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I.Introduction. As in Barlow and Proschan (3] a complex engineering system is com­
pletely characterized by its structure function <l> which relate its lifetime T and its compo­
nents lifetimes T;, I ::; i ::; n, defined in a complete probability space (11, ~ . P) 

A physical system would be quit unusual ( or perhaps poorly designed) if improving 
the performance of a component (that is, replacing a failed component by a functioning 
component) caused the system to deteriorate (that is, to change from the functioning 
state to the failed state). Thus we consider structure functions which are monotonically 
increasing in each coordinate. Also to avoid trivialities we will eliminate consideration of 
any system whose state docs not depend on the state of its components. A system is said 
to be coherent if its structure function <l> is increasing and ca.ch component is relevant, 
that is, there exist a time t and a configuration of T in t such that the system works if, 
and only if, the componf;lnt works. 

The performance of a coherent system can be measured from this structural relation­
ship and the distribution function of its components lifetimes. The structure functions 
offer a way of indexing the class of coherent system but such .representations make the 
distribution function of the system lifetime analytically very complicated (mainly in the 
dependent cnse). An alternative representation for the coherent system distribution func­
tion is through the system signatures, as in Samaniego (10], that, while narrower in scope 
than the structure function, is substantially more useful. 

Samaniego (8] consider the order statistics of the independent and identically dis­
tributed components lifetimes of a coherent system of order n with absolutely continuous 
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distribution. Clearly {T = T(i)} 1 :5 i :5 n} is a (P-a.s.) partition of the probability space 
and 

,. ,. 
P(T::;; t) = L P(T::;; t, T = Tc,,> = L P(T = Tc;i)P(T :5 tlT = Tc,i) = 

i=l 

,. ,. 
L P(T = T<,,)P(Tc,, ::;; tlT = Tc,>> = L P(T = Tc,,)P(7<,, ::;; t) = 
i=l i=l 

n 

I:: o,P(Tcil :5 t). 
i=l 

In the above context Samaniego !IO) defines 

Definition 1.1 Let T be the lifetime of a coherent system of order n, with components 
lifetimes T1 , •.. , T,. which are independent and identically distributed random variables with 
absolutely continuous distribution F. Then the signature vector a- is defined as 

where o; = P(T = Tc;)) and the {7<,J, 1 :5 i :5 n} are the order statistics of {T;, 1 :5 i :5 n}. 

The key feature of system signatures that makes them broadly useful in reliability 
analysis is the fact that, in the context of independent and identica lly distributed (i.i.d.) 
absolutely continuous components lifetimes, they are distribution free measures of system 
quality, depending solely on the design characteristics of the system and independent of 
the behavior of the systems components . 

A detailed treatment of the theory and applications of system signatures may be found 
in Samaniego [IOI. This reference gives detailed justification for the i.i.d. assumption used 
in the definition of system signatures. By the way there arc a host of applications in which 
the i.i.d. assumption is appropriate, and in such case, the use of system signatures.for 
comparisons among systems is wholly appropriate; such applications range from batteries 
in lighting, lo wafers or chips in a digital computer to the subsystem of spark plugs in an 
automobile engine. 

The utility of signatures in gauging the performance of systems in i.i.d. components 
derives largely from representation and preservation results. Some of then link the char­
acteristics of system signatures with system performance. 

Before stating these results, we first recall the definitions of three standard forms of 
stochastic relations between random variables. 

Definition 1.2 Let T1 and T2 random variables. Then: 

a) T1 is stochastically smaller than T2 {T1 ::;., T2 ) if, and only if, P(T1 > t) :5 P(T2 > 
t), '<It; . 
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b) T1 is stochastically smaller than T2 in the hazard rate ordering (T < r.) ·r d 
, P(T, > <) . . . • I -hr 2 I , an 

only 1f, P(T•><) 1s nonmcreasmg m t , 'dt; 

c) in the case where T1 and T2 have absolutely continuous distributions with densities 
Ji and h, respectively, T1 is stochastically smaller than T2 in the likelihood rate ordering 
(T1 5 1r T2) if, and only if, 9,-ffi are nonincreasing in t, 'dt. 

The following result shows that certain relationships between two (discrete) signatures 
ensure that a similar relationship holds between the corresponding (continuous) system 
lifetimes. 

Theorem 1.3( Kochar et al. [61) Let 01 and 02 be the signatures of two coherent systems 
of order n, both based on n components with i.i.d. lifetimes with common continuous 
distribution F. Let S1 and S2 be their respective lifetimes. Then: 

a) if 

b) if 

c) if F is absolutely continuous and 

The applications of system signature can be extended Lo mixed system. A mixed 
system of order n is a stochastic mixture of coherent systems of order n and can be real­
ized in practice via randomization which selects a system at random according to a fixed 
probability distribution on the class of coherent systems of order n (see [5]). The mixed 
system that selects among n-component systems with signatures vectors 01,02, . .. ,on ac­
cording Lo the distribution p = (p1, ... , p..,) will have signature I:7=1 p,01. We note that 
the representation and preservation theorem above is applicable for mixed systems. 

One further important issue is the fact that we will, at times, be interested in com­
paring systems of different sizes. Although such a comparison might arise in general, it 
is special relevant when comparisons involve new and used systems. Theorem 1.3 is not 
immediately applicable to this problem. However, the exact relationship has been charac­
terized between the signature of a given system with a system of any larger order, which 
has an equivalent lifetime distribution under the assumption of i.i.d. component lifetimes. 
The following theorem is an example. 

Theorem 1.4 (Samaniego [91) Let o = (o1 , ••• , o..,) be the signature of a mixed system in 
n i.i.d. components lifetimes with continuous distribution F . Then the mixed system with 
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(n + 1) i.i.d. components lifetimes with continuous distribution F and corresponding to 
the system signature 

• _ ( no1 01 + (n - 1)02 202 + (n - 2)03 (n - l)o,._1 + o,. no,. ) 
0 

- n + 1 ' n + 1 ' n + 1 ' ... , n + 1 ' n + 1 

has the same distribution lifetime as the n-componcnt system with signature or. 

Samaniego 18), Kochar, et al . 16) and Shaked and Suarc-.t-Llorens (112) extended the 
signature concept to the case where the components lifetimes T 1 , •• • , T,., of a system are 
exchangeable (i.e. the joint distribution function, F(t1 , •• • , t,.), of (T1 , ••• , T,,) is the same 
for any permutation of t 1 , . •• , t,.), an interesting and practical situation in reliability theory. 

Navarro cl al. {7) and Samaniego cl al. [111 consider dynamic (conditioned) signatures 
and their use in comparing the reliability of new and used systems. Their procedures 
consider the system lifetime conditioned in an event on time. Navarro el al. 171 consider 
either the event {T > t} and {T(;) :St} n {T > t} with system signature P(T = T<;ilT > t) 
and P(T = T(;)l{T(;) :St} n {T > t}) respectively. A systems signature has proven to be 
quite a useful proxy for a systems design, as it is a distribution-free measure ( i.e. , not 
depending on F ) that efficiently captures the precise features of a systems design which 
influence it performance but unhappiness, in both Navarros above situations, the system 
signatures does depend on F(t). 

Samaniego ct all. II 1) consider the event in time {7<;) :St < T(;+I}} n {T > t} and in 
this case the system signature P(T = T(;)l{T(;) :St < T(;+J)} n {T > t}) does not depend 
on t and on F(t) and have the usual signatures properties. Samaniego ct all. 1111 extend 
Theorem 1.3, however their conditionccl signature does not capture the dynamics aspects 
of the problem. 

Theorem l.5 (Samaniego et al 1111)) Consider two used mixed systems with lifetimes S1 

and S2, based on n original components with i.i.d . lifetimes having the common continuous 
distribution F . Suppose both systems arc working and have exactly i and j failed compo­
nent, respectively, at time t . Let o 1 (n - i) and o 2 (n - j) be their dynamics signatures, as 
in [11). Then 

a) if 
01 (n - i) :S., 02(n - j) ==> 

(Sil{T(;+I) $ l < 7j;+2)} n {S1 > t}) :S .. (S21{Tc;+1) $ t < Tc;+2)} n {S2 > t} ); 

b) if 
01(n -i) :Sh, 02(n-j) ==> 

(S,l{T(;+l) $ t < T(;+2)} n {S1 > t}) :Shr (S21{T(;+1) $ t < 1c;+2)} n {S2 > t}); 

c) if F is absolutely continuous and if 
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In this paper we consider the system evolution on time under a complete information 
level. The natural tool to consider the increasing information on time through a family 
of sub-oalgebras is the martingale theory and, in our case, the point process martingale 
theory. To make the exposition understandable, in the Subsection 2.1 of the Section 2 we 
develop the independent case which is a natural approach for systems signatures theory. 
We give some examples at the end of this Subsection. In Subsection 2.2 we give the 
mathematical details. 

2. Dynamic signatures 

We intend to give a new approach to dynamic systems signatures. We consider the 
system evolution on time under a complete information level. In this fashion, the expected 
dynamic system signature enjoy the special property that they are independent of both the 
distribution F and the time t. This fact has significance beyond the mere simplicity and 
tractability of the signature vector, reflect only characteristics of the corresponding gystem 
design and may be used as proxies for system designs in the comparison of system perfor­
mance. Also the dynamic system signature actualizes itself under the system evolution on 
time recovering the dynamical system signature in the set {Tc,) :::; t < Tc;+i)} n {T > t} , 
as in [111 and the original coherent system signature in the set {Ten) :::; t} as in (10) . 

In our general setup, we consider the vector (T1 , ••• , Tn) of n component lifetimes which 
are finite and positive random variables defined in a complete probability space (n, ~, P), 
with P(T, 'FT;)= 1, for all i li,i,j in E = {I, ... ,n}, the index set of components. The 
lifetimes can be dependent but simultaneous failure arc ruled out. 

In what follows, to simplify the notation, we assume that relations such as C, = 
, :::;, <, 'F between random variables and measurable sets, respectively, always hold with 
probability one, which means that the term P-a.s., is suppressed. 

The evolution of components in time define a marked point process given through the 
failure times and the corresponding marks. 

We denote by Tc1J < Tc2J < ... < Ten) the ordered lifetimes T1, T2, ... , Tn, as they 
appear in time and by X, = {j: Tc,)= T;} the corresponding marks. As a convention we 
set Tcn+I) = Tcn+2) = ... = 00 and Xn+I = Xn+2 = ... = e where e is a fictitious mark not 
in E. Therefore the sequence (Tn, X.,)n>I defines a marked point process. 

The mathematical formulation of our observations is given by a family of sub o­
algebras of~. denoted by (~1).2:0, where 

~, = o{l{T<•>>•},X, = j, I$ j $ n,j E E,O < s $ t}, 

satisfies the Dellacherie conditions of right continuity and completeness . 
Intuitively, at each time t the observer knows if the events {Tc,) :::; t, X, = j} have 

either occurred or not and if they have, he knows exactly the value Tc,) and the mark X,. 
We assumed that T,, 1 :::; i :::; n are totally inaccessible ~,-stopping time. 

We observe that, in the original concept of signature, Samaniego [10) does not use any 
information on time which we represent by the trivial u- algebra~, = {n, 0}, Vt. 
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An extended and positive random variable r is an Sl,-stopping time if, and only if, 

{r :S t} E ~ .. for all t ~ O; an ~,-s topping time T is called predictable if an increasing 

sequence (rn)n~O of Sl1-stopping time, Tn < r, exists such that limn-oo Tn = r ; an Sl,­
stopping t imer is totally inaccessible if P(r = u < oo) = 0 for all predictable Sl,-stopping 

time er. For a mathematical basis of stochastic processes applied to reliability theory sec 
the book of Aven and J ensen 121- In a practical sense we can think of a totally inaccessible 
Sl,-stopping time as an absolutely continuous lifetime. 

2.1. Dynamic signatures with independent and identically distributed lifetimes. 

In this Subsection the following remark is of fundamental importance: 

Remark 2.1.1 Under the assumption that the components lifetimes are i.i.d. with abso­

lutely continuous distribution F , P(U~i{T =Tc,)}) = I and the information in ~, is of 

the kind {T(,) :St< Tc,+·1i} , i = 1, 2, ... , n with Teo) = 0 and 7<n+l) = oo. Follows that: 

P(T :S ti~,)= 0 in the set {Ti°i) > t}; 

P(T :S tlO',) = I in the set {t ~ Tc,.,} . 

Therefore h P(T :S tl~, )dP = P(A n {T :St}) 

VA E ~, and we have 

We are going to use Remark 2.1.l in the next Theorem and we will prove it, rigorously, 

in the next Subsection. 

Theorem 2.1.2 Let T be the lifetime of a coherent system of order n, with component 
lifetimes T1 , .•• , Tn which are independent and identically distributed with continuous dis­

tribution F. Then, 

where 
P(T = Tc,)) P(T = Tc,-ll) 

{J, = P(T ~ Tc,,> - P(T ~ Tc,-1))' 
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Proof Firstly, as the order statistics have the likelihood ratio order property ( Shaked 
and Shanthikumar 113], p 54 ), they also have the reversed hazard order property and are 
independent of the events of the type {T = Tc,)} the /J, are positives. Also 

if P(T =Ten))=/ 0 and equal to ;:~~;i•-lll = 1, if P(T =Ten))= 0 and so successively. 
- (P1-1) 

From Remark 2.1.1, we have 

n P(T = T(,)) _ 
E,=1 P(T ~ T(,)) ll1r,1♦,i>t} - l(Tc,i>t}I -

n P(T = '.Ii,)) P(T = Tc,-i)) _ 
1 - E,=il P(T ~ Tc,)) - P(T ~ Tc,-1)) )l{Tc,i>t} -

E;'=1/J, - E;'=1/J,11r,,i>t} = E~1/J,l1r,,1:5t} · 

Definition 2.1.3 Let T be the lifetime of a coherent system of order n, with component 
lifetimes T 1 , ••• , Tn which are independent and identically distributed random variables with 
absolutely continuous distribution F. Then the dynamic signature vector {J is defined as 

where /3, = ~~~;~:::l and the Tc,) are the order statistics of T;, 1 $ i $ n. 

Remarks 2.1.4: Given the information ~t we knows that, in the set {Tc,) $ t < '.n+1)} , 

~ ~ P(T = Tc,)) P(T = Tc,-1)) P(T = Tc,)) 
P(T $ tl{Tc,) $ t < '.n+1J}) = L.,/J• = L.,I P(T > T.-) - P(T > T.- )) = P(T > T. - )' 

j=I j=l - (,) - (,-l) - (,) 

as we have in Remark 2.1.1. 
The next Corollary shows that how the dynamic signature actualizes itself on time 

and how we recover the Samaniego po] signature vector at infinity. 

Corollary 2.1.5 Let T be the lifetime of a coherent system of order n, with component 
lifetimes T1 , ••• , Tn which are independent and identically d istributed with absolutely con­
tinuous distribution F. Then, in the set {Tc,) $ t < T(,+1)}n{T > t}, the system signature 
actualizes in time with 

P(T $ t + xl{T(,) $ t < T,+1)} n {T > t}) = 
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n 

L /J;P(Tw St+xl{Tci) St<Ti+i)}n{T>t}), 

j=i+l 

n 

and L /J; = 1. Also, it.s restores the Samaniego IIO) system signature in the set {t ~ 

i = i+l 
'.ljn)}-

Proof In the set {T > t} n {Tei) $ t < Tci+t)} , P(T = Tc;)) = 0 if j $ i and the coherent 

system signature actualizes to 

n 

L /J;P(Tw $ t + xl{Tci) $ t < Ti+1il n {T > t}), 

j = i+l 

with t /J; = t t(T = Tu>) _ P(T = Tu- i))) = P(T = Ten)) = l, 
i=i+l i=i+l P(T ~ Tw) P(T ~ Tu-1)) P(T ~ 1cu)) 

if P(T = Ten)) 'F O and equal to =i~;~::::J = 1, if P(T = 7in)) = 0 and so successively. 

Also, as P(T = Tei)) = 0 and P(T ~ Tc,+i)) = I we have 

and the signatures actualizes it.self in the set {T > t} n {Tc;) $ t < 7'cHi)}-

As /)1 = o 1 and {T; $ t} occurs successively in time for i = 1, 2, 3, ... , in the set 

{t ~ T(n)} we have: 

n · 

P(T $ti~.)= Lo;l1r1,1:,1) • 

i=J 

Talcing expected values we get 

n 

P(T $ t) = L OiP(T(i) $ t) 
i==l 

recovering the Samaniego signature decomposition as in 110). 

Examples 2.1 .6 i) If T 1 , T2 , T3 are independent and identically distributed component's 

lifetimes of the system with lifetime T = T 1 I\ (T2 V T3 ) . 

The Samaniego 19) system signatures are: 
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01 = P(T = Tc1i) = ½, 02 = P(T = Tc2i) = ~ and 03 = P(T = Tc3i) = 0 and the 

signature system distribution lifetime decomposition is 

H P (T = T(I)) _ 1 P(T=Tm) _ l d P(T= Tc,,> _ 0 d h , h d ·ca1 
owever P(T> T l - 3 , P(T> T. l - an P(T>T. l - an t ere,ore, t e ynarn, 

signature are - <•> - <•> - <•> 

/31 = ½, 132 = ~. /33 = 0 and the dynamic signature system distribution lifetime 

decomposition is 
1 2 

P(T $ti~,)= 3l(T(1J$I} + 3l(T(2)$I}• 

Taking expected values we get 

and note that o, = /3,, i = 1, 2 in the set {Tc2) < t} recovering the Saman'iego 

(lOJsignature decomposition. 

ii)The Bridge system lifetime can be set as T = (T1 V T2) A (T1 V T3 V Ts) A (T2 V 

T3 V T4) A (T4 V Ts) . where T 1 , T2, T3, T4, Ts are independent and identically distributed 

lifetimes. 
The Samaniego [9) system signatures are: 

o 1 = P(T = 7<1l) = 0, 02 = P(T = Tc2)) = ¼, 03 = P(T = Tc3)) = ~. 04 = 
P(T = Tc4 )) = ! and 05 = P(T = Tes)) = 0 and the signature system distribution lifetime 

decomposition is 

A P(T-Tcl)) _ O P(T=T{2)) _ 1 P(T='I'm) _ 3 P(T=Tc,,> _ l d P (T=Tc,,> _ l d 
s P(T2'.T(1)) - ' P(T2:Tm) - 5' P(·r2:·r,,,> - 4' P(T2'.T<•>> - an P(T2:T<•>> - an 

follows that the 
the dynamical signature are: 
/31 = 0, 132 = ! , /h = ½A, /34 = ¼ ,/3s = 0 and the dynamic signature system distribution 

lifetime decomposition is 

1 11 1 
P(T $ti~,)= 511r,,,$1J + 20 11T,,i$•J + 411r,,1$1J • 

Now, in the set {Tc2) $ t < Tc3i} n {T > t} the system signature actualizes to /h = ¾ 

and /34 = 1 - ¾ = ¼-
the decomposition system signature actualizes to 

P(T $ t + xl{Tc2) $ t < 7<3)} n {T > t}) = 
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3 l 
;iP(T(3) :$ t+xl{Tc2) :$ t < T(3)}n{T > t} )+ ;iP(Tc•> :$ t+xl{Tc2) :$ t < Tc3)}n{T > t} ). 

Also 

l 4 3 l 
P(T $ t) = 5P(T<2> :$ t) + 5(4P(Tc3> :$ t) + 1P(Tc•> :$ t)] 

in the set {Tc•> :$ t}, recovering the Samaniego (10] signature decomposition. 

iii) If T 1 , T2 , T3, T4 are independent and identically distributed component's lifetimes 
of the system with lifetime T = T1 v (T2 /\ T3 /\ r.), then o 1 = P(T = 1(1)) = 0, 02 = 
P(T = 7<2 i) = ½ and o 3 = P(T = T(3)) = ¼ and o 4 = P(T = 1c4i} = ¼ and the signature 
system distribution lifetime decomposition is 

H P(T= T(I)) O P(T=Tc,,l I P(T=Tp1) 1 d P(T=Tc,,> l 
owever P(T2:Tc,,> = , P(T2:T(2)) = 2, PCT2:7t,,> = 2 an P(T2:Tc,,> = · 

Follows that the dynamical signature arc: /Ji = 0, /h = ½, /33 = 0, and /34 = ½ the 
'Damic signature system distribution lifetime decomposition is 

l 1 
P(T $ti~,)= 2I(r{2):SI} + 211r,,,:S<J· 

In the set {T(2 ) :$ t < T(3)} n {T > t} we have /3a = ½ and /34 = 1 - ½ 
dynamical system signature acluo.lizes to 

1 I 
P(T $ t + xl{7<2J :$ t < 7<3i} n {T > t})) = 

2
P(Tc2) :$ t + x) + 2 . 

½- the 

1 1 
l2P(T(3) :$ t+xl{Tc2) :$ t < T(3)}n{T > t})+2P(T(4) :$ t+xl{Tc2) :$ t < T(3)}n{T > t})] 

1 1 1 l 
P(T $ t) = 

2
P(Tc21 :$ t) + 

2
(
2

P(Tc3J :$ t) + 2P(T<•> :$ t)], 

recovering the Samaniego signature decomposition as in (10]. 

Remarks 2.1.7: As the dynamic signatures actualizes itself on lime and in the set {Ten) < 
t} , o, = /3,, Vi. we can rewrite either Theorem 1.3 (6] and Theorem 1.5 [11] in the cited 
papers in an unified Theorem: 

Theorem 2.1.8 Consider two mixed systems based on n original components with i.i.d. 
lifetimes having the common continuous distribution F. The first system having lifetime 
S1, signature vector o 1 and dynamic signature vector /31. T he second one having lifetime 
S2 , signature vector o 2 and dynamic signature vector. Then 



a) if 

b} if 
01 Shr 02 => (Sil~,} Shr (S2l~1}; 

c) if F is absolutely continuous and if 

Proof Firstly we always have 'E'J=J3; = 1, Iii, 1 Si Sn in the way that both the vectors 
/31 and /h are not significant for stochastically comparing systems lifetimes with respect 
to stochastic ordering and hazard rate ordering. However, as the stochastic comparisons 
must holds for all time t 2". 0, the constants /3, actualizes itself to o, in the set {Tc,-1 ) S 
t < Tc,)} n {T > t} and /3, = a, Iii int> Ten), either the vectors o 1 and 02 are relevant 
for those comparisons and are the sufficient conditions. 

As the atoms in~, is of the kind {Tc,) St< Tc;+ 1)}, i = 1,2, ... ,n with Teo)= 0 and 
'.I'( .. +i) = oo, the proof of parts a} and b} follows from Theorems 1.3 of [6] and Theorem 
1.5. from [111. 

To prove part c) we have to consider the likelihood ratio ordering between the vectors 
/31 and /h and the prove follows as in Theorem 1.5. (11]. 

Remarks 2.1.9: Samaniego et al. [11] analyses the NBU dynamic version of aging in the 
signature context and defines the class of New Better Than Used Distribution conditioned 
to the event {T > t} n {T(i) St< T(i+l)}-

Definition 2.1.10 a) Consider a mixed system based on n components with i.i.d lifetimes 
T 1, •• • , T,. with absolutely continuous distribution F. Let T be the systems lifetime and let 
E, = {Tc,) S t < T(,+1)}- For fixed i E {0, 1, ... , n - l}, T is conditionally N BU, given i 
failed components (denoted by i-NBU) if for all t > 0 either 

i) P( {T > t} n E;) = 0 or 
ii} P({T > t} n E,) > 0 and 

P(T > x) ~ P(T > t + xl{T > t} n E,), \Ix> 0. 

b) An n-component system is said to be UN BU if it is i-NDU for i E {0, 1, ... , n - 1 }. 

Samaniego et al. [11 I observes that if the system is uniformly N BU then it is N BU 
but the reverse does not hold, and then give sufficient conditions for a system based on n 
components with i.i.d. lifetimes to be UN BU: 

Theorem 2.1.11 Let s,.(n) be the signature, and T the lifetime, of a mixed system 
based on n components whose lifetimes are i.i.d. with common continuous distribution F. 
Assume that F is N BU and that 
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Sn(n) ;;:., s,.(n-i), i = 1,2, ... ,n-1. 

Then the system is UNBU. 

We report to the work by Arjas [1) of conditioned MN BUI~,- To that we remember 
the concept of Upper Set: A Borel set U c R" is called upper if for any x, y E R" , x E U 
and x :5 y together imply that y E U. ( x :5 y means that :i:, :5 y,, 1 :5 i :5 n). 

The Arjas [1) definition is: 

Definition 2.1.12 a) We say that T = (T1 , ••• ,T,.) is multivariate new better than used 
relative to ~t, and abbreviate this by MN BUI~,, if 

for all t 2'. 0 and all open upper set U. In the special case n = I 

b} Tis NBUI~,, if for all t 2'. 0 ands ER 

As a lifetime Tis N BU if,, and only if, it is N BUla{l{T>•J, 0 :5 s :5 t }, this definition 
is an extension of the classical concept and it turns out that this distribution class have 
most of what could be called desirable properties of any extension of the conventional 
NEU-class. In particular if we consider 

satisfying the Dcllachcrie conditions of right continuity and completeness we have: 

Theorem 2.1.13 i) Suppose that T is MN BUI~,. If To = (T;, i E / 0 ) is any subvector 
of T and 

!R, = a{l1rc,i>•J,X, = j,i E lo,j E E,O < s :5 t}, 

then To is MNBUl!R,. In particular each T, is NEU. · 

ii) Suppose that Tis MN BUI~,. If (!R,),>o is another family of a-algebras such that 
!R, C ~, for all t 2'. 0 and !Ro = ~o then Tis MN BUI!!?,. In particular let T be the lifetime 
of a coherent system and !I?,= a{l{T>a},0 :5 s :5 t}, then Tis NBU. 

iii) Suppose that T 1, ••• , T,. are independent and N BU. Then T is MN BUl~,­

Follows that Theorem 2.1.11, in [11], also holds in the general context of dynamic 
signatures. Others concepts of distributions classes relative to ~, can be analyzed, such 
as MIFRI~,.( see Arjas [II). 
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2.2. The mathematical details. 

The natural tool to consider the increasing information on time through a family 
of sub-cralgcbras is the martingale theory and, in our case, the point process martingale 
theory. 

The simple marked point N(i),i(t) = l{Tc;,:-,t,X;=i} is an ~,-submartingale and from 
the Doob-Mcyer decomposition we know that there exists a unique ~,-predictable process 
(Ac;J,i(t)).;io, called the ~,-compensator of Nc;J,1(t), with Ac;i,1(0) = 0 and such that 
Nc;J,i(t} - Ac;i,1 (t) is an ~,-martingale. Ac;J,i(t) is absolutely continuous by the totally 
inaccessibility of T., l $ i $ n . 

The compensator process is expressed in terms of the conditional probability, given 
the available information and generalize the classical notion of hazards. Intuitively, ·this 
corresponds to producing wether the failure is going to occur now, on the basis of all 
observations available up to, but nol including, the present. 

As N(;J,;(t) can only count on lhe lime interval (Tc;-iJ, 7<;J], the corresponding com­
pensator differential dA(;i,;(t) must vanish outside this interval. To count the i - th failure 
we let N(;J(t) = E;;?iN(;).; (t) with ~,-compensator process Ac;)(t) = E;;?iAc;J,;(t). 

n n 

Follows that the ~,-compensator of N(t) = LL Nc;),;(t) is 
i=l ;=1 

n n 

A(t) =LL Ac;J,j(t)l{rc;-,,«:<,ru,l• 
i=l j=l 

which can be written, without loss of generality ( see Bremaud (4]) as 

n n 

A(t) =LL Ac;J,;(t)l{rc,,5«Tc<+•>l· 
i=I j=l 

In this former notation (A(t))1?'.o is an ~,-predictable process and therefore unique. 
The ~,-stopping times T; are rarely of directly concerning in reliability theory. One 

is more interested in the system lifetime 

T = min maxT;, 
l,Sj ,SkiEK; 

where 1(1 , l $ j $ k are minimal cut sets, that is, a minimal set of components whose 
joint failure causes the system fail. 

Conveniently, we can define the critical level Yc;J,;, as the first time from which onwards 
the failure of component j lead to system failure at {T = Tc,), X; = j}. We consider the 
~,-compensator process (A,i,(t)),?'.o of the point process N,i,(t) = l{TS,}, of the system 
lifet ime T, such that N,i,(t) - A,i,(t) is an zero mean ~.-martingale with P(T $ t) = 
E(N,i,(t)] = E[Ac,(t)) . 
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Theorem 2.2.1 Under the above notation, in the set {T > t}, the !l,-compensator of 
N111(t) = l{rs,1, is 

A11,(t) = Ef=, E7=i!A(i),;(t) - A(i),;(Yc;J,;)]+1 {T<;iSt<T<•+lll, 

where a+= max{a,O}. 
Proof 

As A(i)J(s) is the !),-compensator of N(i),;(s) we have that 

holds true for o.11 non-negative !),-predictable process (C(i).;(t)),;:,:0 • Follows that, for 
any !),.predictable process (C(t)),2:o, we can define the !),-predictable process C(i),;(t) = 
C(t)l(Y<•>.J <tStAT) and therefore 

E[fo
00 

C(s)l{Y(,1.,<•SIAT}dNc;),j(s)) = 

E[fo
00 

C(s)l{Y(11.J<•SIATjdAc;),;(s)). 

Also we note that 

in the way that 

Follows that Elf0
00 C(s)dN111(s)) = 

At this point we can prove our main result. 
The approach is as the following: in addition to (!).)t>O, at each Lime t, the observer 

knows if the events {T :5 t} have either occurred or not and if they have, he knows exactly 
the value of T. 

The mathematical formulation of such an additiono.J observation is given by a family 
of sub u-algebras of !l, denoted by (!R1) 1;,:o, where 

!Rt= u{l{T>•},0 < s :5 t}, 
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satisfies the Dellacherie conditions of right continuity and completeness . 

Note that, the series parallel representation of T is 

T = 4'(T) = min ma.xT;, 
l $j5.,k iEKJ 

where I<;, 1 ::, j ::, k are the minimal cut sets. Follows that 

{T > s} = n LJ {Tl> s} 
15.,j~k iEKJ 

and therefore !R, C !}, for all t 2'. 0. Actually and abusively, we continue to use !}, for 

!}, V !R, representing the complete information level. 

Theorem 2.2.2 Let T be the lifetime of a coherent system of order n, with component 

lifetimes T 1 , ••• , Tn which are totally inaccessible !},-stopping time . Then, under the above 

notation and at complete information level, we have 

with 7(n+l) = 00. 

Proof From the Projection Thcorcm,(Brcmaud (41), follows that the !R,-compensator is 

given by E(A,i.{t)l3?,I. As A,i.(t) is calculated in the set {T > t} we have E[dAc;),;{s)l!R,) = 
~ 
P(T~a) ' 

Now, we have 

Remarks 2.2.3 i) The above results proves the Remark 2.1.1 of Subsection 2.1, in the 

case of independent and identically distributed lifetimes in which 

ii) Navarro, et al. [7) consider the mixture representation of residual lifetimes of used 

systems. In its conclusion asked about the general case of dependent components which 
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remain an interesting open question. Clearly, it is not seemingly true to think the general 
case of dependent components in the signatures context. However, as Navarro et all. (1988) 
asked, it is plausible to analyse the case of dependent and identically distributed lifetimes 
( any way, its holds true for exchangeable distribution). In this case we have 

- n P(T = 7<,)l!:3'1) 
P(T $ tl!:3',) - E,=t P(T > T. - ) l1r<•i!>t<T<•+1il· - (,) 

and the terms P~;~1;.:'.~•> depends on the distributions lifetimes, as we sec in the sequel: 

We consider the system lifetime T = T1 I\ (T2 V T3) with three components lifetimes 
T1 , T2, T3 with the three dimensional standard exponential distribution of Marshall and 
Olkin is used with the the survival probability P(T1 > t1, T2 > t2, T3 > t3) given by 

An interpretation of this distribution is as follows: Suppose independent sources of 
shocks are present in the environment. A shock from source i destroys component i, 1 $ 
i $ 3 and it occurs at a random Lime U,, 1 $ i $ 3 respectively. A shock from source 
i,j destroys either the components i and j, simultaneously at a random time U;;, 1 :$ i $ 
3, 2 $ j $ 3, i < j. Finally, a shock from source 1, 2, 3 destroys the three components 
simultaneously at the random time U123. The lifetimes U1 ,U2,U3,U12,U,3,U23 and U123 
are independent and identically distributed with standard exponential distribution. 

and 

The components lifetimes are define 

T1 = min{U1,U12,U13,U123}; 

T1 = min{U2,U12,U2a,U123}; 

T1 = min{U3,U13,U2a,U123}, 

P(T1 > t) = P(T2 > t) = P(T3 > t) = exp{-4t}. 

Then the lifetimes arc dependent but identically distributed. However 

P(t < U1 $ min{U2,U3 , U12, U13,U2a}) 
expl-7tJ 

expl-7tJ 
7expl-7tJ = 1' 

and P(T = T(l)ITc1) > t) is independent of F(t). As the Marshall and Olkin is an 
exchangeable distribution we have an expected result. 

Otherwise, if we consider the following Type I Gumbel exponential lifetime multivari­
ate distribution with survival function 
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As P(T2 > t2 , T3 > t3) = exp{-lt2 + t3 + t2t3)} the components are dependents. 
Also, P(T1 > t) = P(T2 > t) = P(T2 > t) = exp{-lt)} and the components are identically 
distributed . . Furthermore the component lifetime T1 is independent ofT2 and T3. Follows 
that 

l 100 

13 2 3) P(min{T2, T3} > s) exp{-ls)}ds = 
exp- t + t + t , 

l 1°" 3 I 2 3) exp{-l2-2 s + s2 )}ds = exp - 3t + t + t , 

exp(!Jv'fi ./2-1-100 ex {-~ (s - ,-rn2 }ds 
exp -(3t + t2 + t3J ../2n I p 2 4 ' 

which depends in the particular time t and of the particular distribution F. 
Therefore in this case we sec that the quantities P(T = Tcl)1Tc 1i > t) depends in 

the particular component lifetime distribution. Therefore, in working with system signa­
tures in the dependent and identically distributed components lifetimes (other than the 
exchangeable distribution) we docs not have the nice properties that we have in the con­
text of independent and identically distributed (i.i.d.) absolutely continuous component 
lifetimes, in which case they are distribution free measures of system quality, depending 
solely on the design characteristics of the system and independent of the behavior of the 
systems components . 
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