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l.Introduction. As in Barlow and Proschan [3] a complex engineering system is com-
pletely characterized by its structure function % which relate its lifetime T and its compo-
nents lifetimes T3, 1 < 7 < n, defined in a complete probability space (2, S, P)

T = &(T),T = (T}, ... Ty).

A physical system would be quit unusual ( or perhaps poorly designed) if improving
the performance of & component (that is, replacing a failed component by a functioning
component) caused the system to deteriorate (that is, to change from the functioning
state to the failed state). Thus we consider structure functions which are monotonically
increasing in each coordinate. Also to avoid trivialities we will eliminate consideration of
any system whose state does not depend on the state of its components. A system is said
to be coherent if its structure function @ is increasing and each component is relevant,
that is, there exist a time ¢ and a configuration of T in ¢ such that the system works if,
and only if, the component works.

The performance of & coherent system can be measured from this structural relation-
ship and the distribution function of its components lifetimes. The structure functions
offer & way of indexing the class of coherent system but such representations make the
distribution function of the system lifetime analytically very complicated (mainly in the
dependent case). An alternative representation for the coherent system distribution func-
tion is through the system signatures, as in Samaniego [10], that, while narrower in scope
than the structure function, is substantially more useful.

Samaniego [8] consider the order statistics of the independent and identically dis-
tributed components lifetimes of a coherent system of order n with absolutely continuous
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distribution. Clearly {T = T;)} 1 <1 < n}isa (P-as.) partition of the probability space
and

PT<t)=Y P(T<1,T=Ty)= SO P(T=Ty))P(T < 4T =Ty,y) =

i=1 i=1

D P(T =Tu)P(Te ST =Ty) = Y P(T = Te)P(Ty < t) =

i=1 i=1
n
Za.-P(T(,-) S i).
i=1
In the above context Samaniego [10] defines

Definition 1.1 Let T be the lifetime of a coherent system of order n, with components
lifetimes T, ..., T which are independent and identically distributed random variables with
absolutely continuous distribution F. Then the signature vector « is defined as

a=(ar, ..., an)
where a; = P(T = T(;)) and the {T(3),1 < i < n} are the order statistics of {T},1 < i < n}.

The key feature of system signatures that makes them broadly useful in reliability
analysis is the fact that, in the context of independent and identically distributed (i.i.d.)
absolutely continuous components lifetimes, they are distribution free measures of system
quality, depending solely on the design characteristics of the system and independent of
the behavior of the systems components .

A detailed treatment of the theory and applications of system signatures may be found
in Samaniego [10]. This reference gives detailed justification for the ii.d. assumption used
in the definition of system signatures. By the way there are a host of applications in which
the i.i.d. assumption is appropriate, and in such case, the use of system signatures for
comparisons among systems is wholly appropriate; such applications range from batteries
in lighting, to wafers or chips in a digital computer to the subsystem of spark plugs in an
automobile engine.

The utility of signatures in gauging the performance of systems in i.i.d. components
derives largely from representation and preservation results. Some of then link the char-
acteristics of system signatures with system performance.

Before stating these results, we first recall the definitions of three standard forms of
stochastic relations between random variables.

Definition 1.2 Let T} and 7% random variables. Then:

a) T} is stochastically smaller than T (Th <»¢ T2) if, and only if, P(T} > t) < P(Tr >
t),vt,



b) T is stochastically smaller than T3 in the hazard rate ordering (Th <nr T3) if, and

only if, %2—:3 is nonincreasing in t,V¢;

c) in the case where T) and T> have absolutely continuous distributions, with densities
f1 and fa, respectively, T} is stochastically smaller than T} in the likelihood rate ordering
(T <ir T2) if, and only if, ﬁ—g:% are nonincreasing in ¢, V¢,

The following result shows that certain relationships between two (discrete) signatures
ensure that a similar relationship holds between the corresponding (continuous) system
lifetimes.

Theorem 1.3( Kochar et al. [G]) Let oy and a2 be the signatures of two coherent systems
of order n, both based on n components with i.i.d. lifetimes with common continuous
distribution . Let S; and S2 be their respective lifetimes. Then:
a) if
oy Lo @z = 51 <4 G2

b) if
ay Spr az => 51 <pr S2;

c) if F is absolutely continuous and

ay < a2 = 5) Sir Sa.

The applications of system signature can be extended to mixed system. A mixed
system of order n is a stochastic mixture of coherent systems of order n and can be real-
ized in practice via randomization which selects a system at random according to a fixed
probability distribution on the class of coherent systems of order n (see [5]). The mixed
system that selects among n-component systems with signatures vectors ay, a2, ..., on ac-
cording to the distribution p = (1, ..., Pn) will have signature 3 I_, piay. We note that
the representation and preservation theorem above is applicable for mixed systems.

One further important issue is the fact that we will, at times, be interested in com-
paring systems of different sizes. Although such a comparison might arise in general, it
is special relevant when comparisons involve new and used systems. Theorem 1.3 is not
immediately applicable to this problem. However, the exact relationship has been charac-
terized between the signature of a given system with a system of any larger order, which
has an equivalent lifetime distribution under the assumption of i.i.d. component lifetimes.
The following theorem is an example.

Theorem 1.4 (Samaniego [9]) Let & = (o, ..., @n) be the signature of a mixed system in
n iid. components lifetimes with continuous distribution F. Then the mixed system with
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(n + 1) i.i.d. components lifetimes with continuous distribution F and corresponding to
the system signature

na; o +(n—1)az 202+ (n-2)as (n - 1)an-1 +a, nay,
n+1’ n+1l ’ n+1 T n+1 ‘n+1

a” = )

has the same distribution lifetime as the n-component system with signature a.

Samaniego [8], Kochar, et al. [6] and Shaked and Suarez-Llorens ({12] extended the
signature concept to the case where the components lifetimes T3, ..., T,, of a system are
exchangeable (i.e. the joint distribution function, F(ti,...,tn), of (Th,...,Tn) is the same
for any permutation of t1, ..., ), an interesting and practical situation in reliability theory.

Navarro et al. 7] and Samaniego et al. [11] consider dynamic (conditioned) signatures
and their use in comparing the reliability of new and used systems. Their procedures
consider the system lifetime conditioned in an event on time. Navarro et al. 7] consider
cither the event {T > t} and {T(;y < t}N{T > t} with system signature P(T = T(y|T > ¢)
and P(T = T(,)|{T(i) <t} N{T > t}) respectively. A systems signature has proven to be
quite a useful proxy for a systems design, as it is a distribution-free measure ( i.e., not
depending on F ) that efficiently captures the precise features of a systems design which
influence it performance but unhappiness, in both Navarros above situations, the system
signatures does depend on F(t).

Samaniego et all. [11] consider the event in time {T(;) <t < T(i41y} N {T > ¢} and in
this case the system signature P(T" = T(;y|{T(s) < t < T(iy1y} N{T > t}) does not depend
on t and on F(t) and have the usual signatures properties. Samaniego et all. [11] extend
Theorem 1.3, however their conditioned signature does not capture the dynamics aspects
of the problem.

Theorem 1.5 (Samaniego et al [[11]) Consider two used mixed systems with lifetimes S
and S, based on n original components with i.i.d. lifetimes having the common continuous
distribution F. Suppose both systems are working and have exactly i and j failed compo-
nent, respectively, at time ¢. Let a;(n — i) and az(n — j) be their dynamics signatures, as
in [11]). Then
a) if
oy (n —i) <, aa(n - j) =
(Sil{Trny €t < Tan} N {S1 > t}) <or (S2{T(a1) £t < Ty} N {S2 > 1});
b) if
ay(n — i) <pr a2(n - j) =
(S1l{Tlis+y €t < Taan} N{S) > t}) <ur (S2{T a1y S ¢ < Tyany} N {S2 > t});

c) if F is absolutely continuous and if
ai(n —i) S a2(n - j) =
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(S1l{Ti41y) <t < Tsn} 0 {S) > t}) Sir (S2l{T(521) £ 8 < T4y} N {S2 > t});

In this paper we consider the system evolution on time under a complete information
level. The natural tool to consider the increasing information on time through a family
of sub-oalgebras is the martingale theory and, in our case, the point process martingale
theory. To make the exposition understandable, in the Subsection 2.1 of the Section 2 we
develop the independent case which is a natural approach for systems signatures theory.
We give some examples at the end of this Subsection. In Subsection 2.2 we give the
mathematical details.

2. Dynamic signatures

We intend to give a new approach to dynamic systems signatures. We consider the
system evolution on time under a complete information level. In this fashion, the expected
dynamic system signature enjoy the special property that they are independent of both the
distribution F and the time ¢. This fact has significance beyond the mere simplicity and
tractability of the signature vector, reflect only characteristics of the corresponding system
design and may be used as proxies for system designs in the comparison of system perfor-
mance. Also the dynamic system signature actualizes itself under the system evolution on
time recovering the dynamical system signature in the set {T(;) < t < Ty} N {T > t},
as in [11] and the original coherent system signature in the set {T},,) < t} as in [10].

In our general setup, we consider the vector (T3, ..., Tn) of n component lifetimes which
are finite and positive random variables defined in a complete probability space (2,5, P),
with P(T; # T3) = 1, for all i # j,i,j in £ = {1,...,n}, the index set of components. The
lifetimes can be dependent but simultaneous failure are ruled out.

In what follows, to simplify the notation, we assume that relations such as C,=
,<,<,# beltween random variables and measurable sets, respectively, always hold with
probability one, which means that the term PP-a.s., is suppressed.

The evolution of components in time define a marked point process given through the
failure times and the corresponding marks.

We denote by T(;) < T(2) < ... < T(n) the ordered lifetimes T}, T3, ...,Tn, as they
appear in time and by X; = {7 : T(;j = T} the corresponding marks. As a convention we
set Tins1) = T(nt2) = -.- = 00 and Xy = Xpy2 = ... = e where e is a fictitious mark not
in E. Therefore the sequence (Th, Xpn)n>1 defines a marked point process.

The mathematical formulation of our observations is given by a family of sub o-
algebras of &, denoted by (S¢)i>0, where

8! = U{I{T(¢)>8),Xl' =j:1 SJ < n:j € E,O <s< t}v

satisfies the Dellacherie conditions of right continuity and completeness .

Intuitively, at each time t the observer knows if the events {T(;) < t,X; = j} have
either occurred or not and if they have, he knows exactly the value T(;) and the mark X;.
‘We assumed that T;,1 < ¢ < n are totally inaccessible S,-stopping time.

We observe that, in the original concept of signature, Samaniego [10] does not use any
information on time which we represent by the trivial o- algebra S, = {Q,0}, V.
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An extended and positive random variable 7 is an 9y-stopping time if, and only if,
{r <t} € O, for all t > 0; an [y-stopping time T is called predictable if an increasing
sequence (Tn)n3o Of (-stopping time, 7, < T, exists such that limp—.oo Ta = 7; an ;-
stopping time 7 is totally inaccessible if P(r = o < 00) = 0 for all predictable $¢-stopping
time 0. For a mathematical basis of stochastic processes applied to reliability theory see
the book of Aven and Jensen (2]. In a practical sense we can think of a totally inaccessible
S,-stopping time as an absolutely continuous lifetime.

2.1. Dynamic signatures with independent and identically distributed lifetimes.
In this Subsection the following remark is of fundamental importance:

Remark 2.1.1 Under the assumption that the components lifetimes are i.i.d. with abso-

lutely continuous distribution F, P(UL,{T = T(;3}) = 1 and the information in S is of

the kind {T(s) £t < Ty}, i=1,2,...,n with Tig) =0 and Tin41) = co. Follows that:

P(T < t|3,) = 0 in the set {T() > t};

P(T=T, .
P(T <t|3) = ?{'T?H‘; in the set {T(s) < ¢ < Teany);
P(T £¢|9¢) =1 in the set {t > Ty}

Therefore
f P(T < t|9,)dP = P(AN{T < t})
A

VA € &, and we have

. P(T= T(y)
.P(T <) = s=1m1(1~m5t<rﬁ+,,)-

We are going to use Remark 2.1.1 in the next Theorem and we will prove it, rigorously,
in the next Subsection.

Theorem 2.1.2 Let T be the lifetime of a coherent system of order n, with component
lifetimes T3, ..., Tn which are independent and identically distributed with continuous dis-
tribution ¥. Then,

P(T < t|9) = Bln18il 1,y <)

where
_P(T=Ty) PT=Tin)

TPT2Ts) P(T>Teoyy)

Bi
with T(O) =0, T(n+l) =o00,fi20and Z_,6 = 1.
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Proof Firstly, as the order statistics have the likelihood ratio order property ( Shaked
and Shanthikumar [13], p 54 ), they also have the reversed hazard order property and are
independent of the events of the type {T = Ti;)} the 0; are positives. Also

PT=Ty) PT=Tiy) PT=Tw) _ 7
P(T>Ty) PT2Ti-y) P(T 2Ty

2?=16-' = ):,'=1[
if P(T = T(ny) # 0 and equal to %%H =1, if P(T = T(n)) = 0 and so successively.
From Remark 2.1.1, we have

n P(T = Tg,y)
P(T < t9y) = i=1w>—’1‘:;‘:_)](7'ms'-<f(-'+n) =

: P(T=T(='))(1 -1 =
i=1 P(T > :r(l_)) (TG >t} {Tiy>t)
P(T=Ty) P(T=Ts)

1= Balprs Tw) P(T 2Ty

]I(T(i)>r.) e
Tia1Bi — Bu1Biliy>e) = T Bilir,y <o)
Definition 2.1.3 Let T be the lifetime of a coherent system of order n, with component

lifetimes 71, ..., Tn which are independent and identically distributed random variables with
absolutely continuous distribution F. Then the dynamic signature vector G is defined as

B= (b, Bn)
where 3; = %ﬁ% and the Ty;) are the order statistics of T;,1 < i < n.

Remarks 2.1.4: Given the information ¥, we knows that, in the set {T(;) <t < Ty},

: L P(T=Tw) _P(T=Tuy), _ PT=Ty)
P(T < tH{T St < Tiyp)) = gﬂs = ;[I,(T STi) " PT S Tan)) ~ PTS Ty’

as we have in Remark 2.1.1.
The next Corollary shows that how the dynamic signature actualizes itself on time
and how we recover the Samaniego [10] signature vector at infinity.

Corollary 2.1.5 Let T be the lifetime of a coherent system of order n, with component
lifetimes Ty, ..., T,, which are independent and identically distributed with absolutely con-
tinuous distribution F. Then, in the set {T(;) < t < T(341)}N{T > t}, the system signature
actualizes in time with

P(T<t+z|{Tu <t <Tiyn}n{T>t}) =
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S BiP(TG St+al{Tw st < Tiyn)} DT > t}),
j=itl

n
and z B; = 1. Also, its restores the Samaniego [10} system signature in the set {t 2
j=itl

Tim }-

Proof In the set {T > t}N{T;) <t < Ti+n}» P(T = Ty) = 0if j £ i and the coherent
system signature actualizes to

P(T <t+zl{Ty <t <Tin}n{T>t}) =

n
Z BiP(Tyj) S t+zl{Tpy St < Ty} N{T > t}),
F=i+l
with
zn: S ‘/i P(T=Ty) PT=Ts-n), _ PT=Twm) _
I JPT2T5) PT2Ty-n) PT2Tw)

i=i+1 i=it

if P(T = T(n)) # 0 and equal to ;—%;%:—:ﬂ% =1, if P(T = T(ny) = 0 and so successively.

Also, as P(T = T;)) = 0 and P(T 2 Tivny) =1 we have

P(T =Tuny)  PT=Ty) _ P(T=Tisn)
P(T > Tuyny) P(T2T) P(T 2 Tiany)

Bir = = P(T = Ti41)) = @isa

and the signatures actualizes itself in the set {T' > ¢} N {7y <t < T(iv1)}-
As B = a; and {T; < t} occurs successively in time for i = 1,2,3,..., in the set
{t =2 T(n)} we have:

e
P(T < t|Se) = Zailﬂ‘“,sz)-

i=1

Taking expected values we get
n
PT<t)= aiP(T S 1)
i=1

recovering the Samaniego signature decomposition as in [10].

Examples 2.1.6 i) If Ty, T, Ts are independent and identically distributed component’s
lifetimes of the system with lifetime T = Ty A (T2 V T3).
The Samaniego {9] system signatures are:
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a) = P(T = T‘(])) = %, g = P(T = T(g)) = % and a3 = P(T—-— T(;,)) = 0 and the
signature system distribution lifetime decomposition is

1 2
P(T < f.) —] EP(T‘(]) < t) + -:;P(nz) < t).

P(T=Tu)) _ 1 P(T=Tez) _ P(T=T) _ .
However 'ﬂﬁ%’,‘i =13, P_(T?’IT:}T =1 and —P(T—z’l‘::}j = 0 and therelore, the dynamical

signature are
6 =3 6= %, B3 = 0 and the dynamic signature system distribution lifetime
decomposition is

1 2
P(T < 4S) = '51(7‘(-)51) + 51{72:)5‘]'

Taking expected values we get
1 2
P(T < t) = 3P(Ta) S )+ 3 P(Tey S 1),

and note that o; = B;, i = 1,2 in the set {T(3) < t} recovering the Samaniego
[10}signature decomposition.

ii)The Bridge system lifetime can be set as T = (MVRIATNIVT3VT)A(T2 V
T3V T3) A (Ta V Ts). where Ty, T2, T3, Ty, Ts are independent and identically distributed
lifetimes.

The Samaniego [9] system signatures are:

ar=PT =Ty) =0,a: = P(T =Tppy) = }, a3 = P(T =Tig)) = 3 o4 =
P(T =Ty = é and as = P(T = T(sy) = 0 and the signature system distribution lifetime
decomposition is

1 3 1
P(T < t) = = P(Tie) S ) + 5 P(Tia) £ 1) + 5 PTiwy < 0)-

T=T, P(T=T, T=1 P(T=T, P(T=T,
As ::(Tz"'(:)) =, P‘ZTZT(:))} = %' 11:(17'?.;(:))5 =% Pi(TZT(:))i = land P(TZT(:)) =1and
follows that the
the dynamical signature are:
Pr=0,=31F=5 0= 1,85 = 0 and the dynamic signature system distribution
lifetime decomposition is

1 11 1
P(T <) = gl('r(,,sz) + 2_01{7'(:)5'-) + }'1'1{7'(4)5‘}'
Now, in the set {T(2) <t < T(3} N {T > ¢t} the system signature actualizes to f3 = 3
and fy=1-3=1%.
the decomposition system signature actualizes to
P(T < t+al{Ty <t < Ty} N{T>t}) =
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3 1
ZP(T‘:’) L t+zl{T) St < T} (T > t})+ZP(’I‘(4) < t+z|{Tz <t < Ty }n{T > t}).

Also

1 4 3 1
PT<t)= EP(T(z) <t)+ E[ZP(TM <t)+ ZP(T(") <))

in the set {T{4) < t}, recovering the Samaniego [10] signature decomposition.

iii) If Th, T2, T3, T4 are independent and identically distributed component’s lifetimes
of the system with lifetime T = Ty V(T2 AT3 ATy), then oy = P(T =T(yy) = 0, az =
P(T=Tg)=Landay=P(T=T()) =1 and as = P(T = T(a)) = 4 and the signature
system distribution lifetime decomposition is

1 | 1
PT<t)= EP(T(Z) <)+ ZP(’I(S) <9+ ZP(I‘M) <t).

P(T=Tyy) _ o P(T=T@) _ 1 P(T=Tu) _ 1 P(T=Tw) _
However prrs7ly = 0 BirsTia) = 2> WT3Ton = 2 20 Frsmgy) =1
Follows that the dynamical signature are: 5, =0, 5, = %. f3=0,and B4 = % the

‘namic signature system distribution lifetime decomposition is

1 1
P(T <UD = 5150 + 51T <t):

In the set {T(s) < t < Tz} N {T > t} we have B3 = % and B3 =1 — % = %— the
dynamical system signature actualizes to

1 1
P(T <t+2|{Ty) <t <Tin} N{T > 1})) = 3P(T( St+2)+ 3.

1 1
[3P(Te) < t42l{Tip) < t < Ty }N{T > th+5 P(Tiay < t4al{Tiny <t <Tip}{T' > £})]

1 11 1
P(T <t) = 5 P(T(a) S ) + 5[5 P(Tiy < ) + 5 P(Tiwy < 0

recovering the Samaniego signature decomposition as in [10].

Remarks 2.1.7: As the dynamic signatures actualizes itself on time and in the set {T(,., <
t} , ai = Bi, Vi. we can rewrite either Theorem 1.3 [6] and Theorem 1.5 [11] in the cited
papers in an unified Theorem:

Theorem 2.1.8 Consider two mixed systems based on n original components with i.i.d.
lifetimes having the common continuous distribution F. The first system having lifetime
51, signature vector a; and dynamic signature vector ;. The second one having lifetime
S,, signature vector a; and dynamic signature vector. Then
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a) if
ap <o 02 => (51D <ot (S21D0);

b) if
ay <pr a2 == ($1191) Sar (S2[D4);

c) if F is absolutely continuous and if

B <ir B2 = (51(D) Zir (S2|D);

Proof Firstly we always have X5, = 1,Vi,1 <i<nin the way that both the vectors
B1 and B3 are not significant for stochastically comparing systems lifetimes with respect
to stochastic ordering and hazard rate ordering. However, as the stochastic comparisons
must holds for all time ¢ > 0, the constants B; actualizes itsell to a; in the set {T(,-_,) <
t< Ty} N{T >t} and B; = a; Viin ¢ > Ty, either the vectors ) and a; are relevant
for those comparisons and are the sufficient conditions.

As Lhe atoms in Q, is of the kind {T(y) <t < Ty}, i = 1,2,...,n with To) = 0 and
T(n+1) = 00, the proof of parts a) and b) follows from Theorems 1.3 of [6] and Theorem
1.5. from [11].

To prove part c) we have to consider the likelihood ratio ordering between the vectors
B, and B; and the prove follows as in Theorem 1.5. [11].

Remarks 2.1.9: Samaniego et al. [11] analyses the NBU dynamic version of aging in the
signature context and defines the class of New Better Than Used Distribution conditioned
to the event {T > t} N{T(;) <t < Tiany}-

Definition 2.1.10 a) Consider a mixed system based on n components with i.i.d lifetimes
Ty, ..., T, with absolutely continuous distribution F. Let T be the systems lifetime and let
E; = {Tiy <t < Tiipny}- For fixed i € {0,1,...,n — 1}, T is conditionally NBU, given i
failed components (dcnoted by :-NBU) if for all ¢ > 0 either

i) PUT > t}NnE)=0o0r

il) P({T >t} N E;) > 0 and

PT>z)2P(T>t+z|{T>t}NnE;), Vx>0

b) An n-component system is said to be UNBU if it is i-NBU for i € {0,1,...,n—1}.

Samaniego et al. [11] observes that if the system is uniformly NBU then it is NBU
but Lhe reverse does not hold, and then give sufficient conditions for a system based on n
components with i.i.d. lifetimes to be UNBU:

Theorem 2.1.11 Let s,(n) be the signature, and T the lifetime, of a mixed system
based on n components whose lifetimes are i.i.d. with common continuous distribution F.
Assume that F is NBU and that
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Sn(n) 24 spa(n—-14), i=12,..,n-1

Then the system is UNBU.

We report to the work by Arjas [1] of conditioned M NBU|S,. To that we remember
the concept of Upper Set: A Borel sel U C R™ is called upper if for any x,y € R* ,x € U
and x < y together imply that y € U. { x € y means that z; < ¥;,1 €1 <n).

The Arjas (1] definition is:

Definition 2.1.12 a) We say that T = (T},...,T},) is multivariate new better than used
relative to S, and abbreviate this by MNBU|S,, if

P(0,T € U|S,) < P(O,T € U|D0)
for all t > 0 and all open upper set U. In the special case n =1

b) T is NBU|Qy, ifforallt > 0and s€ R

P(atT > slgz) < P(a:T > slS‘o)

As a lifetime T is NBU if,, and only if, it is NBU|o{1{75,),0 < s < t}, this definition
is an extension of the classical concept and it turns out that this distribution class have
most of what could be called desirable properties of any extension of the conventional
N BU-class. In particular if we consider

8 = 0’{1{'1"“)>,),X.' =51<jignjeb,0<s< L}l
satisfying the Dellacherie conditions of right continuity and completeness we have:
Theorem 2.1.13 i) Suppose that T is MNBU|Q,. If Ty = (T;,i € Ip) is any subvector

of T and
ml = a{l{T(i)>l}1xi "_"j!i € Iﬂuj € EIO <s= l}l

then Ty is MNBU|R,. In particular each T; is NBU. -

ii) Suppose that T is M NBU|Sy. If (R,)i>0 is another family of o-algebras such that
Ry € Q, for all £ > 0 and Ry = [ then T is MNBU|R,. In particular let T be the lifetime
of a coberent system and R, = d{1{75,),0 < s < t}, then T is NBU.

iii} Suppose that T3, ..., T, are independent and NBU. Then T is M N BU|S,.

Follows that Theorem 2.1.11, in [11], also holds in the general context of dynamic
signatures. Others concepts of distributions classes relative to ; can be analyzed, such

as MIFR|S,( see Arjas [1]).
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2.2. The mathematical details.

The natural tool to consider the increasing information on time through a family
of sub-oalgebras is the martingale theory and, in our case, the point process martingale
theory.

The simple marked point Ny ;(t) = 11, <t.X:=5) is an 3;-submartingale and from
the Doob-Meyer decomposition we know that there exists a unique ;-predictable process
(A(iy,;(t))ez0, called the Iy-compensator of Ni; ;(¢), with Ag;) ;(0) = 0 and such that
Ngy i (t) — Agy,;(t) is an 9-martingale. Ag;) ;(t) is absolutely continuous by the totally
inaccessibility of 73,1 < i < n.

The compensator process is expressed in terms of the conditional probability, given
the available information and generalize the classical notion of hazards. Intuitively, this
corresponds to producing wether the failure is going to occur now, on the basis of all
observations available up to, but not including, the present.

As N(;),;(t) can only count on the time interval (T(;_1), T(;)], the corresponding com-
pensator differential dA(;) ;(t) must vanish outside this interval. To count the i — th failure
we let Ny(t) = Zj>) N(,;(t) with S‘,-compensator process Amy(t) = Tiz14q),;(t)-

Follows that the ;-compensator of N(t) = Z ZN(')-J (t) is

i=1 j=1

A(t) = Z ZA(:).J(t)l(T(. N<tETp

i=1 j=1

which can be written, without loss of generality ( see Bremaud [d]) as

A(t) = Z Z Ay (")I{TmSKTuH)}'

i=1 j=1

In this former notation (A(t))ez0 is an Y-predictable process and therefore unique.
The S,-stopping times T; are rarely of directly concerning in reliability theory. One
is more interested in the system lifetime

T = min maxT;,
1<j<kiek;
where K;,1 < j < k are minimal cut sets, that is, a minimal set of components whose
joint failure causes the system fail.

Conveniently, we can define the critical level ;) ;, as the first time from which onwards
the failure of component j lead to system failure at {T = T{;), X; = j}. We consider the
O¢-compensator process (As(t))»o0 of the point process Ng(t) = lir<t), of the system
lifetime T, such that Ng(t) — Ag(t) is an zero mean Q¢ -martingale with P(T < t} =
E[Nz(t)] = E[Aa(t)] .

13



Theorem 2.2.1 Under the above notation, in the set {T" > t}, the J¢,-compensator of
Na(t) = L{rey), Is

Aa(t) = T Ziaa[Aw 5 (1) — Aws Yol Nz se<tian)
where a* = max{a, 0}.

Proof
As Ag),;(s) is the S,-compensator of Ny ;(s) we have that

B[ CnstedNns(a)) = B[ CoosledAios o)

holds true for all non-negative S;-predictable process (Cli),;(t))ez0. TFollows that, for
any Q;-predictable process (C(t)):>0, we can define the Q,-predictable process Cyy),;{t) =
C(t)Y{y,, ; <t<taT) 2nd therefore

Eljo C(8)1 (v, ;<s<enTy NGy 5(8)] =

00
E[~/D C(S)l‘yﬁ).j<,5¢AT)dA(i),j(8)].
Also we note that
{T € ds} 5= UT(.‘)>Y(.'),,‘ {T'(i) €ds, X;= j}
in the way that
Na(t) = 1(7‘5:) =£ ZZ l(yu) ,<,<m7-)dN( ).J(S)
i=1 j=1
Follows that E[f;° C(s)dNy(s)] =

EI/ C(s) Z Z l(Yu) ;<5<T)dA( )-J(S)I{Tm<'~<7‘(n 1))] 2 E[/ C(s)dAs(s))-

i=1 j=1

At this point we can prove our main result.

The approach is as the following: in addition to (S¢);>0, at each time ¢, the observer
knows if the events {T < t} have either occurred or not and if they have, he knows exactly
the value of T".

The mathematical formulation of such an additional observation is given by a family
of sub c-algebras of Q, denoted by (R;)i>0, where

.’R, = G{I(T>,),O <S8 S t},
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satisfies the Dellacherie conditions of right continuity and completeness .
Note that, the series parallel representation of Tis

T=®(T)= 1rnin max T3,

<ji<kicK;

where I(;,1 < j <k are the minimal cut sets. Follows that

r>sy= (| U{:>s}

1<j<kieK;

and therefore ®; C I, for all ¢ > 0. Actually and abusively, we continue to use ¥, for
3, \V R, representing the complete information level.

Theorem 2.2.2 Let T be the lifetime of a coherent system of order =, with component
lifetimes T3, ..., T which are totally inaccessible Q,-stopping time . Then, under the above
notation and at complete information level, we have

e P(T = T(3|S¢)
P(T <8 = 2i=lEj:l—P(:TZ__ITi)—l(Tu)st<Tu+“)

with T(n41) = ©0.

Proof From the Projection Theorem,(Bremaud {4]), follows that the R,-compensator is
given by E[As(t)|R:]. As As(t) is calculated in the set {T > t} we have E[dA),;(s)IR,] =
dAg) ;(9)
P(T2s) °
Now, we have

P(T < t|9) = T2, 50, B % Yy <ogTAY 4y ()1 =
S HS) = ZisZi= 2 P(T 2 3) ©.5(8)] {TySe<Tu+n} =
n sn % Ly <a<T AL}
2i=lzj=1E[-/; _'P_(ﬁ“s“)—dN(t').J’("")II{T(a)S¢<T(s+n) =

n wn PT=Tu|9)
p2ERP Y —ml(m)smmm)-

Remarks 2.2.3 i) The above results proves the Remark 2.1.1 of Subsection 2.1, in the
case of independent and identically distributed lifetimes in which

P(T = Ty)

P(T <4Sy) = )3?=;7,—(7>—T('_)—)1{Tu,5:<r(m,)-

ii) Navarro, et al. (7] consider the mixture representation of residual lifetimes of used
systems. In its conclusion asked about the general case of dependent components which
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remain an interesting open question. Clearly, it is not seemingly true to think the general
case of dependent components in the signatures context. However, as Navarro et all. (1988)
asked, it is plausible Lo analyse the case of dependent and identically distributed lifetimes
( any way, its holds true for exchangeable distribution). In this case we have

P(T = T(,-)|S‘,)

P(T <19 =52, Wl{m,gmmm}-

PT=Tiy|3e) depends on the distributions lifetimes, as we see in the sequel:
P(T2T(y)

and the terms
We consider the system lifetime T = Ty A (T2 vV T3) with three components lifetimes

T:, T2, T3 with the three dimensional standard exponential distribution of Marshall and

Olkin is used with the the survival probability P(T} > t,,T2 > t3, T3 > t3) given by

exp{—[t1 + t2 + t3 + max{t1, {2} + max{t,, L3} + max{¢a, t3} + max{t1, ¢, t3}]}.

An interpretation of this distribution is as follows: Suppose independent sources of
shocks are present in the environment. A shock {rom source 7 destroys component 3,1 <
i < 3 and it occurs at a random time U;,1 < i < 3 respectively. A shock from source
i,j destroys either the components ¢ and j, simultancously at a random time U;;,1 <i <
3,2 £ 5 £ 3,i < j. Finally, a shock from source 1,2,3 destroys the three components
simultancously at the random time Uj23. The lifetimes Uy, Uy, Us, Uy, Uy3, Uaz and Uja3
are independent and identically distributed with standard exponential distribution.

The components lifetimes are define

Ty = min{U, Uz2, U3, Ui23};
Ty = min{Uz, Uiz, Uz3, Ur23};
Ty = min{Us, Uy3, Uz, Ur23},

and
P(Th > t) = P(T, > t) = P(T3 > t) = exp{—A4t}.

Then the lifetimes are dependent but identically distributed. However

Pt <Ti £ min(T>,T3}) _
P(T‘(I) > £)

P(T =Ty)|Tyy > t) =

P(t < Uy < min{Us, U3, Uz, Ura, Una}) _ exp|-Ti]
exp[-T7t] " Texp|-Ti

and P(T = T(4)|T(;) > t) is independent of F(t). As the Marshall and Olkin is an
exchangeable distribution we have an expected result.

1
7

Otherwise, if we consider the following Type 1 Gumbel exponential lifetime multivari-
ate distribution with survival function

P(Ty > 43, T2 > t2, T3 > t3) = exp{—[t, + o + t3 + Lats + titals]}).
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As P(Ty > t;,T3 > t3) = exp{—[t2 + t3 + l2l3]} the components are dependents.
Also, P(T) > t) = P(Tz > t) = P(T2 > t) = exp{—|t]} and the components are identically
distributed. . Furthermore the component lifetime T is independent of T2 and T3. Follows
that

P(t < T] < min{Tg,Ta}) —

P(T =T)|Tgy > t) = P > 1)

1 b .
m/ P(min{T,T3} > s)exp{—[s]}ds =

m/ exp{—(2s + s7)ds =
exp[§]VIT 1[s—(- a2

which depends in the particular time t and of the particular distribution F.

Therefore in this case we sce that the quantities P(T" = T(,)|T;y > t) depends in
the particular component lifetime distribution. Therefore, in working with system signa-
tures in the dependent and identically distributed components lifetimes (other than the
exchangeable distribution) we does not have the nice properties that we have in the con-
text of independent and identically distributed (i.i.d.) absolutely continuous component
lifetimes, in which case they are distribution free measures of system quality, depending
solely on the design characteristics of the system and independent of the behavior of the
systems components .

References

[1] Arjas, E. (1981). A stochastic process approach to multivariate reliability system.
Notions based on conditional stochastic order. Mathematical of Operations Research 6,
263-276.

[2] Aven, T. and Jensen, U. (1999). Stochastic Models in Reliability. Springer Verlag, New
York.

[3] Barlow and Proschan,F. (1981). Statistical Theory of Reliability and Life Testing:
Probability models. Hold, Reinhart and Wiston , Inc. Silver Spring, MD.

{4] Bremaud ,P. (1981). Point Processes and Quecues: Martingale Dynamics.Springer-
Verlag, New York.

[5] P.J. Boland and Samaniego, F.(2004). The signatue of a coherent system and its
applications in reliability. Mathematical reliability: An expository perspectiva. R. Soyer,
T. Mazzuchi, and N.D. Singpurwalla (Editors), Kluwer Publishers, Boston. 1 - 29.

17



[6) Kochar, S., Mukherjee, H., Samaniego, F.(1999). The signature of a coherent system
and its application to comparisons among systems. Naval Research Logistic. 46, 507 - 523.

(7] Navarro, J., Balakrishnan, N. and Samaniego,F.J.(2008). Mixture representation of
residual lifetimes of used systems. Journal of Applied Probability. 45, 1097 - 1112.

[8) Samaniego, F. (1985). On closure of the IFR class under formation of coherent systems.
IEEE Transactions in Reliability. R-34, 69-72.

[9) Samaniego,F.J. (2006). On comparison of engineered systems of different sizes, in
Proceedings of the 12th Annual Army Conference on Applied Statistics. Aberdeen Proving
Ground, Army Research Laboratory.

[10] Samaniego,F.J. (2007). System signatures and their applications in engineering re-
liability. International Series in Operation Research and Management Science, Vol 110,
Springer, New York.

[11) Samaniego,F.J., Balakrishnan, N. and Navarro, J., (2009). Dyr{amic signatures and
their use in comparing the reliability of a new and used systems. Naval Rescarch Logistic.
56, 577 - 596.

[12] Shaked, M., Suarez-Llorens, A. (2003). On the comparison of reliability experiments
based on the convolution order. Journal of American Statistical Association. 98, 693 -
702.

[13] Shaked, M., and Shanthikumar, J.G.(2007). Stochastic Orders.Springer, New York.

18



ULTIMOS RELATORIOS TECNICOS PUBLICADOS

2010-01 - BUENO, V.C. Component importance for a coherent
system under a hyperminimal distribution. 09p. (RT-2010-01)

2010-02 - ABADI, M., ESTEVES, L.G., SIMONIS, A. Pointwise
approximationos for sums of non-identically distributed
Bernoulli trials. 12p. (RT-MAE-2010-02)

2010-03 - BUENO, V.C. A Series Representation of a Ccherent
System. 16p. (RT-MAE-2010-03)

2010-04 - POLETO, F.2Z., PAULINO, C.D., MOLENBERGHS, G.
SINGER, J.M. Inferential implications of over-
parameterization: a case study in incomplete categorical
data. 33p. (RT-MAE-2010-04)

2010-05 - TSUNEMI, M.H., ESTEVES, L.G., LEITE, J.G6.,
WECHSLER, S. A Bayesian nonparametric model for Taguchi’s on-
line quality monitoring procedure for attributes. 23P. (RT-
MAE-2010-05)

The complete list of “Relatérios do Departamento de  Estatistica”, IME-USP, will be sent upon
request.

Departamento de Estatistica
IME-USP
Caixa Postal 66.281
05314-970 - Sdo Paulo, Brasil





