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Abstract: Randomized clinical trials are the gold standard for testing efficacy of treatment
interventions. However, although randomization protects against deliberately biased samples, it
does not guarantee random imbalances will not occur. Methods of intentional allocation that can
overcome such deficiency of randomization have been developed, but are less frequently applied
than randomization. Initially, we introduce a fictitious case example to revise and discuss the
reasons of researchers’ resistance to intentionally allocate instead of simply randomizing. We
then introduce a real case example to evaluate the performance of an intentional protocol for
allocation based on compositional data balance. A real case of allocation of 50 patients in two
arms was compared with an optimal allocation of global instead of sequential arrivals. Perfor-
mance was measured by a weighted average of Aitchison distances, between arms, of prognostic
factors. To compare the intentional allocation with simple random allocation, 50,000 arrival
orderings of 50 patients were simulated. To each one of the orders, both kinds of allocations
into two arms were considered. Intentional allocation performed as well as optimal allocation
in the case considered. In addition, out of the 50,000 simulated orders, 61% of them performed
better with intentional allocation than random allocation. Hence, we conclude that intentional
allocation should be encouraged in the design of future interventional clinical trials as a way to
prevent unbalanced samples. Our sequential method is a viable alternative to overcome technical
difficulties for study designs that require sequential inclusion of patients as it does not require
prior knowledge about the total sample composition.

Keywords: randomization, intentional allocation, clinical trials, current trends, biostatistics

Introduction
Research controlled experiments often rely on the comparison of end-point responses
of two treatments to investigate the efficacy of an intervention. For the experiment to be
fruitful, the samples ought to be comparable. The researcher should aim for samples that
differ —up to his knowledge — solely on the respective allocated treatments. Differences
on the responses therefore shall be (tentatively) attributed exclusively to the effect of
treatments. For decades, the preferential method for selecting samples that should be
balanced for clinical trials has been based on different methods of randomization.
The introduction of randomization as a method of allocation was a benchmark
in the evolution of modern clinical trials and became a gold standard for testing the
efficacy of treatment interventions.! However, despite its undisputed importance,
randomization is not flawless.? Given that any sample can result from randomization,
it may generate samples that are not balanced regarding baseline characteristics and
putative prognostic factors. Therefore, randomization does not necessarily generate
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samples that are suitable for determining the comparative
efficacy of interventions.

Postponing or even totally avoiding randomization is not
anew idea in Statistical Design of Experiments. It started as
early as 1971 and was contemplated by different authors. For
more information, see Basu,* Brewer,’ Berry and Kadane,’
DasGupta,® Kadane and Seidenfeld,’ and Ware.'°

The attempts to control for the imbalances that may be
produced by randomization are also known as minimization
methods. For a complete review on these methodologies,
please see Scott et al.'! The alternative methods of allocation
including minimization procedures that can avoid randomiza-

tion shortcomings''*

are, however, rarely used. The infre-
quent application of such methods in current clinical trials
may be related to the misconceptions regarding the risks of
abandoning randomization.

In this article, we use a fictitious case example to illus-
trate the randomization paradox. We revise and discuss the
putative reasons for favoring randomization and evaluate an
alternative method of allocation that does not require prior
knowledge of the total or any partial sample composition
and, therefore, is named sequential allocation.

Figure 1 depicts ancient devices of random allocation.

A fictitious case example to
illustrate an everyday paradox in
medical research

A clinician named Ed wants to test the benefits of a new
dietary supplement advertised as an antiobesity medica-
tion in his patients who are overweight. He has 12 patients
scheduled for next week in his clinic. He decides to offer the
new supplement to six of the patients who happen to also
be his friends and leave the other patients with treatment-
as-usual. But before running his experiment, Ed consults

Joe, his supervisor, who is highly specialized in the field of
clinical trials. Joe tells Ed that the idea of dividing his sample
in groups of friends and of ordinary patients is unwise and
will preclude comparisons between supplements. Joe sug-
gests to Ed that he uses a simple randomization procedure
to allocate his patients. Ed agrees and immediately prints
the list of all his 12 patients in alphabetical order. Then he
gets 12 marbles (numbered from 1 to 12) from the Bingo
toy he bought for his son. He and Joe agree that the first six
drawn numbers will correspond to the patients receiving the
new treatment. It so happens that all his six friend patients
are selected (by the Bingo globe) for the new supplement,
while the remaining patients will obtain treatment-as-usual,
as before. This fictitious case illustrates a paradox: a sample
otherwise considered inadequate for an experiment can be
the result of a procedure of simple randomization. If Joe
deems friendship with Ed a relevant prognostic factor (as, say,
friends tend to better comply with treatments prescribed by a
buddy-doctor), it is illogical of him not to demand that — prior
to any randomization — friends of Ed are equally distributed
between interventional groups.

Most researchers will come up with a number of relevant
prognostic variables (stratification variables) that will end up
dismissing any randomization whatsoever, especially with
small total sample numbers (eg, suppose that both friends and
nonfriends groups have four male and two female patients
who need to be equally distributed between interventional
groups to control for the effect of sex, and so on). If, when
bias is perceived, randomization is not guaranteed to avoid
it, why is one so prone to embrace it?

We consider several objections raised by tradition against
the clear and straightforward idea of using intentional alloca-
tion in the conduction of real-life clinical trials to achieve
more balanced, and therefore comparable, groups.

Figure | Primitive randomization devices.

Notes: (A) Ovine astragalus bone used for gambling (circa 300 BC). (B) Astragalus monument in Kyrgyzstan. (B) Reproduced from wikimedia.org (http:/

creativecommons.org/licenses/by-sa/3.0/).*
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Overviewing the reasons for
randomization held by tradition
Reason A: every sample unit must have

the same chance of being selected

According to reason A, bad (unbalanced) and good (balanced)
samples should have the same chances of being selected.
This very democratic fact about randomization creates the
problems that justify restricted randomization. It is exactly
because any sample allocation is possible with randomization
that poorly balanced and biased samples can often result from
endless randomizations. In biased samples, the characteristics
that are unbalanced between interventional groups can act as
confounding factors, once they may interfere with the result
of the study regardless of the intervention being tested.

Some researchers argue that, in the face of a bad sample
generated by randomization, it is possible to correct the effect
of confounding factors (characteristics that are unbalanced
between groups and that could interfere with the results)
in posterior analysis. However, to control for confound-
ers, information on the effect of the confounder has to be
available. If, as in Ed and Joe’s case, there is no information
on the effect of being a friend of the doctor promoting the
experiment (because all friends participated only in one arm
of the study), reason A becomes untenable. Moreover, if we
can diminish the chance of a bad sample, why would we rely
on posterior analysis to correct for a problem that could have
been easily prevented?

To increase the problem further, the fact that every sample
has the same chance of being selected makes it impossible to
trace if an unbalanced sample was generated randomly (by
accident) or not (eg, in the case of intentional bias). Of note,
even when using a method of intentional allocation that is not
totally deterministic, it is possible to confirm if one specific
allocation result is among the possible results produced by
that allocation procedure.

Moreover, when randomizing, scientists create an addi-
tional paradox: the paradox of posterior hypothesis testing.
Hypothesis testing tells you the probability of a result having
occurred by chance. Hence, if it is already known that a dif-
ference is the consequence of randomization (pure chance),
why should we test whether it has occurred by chance? As a
matter of fact, the urge to compare interventional groups to
test for “good” balance of prognostic factors points to the fact
that ideal allocations should not be strictly random, as many
randomized options need to be avoided even if produced by
some unbiased randomization device.

Furthermore, somewhat ironically, very well-balanced
allocations intentionally chosen could have been produced

by simple randomization. Therefore, even if a statistical test
is based on the assumption that the sample is a randomly
selected subgroup of a population, it is still adequate to ana-
lyze intentionally produced samples; given that intentionally
produced samples are part of the universe of possibilities of
randomly chosen samples.

In conclusion, reason A does not hold in face of the
advantages of intentional allocation. Intentional allocation
decreases the chance of producing bad random samples, and
makes it possible to trace if a specific method was employed
for that specific result of allocation. Since intentional alloca-
tion does not rely on the availability of information on the
effect of unbalanced factors as posterior analyses do, careful
balancing promoted by methods of intentional allocation
seems much more appropriate than randomization to prevent
the effect of confounding factors. In addition, as a bonus, it
makes the controversial posterior testing of homogeneity of
baseline characteristics of interventional groups unnecessary,
undoing the posterior hypothesis testing paradox.

Reason B: randomization avoids human
interference in the allocation of patients
(while any other form of allocation

does not)

Personal interference from scientists is a matter of concern
in the design of experiments. In fact, avoidance of “non-
random” interference in the design is the most voiced and
traditional reason for randomizing: even unintentionally,
a scientist might “give an artificial (dis)advantage” to some
experimental procedure. For example, a physician may
submit his new procedure mostly to healthier patients while
leaving treatment-as-usual to unhealthier ones, increasing the
chances of the new procedure being proved more effective
than the traditional one.

The application of not completely random (more deter-
ministic) methods of allocation raises the concern that
researchers may gain control over the allocation in order for
a specific subject to receive a more desired intervention. That
concern is built on the assumption that knowledge of the prog-
nostic factors included in the process enables a researcher
to accurately guess the allocation of each subject. Indeed, in
some specific minimization methods, it is possible to guess
correctly where a subject will be allocated having prior
knowledge of the characteristics of the previously allocated
subjects.!! In the time-sequential purposive allocation pro-
tocol to be described in the section on Evaluating sequential
methods as alternatives to randomization, however, it is not
the case. In addition, even for the minimization procedures
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where accurate guesses are indeed possible, there are ways
to prevent the certainty about allocation without significant
prejudice of the efficiency of the method."

In the allocation method described in Section 3, for the
first arriving patients, the decision is random and therefore
unpredictable. Once there are sufficient (two, usually)
sample units to start balancing the baseline character-
istics of patients among groups, the next step allocation
is decided upon a complex calculation that uses several
putative prognostic factors and all the information on pre-
viously included patients. Moreover, if allocation in any of
the groups produces the same difference between groups,
the decision will, once again, be random. The randomness
kept in the process and the complexity of the calculations
make it practically impossible to guess to which group a
patient will be allocated. Therefore, well-built methods
of allocation such as the one from Section 3 can make
it almost impossible for the researcher to manipulate its
results.

Reason C: nonrandom allocation
procedures implicate great technical
difficulties while providing negligible gains
regarding balance between interventional
groups

The technical difficulties implied by the application of inten-
tional allocation procedures vary according to the method of
allocation. In the method described in Section 3, once the
prognostic factors are chosen, the weight for each factor is
determined and the calculation of the compositional distance
between groups is set, allocating each subject is as simple as
it would be in the case of using any process of randomization
and much simpler than applying stratification or block proce-
dures. Therefore, with the recent computational developments
and the use of a sequential method that does not require prior
knowledge about the total or partial sample composition, the
argument that intentional allocation implicates great technical
difficulties does not hold.

The gains obtained with the use intentional allocation
depend on several factors. The most straightforward factor
is the sample size. Smaller sample sizes will be the ones to
achieve greater benefit given the higher chance of random
imbalance. In addition, the existence of well-known prog-
nostic factors with great effect over outcome also will result
in greater benefits since the controlled variable during the
process of allocation will be a variable of great relevance.
Therefore, the gains of intentional allocation have to be
determined on an individual basis.

Reason D: if samples are not completely
random, classical statistical analysis

cannot be performed

Randomization, in combination with blinding of interven-
tions being administered, has been a time-honored antidote
against unfair trials. However, as Ed and Joe have shown us,
it is an antidote which does not avoid unbalance. In other
words, it is not a completely effective antidote.

Even in a trial in which the scientists control all prognostic
factors that they believe are relevant, it can happen that they
ignore the possible influence of other factors. This could be a
reason for — at last — randomizing. If, however, there are other
factors which the scientists judge irrelevant, but nevertheless
call their attention, it is safer to equally distribute them than
to randomize. Randomization, therefore, does not guarantee
balanced samples; it only guarantees that if one factor which the
scientists never took into consideration turns out to be unequally
distributed among arms and influences the trial results, it is not
the responsibility of the scientists, even if the unbalance had been
perfectly possible to happen due to the very randomization.

A scientist who, despite the arguments above, decides to
randomize must be warned that the sampling distribution derived
from a randomized design can never be used at the inference
stage once the observations are recorded. The rationale of this
(adherence to the likelihood principle') is the absolute divorce
between the object of the study and selection probabilities.

Intentional allocation by an expert not only attains better
balance of prognostic factors between groups, but indeed
keeps the uncertainty about treatment effects as the exclusive
source of randomness in the experiment. Randomization
entails another source of randomness that is divorced from
the objectives of the research. Such addition of auxiliary ran-
domness, if preserved until the statistical inference stage of
the experiment, comes down to a violation of the paramount
likelihood principle.'® Intentional designs prophylactically
aborts probability due to simple randomization from the
beginning. Probability then describes the updating of uncer-
tainty exclusively about the effects of treatments. Given the
complexity of the discussion over statistical analyses of stud-
ies using restricted methods of randomization, we believe a
thorough discussion over the matter should be explicated in
other manuscript with that specific aim and scope.

Evaluating sequential methods as
alternatives to randomization

In 2009, Fossaluza et al'?> described a method of inten-
tional allocation based on compositional data balance."”
This procedure allocates every new patient to the arm that

submit your manuscript

24

Dove

Open Access Journal of Clinical Trials 2016:8


www.dovepress.com
www.dovepress.com
www.dovepress.com

Open Access Journal of Clinical Trials downloaded from https://www.dovepress.com/ by 143.107.45.1 on 20-Feb-2018

For personal use only.

Dove

Rain dance

minimizes his (suitably weighted) distance between treatment
arms. At least two clinical trials that employed this method
have been completed and published. In both, there was
good balance between groups despite a small number of
participants.'®!

To evaluate the performance of this intentional alloca-
tion procedure in comparison with simple randomization
controlled exclusively for group sizes, we will use the infor-
mation from 50 patients who participated in a different trial
(unpublished) that required allocation into two alternative
arms, that is our real case example. According to the method
developed by Fossaluza et al,'? given only two possibilities of
intervention, when a new patient arrives, the mathematical
suitable distance between the two arms is calculated in both
alternative provisional situations: new patient in Arm, and,
alternatively, new patient in Arm,. The situation in which
the distance is smallest is entailed, that is, the new patient
is actually allocated to the arm that produces the smallest
distance between arms.

In other words, by assuming the patient who could be
allocated to each of the two treatment groups, every arriving
patient had two overall distances between arms calculated.
For each prognostic factor, the two compositional Aitchison
distances between arms were obtained (see Supplementary

material and also Aitchison® for a thorough discussion of
compositional data analysis). The overall distance is the
weighted mean of the four distances (relative sample sizes
was also considered as a factor). The patient is then allocated
to the arm that produced the smallest distance. The procedure
is repeated for the next incoming patient and so forth until
the sample is exhausted.

In this real case example, the researchers provided three
baseline characteristics from patients that they believed could
interfere with the results of the intervention: age, sex, and
baseline disease severity measured by a well-known instru-
ment, the Yale-Brown Obsessive Compulsive Scale. Age
and initial severity were further categorized in three groups
(young, adult, and old for age; and low, medium, and high
for severity). Baseline data for allocation are presented in
Tables 1 and 2 (as a technical matter, a fourth nonclinical
factor was used in allocation: relative arms sample sizes, aim-
ing to not have final sample sizes too different). The weights
of each measure for the process of allocation were defined
according to the clinician judgment about the relevance of
each measure as a prognostic factor.

We believe that the selection of prognostic factors and
weights for each factor has to be based on the better infor-
mation available under the perspective of the researcher in

Table | Results of two different allocation procedures for 50 patients with known parameters for sex, age, and initial severity

Order Sex Severity Age ISA OGA Order Sex Severity Age ISA OGA
| F H (@] Arm, Arm, 26 F L Y Arm, Arm,
2 F H (@] Arm, Arm, 27 F H (@) Arm, Arm,
3 F M Y Arm, Arm, 28 M L (@) Arm, Arm,
4 M L Y Arm, Arm, 29 F H (@) Arm, Arm,
5 F M A Arm, Arm, 30 F M O Arm, Arm,
6 F H A Arm, Arm, 31 M H A Arm, Arm,
7 M M A Arm, Arm, 32 F H (@) Arm, Arm,
8 F H A Arm, Arm, 33 M L A Arm, Arm,
9 M H Y Arm, Arm, 34 F H Y Arm, Arm,
10 F M o Arm, Arm, 35 F M (@] Arm, Arm,
Il F M (@] Arm, Arm, 36 F L Y Arm, Arm,
12 M L Y Arm, Arm, 37 M M Y Arm, Arm,
13 M M A Arm, Arm, 38 M M (@) Arm, Arm,
14 M H A Arm, Arm, 39 F L A Arm, Arm,
15 F H o Arm, Arm, 40 M M Y Arm, Arm,
16 F M A Arm, Arm, 41 F H (@] Arm, Arm,
17 M M Y Arm, Arm, 42 F H A Arm, Arm,
18 M M (@] Arm, Arm, 43 F H A Arm, Arm,
19 F H (@] Arm, Arm, 44 F L (@) Arm, Arm,
20 F M (@] Arm, Arm, 45 M H O Arm, Arm,
21 F H Y Arm, Arm, 46 F M A Arm, Arm,
22 M M Y Arm, Arm, 47 F M Y Arm, Arm,
23 M L (@] Arm, Arm, 48 M M Y Arm, Arm,
24 F L A Arm, Arm, 49 F M O Arm, Arm,
25 F H A Arm Arm, 50 F M Y Arm Arm

2

2 2

Abbreviations: A, adult; F, female; H, high (severity); ISA, intentional sequential allocation; L, low; M, male (sex); M, medium; O, old; OGA, optimal global allocation;

Y, young.
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Table 2 Contingency table with the observed frequencies of
prognostic factors for 50 patients

Sex Severity Age Total
Y A o

Female Low 2 2 | 5
Medium 3 3 6 12
High 2 5 8 15
Total 7 10 15 32

Male Low 2 | 2 5
Medium 5 2 2 9
High | 2 | 4
Total 8 5 5 18

Total 15 20 15 20

Abbreviations: A, adult; O, old; Y, young.

charge. Therefore, we advise researchers to select variables
according to the published literature and also from their
experience in the field. The question they have to answer
is: which subjects’ characteristics would cripple your study
results if they were unbalanced between intervention groups?
It is common that prognostic factors are highly correlated
between each other. Therefore, if the number of factors
becomes exceedingly high, we can use prior knowledge on
correlation and choose one factor that may represent a greater
number of variables. For example, in our specific real case
example, severity of symptoms was chosen as a prognostic
factor and it is known to be highly correlated with other
prognostic factors such as number and type of comorbid
diagnoses and degree of functional impairment. Therefore,
even with no prior knowledge about the comorbidity pattern
or functional level of our sample, we will indirectly control
for such characteristics through its relationship with symp-
toms’ severity.

A similar logic is applied for weights. We believe that the
researcher is the one who is most capable of determining the
importance of each factor. In our case, the researcher deemed
adequate to attribute higher weight to what she believed was
the most relevant factor regarding prognoses and smaller
weight to what she believed were secondary factors that
were desirably balanced but had no strong correlation with
treatment outcome (sex and age). The weight attributed to
groups’ sizes is a more controversial issue. In each experi-
ment, we have to evaluate if forcing groups of equal sizes
is more relevant than treating imbalance. Giving too much
weight to group sizes might have the undesirable effect of
inducing higher imbalance regarding other characteristics.
On the other hand, allowing group sizes being too different
might bring consequences to analysis. In small samples, we
have to guarantee a minimum number of observations for

each intervention, otherwise it will be very hard to reach any
conclusions about one specific intervention.

In conclusion, the matter of choosing prognostic fac-
tors and weights requires that we understand the best
information available on prognoses, that we control for
technical issues such as how feasible it is to have that
information about a specific patient before inclusion in
the trial, and that we consider how specific imbalances
might reverberate in statistical analyses. Different weight
attributions would certainly impact the results of alloca-
tion. To the best of our knowledge, the best way to deal
with this issue is making informed decisions along with
the researcher in charge.

Usually, treatment groups of approximately same size are
preferred. Operational and financial reasons can, however,
point to an experiment with (very) unequal sample sizes. In
general, the method by Fossaluza et al'> may conduct the final
group sizes to given values chosen by researchers, by treating
relative sample sizes as a (pseudo) covariate having weight 2
(which forces the assignment of weights for true covariates
to be even more careful as relative sample sizes and clini-
cal prognostic factors are then elicited in a same scale. This
procedure is entailed by measuring the Aitchison distance
among the vector (%2;'2) and the common (to groups) vector

m(i) _ n(i)
m(i)+n(i)’m(i)+n(i)

equal to the number of patients allocated to the first group

after each (ith) arrival, with m(7)

after the ith arrival and n(i) equal to the number of patients
allocated to the second group after the ith arrival; i=1, 2, 3,
..., (m +n), where m and n are the two arms’ final sizes.
The two last columns of Table 1 shows the allocation
results based on two different situations: intentional sequen-
tial allocation (ISA) developed by Fossaluza et al,'* in which
every new patient is allocated as it arrives and there is no
information about the next patients in line; or optimal global
allocation (OGA), which means the whole sample is known a
priori and the optimal allocation for the final sample can be
calculated by purposely dividing patients in the same stratum.
In our case, the OGA method is the equivalent of minimiza-
tion procedures. To obtain OGA results, we chose to divide
each cell of the Table 2 and allocate half of the patients to
each arm. If the number in the cell is odd, one of the patients
will be allocated at the end together with the remaining of
the other cells. The allocation of the remaining individuals
of odd cells can be performed using (or not) randomization.
In addition, once the two groups are divided and carefully
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balanced, the whole group can be randomly assigned to one
of two treatments.

With the observed arrival sequential order in this experi-
ment, we obtained the smallest possible distance between
arms (0.0759) with both ISA and OGA procedures. Of note,
although with equal distances, the results of allocation were
not identical for ISA and OGA as shown in Table 3. Different
orders of arrival, however, can produce suboptimal results
for ISA in comparison with OGA. OGA represents the best
allocation possible once the whole sample characteristics are
known. ISA also aims optimality and it does not require that
the whole sample is known beforehand. Therefore, ISA is a
way to reach the best allocations possible in clinical trials
that recruit and allocate patients sequentially with no prior
knowledge of the next patients to be included.

At this point, we will introduce a digression and quote
the Indian statistician Debabrata Basu*:

The choice of a purposive plan will make a scientist vulner-
able to all kinds of open and veiled criticisms. A way out
of the dilemma is to make the plan very purposive, but to

leave a tiny bit of randomization in the plan.*

As suggested by Basu, in the method described in
Section 3, a tiny bit of randomization may be kept in the
process of intentional allocation when no information is
available or useful. There is as well another reason for just
a bit randomization. In the situation in which (after several
rounds of stratification) there is absolute equipoise in two
groups, the allocation of remaining patients might be again
randomized within their final joint stratum: such remaining
patients (if any) are absolutely comparable with respect to
every prognostic variable that the physician thought of. In
other words, there is no information on prognostic factors
that might be helpful to improve the balance of allocation.
Furthermore, the effect of relevant differences that were not
envisaged by the physician will be not his responsibility, and
will be subjected to randomization (as they would anyway
in a simple randomization procedure).

Table 3 Contingency table that shows the difference between
allocation results obtained with intentional sequential allocation
and optimal global allocation

Sequential allocation Global allocation Arm size
Arm, Arm,

Arm, 10 15 25

Arm, 15 10 25

Arm size 25 25 50

In the field of clinical trials, the hypothetical situation of
total absence of useful information agreeable to all parts is
unrealistic. Even in the total absence of prognostic informa-
tion, at least baseline characteristics such as sex and age can
be used for determining allocation as they might be associated
with other variables of unknown and undisputed prognostic
value. Even so, random decisions are kept in the process of
intentional allocation after equipoise is attained.

To test Basu’s recommendation of pouring a little ran-
domization, we calculated the effects of mixing up intentional
allocation with simple randomization. We considered a mix-
ture of the distance obtained with intentional allocation and
the distance obtained if the allocation were defined by ran-
domization: for a chosen small real number, &, in the closed
unit interval, the weighted average of the two distances,
with weights (1—-€ and €), respectively. When € equals 0, the
allocation is completely intentional; when € equals 0.1, the
allocation is 90% intentional and 10% random; and so forth
up to &=1, which represents total randomization.

To compare procedures, we generated by simple
simulation up to 50,000 ordered sequences of arrivals of
the 50 patients in the current trial. There are N factorial
(N!'=Nx(N—-1)x... x3x2=3.04x10%) possible arrival orders
with N patients enrolled in the trial, this being the reason
we considered a simulation of 50,000 of them for the con-
struction of Figures 2 and 3. To each of these sequences,
we performed allocations using the following eleven values
of € 0.00; 0.10; ...; 0.90; 1.00.

Calculation particulars are fully explained by Fossaluza
et al.'>?! Simulations were fixed in up to 50,000 samples;
however, to be fair in our comparison, we did not consider the
simulated observations with less than 20 patients in one arm.
Figures 2 and 3 illustrate up to 50,000 final distances distribu-
tions and quantiles that resulted from each value of &

For fixed values of &, Figure 2 shows the empirical
distribution functions of distances relative to up to 50,000
simulated orders of patient-arrival, illustrating the spread
due to uncertainty that occurs. The highest curve is for ISA
and the lowest is for full randomized allocation. Hence, ISA
curve favors the smallest distance values when compared with
all other curves. On the other hand, full randomization is the
one that most favors higher distance values.

Figure 3 shows quantile curves of which ISA is the lowest
and full randomization (&=1) is highest. In other words, for
all distance quantiles considered, ISA favors smaller values
and again full randomization favors higher distance values.
In other words, high differences between groups regarding
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Figure 2 Empirical distribution functions of the distances yield by the 50,000 simulated order arrivals for each of eleven epsilons.

predetermined factors are less likely with ISA than with
random allocation.

The results illustrated in Figures 2 and 3 indicate that
regarding uncertainty and balanced index (values of the
distances), the optimal value of € is zero and, therefore, no
bit of randomization improves ISA. We also estimated the
proportion of times ISA has performed better than any other
mixing of randomization and ISA; £=0.1;...;0.9;1. These
results are described in Table 4. ISA performs better than
any degree of randomization. As expected, ISA superiority
is more evident when compared with the highest degrees of
randomization (€=1). The estimate 0.61 means that for 61%
ofthe orders of arrival, ISA produced distances smaller than
full random allocation.

Conclusion

In this article, we reviewed the reasons why researchers
may withhold the implementation of methods of intentional
allocation in clinical trials and evaluated the performance
of a protocol for intentional allocation. We concluded that
arguments in favor of randomization cannot be sustained
in the face of the advantages of intentional allocation. In
addition, the tested protocol of allocation achieved perfect

or almost perfect joint balance of prognostic factors among
treatment groups and their consequent comparability. It
performed better than randomization in guaranteeing that
unbalanced samples are not chosen. Using intentional
allocation, it becomes less likely that the results of a study
will be considered inconclusive due to the effect of a con-
founding factor, which is unbalanced between interventional
groups. Therefore, the use of carefully designed methods
of intentional allocation should be encouraged in future
clinical trials.

Recommended reading

The effect of randomization in Medical Ethics has been
described by Wajsbrot,”> Ware and Epstein,® Worral,?*
and Berry.” The conflict of ideas between advocates for
randomization against intentional allocations is very old in
the culture of statistics. It is hard to know where and when
this methodological conflict started. We recommend the
reading of some fundamental works of great scholars, such
as Fisher,”® Kempthorne?’ from the side of randomization,
and Basu* and Lindley?® from the opposite viewpoint. The
complete works of Fisher and Basu can be found in Fisher,”
DasGupta,® and Basu.*
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Note: The x coordinate, abscissa, is the level of the quantile and the y coordinate, ordinate, is the value of the quantile.

An important paper by Bruhn and McKenzie*! compares
the power of balanced and random designs using methods
pioneered by Student®>* and Pearson.>* Curiously, Bruhn and
McKenzie cite Fisher but not Student or Pearson.

Recent works attempting a compromise between ran-
domization and purposive sampling are Pfeffermann® and
Pfeffermann and Sverchkov.*® In these two papers, purposive
sampling is used just to incorporate available information
(which is formally unadvised in frequentist statistical infer-
ence). Fossaluza et al*' make operational the introduction
of Basu’s “bit of randomization”. There are certainly other
fields in which purposive sampling is helpful: in robustness
for instance, see Pereira and Rodrigues®” under a frequentist

perspective and the Bayesian counterpart is introduced
by Bolfarine et al.’® Finally, we recommend some sound
foundational and formal work by Berry and Kadane’ and
DeGroot.*
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Table 4 Proportions of cases in which intentional allocation performed better than randomized mixed with ISA

Frequencies e=0.1 £=0.2 £=0.3 £=0.4 £=0.5 £=0.6 £=0.7 £=0.8 £=0.9 e=I
ISA < M_RA (¢) 25.860 26.140 26.087 25.582 25.158 24.773 24.278 23.871 24.016 23.569
Samples 47.805 46.512 44.931 43.591 42.360 41.506 40.523 39.661 39.391 38.686
LB 95% 0.5365 0.5575 0.5760 0.5822 0.5892 0.5921 0.5943 0.5971 0.6049 0.6044
Estimate 0.5409 0.5620 0.5806 0.5869 0.5939 0.5969 0.5991 0.6019 0.6097 0.6092
UB 95% 0.8269 0.8388 0.8488 0.8521 0.8557 0.8572 0.8584 0.8598 0.8637 0.8634
Notes: LB 95% and UB 95% are the lower bound and upper bound of intervals with 95% of credibility.

Abbreviations: ISA, intentional sequential allocation; M_RA, mixed intentional and random allocation.
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Supplementary materials
Mathematics of randomization

irrelevance

Ed and Joe had 924 different possible allocations of
six patients to each group to choose from. In general,
2n patients can be allocated in (2n)!+(n!)? different ways
to two groups of n patients each for which n! being the
well-known factorial of n. And there are (V!)+[(n!)(N-n)!]
different samples of size n, which can be extracted from a
population of NV patients. Each allocation (or each sample)
has a numerical “value”, which can be thought of as the
amount of information it will bring about the population
(or about the effects of interventions). Such values depend
also on the population (and the effects of interventions
on its elements), which is of course unknown. These
values can be ordered according to their averages taken
over all population possibilities weighted by respective
probabilities. This expected utility of each sample is
therefore a real number that depends on the probability
distribution (opinion) over the population and relative
values (preference).

Mathematically, the choice of the sample that maximizes
expected utility is implied by fundamental “rationality”
axioms of opinion and preference. This is the so-called
Maximization of Expected Utility Paradigm.

A randomized sample is always a convex combination
of two or more nonrandom (or rigid or extreme) samples,
in the sense that it ends up being one of the rigid samples
with respective (randomization) probabilities. The fol-
lowing theorem formalizes the irrelevance of randomized
samples (and allocations or choices in general) also in
Mathematical Decision Theory (see DeGroot'). Here, we
write E[.] for expectation of the random element between
brackets.

Theorem: Let A be a nonempty set (of choices), © a set of
all possible population profiles, and U a utility function which
assigns a nonnegative number to each pair (8,0). Consider a
randomization which selects  with probability & or 8, with
probability (1—m) and let the resulting choice be represented
by 8". Then E[U(8")] is not larger than both expected utilities
E[U(5,)] and E[U(5,)], for any 0 = m= 1, any §, §, in A,
and any probability distribution over ©.

Proof: The theorem of Total Probability implies:

E[U(§%)] = nXE[U(3)] + (1-m)XE[U(S,)]

and as Tt belongs to (0,1), we obtain, without loss of genera-
lity (due to assuming the inequality E[U(S))] = E[U(S,)]),
the following result:

E[U®)] = E[U@")] = E[U3))].

Aitchison distance for compositional data
Aitchison? presents the statistical analysis for compositional
data. Here, we only describe the comparison of two samples
respecting their vectors of frequency for a specific categorical
variable and extend it to our particular case of four prognostic
factors: severity, sex, age, and sample size.

Let A, = (f,,;+7...sf, 72 and A, = (f,,+735...:f,+72) the
two arms k-vectors of compositional frequencies (with the addi-
tion of /2) of a prognostic factor for the two arms of a clinical
trial. Each position of the vectors corresponds to a possible factor
classification of the patients. Define the following functions:

For j=1, 2,...,k, k>0 being the number of possible classi-
fications of the prognostic factor being evaluated, consider

rj=ﬁ.‘.Lj=ln(rj)=ln(j;j+%)—ln(flj+%)&

zk‘=1Li
M=

, the mean of L.

The Aitchison compositional distance between A, and A,
is the standard deviation of L, that is,

Sh o w-m)?
AD = D[A;; 4,1 =\=—
As in our example we have four prognostic factors, we
have four distances to be composed: severity, sex, age, and
sample size. Let us represent the four distances as D_ , D

sev’ " sex?

D and D_ . As the weights representing the importance
age sam

of each factor, our overall distance is given by:

A —_ ZD.\‘ev+D.\‘ex+Duge+2 Dsam

6

Recall that D upon any new arrival # is given by:

o))

Finally, we call attention to the fact that we had added '2
to all elements of the vectors involved to avoid the problem
of zero frequencies.
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