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1 Geometric and Horn-Geometric Theories

; g v (][ﬁ(}bles
Definition 1.1 Let L be a first-order language with equality and let 7 = (21, . .., ) beV
in L. A L-formula on the free variables Z is

a) positive primitive (pp) if it is of the form 3 T ©(v;Z), where ¥ is a conjunction of atom
formulas.
b) geometric if it is the negation of an atomic formula or of the form
VF(H@%(’@], ﬁ, 3) - 3@802(@, ﬁ;’z‘)),
where Py, Py are positive and quantifier free.
A theory is geometric if it has a set of geometric azioms. o

. : ; the
¢) A L-formula is Horn-geometric if it is the negation of an atomic formula or of t
VO(%1(Z) — ¥(2)), where ¥1 and Py are pp-formulas in L.

: g : . S OmS.
A Horn-geometric theory in L is a theory having a set of Horn-geometric arlo

ot
. : I . ; import?
Clearly, the theory of unitary commutative rings (1 # 0) is Horn-geometric. Other 11 P
examples in our context shall appear below.

The following is classical:

Theorem 1.2 Let T be a theory in a first-order language with equality.

cular, #
. . . . narticula’
a) If T is Horn-geometric, then it preserved by arbitrary reduced products. In parts
preserved under non-empty products.

¢
b) If T is geometric, then it is preserved under arbitrary right- filtered inductive limats.
il
. o , | ; o disfo”
A topological space X is partitionable if it is Ty and every open covering X has & |

L . ing] SU
open refinement. Discrete spaces and Boolean spaces are partitionable; any topologicd

partitionable spaces is partitionable.
We also have
(

res OV
theory. Let M be a sheaf of L-structure is th
model of T, then M(X) = T, where m(

Theorem 1.3 Let T be q Horn-geometric I,-

partitionable space X. If every stalk of M is a
L-structure of global sections of M.

2  Proto-Special Groups

A proto-special group (m-SG) is a triple

G = <G’ EG) _1>,
such that

he
* G is a group of exponent two, (written multiplicatively:

I is its identity), with
element —1. Set —z = —1 . B 4

Ay

s
o disting!

# A binary relation (isometry)

=c¢ on G X G, such that
[SG 0] :

= Is an equivalence relation on (7 x G;



[SG 1] : {a,b) =¢ (b,a

[SG 3] : (a,b) =¢ (¢,d) = ab = cd;

SG 5] : (a,b) =g (c,d) = (za,ab) =c (zc,vd);
G is reduced (r-RSG) if 1 # —1 and

[l‘ed} :{a,a) =¢ (1,1) = a=1
A1-8G Gis a pre-special group (p-SG)
[SG /IJ : <(Lab> =G <C)d> = <(I,,—C> EG<—b,d>

¥ =(a, ay) € G" is called a n-form over G.
e extended to n-forms, n > 1, still written =g,

if, in addition, it satisfies,

Let ¢ be a 7-SG. Binary isometry in G can b

A follows:

x(a)=q (b) & a=b
¥ for n = 2, =¢ is the primitive relation on G;
* for n > 3, b,) iff there are T, Y, 2, .- - z, € G such that

(a1, .. an) =c (b,
(1) (a1, z) =g (b1,¥);
(2) (ay,...,a,) =c (2,235,120 )5
(3) (bg,...,b“)EG(y,z3,...,z,,,).
ApSG is a special group (SG) if it verifies

G 6] : Isometry of forms of dimension 3 is transitive.

parts are Horn-geometric theories in the

Proto-5G s, p-SGs, SGs and their reduced counter

first-order language Lsg = <.)1’_1):):>_
If G, H are n-SGs, amap f: G — H is a morphism if f is a group morphism, such that

f(\l) “land (ab) =g (6d) = (fafb)=n(fefd)

Wrige m-SG, SG and RSG for the categories of proto-SGs, S(Gs and reduced SGs, respectively.

3 Preordered rings and Proto Special Groups

1 Conventions and Notation. Recall our standing hypothesis that all rings are unitary

Cony . ]
“Mmutative rings, in which 2 is a unit.
A1 i
JIf Risa ring, D C Rand ¢ € R

1) R* = groups of units in £

3) )? = {d>e R:de D}

(

(

(ynpe = (s, &@: {dy,..da} S D2 1E

(5) GL,(R) = invertiblen xn R-matrices.

sed under addition and multiplication and containing R?.

b
)A preorder of R is subset T € R, clos

'S proper if —1¢ T
ron R is DR if it is proper, then R is said to be semi-real.

lhe smallest preorde
.emi-real and all its

preorders are as-

A is assumed s
|

¢) Unless explicitly stated otherwise,

S
Med proper.



Definition 3.2 a) A preordered ring (p-ring) is a pair (A, T) such that A is a ring and T
is a preorder of A. -3
h) The language of p-rings 1s L =(+-01-1,T), ie, the first-order language of Tings » with
o unary predicate, T', satisfying the azioms of a preorder. \

: . : : ch
¢) A morphism of p-rings, f:(ATY — (AT), is a ring morphism, f : A — A, sul
that f(T) € T".

d) Write p-Ring for the category of p-rings and their morphisms.
The reader will have noticed that the theory of p-rings is Horn-geometrical.

3.3 To a p-ring ( A,T'), we associate:
a) A group of exponent two
Ge(A) = AYT* & {a:a€ A%},

writing 1 for 17 and —1 for (=1)7;
h) For a, b € A%,

DP(a,b) = {ze A*:3steTst. T = sa + tb},
is the set of units value represented by (a,b).
¢) Define

W = i
<(LT,bT> =r <CT,dT> & and
Dp(a,b) = D(c,d).

2 s m g " o b)"
d) If”/'z, . (A, T1) — (A3, Ty) is a p-ring morphism, let h™ : Gp,(A;) — Gr,(Ag) be giver
T h(a)™. i ‘

e) If T = 2 A?, write G,eq(A) for the associated 7-SG.

We have

¢ m . ¢ v 8r‘
Theorem 3.4 a) If (A,T) is a p-ring, then Gr(A) is a 7-SG, which is reduced iff T ** P
b) If h is a p-ring morphism, h™ is morphism of w-SGs, yielding a covariant functor from P~
to m-SG. diow gy

¢) This functor preserves arbitrary non-empty products and all right-filtered inductive Jimat$:

" 2 . . rite
R’em(uk ?;.5 2?:() The preceding construction also holds with A% in place of T In this cas® W y
G(A) = A*/A*" for the associated 7-SG. |

“\" b 2 4 O ¢ i " m . lity
F }(,t 3.6 Let /1 be a ring and let T = A? or a preorder of A. If A satisfies z_trans\/ersa |
with respect to T i.e., for all a, b € A* v a0 |

| | D2, b) = fee A*: 36,8 €T sothat ¢= sq + tb}
then G'p(A) is a pre-special group, i.e.,

(a,b) =r (¢, d) = (a, —c) =p (=b,d).




oups of (A,T), i.e.,
T C Sand -1 € S. If T = A2 these are called g-subgroups of

nt: we have shown that any RSG group is isomorphic to one of
(X), X a Boolean space ([DM10]). To ease
|

Remark 3.7 In fact, the constructions we are presenting hold for T-subgr
Subgroups S C A*, such that
A. This generalization is importa
the type G/(S), where S is a g-subgroup of the ring C
Presentation, we only deal here with the case S = A*.

3.8 Diagonal A*-quadratic forms Let 7 > 1 be an integer and A be a ring.

n .
0y ) € AXT we associate

a) To an n-form over A*, ¥ = (a1, ..
tten ©: for X = (X1,..-, Xa ),

(1) A diagonal quadratic form over A" wri
PX) = T, aXE
(2) A diagonal matrix in GLn
(3) The discriminant of ¥ is d(¥) = det M(P) =0a1°
b) If ¢, % are n-forms over A%, ¥ ~ ¥ iff
3 M € GLyn(R) such that MA ()M = M),

(R), A (¥), whose non-zero entries are ai, - - -, tn;
-a, € A*.

Clearly, d(«) det(M)? = d(¥).

he relation ~, matrix isometry, 1s an equiva
| tensor products of forms.

lence relation. It has the usual properties, e.g.,

)1' Qor " i .
Preserves orthogonal sums an |
dimensionn > 1 over A*. We

be a p-ring and let ¥, Y be forms of
of n-dimensional forms

Definition 3.9 et (A,T)
sa © 5 i i { . ' ‘

W that ¢ is T-isometric to ¥, written ¥ ~r b, if there is a sequence
OVer AX ¢ ' e ¢ .
er A%, 9, Pr.... P, such that (recall that = is matriz isometry)

(1) Y9 =¥ and ¥ = P, and
(1) V1 < i<k, either¥;, = Pog, OF %= {(t121, -
@1 ={(Z1,---»%Tn)-

sy tnZn), with ... t, € T and

for the reduced
the same result

ent to the signature version of isometry

Remark 3.10 If Aisafield, ~ris equival
n AX. We shall see below that

{h"‘”'.\’ mod T of quadratic forms with coefficients i
0lds for T-faithfully quadratic rings (Theorem 5.3).

ings there are several notions of representation that must

[n the setting of 7-SG associated tor
se notions coincide.

]f)(r' L g " \
> distinguished. In the field case all the

E,eﬁnition 3.11 Let T = A? or a proper preorder on @ Ting A Let ¥ = (by,...,bp) and
b =L ,bT ) be a A%- form and its correspondent form in Gr(A).

Y D.(¢) = {acA*:30,..., 8 €A such that 97 =r (a%,af,....00 )}

We the elements isometry-represented by ¥T in Gr(A).

[ ‘ = b n w

_)) l)'/" (¥) = {6 € A* :3xy,..2n € I' such that a = ¥ it z;:},
" the set of elements value-represented mod T by ¥.

e T* such thata = Sy zibi}

i Di$) = {a€ A" = [ IRRRRL.
ed mod T by ¥.

IS , ) s el
the set of elements transversally represent

Clo
larty, DY) C D).

() ;
) Define D,.(%) as follows:

_



x Ifn =2, Dp(P) = D2(b1,be);

c 23, D@ = Mooy U{DPbeu) : ue Db by bu)},
where < Biig s s ,lv)k, o > denotes the (n—1)-dimensional form obtained by omitting the k" -eniry
¢) If T = %A% is a proper preorder on A (i.e., A is semi-real), the corresponding Tepreseﬂmmn

sets will be written Dy, D®, D' and D .

[)If T = A%, the corresponding representation sets will be written D, D, D* and D.

4 The Axioms

Let 7' be a preorder of a ring A or T' = A%, Consider the following conditions:
[T-FQ 1] : (2-tranversality) For all a, b € S, Dp(a,b) = D/(a,b).
[T-FQ 2] : For all n > 2 and all n-forms ¢ over S, D) = D(¥).
IT-FQ 3] : (1-Witt-cancellation) For all integers n > 1, all ¢ € A* and all n-forms P, v
over AX, (a)® ¥ ~r(a)DY = © ~p

We then have

)
Theorem 4.1 Let A be a ring and let T be A? or a preorder of A. If A = [T-FQ 1], [T‘FQ ]
and [T-FQ 3|, then

e ie igomely
a) For all A*-forms, ¢, D, (¥) = DE(®), i.e., a € A* is value represented iff 1S isom
represented in Gp(A).

b) For all A*-forms ¢, ¥ of the same dimension, Y ~p % & T = P (1 GT(A))

:'[‘
- o - . , , fion of
(’). Gr(A) = <GT(A), =r,—1) is a SG, faithfully coding T'-isometry and value 'represenmn ]
diagonal quadratic forms over A,

Theorem 4.1 has a partial converse:

Theorem 4.2 Let A be q ring and let T be a preorder of A, or T = A2,
If Al [T-FQ 1], the following are equivalent:

|
(1) Gr(A) is a SG such that for all A*-forms of the same dimension, ¥, v, é

() Prr ¥ o oF = 97, (xx) Dr(p) = Dp(#"): g
(2) A [T-FQ2| and A |= [T-FQ 3].

With respect to K-theory we obtain the following very general result: |

o
| - pelw
FQ 1), there is a natural graded ring isomorphism '
of the pre-special group ( 7(A) 3.

Theorem 4.3 If A is a ring verifying |
Milnor’s mod 2 K -theory of A and that

The preceding results Justify the following

B Wl T I
Milnor’s K-theory of rings is developed in (Gul.

6



Definition 4.4 Let A be a ring and T be A? or a preorder of A.

a) A is T-faithfully quadratic if it satisfies azioms [T-FQ 1], [T-FQ 2] and [T-FQ 3.

b) If T = A2 write [FQ i] for [T-FQi] (i =1, 2, 3), and call A faithfully quadratic.

) If T = A2, write [B-FQ i) for [T-FQ 1] (i = 1,2, 3), and call A S-faithfully quadratic.

5 T-isometry and Signatures

Definition 5.1 Let (A, T) be a p-ring.

?‘) A T-signature on A is a a group morphism, 7 : A — Zy = {1}, such that 7(—1) = —1
and for alla € A%, a € kert = DS(l,a) C kerT.

Write Zar for the set of T-signatures on A.

I’)y Ife = (ay,...,a,) is a form over A*, and T € Zar, sgn.(¥) =
of ¢ at 7.

S, 7(a;) is the signature

[f (A, T) is a p-ring, an ordering @ € Specg(A,T) (the real spectrum of (A,T), cf. 6.1.(d))

Blves rise to a signature
T : A% — Zy, given by Ta(a) = 1 iff a€ a.

For p-rings satisfying [T-FQ 2], we have:

Proposition 5.2 If(AT) E [T-FQ 2], then for all T € Zar there is o € Specy(A,T) such
|

that + — Tu.

We now state

Theorem 5.3 (Pfister’s local-global principle) If (A,T) is a T-faithfully quadratic p-ring
“Md Y are forms of the same dimension over A*, the following are equivalent:

(1) ¢ ~p ¥
(2) Foralit € Zan, sqne(®) = sgns(¥).

(3) For all a € SpecR(/\,T), SqNr, (¥) = 89Nz, (w) »
As will be seen forthwith, T-quadratic faithfulness is preserved by a number of important
“Perations; we here register its preservation by localization at an idempotent:

Tl"‘f()l‘m’n 5.4 Lel A be a ring and let T be A2 or a proper preorder of A If Ais r[w'f(”‘.ﬁ?f ully
Madratic gnd e is an idempotent in A (i.e., ¢? = e), then the ring Ae is Te-faithfully quadratic. W

1 ' oRr Q
( oncerning the elementary character of the axioms:

Tll.e()rmn 5.5 a) The theory of faithfully quadratic TINgS is Horn-geometric in the language of
u,n‘/.lu,y».lz/ rings, {+,-,0,1, ] }

) The theory of T-faithfully quadratic Tings is Horn-geometric in the language of unitary rings,
With g, (1,(/(17})11()7.),(1,/ ?;.7),(1711) ])7‘;1(17:(2(1116 symbol, T (interpr eted as a p reorder)- -



We now obtain the following preservation results:

Corollary 5.6 a) Let @ = ((AxTh)i{fxu: A < pin A}) be an inductive system of ’1;2(7
faithfully quadratic p-rings over the right-directed poset (A, <). Let (A,T) = lzn o be 1
inductive limit of &/ . Then,

x A is T-faithfully quadratic;
x* Gr(A) = lz’_m/\e/\ G, (Ay).
A similar statement holds for faithfully quadratic rings.
b) Let {( ATy i € I} be a non-empty family of p-rings and let D be a filter on 1. Let
<AD>TD> = <H1) A;, HD Ti>

be the reduced product of the { Ay, Ty) modulo D. If for alli € I, A; is T;-faithfully quadratic; then
(Ap,Tp) is Tp-faithfully quadratic. Moreover, Gr,(Ap) = 1y Gz (As)-
An analogous statement holds for non-empty families of faithfully quadratic rings. :
Corollary 5.7 Let X be a partitionable space and let B(X) be the BA of clopens in X. R
a sheaf of rings over X, the following are equivalent:

(1) A(X) is faithfully quadratic;

(2) For allU € B(X), AU) is faithfully quadratic;

(3) Forallz € X, U, (the stalk of A at x) is faithfully quadratic. g

An analogous statement holds for a sheaf of p-rings, (A, T), over X

Remark 5.8 A sl -rings X i : : b X and
@ heaf of p-rings over X is a pair, (2, T), where 2 is a sheaf of rings oV¢r © g

T is a sub-sheaf of &, such that T(U) is a preorder of A(U), for all open U in X.

6 Rings with Bounded Inversion

Definition 6.1 Let A be a ring, let J be an ideal in A and let T be q preorder of A

a) Jis T -convex if foralls, t €T, s+teJ = g teJ
ol ,

b) J is T-radical if foralla € Aandt € T, a® +te J =

a € J.
A N A%-radical i ' 5
A YA -radical ideal is called real.

¢)T" has bounded inversion if 1 + T C A*. We say that o hott

weak bounded inversion (WBIR) if 1 + % A2 C AX

d) Specp(A,T) is the real spectru A " ; ‘
A containing T 5 m of (A,T), i.e., the space of all (ring-theoretic) 0

(A,T) is o BIR. A is said t
f

Sl
rdering .

Proposition 6.2 [f (A, T) is a p-ring and Yy = Spec (A, T) e
‘ . A 8 . ,Ie y
(1) Bvery mazimal ideal of A is T-conver-
(2) (A,T) is a BIR;

(:5) ﬂ”(:Y'I‘ oy \ (~Q) = T [

; B
, the following are equiv




Preorders satisfyi izati e — e ﬂ
§ satislymng a generallzatlon of (3) abov called unit-7 ) — wi i
Sortent tole in i follows, ( ) 1t-re ectzng ill play an 1m-

Theorem 6.3 (Tranversality for BIRs) If (A,T') is a BIR, then for all ay, ...,y € A%

D,;(Cl,l,...,aln> = qu(al,...,an),

* This generalizes a result of Mahé for T = »A? ([Ma2]).
* The proof requires the theory of real semigroups in [DP1], [DP2].

7 Rings with Many Units

Definition 7.1 Let R be a ring.

7/) A polynomial f € R[Xi,...,Xn]
here are wy, ..., u, in R such that Tty o S ) £ .
4 if for alln > 1, and all f € R[Xy,...,Xn)

has local unit values if for every mazimal ideal m of R,

b ic . .
7]) R 1S a ring with many units ; jff has local unit
alues, there is 7 € R" such that f(T) € R™.

i : :
-2 Examples of Rings with Many Units.
* Fields-

Fields: * semi-local rings;

A (e .
Commutative von Neumann regular rings;

% et
Arbitrary products of rings with many units;
artitionable topological space, whose stalks

s of a sheaf of rings over a p
the following are rings with many units:

r a Boolean space, whose stalks are

* SR Ul . Y .
: The ring of global section
r,‘]‘() 54 . i S 3
rings with many units. In particular,
(1) The ring of global sections of a sheaf of rings ove
rings with many units;
(2) C(X,R), where X is a Boolean space. L

y residue field of A has at least 7

y units such that ever
it is faithfully quadratic (i = A%

Tt
heorem 7.3 If A is a ring with man

elem o . S
{J’/r(,7>);(.171/f.6',, then A is completely faithfully quadratic, @.¢.,
A T faithfully quadratic for any preorder T of A |
The proof of Theorem 7.3 uses results in [Wal. We also register
ometric aziomatizable in the first-order lan-
|

) .
heorem 7.4  Rings with many units are Horn-ge

Yuaoe .
W9e of rings.
in general, do not have many units:

ngs that,
able) completely regular space;

Ihere are important categories of ri
*C(X) = C(X,R), where X is a (1'1()11—1):u'tition
* The real holomorphy ring of a formally real field (the intersection of all of its real
valuation rings).

We now turn to the analysis of quadratic faithfulness of general classes of rings suggested by
Nege '

e examples.
o ———e———

Also called local-global rings; cf. [Mc].

9
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8 Reduced f-rings

A partially ordered ring (po-ring), { A, <), is lattice-ordered (lo) if for all a, b € A,
aVb = supf{a,b} and aAb = inf{a, b}
exist in A (join and meet with respect to <).
A lo-ring is an f-ring if it is isomorphic to a subdirect product of linearly ordered rings-
Recall that a ring A is reduced if 0 is its only nilpotent element.
For a lo-ring A, the following are equivalent:
(1) Ais a reduced f-ring;

(2) Ais a subdirect product of linearly ordered domains.

a : : . : f 10
Definition 8.1 An f-ring A comes equipped with a partial order, written THA, with respect

We then obtain (after quite a bit of work)

. ; ; LB . el
Theorem 8.2 [f A is reduced f-ring containing Q, then A is Ty-faithfully quadratic. Moreo? g

its associated special group is the Boolean algebra of idempotents in A.

‘ us
Lerr}ma 8.3 Let (A, T) be a p-ring, let Yy be its real spectrum and let Y7 be the compact Ho
dorff space of closed points in Yp. The following are equivalent:

(1) A N ﬂaeYT @k (=a) = T*.

)

(2) For some non-empty K C Y,

A% M ﬂaGK a \ (—O‘) = T,
(3) For some non-empty D C Y,

’
A N Ngep B\ (=B) = T*,

. ‘ . ’eﬂt
Definition 8.4 A preorder T' of a ring A is unit-reflecting (u.r.) if it satisfies the 6quzvﬂl
conditions in Lemma 8.3.

Remark 8.5 a) If (A,T') is a BIR, then T is unit-reflecting.

b) Examples of unit-reflecting preorders that are not of bounded inversion will appear Ll
Theorem 8.10.(a). J

/

: N T ) ) ary
¢) Any preorder of a ring with many units is unit-refle 5, Coroll P

o cting (a result due to Leslie Walte
1.9, p. 33 in [Wa]), g (aresult due to Leslie W
We then have

f
Theorem 8.6 Let A be a reduced p the

i . . ol
[-ring containing Q. IfT is ; - oreorde” SY §
T P aha P fp g ning Q. 15 a unit-reflecting preo
Iy CT, then A isT ~faithfully quadratic. / / &

10
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Definiti ; ;
nition 8.7 A ring A is weakly real closed (WRCR) if it satisfies the following properties:

[WRCR 1] : A is reduced;
'RCR 2] : A? 4 i1
[WRCR 2] : A? is the positive cone of a partial order < on A, with which it is a f-ring;

[WRCR 3]: Foralla,be A, 0L a< b = b divides a®.

ldrk;‘ ¢ missi 1 i

[PS]) is :
For all primes p C A, the field of fractions of A/p is real closed and A/p is

integrally closed in it.
All real closed rings ar i
P ,‘(1.11 closed rings are, of course, WRCR, as are all rings of real-valued continuous functions
ompletely regular topological space. M. Tressl has shown: there are real closed rings that

are not, e lery '
not even elementary equivalent to any one of the type C(X), X a completely regular space.

bY 16 4
) If A'is a WRCR, then it is
* v y . . . .

completely real, i.e. all prime ideals in A are real. In particular it is a BIR;

A P thag . .
ythagorean f-ring containing Q (cf. 9.1.(a)).

Our results on f-rings containing Q yield

'} N :
leorem 8.9 [f A is weakly real closed ring, and T is any unit-reflecting preorder of A, then A
e

18 T frith ¢ . .
faithfully quadratic. In particular, A is faithfully quadratic.

We also obtain:
T]‘] o g
Neorem 8.10 Let X be a completely reqular topological space and let K¢ A

/\ J S({/,
, Pgx = {fE(C(X):ffKZO}.
7/7'(”)‘;
a) p
[) Py is a proper unit-reflecting preorder of C(X),
) e
) C(X) is Py -faithfully quadratic. In particular, C(X)

which is of bounded inversion iff K =X.

is faithfully quadratic. L]

9 . . . .
Archimedean p-Rings with Bounded Inversion
\/\,’(‘. [‘(y(:;_l‘“

Defiyies
finition 9.1 Let A be a ring and let T be a preorder of A.

(1,) A i g ‘
} A g Pythagorean if > A = A
) ’I‘ )

1s Archimedean if for all a € A there
an WBIRs;

isn € N such thatn — @ eT.

* 5 ¢ . 3
Real holomorphy rings are Archimede
* C(X) is a Pythagorean WBIR; it is Archimedean (

X is psendo-compact.

with its natural partial order) iff

We have
11
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Theorem 9.2 If (A, T) is an Archimedean p-ring with bounded inversion and P is a preo

containing T, then A is P-faithfully quadratic. In particular, A is T-faithfully quadratic.

. sion of
Remark 9.3 The proof of this result uses (among other things) the Becker-Schwartz versio

the Kadison-Dubois Theorem, cf. [BS| (that may also be attributed to Stone and Krivine).

: en,
Corollary 9.4 Let K be a formally real field and let H(K) be its real holomorphy mng- g:; of
H(K) us Yi-faithfully quadratic. Moreover, Gr.q(H(K)) is isomorphic to the Boolean alge g
clopens of the compact Hausdorff space of real places of H(K).

108
10 Some Applications to Quadratic Form Theory over Ring

. ¥ be
10.1 The Witt Ring and the Graded Witt Ring. Let (A,T') is a p-ring and let ‘70; 050
forms over A*. We say that ©, ¥ are Witt-equivalent mod 7" if there are integers 1, M =
that ¥ & m(1,—1) ~p ¥ & n(1,—1).

If (A,T) is T-faithfully quadratic, let
Wr(A) = {®: ¥isa form over A},

be the set of equivalence classes of forms over A*, under Witt-equivalence. With op€ e
induced by & and ®, Wr(A) is a commutative ring with identity (1), whose zero is the &
hyperbolic forms, the Witt ring of A mod T.

ratioﬂs

18
* Wp(A) is naturally isomorphic to W(Gr(A)), the Witt ring of the RSG Gr(A), (by the ¥
induced on Witt rings by ¢ +—— ¢T)

’ . i o dimen
# Ir(A) = 1(Gp(A)) is the fundamental ideal of Wz (A), consisting of the classes of even din
sional forms. :
Fil i 1 T Al _T\in¢ ‘Ons O
* For R Iy [}(/1) = I"(Gr(A)), the n*'-power of I7(A), consists of all linear combinat!
Pfister forms of degree n over A.

# The graded Witt ring of A mod T, is the sequence
WTg(A) = <1F2, - ,Tl’i(A), ne >,
where forn > 1, [—;(A) = [713(/4)/ [;+1(A)~ IfT = A% we omit T from the notation.

With notation as above, we have

Theorem 10.2  Let A be a Pythagorean, Ting.

A
a) If Ais an f-ring containing Q, then for all n >1, kA ~ F(A) ~ B(A), where Bl

is the BA of i onts i " : _ ey et
is the BA of idempotents in A. In, particular, A satisfies Milnor’s mod 2 Witt ring conJet

b) If Ais an Archimedean BIR, then, foralln >1, kA ~ Tn
the BA of clopens of the subspace
mod 2 Witt ring conjecture.

¥) 18
(A} =~ B(Y"), uzhj(i"l"cg/}zl/ﬂor's
of closed points in Specp(A). In particular, A verifies p

« bixamples of 10.2.(a): Weakly real closed rings, and C(Z), Z a topological space.

# lixamples of 10.2.(b): The real holomor
X a compact Hausdorff space,

X)
o ko .1 and CY
phy ring of a formally real Pythagorean field, anc

12



Theorem 10.3 (The Arason-Pfister Hauptsatz) Let (A,T) be a T-faithfully quadratic p-ring. If
¥ is u form over A* such that dim ¥ < 2" and ¢ € I"(A), then ¥ is T-hyperbolic (Y ~p H,

Mo hyperbolic form). In particular, (),> I"(A) = {0}. [

| The last set of results we shall mention is stated for f-rings containing Q. However, the ones
marked with an exponent * also hold for Archimedean BIRs.

Theorem 10.4 Let A be a f-ring containing Q and let Ty be its natural partial order. Let T" be
an w.r.-preorder of A, such that Ty € T.

a)* (Marshall’s signature conjecture) Let ¥ be a form over A* and letn 21 be an integer. If for
all ov € Specy(A,T), sgnr, (P) =0 mod 2%, then ¥ € IZ(A).

b) For n-forms ¥ = {(Qy,...,0n) and ¥ = (by,...,by) over A% the following are equivalent:

There is an orthogonal decomposition of A into idempo-

(2) (Local-global Sylvester’s inertia law)
(withn = {1, ..., n})

tents, {ey, ... ,em}, so that for each 1 < j < m, we have
(1) n = {k' = n: (lk@j >Tl1 O} U {k € n: akej <T11 0}
= {ken:be >, 0} U {k € n :bre; <g 0},

e, each entry of ¥ and Y s either strictly positive or strictly negative in Ae;, for allj € n.

(#i) card({k € m : ar€;j <g 0})) = card({k € m: bxe; <g 0}).

¢)* Let R be a f-ring containing Q, let Ty be its natural partial order and let P be a u.r. -preorder
of R containing Ty, If (A,T) iy (R, P) is a p-ring morphism, the following are equivalent,

where f % (ay,...,an) = <f(a1)w-'af(an)> J

(1) f is complete, that is, for all n-forms ¥, ¥ over A,
* i P-isotropic, then ¥ is T-isotropic);

o mp¥ & frPmpfrY

(2) f reflects isotropy (if ¥ 1 a form over A* and f

3) [P = T

Note: As a guide to the interested reader, we have included the full reference list of the original

D11
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