

Faithfully Quadratic Rings, a Summary of Results

M. Dickmann

F. Miraglia

Paris, February, 2010

The text below contains a listing of our principal results on the subject matter of the title, presented in full in the monograph [DM11] (submitted)¹. It is intended as a bare summary of statements, for the benefit of the reader already possessing some familiarity with the subject, containing few or no comments. For motivation and informal explanations of a general character, the reader can consult the introduction of our work published in these seminar proceedings, [DM12]; this introduction still gives, on the whole, a meaningful guide to our results, although our treatment of the subject has evolved since its publication.

In all that follows, “ring” stands for commutative unitary ring where 2 is a unit (invertible), while “quadratic form” stands for *diagonal quadratic form with unit coefficients*.

To this end, we shall employ our **theory of special groups (SG)**, cf. [DM2].²

We shall formulate axioms such that if $\langle A, T \rangle$ is a preordered ring, then its associated proto-special group (π -SG), $G_T(A)$, is a **special group**; further, these axioms satisfy the following conditions:

* The axioms are “elementary” and closely connected to fundamental concepts of the algebraic theory of quadratic forms. Moreover, their logical form makes them amenable to model-theoretic treatment and automatically entails a number of preservation results (see 1.2, 5.5 – 5.7).

* Ring-theoretic representation and isometry of forms of arbitrary dimension are faithfully coded by representation and isometry in $G_T(A)$;

* If $T = A^2$, the mod 2 algebraic K -theory of A ([Gu]) is naturally isomorphic to that of $G(A)$.

In the case of preorders, one of the difficulties was to obtain an **intrinsic** characterization of T -isometry, i.e., a characterization depending only on T , the ring operations and the ring’s general linear group. As is well-known, the usual treatment in fields uses signatures. A smooth theory ensues by using the concept of T -isometry introduced in Definition 3.9.

Once the basic theory is settled (in sections 1 – 5), considerable effort is devoted to establish that certain significant and well-known classes of rings are faithfully quadratic: rings with many units (section 7), various classes of f-rings (section 8), Archimedean -rings with bounded inversion (section 9). In section 10, we give some applications to the theory of quadratic forms over these classes of rings.

¹ A full copy of [DM11] can be obtained both at www.ime.usp.br/~miraglia/fq-rings.pdf or at www.maths.manchester.ac.uk/raag/index.php?preprint=0320.

² The applicability of the theory of SGs to rings – beyond the fundamental and motivating case of fields – was initially envisaged by M. Knebush.

1 Geometric and Horn-Geometric Theories

Definition 1.1 Let L be a first-order language with equality and let $\bar{z} = (z_1, \dots, z_n)$ be variables in L . A L -formula on the free variables \bar{z} is

- a) **positive primitive (pp)** if it is of the form $\exists \bar{v} \varphi(\bar{v}; \bar{z})$, where φ is a conjunction of atomic formulas.
- b) **geometric** if it is the negation of an atomic formula or of the form

$$\forall \bar{v} (\exists \bar{y} \varphi_1(\bar{y}, \bar{v}; \bar{z}) \rightarrow \exists \bar{w} \varphi_2(\bar{w}, \bar{v}; \bar{z})),$$

where φ_1, φ_2 are positive and quantifier free.

A theory is **geometric** if it has a set of geometric axioms.

- c) A L -formula is **Horn-geometric** if it is the negation of an atomic formula or of the form $\forall \bar{v} (\varphi_1(\bar{z}) \rightarrow \varphi_2(\bar{z}))$, where φ_1 and φ_2 are pp-formulas in L .

A **Horn-geometric theory in L** is a theory having a set of Horn-geometric axioms.

Clearly, the theory of unitary commutative rings ($1 \neq 0$) is Horn-geometric. Other important examples in our context shall appear below.

The following is classical:

Theorem 1.2 Let T be a theory in a first-order language with equality.

- a) If T is Horn-geometric, then it is preserved by arbitrary reduced products. In particular, it is preserved under non-empty products.
- b) If T is geometric, then it is preserved under arbitrary right-filtered inductive limits.

A topological space X is **partitionable** if it is T_1 and every open covering X has a disjoint open refinement. Discrete spaces and Boolean spaces are partitionable; any topological sum of partitionable spaces is partitionable.

We also have

Theorem 1.3 Let T be a Horn-geometric L -theory. Let \mathfrak{M} be a sheaf of L -structures over a partitionable space X . If every stalk of \mathfrak{M} is a model of T , then $\mathfrak{M}(X) \models T$, where $\mathfrak{M}(X)$ is the L -structure of global sections of \mathfrak{M} .

2 Proto-Special Groups

A proto-special group (π -SG) is a triple

$$G = \langle G, \equiv_G, -1 \rangle,$$

such that

* G is a group of exponent two, (written multiplicatively; 1 is its identity), with a distinguished element -1 . Set $-x = -1 \cdot x$;

* A binary relation (isometry) \equiv_G on $G \times G$, such that

[SG 0] : \equiv_G is an equivalence relation on $G \times G$;

$$[\text{SG 1}] : \langle a, b \rangle \equiv_G \langle b, a \rangle; \quad [\text{SG 2}] : \langle a, -a \rangle \equiv_G \langle 1, -1 \rangle;$$

$$[\text{SG 3}] : \langle a, b \rangle \equiv_G \langle c, d \rangle \Rightarrow ab = cd;$$

$$[\text{SG 5}] : \langle a, b \rangle \equiv_G \langle c, d \rangle \Rightarrow \langle xa, xb \rangle \equiv_G \langle xc, xd \rangle;$$

G is reduced (**π -RSG**) if $1 \neq -1$ and

$$[\text{red}] : \langle a, a \rangle \equiv_G \langle 1, 1 \rangle \Rightarrow a = 1.$$

A π -SG G is a **pre-special group (p-SG)** if, in addition, it satisfies,

$$[\text{SG 4}] : \langle a, b \rangle \equiv_G \langle c, d \rangle \Rightarrow \langle a, -c \rangle \equiv_G \langle -b, d \rangle.$$

$\varphi = \langle a_1, \dots, a_n \rangle \in G^n$ is called a **n -form** over G .

Let G be a π -SG. Binary isometry in G can be extended to n -forms, $n \geq 1$, still written \equiv_G , as follows:

$$* \langle a \rangle \equiv_G \langle b \rangle \Leftrightarrow a = b;$$

* for $n = 2$, \equiv_G is the primitive relation on G ;

* for $n \geq 3$, $\langle a_1, \dots, a_n \rangle \equiv_G \langle b_1, \dots, b_n \rangle$ iff there are $x, y, z_3, \dots, z_n \in G$ such that

$$(1) \langle a_1, x \rangle \equiv_G \langle b_1, y \rangle;$$

$$(2) \langle a_2, \dots, a_n \rangle \equiv_G \langle x, z_3, \dots, z_n \rangle;$$

$$(3) \langle b_2, \dots, b_n \rangle \equiv_G \langle y, z_3, \dots, z_n \rangle.$$

A p-SG is a **special group (SG)** if it verifies

[\text{SG 6}] : Isometry of forms of dimension 3 is transitive.

Proto-SGs, p-SGs, SGs and their reduced counterparts are **Horn-geometric theories** in the first-order language $L_{SG} = \langle \cdot, 1, -1, \equiv, = \rangle$.

If G, H are π -SGs, a map $f : G \rightarrow H$ is a **morphism** if f is a group morphism, such that $f(-1) = -1$ and $\langle a, b \rangle \equiv_G \langle c, d \rangle \Rightarrow \langle fa, fb \rangle \equiv_H \langle fc, fd \rangle$.

Write **π -SG**, **SG** and **RSG** for the categories of proto-SGs, SGs and reduced SGs, respectively.

3 Preordered rings and Proto Special Groups

3.1 Conventions and Notation. Recall our standing hypothesis that all rings are unitary commutative rings, in which 2 is a unit.

a) If R is a ring, $D \subseteq R$ and $x \in R$

$$(1) R^\times = \text{groups of units in } R;$$

$$(2) D^\times = D \cap R^\times;$$

$$(3) D^2 = \{d^2 \in R : d \in D\};$$

$$(4) \Sigma D^2 = \{\sum_{i=1}^n d_i^2 : \{d_1, \dots, d_n\} \subseteq D, n \geq 1\}.$$

$$(5) \text{GL}_n(R) = \text{invertible } n \times n \text{ } R\text{-matrices.}$$

b) A **preorder** of R is subset $T \subseteq R$, closed under addition and multiplication and containing R^2 . T is **proper** if $-1 \notin T$.

The smallest preorder on R is ΣR^2 ; if it is proper, then R is said to be **semi-real**.

c) Unless explicitly stated otherwise, A is assumed **semi-real** and all its preorders are assumed **proper**. ■

Definition 3.2 a) A preordered ring (p-ring) is a pair $\langle A, T \rangle$ such that A is a ring and T is a preorder of A .

b) The language of p-rings is $L = \langle +, \cdot, 0, 1, -1, T \rangle$, i.e., the first-order language of rings, with a unary predicate, T , satisfying the axioms of a preorder.

c) A morphism of p-rings, $f : \langle A, T \rangle \rightarrow \langle A', T' \rangle$, is a ring morphism, $f : A \rightarrow A'$, such that $f(T) \subseteq T'$.

d) Write **p-Ring** for the category of p-rings and their morphisms.

The reader will have noticed that the theory of p-rings is Horn-geometrical.

3.3 To a p-ring $\langle A, T \rangle$, we associate:

a) A group of exponent two

$$G_T(A) = A^\times / T^\times = \{a^T : a \in A^\times\},$$

writing 1 for 1^T and -1 for $(-1)^T$;

b) For $a, b \in A^\times$,

$$D_T^v(a, b) = \{x \in A^\times : \exists s, t \in T \text{ s.t. } x = sa + tb\},$$

is the set of units value represented by $\langle a, b \rangle$.

c) Define

$$\langle a^T, b^T \rangle \equiv_T \langle c^T, d^T \rangle \Leftrightarrow \begin{cases} a^T b^T = c^T d^T \\ \text{and} \\ D_T^v(a, b) = D_T^v(c, d). \end{cases}$$

d) If $h : \langle A_1, T_1 \rangle \rightarrow \langle A_2, T_2 \rangle$ is a p-ring morphism, let $h^\pi : G_{T_1}(A_1) \rightarrow G_{T_2}(A_2)$ be given by $h^\pi(a^{T_1}) = h(a)^{T_2}$.

e) If $T = \Sigma A^2$, write $G_{red}(A)$ for the associated π -SG.

We have

Theorem 3.4 a) If $\langle A, T \rangle$ is a p-ring, then $G_T(A)$ is a π -SG, which is reduced iff T is proper.

b) If h is a p-ring morphism, h^π is morphism of π -SGs, yielding a covariant functor from **p-Ring** to **π -SG**.

c) This functor preserves arbitrary non-empty products and all right-filtered inductive limits.

Remark 3.5 a) The preceding construction also holds with A^2 in place of T . In this case, write $G(A) = A^\times / A^{2\wedge}$ for the associated π -SG.

Fact 3.6 Let A be a ring and let $T = A^2$ or a preorder of A . If A satisfies **2-transversality** with respect to T , i.e., for all $a, b \in A^\times$

$$D_T^v(a, b) = \{c \in A^\times : \exists s, t \in T^\times \text{ so that } c = sa + tb\},$$

then $G_T(A)$ is a pre-special group, i.e.,

$$\langle a, b \rangle \equiv_T \langle c, d \rangle \Rightarrow \langle a, -c \rangle \equiv_T \langle -b, d \rangle.$$

Remark 3.7 In fact, the constructions we are presenting hold for T -subgroups of $\langle A, T \rangle$, i.e., subgroups $S \subseteq A^\times$, such that $T^\times \subseteq S$ and $-1 \in S$. If $T = A^2$, these are called q -subgroups of A . This generalization is important: we have shown that **any** RSG group is isomorphic to one of the type $G(S)$, where S is a q -subgroup of the ring $\mathbb{C}(X)$, X a Boolean space ([DM10]). To ease presentation, we only deal here with the case $S = A^\times$. ■

3.8 Diagonal A^\times -quadratic forms Let $n \geq 1$ be an integer and A be a ring.

a) To an n -form over A^\times , $\varphi = \langle a_1, \dots, a_n \rangle \in A^{\times n}$ we associate

(1) A diagonal quadratic form over A^n , written φ : for $X = \langle X_1, \dots, X_n \rangle$,
 $\varphi(X) = \sum_{i=1}^n a_i X_i^2$.

(2) A diagonal matrix in $GL_n(R)$, $\mathcal{M}(\varphi)$, whose non-zero entries are a_1, \dots, a_n ;

(3) The **discriminant** of φ is $d(\varphi) = \det \mathcal{M}(\varphi) = a_1 \cdots a_n \in A^\times$.

b) If φ, ψ are n -forms over A^\times , $\varphi \approx \psi$ iff

$$\exists M \in GL_n(R) \text{ such that } M\mathcal{M}(\varphi)M^t = \mathcal{M}(\psi).$$

Clearly, $d(\varphi) \det(M)^2 = d(\psi)$.

The relation \approx , **matrix isometry**, is an equivalence relation. It has the usual properties, e.g., preserves orthogonal sums and tensor products of forms. ■

Definition 3.9 Let $\langle A, T \rangle$ be a p -ring and let φ, ψ be forms of dimension $n \geq 1$ over A^\times . We say that φ is **T -isometric** to ψ , written $\varphi \approx_T \psi$, if there is a sequence of n -dimensional forms over A^\times , $\varphi_0, \varphi_1, \dots, \varphi_k$, such that (recall that \approx is matrix isometry)

- (i) $\varphi_0 = \varphi$ and $\varphi_k = \psi$; and
- (ii) $\forall 1 \leq i \leq k$, either $\varphi_i \approx \varphi_{i-1}$, or $\varphi_i = \langle t_1 x_1, \dots, t_n x_n \rangle$, with $t_1, \dots, t_n \in T^\times$ and $\varphi_{i-1} = \langle x_1, \dots, x_n \rangle$.

Remark 3.10 If A is a field, \approx_T is equivalent to the signature version of isometry for the reduced theory mod T of quadratic forms with coefficients in A^\times . We shall see below that the same result holds for T -faithfully quadratic rings (Theorem 5.3). ■

In the setting of π -SG associated to rings there are several notions of *representation* that must be distinguished. In the field case all these notions coincide.

Definition 3.11 Let $T = A^2$ or a proper preorder on a ring A . Let $\varphi = \langle b_1, \dots, b_n \rangle$ and $\varphi^T = \langle b_1^T, \dots, b_n^T \rangle$ be a A^\times -form and its correspondent form in $G_T(A)$.

a) $D_T(\varphi) = \{a \in A^\times : \exists a_2, \dots, a_n \in A^\times \text{ such that } \varphi^T \equiv_T \langle a^T, a_2^T, \dots, a_n^T \rangle\}$

are the elements **isometry-represented** by φ^T in $G_T(A)$.

b) $D_T^v(\varphi) = \{a \in A^\times : \exists x_1, \dots, x_n \in T \text{ such that } a = \sum_{i=1}^n x_i b_i\}$,

is the set of elements **value-represented mod T** by φ .

c) $D_T^t(\varphi) = \{a \in A^\times : \exists z_1, \dots, z_n \in T^\times \text{ such that } a = \sum_{i=1}^n z_i b_i\}$

is the set of elements **transversally represented mod T** by φ .

Clearly, $D_T^t(\varphi) \subseteq D_T^v(\varphi)$.

d) Define $\mathfrak{D}_T(\varphi)$ as follows:

- * If $n = 2$, $\mathfrak{D}_T(\varphi) = D_T^v(b_1, b_2)$;
- * If $n \geq 3$, $\mathfrak{D}_T(\varphi) = \bigcap_{k=1}^n \bigcup \{D_T^v(b_k, u) : u \in D_T^v(b_1, \dots, \overset{\vee}{b}_k, \dots, b_n)\}$,

where $\langle b_1, \dots, \overset{\vee}{b}_k, \dots, b_n \rangle$ denotes the $(n-1)$ -dimensional form obtained by omitting the k^{th} -entry.

e) If $T = \Sigma A^2$ is a proper preorder on A (i.e., A is semi-real), the corresponding representation sets will be written D_Σ , D_Σ^v , D_Σ^t and \mathfrak{D}_Σ .

f) If $T = A^2$, the corresponding representation sets will be written D , D^v , D^t and \mathfrak{D} .

4 The Axioms

Let T be a preorder of a ring A or $T = A^2$. Consider the following conditions:

[T-FQ 1] : (2-tranversality) For all $a, b \in S$, $D_T^v(a, b) = D_T^t(a, b)$.

[T-FQ 2] : For all $n \geq 2$ and all n -forms φ over S , $D_T^v(\varphi) = \mathfrak{D}_T(\varphi)$.

[T-FQ 3] : (1-Witt-cancellation) For all integers $n \geq 1$, all $a \in A^\times$ and all n -forms φ, ψ over A^\times , $\langle a \rangle \oplus \varphi \approx_T \langle a \rangle \oplus \psi \Rightarrow \varphi \approx_T \psi$.

We then have

Theorem 4.1 Let A be a ring and let T be A^2 or a preorder of A . If $A \models$ [T-FQ 1], [T-FQ 2] and [T-FQ 3], then

a) For all A^\times -forms, φ , $D_T(\varphi) = D_T^v(\varphi)$, i.e., $a \in A^\times$ is value represented iff it is isometry represented in $G_T(A)$.

b) For all A^\times -forms φ, ψ of the same dimension, $\varphi \approx_T \psi \Leftrightarrow \varphi^T \equiv_T \psi^T$. (in $G_T(A)$)

c) $G_T(A) = \langle G_T(A), \equiv_T, -1 \rangle$ is a SG, faithfully coding T -isometry and value representation of diagonal quadratic forms over A^\times . ■

Theorem 4.1 has a partial converse:

Theorem 4.2 Let A be a ring and let T be a preorder of A , or $T = A^2$.

If $A \models$ [T-FQ 1], the following are equivalent:

(1) $G_T(A)$ is a SG such that for all A^\times -forms of the same dimension, φ, ψ ,

$$(*) \quad \varphi \approx_T \psi \Leftrightarrow \varphi^T \equiv_T \psi^T; \quad (***) \quad D_T^v(\varphi) = D_T(\varphi^T).$$

(2) $A \models$ [T-FQ 2] and $A \models$ [T-FQ 3].

With respect to K -theory we obtain the following very general result:

Theorem 4.3 If A is a ring verifying [FQ 1], there is a natural graded ring isomorphism between Milnor's mod 2 K -theory of A and that of the pre-special group $G(A)$ ³.

The preceding results justify the following

³ Milnor's K -theory of rings is developed in [Gu].

Definition 4.4 Let A be a ring and T be A^2 or a preorder of A .

- a) A is **T -faithfully quadratic** if it satisfies axioms [T-FQ 1], [T-FQ 2] and [T-FQ 3].
- b) If $T = A^2$ write [FQ i] for [T-FQ i] ($i = 1, 2, 3$), and call A **faithfully quadratic**.
- c) If $T = \Sigma A^2$, write [Σ -FQ i] for [T-FQ i] ($i = 1, 2, 3$), and call A **Σ -faithfully quadratic**.

5 T -isometry and Signatures

Definition 5.1 Let $\langle A, T \rangle$ be a p-ring.

- a) A **T-signature** on A is a group morphism, $\tau : A^\times \rightarrow \mathbb{Z}_2 = \{\pm 1\}$, such that $\tau(-1) = -1$ and for all $a \in A^\times$, $a \in \ker \tau \Rightarrow D_T^v(1, a) \subseteq \ker \tau$.

Write $Z_{A,T}$ for the set of T -signatures on A .

- b) If $\varphi = \langle a_1, \dots, a_n \rangle$ is a form over A^\times , and $\tau \in Z_{A,T}$, $\text{sgn}_\tau(\varphi) = \sum_{i=1}^n \tau(a_i)$ is the **signature** of φ at τ .

If $\langle A, T \rangle$ is a p-ring, an ordering $\alpha \in \text{Spec}_R(A, T)$ (the real spectrum of $\langle A, T \rangle$, cf. 6.1.(d)) gives rise to a signature

$$\tau_\alpha : A^\times \rightarrow \mathbb{Z}_2, \text{ given by } \tau_\alpha(a) = 1 \text{ iff } a \in \alpha.$$

For p-rings satisfying [T-FQ 2], we have:

Proposition 5.2 If $\langle A, T \rangle \models$ [T-FQ 2], then for all $\tau \in Z_{A,T}$ there is $\alpha \in \text{Spec}_R(A, T)$ such that $\tau = \tau_\alpha$. ■

We now state

Theorem 5.3 (Pfister's local-global principle) If $\langle A, T \rangle$ is a T -faithfully quadratic p-ring and φ, ψ are forms of the same dimension over A^\times , the following are equivalent:

- (1) $\varphi \approx_T \psi$;
- (2) For all $\tau \in Z_{A,T}$, $\text{sgn}_\tau(\varphi) = \text{sgn}_\tau(\psi)$.
- (3) For all $\alpha \in \text{Spec}_R(A, T)$, $\text{sgn}_{\tau_\alpha}(\varphi) = \text{sgn}_{\tau_\alpha}(\psi)$. ■

As will be seen forthwith, T -quadratic faithfulness is preserved by a number of important operations; we here register its preservation by localization at an idempotent:

Theorem 5.4 Let A be a ring and let T be A^2 or a proper preorder of A . If A is T -faithfully quadratic and e is an idempotent in A (i.e., $e^2 = e$), then the ring Ae is Te -faithfully quadratic. ■

Concerning the elementary character of the axioms:

Theorem 5.5 a) The theory of faithfully quadratic rings is Horn-geometric in the language of unitary rings, $\{+, \cdot, 0, 1, -1\}$.

b) The theory of T -faithfully quadratic rings is Horn-geometric in the language of unitary rings, with an additional unary predicate symbol, T (interpreted as a preorder). ■

We now obtain the following preservation results:

Corollary 5.6 a) Let $\mathcal{A} = \langle \langle A_\lambda, T_\lambda \rangle; \{f_{\lambda\mu} : \lambda \leq \mu \text{ in } \Lambda\} \rangle$ be an inductive system of T_λ -faithfully quadratic p -rings over the right-directed poset $\langle \Lambda, \leq \rangle$. Let $\langle A, T \rangle = \varinjlim \mathcal{A}$ be the inductive limit of \mathcal{A} . Then,

- * A is T -faithfully quadratic;
- * $G_T(A) = \varinjlim_{\lambda \in \Lambda} G_{T_\lambda}(A_\lambda)$.

A similar statement holds for faithfully quadratic rings.

b) Let $\{\langle A_i, T_i \rangle : i \in I\}$ be a non-empty family of p -rings and let D be a filter on I . Let

$$\langle A_D, T_D \rangle = \langle \prod_D A_i, \prod_D T_i \rangle$$

be the reduced product of the $\langle A_i, T_i \rangle$ modulo D . If for all $i \in I$, A_i is T_i -faithfully quadratic, then $\langle A_D, T_D \rangle$ is T_D -faithfully quadratic. Moreover, $G_{T_D}(A_D) = \prod_D G_{T_i}(A_i)$.

An analogous statement holds for non-empty families of faithfully quadratic rings. ■

Corollary 5.7 Let X be a partitionable space and let $B(X)$ be the BA of clopens in X . If \mathfrak{A} is a sheaf of rings over X , the following are equivalent:

- (1) $\mathfrak{A}(X)$ is faithfully quadratic;
- (2) For all $U \in B(X)$, $\mathfrak{A}(U)$ is faithfully quadratic;
- (3) For all $x \in X$, \mathfrak{A}_x (the stalk of \mathfrak{A} at x) is faithfully quadratic.

An analogous statement holds for a sheaf of p -rings, $\langle \mathfrak{A}, \mathfrak{T} \rangle$, over X .

Remark 5.8 A sheaf of p -rings over X is a pair, $\langle \mathfrak{A}, \mathfrak{T} \rangle$, where \mathfrak{A} is a sheaf of rings over X and \mathfrak{T} is a sub-sheaf of \mathfrak{A} , such that $\mathfrak{T}(U)$ is a preorder of $\mathfrak{A}(U)$, for all open U in X . ■

6 Rings with Bounded Inversion

Definition 6.1 Let A be a ring, let J be an ideal in A and let T be a preorder of A .

- a) J is **T -convex** if for all $s, t \in T$, $s + t \in J \Rightarrow s, t \in J$.
- b) J is **T -radical** if for all $a \in A$ and $t \in T$, $a^2 + t \in J \Rightarrow a \in J$.

A ΣA^2 -radical ideal is called **real**.

c) T has **bounded inversion** if $1 + T \subseteq A^\times$. We say that $\langle A, T \rangle$ is a **BIR**. A is said to have **weak bounded inversion (WBIR)** if $1 + \Sigma A^2 \subseteq A^\times$.

d) $\text{Spec}_R(A, T)$ is the **real spectrum** of $\langle A, T \rangle$, i.e., the space of all (ring-theoretic) orderings of A containing T .

Proposition 6.2 If $\langle A, T \rangle$ is a p -ring and $Y_T = \text{Spec}_R(A, T)$, the following are equivalent:

- (1) Every maximal ideal of A is T -convex;
- (2) $\langle A, T \rangle$ is a BIR;
- (3) $\bigcap_{\alpha \in Y_T} \alpha \setminus (-\alpha) = T^\times$.

Preorders satisfying a generalization of (3) above – called *unit-reflecting* – will play an important role in what follows.

Theorem 6.3 (Transversality for BIRs) *If $\langle A, T \rangle$ is a BIR, then for all $a_1, \dots, a_n \in A^\times$,*

$$D_T^v(a_1, \dots, a_n) = D_T^t(a_1, \dots, a_n).$$

* This generalizes a result of Mahé for $T = \Sigma A^2$ ([Ma2]).

* The proof requires the theory of real semigroups in [DP1], [DP2].

7 Rings with Many Units

Definition 7.1 *Let R be a ring.*

a) *A polynomial $f \in R[X_1, \dots, X_n]$ has local unit values if for every maximal ideal \mathfrak{m} of R , there are u_1, \dots, u_n in R such that $f(u_1, \dots, u_n) \notin \mathfrak{m}$.*

b) *R is a ring with many units⁴ if for all $n \geq 1$, and all $f \in R[X_1, \dots, X_n]$, if f has local unit values, there is $\bar{r} \in R^n$ such that $f(\bar{r}) \in R^\times$.*

7.2 Examples of Rings with Many Units.

- * Fields; * semi-local rings;
- * Commutative von Neumann regular rings;
- * Arbitrary products of rings with many units;
- * The ring of global sections of a sheaf of rings over a partitionable topological space, whose stalks are rings with many units. In particular, the following are rings with many units:
 - (1) The ring of global sections of a sheaf of rings over a Boolean space, whose stalks are rings with many units;
 - (2) $\mathbb{C}(X, \mathbb{R})$, where X is a Boolean space.

Theorem 7.3 *If A is a ring with many units such that every residue field of A has at least 7 elements, then A is completely faithfully quadratic, i.e., it is faithfully quadratic ($T = A^2$) and T -faithfully quadratic for any preorder T of A .*

The proof of Theorem 7.3 uses results in [Wa]. We also register

Theorem 7.4 *Rings with many units are Horn-geometric axiomatizable in the first-order language of rings.*

There are important categories of rings that, in general, do not have many units:

- * There are important categories of rings that, in general, do not have many units:
- * $\mathbb{C}(X) = \mathbb{C}(X, \mathbb{R})$, where X is a (non-partitionable) completely regular space;
- * The real holomorphy ring of a formally real field (the intersection of all of its real valuation rings).

We now turn to the analysis of quadratic faithfulness of general classes of rings suggested by these examples.

⁴ Also called *local-global* rings; cf. [Mc].

8 Reduced f-rings

A partially ordered ring (po-ring), $\langle A, \leq \rangle$, is **lattice-ordered (lo)** if for all $a, b \in A$,

$$a \vee b = \sup\{a, b\} \quad \text{and} \quad a \wedge b = \inf\{a, b\}$$

exist in A (join and meet with respect to \leq).

A lo-ring is an **f-ring** if it is isomorphic to a subdirect product of linearly ordered rings.

Recall that a ring A is **reduced** if 0 is its only nilpotent element.

For a lo-ring A , the following are equivalent:

- (1) A is a reduced f-ring;
- (2) A is a subdirect product of linearly ordered domains.

Definition 8.1 An f-ring A comes equipped with a partial order, written T_{\sharp}^A , with respect to which it is lattice ordered. If A is clear from context, write T_{\sharp} in place of T_{\sharp}^A .

We then obtain (after quite a bit of work)

Theorem 8.2 If A is reduced f-ring containing \mathbb{Q} , then A is T_{\sharp} -faithfully quadratic. Moreover, its associated special group is the Boolean algebra of idempotents in A . ■

Lemma 8.3 Let $\langle A, T \rangle$ be a p-ring, let Y_T be its real spectrum and let Y_T^* be the compact Hausdorff space of closed points in Y_T . The following are equivalent:

- (1) $A^{\times} \cap \bigcap_{\alpha \in Y_T} \alpha \setminus (-\alpha) = T^{\times}$;
- (2) For some non-empty $K \subseteq Y_T$,

$$A^{\times} \cap \bigcap_{\alpha \in K} \alpha \setminus (-\alpha) = T^{\times}.$$

- (3) For some non-empty $D \subseteq Y_T^*$,

$$A^{\times} \cap \bigcap_{\beta \in D} \beta \setminus (-\beta) = T^{\times}.$$

Definition 8.4 A preorder T of a ring A is **unit-reflecting (u.r.)** if it satisfies the equivalent conditions in Lemma 8.3. ■

Remark 8.5 a) If $\langle A, T \rangle$ is a BIR, then T is unit-reflecting.

b) Examples of unit-reflecting preorders that are not of bounded inversion will appear below, see Theorem 8.10.(a). ■

c) Any preorder of a ring with many units is unit-reflecting (a result due to Leslie Walters, Corollary 1.9, p. 33 in [Wa]). ■

We then have

Theorem 8.6 Let A be a reduced f-ring containing \mathbb{Q} . If T is a unit-reflecting preorder such that $T_{\sharp} \subseteq T$, then A is T -faithfully quadratic. ■

Definition 8.7 A ring A is **weakly real closed (WRCR)** if it satisfies the following properties:

[WRCR 1] : A is reduced;

[WRCR 2] : A^2 is the positive cone of a partial order \leq on A , with which it is a f-ring;

[WRCR 3] : For all $a, b \in A$, $0 \leq a \leq b \Rightarrow b \text{ divides } a^2$.

Remarks 8.8 a) The missing axiom for **real closed rings** (in the sense of Prestel-Schwartz, [PS]) is :

For all primes $\mathfrak{p} \subseteq A$, the field of fractions of A/\mathfrak{p} is real closed and A/\mathfrak{p} is integrally closed in it.

All real closed rings are, of course, WRCR, as are all rings of real-valued continuous functions on a completely regular topological space. M. Tressl has shown: there are real closed rings that are not even *elementary equivalent* to any one of the type $\mathbb{C}(X)$, X a completely regular space.

b) If A is a WRCR, then it is

* **completely real**, i.e. all prime ideals in A are real. In particular it is a BIR;

* A Pythagorean f-ring containing \mathbb{Q} (cf. 9.1.(a)).

Our results on f-rings containing \mathbb{Q} yield

Theorem 8.9 If A is weakly real closed ring, and T is any unit-reflecting preorder of A , then A is T -faithfully quadratic. In particular, A is faithfully quadratic. ■

We also obtain:

Theorem 8.10 Let X be a completely regular topological space and let $K \neq \emptyset$ be a closed set in X . Set

$$P_K = \{f \in \mathbb{C}(X) : f \upharpoonright K \geq 0\}.$$

Then,

a) P_K is a proper unit-reflecting preorder of $\mathbb{C}(X)$, which is of bounded inversion iff $K = X$.

b) $\mathbb{C}(X)$ is P_K -faithfully quadratic. In particular, $\mathbb{C}(X)$ is faithfully quadratic. ■

9 Archimedean p-Rings with Bounded Inversion

We recall

Definition 9.1 Let A be a ring and let T be a preorder of A .

a) A is **Pythagorean** if $\Sigma A^2 = A^2$.

b) T is **Archimedean** if for all $a \in A$ there is $n \in \mathbb{N}$ such that $n - a \in T$.

* Real holomorphy rings are Archimedean WBIRs;

* $\mathbb{C}(X)$ is a Pythagorean WBIR; it is Archimedean (with its natural partial order) iff X is pseudo-compact.

We have

Theorem 9.2 *If $\langle A, T \rangle$ is an Archimedean p-ring with bounded inversion and P is a preorder containing T , then A is P -faithfully quadratic. In particular, A is T -faithfully quadratic.*

Remark 9.3 The proof of this result uses (among other things) the Becker-Schwartz version of the Kadison-Dubois Theorem, cf. [BS] (that may also be attributed to Stone and Krivine). ■

Corollary 9.4 *Let K be a formally real field and let $H(K)$ be its real holomorphy ring. Then $H(K)$ is Σ -faithfully quadratic. Moreover, $G_{\text{red}}(H(K))$ is isomorphic to the Boolean algebra of clopens of the compact Hausdorff space of real places of $H(K)$.* ■

10 Some Applications to Quadratic Form Theory over Rings

10.1 The Witt Ring and the Graded Witt Ring. Let $\langle A, T \rangle$ is a p-ring and let φ, ψ be forms over A^\times . We say that φ, ψ are **Witt-equivalent** mod T if there are integers $n, m \geq 0$ so that $\varphi \oplus m\langle 1, -1 \rangle \approx_T \psi \oplus n\langle 1, -1 \rangle$.

If $\langle A, T \rangle$ is T -faithfully quadratic, let

$$W_T(A) = \{\bar{\varphi} : \varphi \text{ is a form over } A\},$$

be the set of equivalence classes of forms over A^\times , under Witt-equivalence. With operations induced by \oplus and \otimes , $W_T(A)$ is a commutative ring with identity $\langle 1 \rangle$, whose zero is the class of hyperbolic forms, the **Witt ring of A mod T** .

* $W_T(A)$ is naturally isomorphic to $W(G_T(A))$, the Witt ring of the RSG $G_T(A)$, (by the map induced on Witt rings by $\varphi \mapsto \varphi^T$).

* $I_T(A) = I(G_T(A))$ is the **fundamental ideal** of $W_T(A)$, consisting of the classes of even dimensional forms.

* For $n \geq 1$, $I_T^n(A) = I^n(G_T(A))$, the n^{th} -power of $I_T(A)$, consists of all linear combinations of Pfister forms of degree n over A .

* The **graded Witt ring of A mod T** , is the sequence

$$W_{Tg}(A) = \langle \mathbb{F}_2, \dots, \overline{I_T^n}(A), \dots \rangle,$$

where for $n \geq 1$, $\overline{I_T^n}(A) = I_T^n(A) / I_T^{n+1}(A)$. If $T = A^2$, we omit T from the notation.

With notation as above, we have

Theorem 10.2 *Let A be a Pythagorean ring.*

a) *If A is an f-ring containing \mathbb{Q} , then for all $n \geq 1$, $k_n A \simeq \overline{I^n}(A) \simeq B(A)$, where $B(A)$ is the BA of idempotents in A . In particular, A satisfies Milnor's mod 2 Witt ring conjecture.*

b) *If A is an Archimedean BIR, then for all $n \geq 1$, $k_n A \simeq \overline{I^n}(A) \simeq B(Y^*)$, where $B(Y^*)$ is the BA of clopens of the subspace of closed points in $\text{Spec}_R(A)$. In particular, A verifies Milnor's mod 2 Witt ring conjecture.* ■

* Examples of 10.2.(a): Weakly real closed rings, and $\mathbb{C}(Z)$, Z a topological space.

* Examples of 10.2.(b): The real holomorphy ring of a formally real Pythagorean field, and $\mathbb{C}(X)$, X a compact Hausdorff space.

Theorem 10.3 (The Arason-Pfister Hauptsatz) *Let $\langle A, T \rangle$ be a T -faithfully quadratic p -ring. If φ is a form over A^\times such that $\dim \varphi < 2^n$ and $\varphi \in I^n(A)$, then φ is T -hyperbolic ($\varphi \approx_T H$, H a hyperbolic form). In particular, $\bigcap_{n \geq 1} I^n(A) = \{0\}$. ■*

The last set of results we shall mention is stated for f -rings containing \mathbb{Q} . However, the ones marked with an exponent \bullet also hold for Archimedean BIRs.

Theorem 10.4 *Let A be a f -ring containing \mathbb{Q} and let T_\sharp be its natural partial order. Let T be an u.r.-preorder of A , such that $T_\sharp \subseteq T$.*

a) \bullet (Marshall's signature conjecture) *Let φ be a form over A^\times and let $n \geq 1$ be an integer. If for all $\alpha \in \text{Spec}_R(A, T)$, $\text{sgn}_{\tau_\alpha}(\varphi) \equiv 0 \pmod{2^n}$, then $\varphi \in I_T^n(A)$.*

b) *For n -forms $\varphi = \langle a_1, \dots, a_n \rangle$ and $\psi = \langle b_1, \dots, b_n \rangle$ over A^\times , the following are equivalent:*

$$(1) \varphi \approx_{T_\sharp} \psi,$$

(2) (Local-global Sylvester's inertia law) *There is an orthogonal decomposition of A into idempotents, $\{e_1, \dots, e_m\}$, so that for each $1 \leq j \leq m$, we have (with $\underline{n} = \{1, \dots, n\}$) :*

$$\begin{aligned} (i) \underline{n} &= \{k \in \underline{n} : a_k e_j >_{T_\sharp} 0\} \cup \{k \in \underline{n} : a_k e_j <_{T_\sharp} 0\} \\ &= \{k \in \underline{n} : b_k e_j >_{T_\sharp} 0\} \cup \{k \in \underline{n} : b_k e_j <_{T_\sharp} 0\}, \end{aligned}$$

i.e., each entry of φ and ψ is either strictly positive or strictly negative in Ae_j , for all $j \in \underline{n}$.

$$(ii) \text{card}(\{k \in \underline{n} : a_k e_j <_{T_\sharp} 0\}) = \text{card}(\{k \in \underline{n} : b_k e_j <_{T_\sharp} 0\}).$$

c) \bullet *Let R be a f -ring containing \mathbb{Q} , let T_\sharp^R be its natural partial order and let P be a u.r.-preorder of R containing T_\sharp^R . If $\langle A, T \rangle \xrightarrow{f} \langle R, P \rangle$ is a p -ring morphism, the following are equivalent, where $f \star \langle a_1, \dots, a_n \rangle = \langle f(a_1), \dots, f(a_n) \rangle$:*

- (1) f is complete, that is, for all n -forms φ, ψ over A^\times , $\varphi \approx_T \psi \Leftrightarrow f \star \varphi \approx_P f \star \psi$;
- (2) f reflects isotropy (if φ is a form over A^\times and $f \star \varphi$ is P -isotropic, then φ is T -isotropic);
- (3) $f^{-1}[P^\times] = T^\times$. ■

Note: As a guide to the interested reader, we have included the full reference list of the original [DM11].

References

- [AM] M. F. Atiyah, I. G. Macdonald, **Introduction to Commutative Algebra**, Addison-Wesley Publ. Co., London, 1969.
- [Be1] E. Becker, *On the real spectrum of a ring and its applications to semi-algebraic geometry*, Bull. Amer. Math. Soc., **15** (1986), 14-60.
- [Be2] E. Becker, **Real Fields and Sums of Powers**, unpublished notes, 1997.

[Be3] E. Becker, *Valuations and real places in the theory of formally real fields*, in **Géométrie Réelle et Formes Quadratiques**, J.-L. Colliot-Thélène, L. Mahé, M.-F. Roy (editors), Lecture Notes in Math. **959** (1982), Springer Verlag, 1-40.

[BS] E. Becker, N. Schwartz, *Zum Darstellungssatz von Kadison-Dubois*, Arch. Math. **40** (1983), 421-428.

[Ben] A. Benhissi, **Les anneaux de séries formelles**, Queen's Papers in Pure and Applied Mathematics **124** (2003), Kingston, Ontario, Canada.

[BKW] A. Bigard, K. Keimel, S. Wolfenstein, **Groupes et Anneaux Réticulés**, Lecture Notes in Math. **608** (1997), Springer-Verlag.

[BCR] J. Bochnak, M. Coste, M-F. Roy, **Real Algebraic Geometry**, Ergeb. Math. **36**, Springer-Verlag, Berlin, 1998.

[BD] R. Balbes, Ph. Dwinger, **Distributive Lattices**, Univ. of Missouri Press, Columbia, Missouri, 1974.

[Bi] G. Birkhoff, **Lattice Theory**, AMS Colloquium Publications, third edition, Providence, R.I., 1967.

[Br] G. E. Bredon, **Sheaf Theory**, MacGraw-Hill, New York, 1967.

[CC] M. Carral, M. Coste, *Normal Spectral Spaces and their Dimensions*, Journal of Pure and Applied Algebra **30** (1983), 227-235.

[CK] C. C. Chang, H. J. Keisler, **Model Theory**, North-Holland Publ. Co., Amsterdam, 1990.

[D1] M. Dickmann, *Anneaux de Witt abstraits et groupes spéciaux*, Séminaire de Structures Algébriques Ordonnées 91-92 (F. Delon, M. Dickmann, D. Gondard, eds.), Paris VII-CNR, Logique, Prépublications **42** (1993), Paris.

[D2] M. Dickmann, *Applications of model theory to real algebraic geometry; a survey*, Lect. Notes in Math **1130** (1985), Springer-Verlag, 76-150.

[DM1] M. Dickmann, F. Miraglia, *On quadratic forms whose total signature is zero mod 2^n . Solution to a problem of M. Marshall*, Invent. Math. **133** (1998), 243-278.

[DM2] M. Dickmann, F. Miraglia, **Special Groups : Boolean-Theoretic Methods in the Theory of Quadratic Forms**, Memoirs Amer. Math. Soc. **689**, Providence, R.I., 2000.

[DM3] M. Dickmann, F. Miraglia, *Lam's Conjecture*, Algebra Colloquium **10** (2003), 149-176.

[DM4] M. Dickmann, F. Miraglia, *Elementary Properties of the Boolean Hull and Reduced Quotient Functors*, J. of Symbolic Logic **68** (2003), 946-971.

[DM5] M. Dickmann, F. Miraglia, *Bounds for the representation of quadratic forms*, J. Algebra **268** (2003), 209-251.

[DM6] M. Dickmann, F. Miraglia, *Rings with Many Units and Special Groups*, in Séminaire de Structures Algébriques Ordonnées, 2003-2004, Paris VII-CNRS, Prépublications **77** (May 2005), 25 pp.

[DM7] M. Dickmann, F. Miraglia, *Algebraic K-theory of Special Groups*, Journal of Pure and Applied Algebra **204** (2006), 195–234.

[DM8] M. Dickmann, F. Miraglia, *Quadratic Form Theory over Preordered von Neumann Regular Rings*, Journal of Algebra, **319** (2008), 1696–1732.

[DM9] M. Dickmann, F. Miraglia, *Special Groups, Rings and Algebras of Continuous Functions*, Séminaire de Structures Algébriques Ordonnées, Prèpublications **80**, Équipe de Logique, Univ. Paris VII, 2008.

[DM10] M. Dickmann, F. Miraglia, *Representation of Reduced Special Groups in Algebras of Continuous Functions*, in **Quadratic Forms – Algebra, Arithmetic and Geometry** (R. Baeza et al., eds.), Contemporary Mathematics **493** (2009), AMS, 83–97.

[DM11] M. Dickmann, F. Miraglia, **Faithfully Quadratic Rings**, 200pp., 2010, to appear; available at www.ime.usp.br/~miraglia/fq-rings.pdf and at www.maths.manchester.ac.uk/raag/index.php?preprint=0320.

[DM12] M. Dickmann, F. Miraglia, *On Faithfully Quadratic Rings*, Séminaire de Structures Algébriques Ordonnées, Prèpublications **81**, Équipe de Logique, Univ. Paris VII, 2009.

[DP1] M. Dickmann, A. Petrovich, *Real Semigroups and Abstract Real Spectra, I*, Contemporary Math. **344** (2004), AMS, 99–119.

[DP2] M. Dickmann, A. Petrovich, **Real Semigroups and Abstract Real Spectra**, in preparation; aprox. 160 pp.

[El] D. P. Ellerman, *Sheaves of Structures and Generalized Ultraproducts*, Annals of Pure and Applied Logic **7**, 165–195, 1974.

[En] R. Engelking, **General Topology**, Sigma Series in Pure Math. **6**, Heldermann Verlag, Berlin, 1989.

[FS] M. Fourman, D. S. Scott, *Sheaves and Logic*, Lecture Notes in Math. **753**, 302–401, Springer-Verlag, Berlin, 1979.

[GJ] L. Gillman, M. Jerison, **Rings of Continuous Functions**, Van Nostrand Publishing Co., New York, 1960.

[Go] R. Godement, **Topologie Algébrique et Théorie des Faisceaux**, Hermann, Paris, 1958.

[GR] H. Grauert and R. Remmert, **Coherent Analytic Sheaves**, Grund. der Math. Wissen. **265**, Springer-Verlag, Berlin, 1984.

[Gu] D. Guin, *Homologie du groupe linéaire et K-theorie de Milnor des anneaux*, J. Algebra, **123**, 27–89, 1989.

[Ke] J. L. Kelley, **General Topology**, Graduate Text in Math. **27**, Springer-Verlag, 1985.

[Ho] W. Hodges, **Model Theory**, Encyclopedia of Mathematics and Its Applications, **42**, Cambridge Univ. Press, Cambridge, 1993.

[Hof] K. H. Hofmann, *Representations of Algebras by Continuous Sections*, Bull. Amer. Math. Soc. **78**, 291–373, 1972.

[Jo] P. T. Johnstone, **Stone Spaces**, Cambridge Studies in Advanced Math. **3**, Cambridge Univ. Press, Cambridge, 1983.

[KS] M. Kashiwara, P. Schapira, **Sheaves on Manifolds**, Grund. Math. Wissen. **292**, Springer-Verlag, Berlin, 1994.

[Ka] R. Kadison, **A representation theory for commutative topological algebras**, Memoirs Amer. Math. Soc. **7** (1951).

[K] M. Knebusch, *An invitation to real spectra*, in Quadratic and Hermitian Forms, Conf. Hamilton, Ontario 1983, CMS Conf. Proc. **4** (1984), AMS, 51-105.

[KRW] M. Knebusch, A. Rosenberg, R. Ware, *Signatures on Semilocal Rings*, Bulletin of the AMS **78** (1972), 62-64.

[L1] T. Y. Lam, **The Algebraic Theory of Quadratic Forms**, W.A.Benjamin, Mass., 1973.

[L2] T. Y. Lam, *Ten Lectures on Quadratic Forms over Fields*, in : G. Orzech (Ed.) Conf. on Quadratic Forms , Queen's Papers on Pure and Applied Math. **46** (1977), Queen's University, Ontario, Canada, 1-102.

[Lg] S. Lang, **Algebra**, Addison-Wesley Publ. Co.,3rd edition, 1967.

[Mac] S. MacLane, **Categories for the Working Mathematician**, Graduate Texts in Mathematics **5**, Springer-Verlag, New York, 1971.

[MM] S. MacLane, I. Moerdik, **Sheaves in Geometry and Logic**, Springer-Verlag, Berlin, 1992.

[MS] J. Madden, N. Schwartz, **Semialgebraic Function Rings and Reflectors of Partially Ordered Rings**, Lect. Notes in Math. **1712**, Springer-Verlag, 1999.

[Ma1] L. Mahé, *Une démonstration élémentaire du théorème de Bröcker-Scheiderer*, C. R. Acad. Sc. Paris **309** (1989), Série I, 613-616.

[Ma2] L. Mahé, *On the geometric stability index of a ring* (preprint, 8pp.).

[Mar] M. Marshall, **Spaces of Orderings and Abstract Real Spectra**, Lecture Notes in Mathematics **1636**, Springer-Verlag, Berlin, 1996.

[Mar1] M. Marshall, **Abstract Witt Rings**, Queen's Papers in Pure and Applied Math. **57** (1980), Queen's University, Ontario, Canada.

[MW] M. Marshall, L. Walter, *Signatures of Higher Level on Rings with Many Units*, Math Z. **204** (1990), 129-143.

[Mc] B. McDonald, **Linear Algebra over Commutative Rings**, Pure and Applied Math. Series **87**, Marcel Dekker, New York, 1984.

[McW] B. McDonald, W. Waterhouse, *Projective modules over rings with many units*, Proc. Am. Math. Soc. **83** (1981), 455-458.

[Men] E. Mendelson, **Introduction to Mathematical Logic**, Van Nostrand Reinhold Co., New York, 1964.

[Mi] J. Milnor, *Algebraic K-Theory and Quadratic Forms*, Invent. Math. **9** (1970), 318–344.

[Mir] F. Miraglia, **Introduction to Partially Ordered Structures and Sheaves**, Polimetrica Scientific Publishers, Contemporary Logic Series 1, Milan, 2007.

[Pr] A. Prestel, *Representation of real commutative rings*, Expositiones Math. **23** (2005), 89-98.

[PS] A. Prestel, N. Schwartz, *Model Theory of Real Closed Rings*, Fields Institute Communications **32** (2002), 261-290.

[R] Reznik, B., *On the absence of uniform denominators in Hilbert's 17th problem*, Proceedings AMS **133** (2005), 2829-2834.

[St] Stengle, G., *Integral solution of Hilbert's seventeenth problem*, Math. Ann. **246** (1979/1980), 33-39.

[Te] B. R. Tennison, **Sheaf Theory**, London Math. Soc. Lecture Notes **20**, Cambridge University Press, Cambridge, 1975.

[Tr] M. Tressl, *Super real closed rings*, Fundamenta Mathematica **194** (2007), 121-177.

[Wa] L. Walter, *Quadratic Forms, Orderings and Quaternion Algebras over Rings with Many Units*, Master's Thesis, University of Saskatchewan, 1988.

M. Dickmann
 Équipe de Logique Mathématique, Université de Paris VII,
 and
 Projet Topologie et Géométrie Algébriques, Institut de Mathématiques de Jussieu, Paris, France
 dickmann@logique.jussieu.fr

F. Miraglia
 Departamento de Matemática
 Instituto de Matemática e Estatística
 Universidade de São Paulo
 São Paulo, Brazil
 miraglia@ime.usp.br