial of degree n as g = g(x, y) =
∑n

i=0 aix
iyn−i with

ai ∈ C. Using that g satisfies (9) we get

k0

n∑
i=0

aix
i+1yn−i +

n∑
i=0

(n− i)aix
i+2yn−i−1 − 3

n∑
i=0

(n− i)aix
iyn−i+1

−
n∑

i=0

iaix
iyn−i+1 = 0.

(10)

Computing the coefficients of xjyn+1−j , for 0 ≤ j ≤ n+ 1 in equation (10) we get

−3na0 = 0,

k0a0 + (2− 3n)a1 = 0,

(n− i+ 1)ai−1 + k0ai + (2i+ 2− 3n)ai+1 = 0 for 1 ≤ i ≤ n− 2,

2an−2 + k0an−1 − nan = 0,

an−1 + k0an = 0.

(11)

Taking into account that

2i+ 2− 3n ≤ 2(n− 2) + 2− 3n = −n− 2 < 0,

it follows recursively from (11) that ai = 0 for all 0 ≤ i ≤ n, so g = 0. �

Proof of Theorem 1(a). Let f = 0 be an invariant algebraic surface of degree n ≥ 1 of system
(1) with cofactor k(x, y, z) = k0+k1x+k2y+k3z. It follows from Lemma 7 that k = k(x, y, z) =
k0−mx, with m ∈ N∪{0}. We write f as sum of its homogeneous parts as f =

∑n
i=0 fi where

fi = fi(x, y, z) is a homogeneous polynomial of degree i.

Computing the terms of degree n+ 1 in (2) we get that

(−x2 − xz + 3y2)
∂fn
∂z

= −mxfn.

Solving this linear differential equation we get that

(12) fn(x, y, z) = (x(x+ z)− 3y2)mg(x, y),

where g = g(x, y) is a homogeneous polynomial of degree n− 2m in the variables x and y.

Assume first m = 0. Computing the terms of degree n in (2) we obtain

(13) (3y2 − x2 − xz)
∂fn−1

∂z
+

∂fn
∂x

y +
∂fn
∂y

z +
∂fn
∂z

(−y) = k0fn.

Solving (13) we have

fn−1(x, y, z) =K(x, y) +
z

x

∂g

∂y

+
1

x2
log[x(x+ z)− 3y2]

(
− k0xg − (x2 − 3y2)

∂g

∂y
+ xy

∂g

∂x

)
,

where K is an arbitrary function in the variables x and y. Since fn−1 must be a homogeneous
polynomial of degree n− 1 we must have

−k0xg − (x2 − 3y2)
∂g

∂y
+ xy

∂g

∂x
= 0.

It follows from Lemma 8 that g = 0, and from (12) fn = 0, i.e. f is a constant, which is a
contradiction with the fact that f = 0 is an invariant algebraic surface. So m > 0.

For simplifying the computations we introduce the weight change of variables

x = X, y = µ−1Y, z = µ−1Z, t = µT,
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with µ ∈ R \ {0}. Then system (1) becomes

X ′ = Y,

Y ′ = µZ,

Z ′ = 3Y 2 − µY − µ2X2 − µXZ + µ2a,

(14)

where the prime denotes derivative with respect to the variable T .

Set F (X,Y, Z) = µnf(X,µ−1Y, µ−1Z) =
∑n

i=1 µ
iFi(X,Y, Z), where Fi is the weight ho-

mogeneous part with weight degree n − i of F and n is the weight degree of F with weight
exponents s = (0,−1,−1). We also set K(X,Y, Z) = k(X,µ−1Y, µ−1Z) = k0 −mX.

From the definition of an invariant algebraic surface we have

Y
n∑

i=0

µi ∂Fi

∂X
+ µZ

n∑
i=0

µi ∂Fi

∂Y
+ (3Y 2 − µY − µ2X2 − µXZ + µ2a)

n∑
i=0

µi ∂Fi

∂Z

= (k0 −mX)

n∑
i=0

µiFi.

(15)

Equating in (15) the terms with µ0 we get

(16) Y
∂F0

∂X
+ 3Y 2 ∂F0

∂Z
= (k0 −mX)F0,

where F0 is a weight homogeneous polynomial of degree n.

Solving (16) we readily obtain, by direct computation, that

F0(X,Y, Z) = G(Y,Z) exp

(
X(2k0 −mX)

2Y

)
,

where G is an arbitrary function in the variables Y and Z. Since F0 must be a polynomial and
m > 0 we must have F0 = 0. This implies that F = 0 is not an invariant algebraic surface
of system (14), consequently f = 0 is not an invariant algebraic surface of system (1). This
completes the proof of Theorem 1(a). �

Proof of Theorem 1(b). Let E = exp(f/g) /∈ C be an exponential factor of system (1) with
cofactor L = L0 +L1x+L2y+L3z, where f, g ∈ C[x, y, z] with (f, g) = 1. From Theorem 1(a)
and Lemma 5, E = exp(f) with f = f(x, y, z) ∈ C[x, y, z] \ C.

It follows from equation (3) that f satisfies

(17) y
∂f

∂x
+ z

∂f

∂y
+ (−y − x2 − xz + 3y2 + a)

∂f

∂z
= L0 + L1x+ L2y + L3z,

where we have simplified the common factor exp(f).

We write f =
∑n

i=0 fi(x, y, z), where fi is a homogeneous polynomial of degree i. Assume
n > 1. Computing the terms of degree n+ 1 in (17) we obtain

(−x2 − xz + 3y2)
∂fn
∂z

= 0.

Solving it and using that fn is a homogeneous polynomial of degree n we get fn(x, y, z) =
gn(x, y), where gn(x, y) is a homogeneous polynomial of degree n. Computing the terms of
degree n in (17) we obtain

(18) (3y2 − x2 − xz)
∂fn−1

∂z
+

∂gn
∂x

y +
∂gn
∂y

z = 0.

Solving (18) we get

fn−1 = gn−1(x, y) +
1

x2

(
(3y2 − x2)

∂gn
∂y

+ xy
∂gn
∂x

)
log
(
x2 + xz − 3y2

)
+

z

x

∂gn
∂y

,
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where gn−1(x, y) is an arbitrary function in the variables x and y. Since fn−1 must a homoge-
neous polynomial of degree n− 1 we must have

(3y2 − x2)
∂gn
∂y

+ xy
∂gn
∂x

= 0,

which yields

gn = gn

(2y2 − x2

2x6

)
.

Taking into account that gn must be a homogeneous polynomial of degree n we get gn = 0.
This implies that fn = 0, so n = 1.

We can write f = a1x + a2y + a3z with ai ∈ C. Imposing that f must satisfy (17) we get
f = a1x+ a2y with cofactor a1y + a2z. This concludes the proof of Theorem 1(b). �

Proof of Theorem 1(c). It follows from Proposition 4 and statements (a) and (b) of Theorem
1 that if system (1) has a Darboux first integral then there exist µ1, µ2 ∈ C not both zero such
that (4) holds, that is, such that

µ1y + µ2z = 0.

But this is not possible. In short, there are no Darboux first integrals for system (1) and the
proof of Theorem 1(c) is completed. �

4. Zero–Hopf bifurcation

In this section we prove Proposition 2 and Theorem 3.

Proof of Proposition 2. System (1) has two equilibrium points e± = (±
√
a, 0, 0) when a > 0,

which collide at the origin when a = 0. The proof is made computing directly the eigenvalues
at each equilibrium point. Note that the characteristic polynomial of the linear part of system
(1) at the equilibrium point e± is

p(λ) = λ3 ±
√
aλ2 + λ± 2

√
a.

As p(λ) is a polynomial of degree 3, it has either one, two (then one has multiplicity 2), or
three real zeros. Using the discriminant of p(λ), it follows that p(λ) has a unique real root, see
the appendix for more details.

Imposing the condition p(λ) = (λ− ρ)(λ2 − ε− iβ)(λ− ε+ iβ) with ρ, ε, β ∈ R and β > 0,
we obtain a system of three equations that correspond to the coefficients of the terms of degree
0, 1 and 2 in λ of the polynomial p(λ)− (λ− ρ)(λ− ε− iβ)(λ− ε+ iβ). This system has only
two solutions in the variables (a, β, ρ), which are(

1− 24ε2 + 32ε4 −
√
1− 32ε2 + 8ε2

√
1− 32ε2

8ε2
,

√
3− 2ε2 −

√
1− 32ε2√

2
,
−1 +

√
1− 32ε2

4ε

)
=

(4ε2 +O(ε4), 1 +O(ε2),−4ε+O(ε3)),

and(
1− 24ε2 + 32ε4 +

√
1− 32ε2 − 8ε2

√
1− 32ε2

8ε2
,

√
3− 2ε2 +

√
1− 32ε2√

2
,
−1−

√
1− 32ε2

4ε

)
=(

1

4ε2
+O(1),

√
2 +O(ε2),− 1

2ε
+O(ε)

)
.

Clearly at ε = 0 only the first solution is well defined and gives (a, β, ρ) = (0, 1, 0). Hence there
is a unique zero-Hopf equilibrium point when a = 0 at the origin of coordinates with eigenvalues
0 and ±i. This completes the proof of Proposition 2. �
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Proof of Theorem 3. It was proven in Proposition 2 that when a = 0 the origin is zero–Hopf
equilibrium point. We want to study if from this equilibrium it bifurcates some periodic orbit
moving the parameter a of the system. We shall use the averaging theory of first order described
in section 2 (see Theorem 6) for doing this study. But for applying this theory there are three
main steps that we must solve in order that the averaging theory can be applied for studying
the periodic solutions of a differential system.

Step 1 : Doing convenient changes of variables we must write the differential system (1) as a
periodic differential system in the independent variable of the system, and the system
must depend on a small parameter as it appears in the normal form (5) for applying
the averaging theory. To find these changes of variables sometimes is the more difficult
step.

Step 2 : We must compute explicitly the integral (7) related with the periodic differential
system in order to reduce the problem of finding periodic solutions to a problem of
finding the zeros of a function g(y), see (7).

Step 3 : We must compute explicitly the zeros of the mentioned function, in order to obtain
periodic solutions of the initial differential system (1).

In order to find the changes of variables for doing the step 1 and write our differential system
(1) in the normal form for applying the averaging theory, first we write the linear part at the
origin of the differential system (1) when a = 0 into its real Jordan normal form, i.e. into the
form 0 −1 0

1 0 0
0 0 0

 .

To do this we apply the linear change of variables

(x, y, z) → (u, v, w), where x = −u+ w, y = v, z = u.

In the new variables (u, v, w) the differential system (1) becomes

u̇ = a− v + uw + 3v2 − w2,

v̇ = u,

ẇ = a+ uw + 3v2 − w2.

(19)

Now we write the differential system (19) in cylindrical coordinates (r, θ, w) doing the change
of variables

u = r cos θ, v = r sin θ, w = w,

and system (19) becomes

ṙ = cos θ(a− w2 + rw cos θ + 3r2 sin2 θ),

θ̇ = 1 +
1

r
(w2 − a) sin θ − w cos θ sin θ − 3r sin3 θ,

ẇ = a− w2 + rw cos θ + 3r2 sin2 θ.

(20)

Now we do a rescaling of the variables through the change of coordinates

(r, θ, w) → (R, θ,W ), where r =

√
a

2
R, w =

√
a

2
W.

After this rescaling system (20) becomes

Ṙ =

√
a

2
cos θ(4−W 2 +RW cos θ + 3R2 sin2 θ),

θ̇ = 1−
√
a

2R
sin θ(4−W 2 +RW cos θ + 3R2 sin2 θ)

Ẇ =

√
a

2
(4−W 2 +RW cos θ + 3R2 sin2 θ).

(21)
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This system can be written as

dR

dθ
=

√
aF11(θ,R,W ) +O(a),

dW

dθ
=

√
aF12(θ,R,W ) +O(a),

(22)

where

F11(θ,R,W ) =
1

2
cos θ(4−W 2 +RW cos θ + 3R2 sin2 θ),

F12(θ,R,W ) =
1

2
(4−W 2 +RW cos θ + 3R2 sin2 θ).

Using the notation of the averaging theory described in section 2 we have that if we take t = θ,
T = 2π, ε =

√
a, x = (R,W )T , and

F1(t,x) = F1(θ,R,W ) =

(
F11(θ,R,W )
F12(θ,R,W )

)
, ε2F2(t,x) = O(a),

it is immediate to check that the differential system (22) is written in the normal form (5)
for applying the averaging theory and that it satisfies the assumptions of Theorem 6. This
completes the step 1.

Now we compute the integral in (7) with y = (R,W )T , and denoting

g(y) = g(R,W ) =

(
g11(R,W )
g12(R,W )

)
,

we obtain

g11(R,W ) =
1

4
RW,

g12(R,W ) =
1

4
(8 + 3R2 − 2W 2).

So the step 2 is done.

The system g11(R,W ) = g12(R,W ) = 0 has the unique real solutions (W,R) = (±2, 0). The
Jacobian (8) is ∣∣∣∣∣∣∣

1

4
W

1

4
R

3

2
R −W

∣∣∣∣∣∣∣ = −1

8
(3R2 + 2W 2),

and evaluated at the solutions (R,W ) = (0,±2) takes the value −1 ̸= 0. Then, by The-
orem 6, it follows that for any a > 0 sufficiently small system (21) has a periodic solution
x(t, ε) = (R(θ, a),W (θ, a)) such that (R(0, a),W (0, a)) tends to (0,±2) when a tends to zero.
We know that the eigenvalues of the Jacobian matrix at the solution (0,−2) are 2,−1/2 and
the eigenvalues of the Jacobian matrix at the solution (0, 2) are −2, 1/2. This shows that both
periodic orbits are unstable having a stable manifold and an unstable manifold both formed by
two cylinders.

Going back to the differential system (20) we get that such a system for a > 0 sufficiently
small has two periodic solutions of period approximately 2π of the form

r(θ) = O(a),

w(θ) = ±
√
a+O(a).

These two periodic solutions become for the differential system (19) into two periodic solutions
of period also close to 2π of the form

u(t) = O(a),

v(t) = O(a),

w(t) = ±
√
a+O(a).
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for a > 0 sufficiently small. Finally we get for the differential system (1) the two periodic
solutions

x(t) = ±
√
a+O(a),

y(t) = O(a),

z(t) = O(a).

of period near 2π when a > 0 is sufficiently small. Clearly these periodic orbits tend to the
origin of coordinates when a tends to zero. Therefore they are small amplitude periodic solutions
starting at the zero–Hopf equilibrium point. This concludes the proof of Theorem 3. �

Appendix: Roots of a cubic polynomial

We recall that the discriminant ∆ of the polynomial ax3 + bx2 + cx+ d is

∆ = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2.

It is known that

• If ∆ > 0, then the equation has three distinct real roots.
• If ∆ = 0, then the equation has a root of multiplicity 2 and all its roots are real.
• If ∆ < 0, then the equation has one real root and two non–real complex conjugate
roots.

For more details see [1].
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