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ABSTRACT
A new general class of exponentiated sinh Cauchy regression models
for location, scale, and shape parameters is introduced and studied. It
may be applied to censored data and used more effectively in survival
analysis when compared with the usual models. For censored data, we
employ a frequentist analysis for the parameters of the proposedmodel.
Further, for different parameter settings, sample sizes, and censoring
percentages, various simulations are performed. The extended regres-
sionmodel is very useful for the analysis of real data and could givemore
adequate fits than other special regression models.

1. Introduction

The Weibull, log-normal, log-logistic, and Birnbaum–Saunders regression models are usu-
ally applied in science and engineering to model lifetime data for which linear functions of
unknown parameters are adapted to explain the phenomena under study. However, it is well-
known that several phenomena are not always in agreement with the usual model due to lack
of asymmetry, bimodality, or the presence of heavily and lightly tailed distributions. In order
to deal with this problem, some proposals have been made in literature with more flexible
classes of distributions. We work with the exponentiated sinh Cauchy distribution because of
its great flexibility to fit asymmetric and bimodal data.

A large number of new distributions to extend well-known distributions and to provide
flexibility inmodeling data has being investigated in the last years. In this context, Gupta et al.
(1998) pioneered a generalization of the standard exponential distribution called the expo-
nentiated exponential (Exp-E) distribution. The exponentiated class of distributions (Gupta
and Kundu, 2001) has cumulative distribution function (cdf) given by

F(t ) = G(t )τ , (1)
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where G(t ) represents the baseline cdf and α > 0 denotes the shape parameter. By differenti-
ating (1), the corresponding probability density function (pdf) becomes

f (x) = τG(t )τ−1g(t ), (2)

where g(t ) denotes the baseline pdf.
For modeling a lifetime T > 0, Ramires et al. (2016) used the log-sinh Cauchy (LSC) dis-

tribution for the baseline in (2) by defining the four-parameter exponentiated log-sinh Cauchy
(ELSC) distribution, whose pdf (for t > 0) is given by

f (t; μ, σ, ν, τ ) = τν

t σ π

cosh(
log(t )−μ

σ
)[

ν2 sinh2( log(t )−μ

σ
) + 1

]
×
{
1
2

+ 1
π
arctan

[
ν sinh

(
log(t ) − μ

σ

)]}τ−1

, (3)

whereμ ∈ R and σ > 0 are the location and scale parameters, respectively, ν > 0 is the sym-
metry parameter, which characterizes the bimodality of the distribution, and τ > 0 is the
skewness parameter. The distribution of the logarithm Y = log(T ) is called the exponenti-
ated sinh Cauchy (ESC) distribution, whose cdf (for y ∈ R) is given by

F(y; μ, σ, ν, τ ) =
{
1
2

+ 1
π
arctan

[
ν sinh

(
y − μ

σ

)]}τ

. (4)

The pdf and survival function corresponding to (4) are given by

f (y; μ, σ, ν, τ ) = τν

σ π

cosh(
y−μ

σ
)[

ν2 sinh2( y−μ

σ
) + 1

] {1
2

+ 1
π
arctan

[
ν sinh

(
y − μ

σ

)]}τ−1

(5)

and

S(y; μ, σ, ν, τ ) = (2π)τ − {π + 2 arctan
[
ν sinh

( y−μ

σ

)]}τ
(2π)τ

, (6)

respectively. The ESCdistribution (5)was first introduced byCooray (2013) tomodeling sym-
metric, right and left skewed, and bimodal datasets. For τ = 1, the sinh Cauchy (SC) distri-
bution is just a special case of (5).

In this article, we propose a general class of regressionmodels, where themean, dispersion,
asymmetry, and bimodal parameters vary across observations through regression structures,
assuming that the model errors follow the ESC distribution, whichmay be a useful alternative
for modeling the four existing types of failure rate functions. The inferential component is
carried out using the asymptotic distribution of the maximum likelihood estimators (MLEs).
We also present methodologies to detect influential subjects with censored data and residual
analysis for the proposed model. The script used to fit the ESC model, which is implemented
in the R software environment (R Core Team, 2015), is given in the Appendix.

The sections are organized as follows. In Section 2, we derive a power series for the quantile
function (qf) and give explicit expressions for the moments. We propose an ESC regression
model for modeling simultaneously the location, scale, bimodality, and asymmetry param-
eters for censored data and discuss inferential issues in Section 3. Section 4 contains some
Monte Carlo simultaneously on the finite sample behavior of theMLEs. In Section 5, we assess
the behavior of the MLEs of the parameters in the ESC regression model when it is poorly
specified. In Section 6, we discuss some diagnostic measures for three perturbation schemes,
case-deletion, and generalized leverage method. The residuals from a fitted model using the
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Figure . Plots of the density function () for some values of τ : (a) ν = 0.3; (b) ν = 0.8.

martingale residual and martingale-type residual are also presented in this section. Applica-
tions to two real datasets are addressed in Section 7 to illustrate the flexibility of the proposed
class of regression models for censored and uncensored data. Finally, Section 8 offers some
conclusions.

2. Properties of the standardized ESC distribution

In this section, we study some properties of the standard ESC random variable defined by
Z = (Y − μ)/σ . The density function of Z (for z ∈ R) reduces to

f (z; ν, τ ) = τ gSC (z)GSC(z)τ−1 = τν

π

cosh (z)
ν2 sinh2(z) + 1

{
1
2

+ 1
π
arctan

[
ν sinh(z)

]}τ−1

,

(7)

where GSC (z) and gSC (z) denote the cdf and pdf of standard SC distribution given by

GSC (z) =
{
1
2

+ 1
π
arctan [ν sinh (z)]

}
and gSC (z) = ν

π

cosh (z)
ν2 sinh2(z) + 1

, (8)

respectively.
Plots of the density function (7) for selected parameter values are displayed in Fig. 1.

Equation (7) for the standardized ESC distribution will be used in Section 3.1 to specify the
error distribution of the proposed regression model.

2.1. Expansion of the quantile function

Inverting F(y) = u in (4) gives the qf ofY

Y = QY (u) = μ + σ arcsinh
{
1
ν
tan
[
π
(
u1/τ − 0.5

)]}
. (9)

The qf QZ(u) of Z, which has the standardized ESC density function (7), can be obtained
from (9) with μ = 0 and σ = 1. The qf of the standardized SC distribution, say QSC(u), also
follows (9) with μ = 0 and σ = τ = 1 and it will be used to demonstrate some properties of
Z in the following sections.

We can use (9) for simulating ESC or standardized ESC random variables by setting u as
a uniform random variable in the interval (0, 1). The qf is widely used to determine some
mathematical properties like moments, generating function, Galton’s skewness, and Moors’s
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kurtosis. Recently, Ortega et al. (2016) used the qf to demonstrate some properties of the
log-odds Birnbaum–Saunders model and Cordeiro et al. (2016) presented those for the gen-
eralized odd half-Cauchy family.

Next, we derive a power series for the qf of Z. Expanding (9) in Mathematica in a power
series, considering μ = 0 and σ = 1, we have

QZ(u) =
∞∑
k=0

ck (u1/τ − 0.5)2k+1,

where ck = bk
(2k+1)! (

π

ν
)2k+1 and b0 = 1, b1 = 2ν2 − 1, b2 = 16ν4 − 20ν2 + 9, b3 = 272ν6 −

616ν4 + 630ν2 − 225, b4 = 7, 936ν8 − 28, 160ν6 + 48, 384ν4 − 37, 800ν2 + 11, 025, . . .
By expanding the binomial term, the last equation reduces to

QZ(u) =
∞∑
k=0

∞∑
j=0

(−1)2k+1− j u j/τ

22k+1− j

(
2k + 1

j

)
ck.

Finally, changing
∑∞

k=0
∑∞

j=0 by
∑∞

j=0
∑∞

k= j, we obtain

QZ(u) =
∞∑
j=0

p j u j/τ , (10)

where the coefficients

p j =
∞∑
k= j

(−0.5)2k+1− j
(
2k + 1

j

)
ck (11)

can be determined using, for example,Mathematica,Maple, R, and Sage.

2.2. Moments

Let μ′
s = E(Zs) be the sth ordinary moment of Z with pdf (7). We have

μ′
s = τ

∫ ∞

−∞
zs gSC (z)GSC(z)τ−1dz = τ

∫ 1

0
QSC(u)s uτ−1du.

Replacing QSC(u) (Eq. (10) when τ = 1) in the last equation, we obtain

μ′
n = τ

∫ 1

0

⎛⎝ ∞∑
j=0

p j u j

⎞⎠s

uτ−1du. (12)

Henceforth, we use an equation by Gradshteyn and Ryzhik (2007) for a power series raised
to a positive integer n ( ∞∑

i=0

ai ui
)n

=
∞∑
i=0

bn,i ui, (13)

where the coefficients bn,i (for i = 1, 2, . . .) are easily determined from the recurrence
equation

bn,i = (i a0)−1
i∑

m=1

[m (n + 1) − i] am bn,i−m,
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Figure . Skewness of the ESC distribution: (a) Function of ν for some values of τ . (b) Function of τ for some
values of ν.

and bn,0 = an0. The coefficient bn,i can be determined numerically from the quantities
a0, . . . , ai.

Based on Eq. (13), Eq. (12) can be rewritten as

μ′
n = τ

∞∑
j=0

es, j
∫ 1

0
uj+τ−1du =

∞∑
j=0

τ

τ + j
es, j, (14)

where es, j = 1
j p0

∑ j
m=1[m(s + 1) − j] pm es, j−m,es,0 = ps0, and p0 and pm are obtained by (11).

The skewness and kurtosis measures can be calculated from the ordinary moments using
well-known relationships. Plots of the skewness and kurtosis of Z are displayed in Figs. 2
and 3 for selected values of τ as functions of ν and for selected values of ν as functions of τ ,
respectively.

3. The ESC regressionmodel

In many practical applications, the lifetimes are affected by explanatory variables such as
blood pressure, weight, cholesterol level, and many others. Parametric models for estimat-
ing univariate survival functions and for the censored data regression problems are widely
used. When the parametric models provide good fits to lifetime data, they tend to provide

Figure . Kurtosis of the ESC distribution: (a) Function of ν for some values of τ . (b) Function of τ for some
values of ν.
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more precise estimates for the quantities of interest because these estimates are based on fewer
parameters. Recently, several regressionmodels have been proposed in literature by consider-
ing the class of location models. For example, Hashimoto et al. (2012) proposed the log-Burr
XII regression model for grouped survival data, Ortega et al. (2013) presented the log-beta
Weibull regression model for predicting recurrence of prostate cancer, Ortega et al. (2015)
studied a power series beta Weibull regression model for predicting breast carcinoma, etc.

A disadvantage of the class of location model is that the variance, skewness, bimodality,
kurtosis, and other parameters cannot be modeled explicitly in terms of explanatory variables
but implicitly through their dependence on the location parameter. As an alternative, the gen-
eralized additive models for location, scale, and shape (GAMLSS; Rigby and Stasinopouls,
2005), where the systematic part of the model is expanded to allow not only the location but
all the parameters of the conditional distribution ofY to be modeled as parametric functions
of explanatory variables, become widely used. In this sense, we introduce the ESC regression
model following the GAMLSS set-up.

3.1. Definition

Let θT = (μ, σ, ν, τ ) denote the vector of parameters of the pdf (5). We consider that inde-
pendent observations yi conditional on θi (for i = 1, . . . , n), with pdf f (yi; θi), where θi

T =
(μi, σi, νi, τi) is a parameter vector related to the response variable.

Based on the ELSC distribution, we propose a linear regressionmodel linking the response
variable yi and the explanatory variable by

yi = μi + σi zi, i = 1, . . . , n, (15)

where the random error zi follows the density function f (zi; νi, τi) given by (7) and Zi =
(Yi − μi)/σi. We define the parameter vector θ using appropriate link functions as

θ =

⎡⎢⎢⎢⎣
μ

σ

ν

τ

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
g1(X1β1)

g2(X2β2)

g3(X3β3)

g4(X4β4)

⎤⎥⎥⎥⎦ or θi =

⎡⎢⎢⎢⎣
μi

σi

νi

τi

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
g1(β01 + x1[i, 2]β11 + · · · + x1[i, p1 + 1]βp11)

g2(β02 + x2[i, 2]β12 + · · · + x2[i, p2 + 1]βp22)

g3(β03 + x3[i, 2]β13 + · · · + x3[i, p3 + 1]βp33)

g4(β04 + x4[i, 2]β14 + · · · + x4[i, p4 + 1]βp44)

⎤⎥⎥⎥⎦ ,

(16)

where pk denotes the number of explanatory variables related to the kth parameter, g1(·) is
an injective and twice continuously differentiable function, gk(·) (for k = 2, 3, 4,) is a known
positive continuously differentiable function containing values of the explanatory variables,
βk = (β0k, β1k, . . . , βpkk)

T is a parameter vector of length (pk + 1), Xk is a known model
matrix of order n × (pk + 1), and xk[i, pk] are the elements of the matrix Xk. The total num-
ber of parameters to be estimated is given by p = p1 + p2 + p3 + p4+4. Note that we assume
that four parameters μi, σi, νi, and τi vary across observations through regression structures.
For the following sections, we shall consider the identity link function for g1(·) and the loga-
rithmic link function for gk(·) (for k = 2, 3, 4).

The sinh Cauchy (SC) regression model is obtained as a special case of (15) when τi = 1.
The class of location is obtained when p2 = p3 = p4 = 0. For p3 = p4 = 0, p1 �= 0, and p2 �=
0, we also obtain the regression model with heteroscedastic errors, which can be used as an
alternative to transformation of the response variable. However, the choice of parameters to
be modeled by explanatory variables will depend on the dataset.
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3.2. Estimation

Consider a sample of n-independent observations, where each random response is defined
by yi = min[log(ti), log(ci)]. We assume non-informative censoring and that the observed
lifetimes and censoring times are independent. Let F andC be the sets of individuals for which
yi is the log-lifetime or log-censoring, respectively. The total log-likelihood function for the
model parameters θ = (μ, σ, ν, τ)T frommodel (15) is given by l(θ) =∑i∈F log f (yi; θi) +∑

i∈C log S(yi; θi), where f (yi; θi) is the density function in (5) and S(yi; θi) is the survival
function in (6). The log-likelihood function for θ reduces to

l(θ) = −
∑
i∈F

log
[
1 + ν2

i sinh2(zi)
]+∑

i∈F
log cosh(zi)

+
∑
i∈F

(τi − 1) log
{
1
2

+ 1
π
arctan[νi sinh(zi)]

}
+
∑
i∈F

log(τiνi) −
∑
i∈F

log(σiπ)

+
∑
i∈C

log
(
1 −

{
1
2

+ 1
π
arctan

[
νi sinh (zi)

]}τi)
. (17)

The MLE θ̂ of the vector θT = (μ, σ, ν, τ ) of unknown parameters can be evaluated by
maximizing the log-likelihood (17) numerically in the GAMLSS package of the R software.
The advantage of using this package is that we can adopt manymaximizationmethods, which
will depend only on the current fitted model. When there are no explanatory variables or
censored observations, we can use the gamlssML function for fitting (17) using a nonlinear
maximization algorithm. In the presence of censored observations, the additional package
gamlss.cens is required to determine numerically the observed information of the like-
lihood function referring to the censored observations. The maximization procedures used
in the presence of censored data are the generalizations of the Rigby and Stasinopoulos (RS)
and Cole and Green (CG) algorithms. All methods and algorithms are described by Rigby
and Stasinopouls (2005) and Stasinopoulos and Rigby (2007) and available in the GAMLSS
package. The RS algorithm requires the first-order derivatives of the logarithm of the density
function (5) given in the above equations, and the second-order derivatives. The RS method,
different from the CG algorithm, does not use the cross derivatives, and thus it is faster for
larger datasets.

An important consideration in the statistical analysis in regression models is the assump-
tion that all observations have equal variances. The non-compliance with this assumption
affects the efficiency of the estimates of the parameters. In particular, we now consider the
test of homogeneity of variances for the ESC regression model based on the asymptotic
distribution of the parameters. Under standard regularity conditions, the asymptotic distri-
bution of (̂θ − θ) is Np(0, I(θ)−1), where I(θ) is the expected information matrix. The mul-
tivariate normalNp(0, L̈(̂θ)−1) distribution can be used to construct approximate confidence
intervals for the individual parameters, where L̈(̂θ) is the observed information matrix. Fol-
lowing (16), we generalize the scale parameter σ as σ = g2(X2β2), where Xi2 is a matrix of
explanatory variable values. For example, consider a matrix X2(n × 2) with the first column
of ones corresponding to β02, and the second column with the values of x1 corresponding to
β12. We can test the homogeneity of variances between the levels (or ranges) of x1 by test-
ing the hypotheses H0 : β12 = 0 against Ha : β12 �= 0, where the Wald statistic is given by
T = β̂12/

√
L̈(̂θ)−1

β12
∼ t(n−p−1), and L̈(̂θ)−1

β12
is the (p1 + 2, p1 + 2) element of the observed
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Table . The AEs, biases, and MSEs based on , simulations for the location ESC regression model when
β01 = 1, β11 = 3, σ = 3, ν = 0.2, and τ = 2, for n = 50 and  for censoring percentages κ = 0.0, .,
and ..

n = 50 n = 100

κ Parameter AE Bias MSE Parameter AE Bias MSE

. β0 . . . β0 . . .
β1 . − . . β1 . . .
σ . − . . σ . − . .
ν . − . . ν . − . .
τ . . . τ . . .

. β0 . . . β0 . . .
β1 . . . β1 . . .
σ . − . . σ . − . .
ν . − . . ν . − . .
τ . . . τ . . .

. β0 . . . β0 . − . .
β1 . − . . β1 . . .
σ . . . σ . . .
ν . − . . ν . − . .
τ . . . τ . . .

information matrix. Analogously, we can provide the same tests of hypotheses for the param-
eters μ, ν, and τ.

4. Simulation study

We conduct two Monte Carlo simulation studies to assess the finite sample behavior of the
MLEs of the parameters for different sample sizes “n” and censoring percentages “κ .” In the
first simulation, we consider the locationmodel in (15), whereμi = β01 + β11xi, σi = σ , νi =
ν, and τi = τ . In the second simulation, we consider the GAMLSSmodel in (15) by modeling
the parameters using the explanatory variable xi, namely: μi = β01 + β11xi, σi = exp(β02 +
β12xi), νi = exp(β03 + β13xi), and τi = exp(β04 + β14xi).

In the two simulations, the sample sizes are generated by taking n = 50 and 100. The log-
lifetimes denoted by log(T1), . . . , log(Tn) are generated from the ESC distribution using the
qf (9), where the parameter vectors were fixed and evaluated using the explanatory variable
xi generated from a uniform (0, 1) distribution. The censoring times, denoted byC1, . . . ,Cn,
are randomly generated for censoring percentages κ = 0.0, 0.1, and 0.3, respectively.

The lifetimes considered in each fit are evaluated as min[log(Ci), log(Ti)]. For each con-
figuration of n and κ , all results are obtained from 2,000 Monte Carlo replications and the
simulations are carried out using the R programming language. For each replication, a ran-
dom sample of size n is drawn from the ESC regression model (15) for survival censored data
and the optim algorithm is used for maximizing the total log-likelihood function (17).

4.1. Location simulation

For the location model, the true parameter values used in the data-generating process are
μi = 1 + 3xi, σ = 3, ν = 0.2, and τ = 2. For each fit, the average estimates (AEs), biases,
and means squared errors (MSEs) are evaluated. The results are given in Table 1.

The estimated survival functions are displayed in Fig. 4 by considering the AEs given in
Table 1 for n = 100, and considering the maximum and minimum values of the generated xi
variable.
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Figure . Some ESC survival functions at the true parameter values and at the AEs obtained in Table , con-
sidering n = 100 for the maximum and minimum of xi when: (a) κ =  ; (b) κ = .; (c) κ = ..

4.2. GAMLSS simulation

For the GAMLSS, the true parameter values used in the data-generating process are μi =
0.5 + 6xi, σi = exp(1.5 + 0.6xi), νi = exp(−3.5 + 3xi), and τi = exp(0.2 + 0.9xi). For each
fit, the AEs, biases, and MSEs are reported in Table 2.

The estimated survival functions are displayed in Fig. 5 and the AEs are listed in Table 2 for
n = 100, and considering the maximum and minimum values of the generated xi variable.

The results of the Monte Carlo study in Tables 1 and 2 indicate that the MSEs of the
MLEs of the parameters decay toward zero when the sample size increases, as expected under
first-order asymptotic theory. Note that the results of the GAMLSS simulation, presented
in Table 2, should be interpreted by peers due to the fit of βik influences the fit of β jk. If

Table . TheAEs, biases, andMSEs based on , simulations of the ESC regressionmodelwhenβ01 = 0.5,
β11 = 6,β02 = 1.5,β12 = 0.6,β03 = −3.5,β13 = 3,β04 = 0.2, andβ14 = 0.9, forn=  and  andunder
censoring percentages κ = 0.0, ., and ..

n = 50 n = 100

κ Parameter AE Bias MSE Parameter AE Bias MSE

. β01 . . . β01 . − . .
β11 . . . β11 . . .
β02 . − . . β02 . − . .
β12 . − . . β12 . − . .
β03 − . − . . β03 − . − . .
β13 . . . β13 . . .
β04 . . . β04 . . .
β14 . . . β14 . − . .

. β01 . . . β01 . . .
β11 . . . β11 . . .
β02 . − . . β02 . − . .
β12 . . . β12 . − . .
β03 − . − . . β03 − . − . .
β13 . . . β13 . . .
β04 . . . β04 . . .
β14 . . . β14 . − . .

. β01 . . . β01 . . .
β11 . . . β11 . . .
β02 . − . . β02 . − . .
β12 . . . β12 . . .
β03 − . − . . β03 − . − . .
β13 . . . β13 . . .
β04 . . . β04 . . .
β14 . − . . β14 . − . .
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Figure . Some ESC survival functions at the true parameter values and at the AEs obtained in Table , con-
sidering n = 100 for the maximum and minimum of xi when: (a) κ =  ; (b) κ = .; (c) κ = ..

n increases, the AEs tend to be closer to the true parameter values. This fact supports that
the asymptotic normal distribution provides an adequate approximation to the finite sample
distribution of the MLEs. The normal approximation can oftentimes be improved by using
bias adjustments to these estimators. In general, for the ESC regression models, the vari-
ances and MSEs increase when the censoring percentage increases. This fact can be noted in
Figs. 4 and 5.

5. Study of model misspecification

To assess the behavior of the MLEs of the parameters in the ESC regression model when it
is poorly specified, we carry out a Monte Carlo simulation study based on 1,000 replications
using the GAMLSS. The logarithms of the lifetime data are generated from the log-Weibull
(y, μ, σ ) and normal (y, μ, σ ) heteroscedastic regression models (traditional models used in
the survival analysis) for selected parameters μ = β01 + β11 x1 and σ = exp(β02 + β12 x1),
where the covariate xi is generated from a binomial (n,0.5) distribution. The censored indi-
cators are generated randomly by fixing the censoring percentage. We consider the configu-
ration with sample size n = 100, β01 = 4.5, β11 = 1.5, β02 = −1.5, β12 = 1.5 and censoring
percentages of ρ = 0%, 10%, and 30% to generate the samples. We fit the ESC regression
model to each generated dataset. The results of this study are given in Table 3, where we can
note that an increasing in censoring percentage in general implies an increasing in the MSEs.
There is a small sample bias in the estimation of the parameters of this regression model.
Hence, it can provide consistent MLEs even when the data are generated from a different
model.

Table . Mean estimates and MSEs (in parentheses) of the MLEs of the parameters in the log-Weibull and
normal heteroscedastic regression models.

log-Weibull Normal

Parameter ρ = 0% ρ = 10% ρ = 30% ρ = 0% ρ = 10% ρ = 30%

β01 .(.) .(.) .(.) .(.) .(.) .(.)
β11 .(.) .(.) .(.) .(.) .(.) .(.)
β02 − .(.) − .(.) − .(.) − .(.) − .(.) − .(.)
β12 .(.) .(.) .(.) .(.) .(.) .(.)
ν .(-) .(-) .(-) .(-) .(-) .(-)
τ .(-) .(-) .(-) .(-) .(-) .(-)
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6. Sensitivity and residual analysis

Since regressionmodels are sensitive to the underlyingmodel assumptions, performing a sen-
sitivity analysis is strongly advisable. Cook (1986) used this idea to motivate the assessment
of influence analysis. He suggested that more confidence can be put in a model, which is rel-
atively stable under small modifications. The best known perturbation schemes are based on
case-deletion (Cook and Weisberg, 1982), in which the effects of completely removing cases
from the analysis are studied.

6.1. Global influence

A first tool to perform sensitivity analyses, as stated before, is by means of global influence
starting from case-deletion. Case-deletion is a common approach to study the effect of drop-
ping the ith case from the dataset. The case-deletion model for model (15) is given by

yl = μl + σl zl, l = 1, . . . , n, l �= i, (18)

where the random error Zl has a density function f (zl; νl, τl ) given in (7). Of course, not
always the explanatory variables will be modeling all parameters. For example, if we consider
the class of location in (18), the case-deletion model reduces to

yl = μl + σ zl, l = 1, . . . , n, l �= i,

where the random error Zl has the density function f (zl; ν, τ ).
In the following, a quantity with subscript “(i)” means the original quantity with the ith

case deleted. For model (18), the log-likelihood function of θ is denoted by l(i)(θ). Let θ̂
T
(i) =

(μ̂
T
(i), σ̂

T
(i), ν̂

T
(i), τ̂

T
(i)) be theMLE ofμ, σ, ν, and τ from l(i)(θ). To assess the influence of the ith

case on the MLE θ̂
T = (μ̂

T
, σ̂

T
, ν̂

T
, τ̂

T
), the basic idea is to compare the difference between

θ̂(i) and θ̂. If deletion of a case seriously influences the estimates, for example, changing the
inference, more attention should be given to that case. Hence, if θ̂(i) is far from θ̂, then the ith
case is regarded as an influential observation. A first measure of the global influence is defined
as the standardized norm of (θ̂(i) − θ̂), known as the generalized Cook distance, defined by

GDi(θ) = (θ̂(i) − θ̂)T [−L̈(θ̂)](θ̂(i) − θ̂).

Another alternative is to assess valuesGDi(μ),GDi(σ),GDi(ν), andGDi(τ), which reveal
the impact of the ith observation on the estimates of μ, σ, ν, and τ, respectively. Another
popular measure of the difference between θ̂(i) and θ̂ is the likelihood distance defined by

LDi(θ) = 2
[
l(θ̂) − l(θ̂(i))

]
.

6.2. Local influence

Cook (1986) suggested to give weights to the observations instead of removing them. Local
influence calculation can be carried out for model (15). If likelihood displacement LD(ω) =
2{l(θ̂) − l(θ̂ω)} is used, where θ̂ω denotes the MLE under the perturbed model, the normal
curvature for θ in the direction d, ‖d‖ = 1, is given by Cd(θ) = 2|dT�T L̈−1

θθ �d|, where � is
a p× nmatrix that depends on the perturbation scheme, whose elements are given by �v i =
∂2l(θ|ω)/∂θv∂ωi, i = 1, . . . , n and v = 1, . . . , p, evaluated at θ̂ and ω0, and ω0 is the no per-
turbation vector. We can also calculate normal curvaturesCd(μ),Cd(σ),Cd(ν), andCd(τ) to
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perform various index plots, for instance, the index plot of dmax, the eigenvector correspond-
ing toCdmax , the largest eigenvalue of thematrixB = −�T L̈−1

θθ � and the index plots ofCdi (μ),
Cdi (σ),Cdi (ν), andCdi (τ), named the total local influence (Lesaffre andVerbeke, 1998), where
di denotes an n × 1 vector of zeros with one at the ith position. Thus, the curvature in the
direction di takes the formCi = 2|�T

i L̈
−1
θθ �i|, where�T

i denotes the ith row of�. It is usual to
point out those cases such that Ci ≥ 2C̄, where C̄ = 1

n

∑n
i=1Ci. In some situations, the infor-

mation of the matrix B may be contained not only in the first eigenvalue, then an alterna-

tive influence measure for the ith observation isUi =
n1∑
k=1

λke2ki, where {(λk, ek)|k = 1, . . . , n}
are the eigenvalue-eigenvector pairs of B with λ1 ≥ · · · ≥ λn1 ≥ λn1+1 = · · · = λn = 0 and
{ek = (ek1, . . . , ekn)T } is the associated orthonormal basis. Zhu et al. (2007) studied the influ-
ence measure ui systematically under a case-weight perturbation. Thus, this influence mea-
sure expresses local sensitivity to the log-likelihood of the perturbations.

Next, we obtain under model (15) and log-likelihood function (17), for three perturbation
schemes, the matrix

� = (�v i)p×n =
(

∂2l(θ|ω)

∂θv∂ωi

)
p×n

, v = 1, . . . , p and i = 1, . . . , n.

... Case-weight perturbation
Consider the vector of weights ω = (ω1, . . . , ωn)

T , where 0 ≤ ωi ≤ 1. A perturbed log-
likelihood function, allowing different weights for different observations, can be defined in
the form l(θ|ω) =∑i∈F wi log f (yi) +∑i∈C wi log S(yi). Also, let w0 = (1, . . . , 1)T be the
vector of no perturbation such that l(θ|w0) = l(θ). In this case, the log-likelihood function
takes the form

l(θ|ω) =
∑
i∈F

ωi

[
− log di + (τi − 1) log(hi) + log cosh(zi) + log(τiνi) − log(σiπ)

]
+
∑
i∈C

ωi log
[
1 − hτi

i

]
,

where hi = 0.5 + π−1 arctan[νi sinh(zi)] and di = [1 + ν2
i sinh2(zi)]. The matrix

� = (�T
μ, �T

σ , �T
ν, �T

τ )T can be calculated numerically.

... Response perturbation
Since the values of yi have different variances, they require a scaling of the perturbation vector
ω by an estimator of the standard deviation of yi. We shall consider that each yi is perturbed
as yiw = yi + ωi Sy, where Sy is a scale factor that may be estimated by the standard deviation
of y and ωi ∈ R. Then, the perturbed log-likelihood function becomes

l(θ) =
∑
i∈F

[
− log d∗

i + log cosh
(
z∗
i

)+ (τi − 1) log
(
h∗
i

)+ log(τiνi) − log(σiπ)
]

+
∑
i∈C

log
(
1 − h∗

i
τi
)
,

where h∗
i = 0.5 + π−1 arctan[νi sinh(z∗

i )], d∗
i = [1 + ν2

i sinh2(z∗
i )], and z∗

i = (yi + ωi Sy −
μi)/σi. The matrix � = (�T

μ, �T
σ , �T

ν, �T
τ )T can be calculated numerically.
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... Explanatory variable perturbation
Weconsider an additive perturbation on a particular continuous explanatory variable, namely,
x1[i, t], by setting x1[i, tω] = x1[i, t] + ωiSx, where Sx is a scaled factor, ωi ∈ R. Note that the
explanatory variable x1[i, t] is related only to the location parameterμ. However, this pertur-
bation scheme can be extended by considering different numbers of explanatory variables for
different parameters.

This perturbation scheme leads to the perturbed log-likelihood function

l(θ) =
∑
i∈F

[
− log d�

i + log cosh(z�
i ) + (τi − 1) log

(
h�
i

)+ log(τiνi) − log(σiπ)
]

+
∑
i∈C

log
(
1 − h�

i
τi
)
,

where h�
i = 0.5 + π−1 arctan[νi sinh(z�

i )], d�
i = [1 + ν2

i sinh2(z�
i )] , z�

i = (yi − μ�
i )/σi ,

and μ�
i = β01 + β11x1[i, 2], . . . , βt1(x1[i, t] + ωi Sx . . . , βp11x1[p1, 1]). The matrix

� = (�T
μ, �T

σ , �T
ν, �T

τ )T can be calculated numerically.

6.3. Residual analysis

In order to study departures from the error assumption and the presence of outliers, we con-
sider the martingale residual proposed by Barlow and Prentice (1998) and the transformation
of this residual. More details may be found in Ortega et al. (2003).

The martingale residuals, recommended in counting processes, are defined by rMi = δi +
log[S(yi; β̂)], where δi = 0, 1 denotes a censored and uncensored observation, respectively,
and S(yi; β̂) denotes the survival function of Y discussed in Section 1. Recently, several
authors have studied the martingale residual for some regression models. Silva et al. (2008)
proposed using the martingale residual for the log-Burr XII regression model considering
censored data, Cancho et al. (2009) studied the residuals for the log-exponentiated-Weibull
regression model with cure rate, Ortega et al. (2014) derived the martingale residual for the
odd Weibull regression models for censored data, among others.

This residual was introduced in the counting process (Fleming and Harrington, 1991) and
can be expressed in the ESC regression models as

rMi =
⎧⎨⎩1 − τ̂i log(2π) + log

[
(2π)τ̂i − {π + 2 arctan[ν̂i sinh(ẑi)]

}τ̂i] if i ∈ F

−τ̂i log(2π) + log
[
(2π)τ̂i − {π + 2 arctan[ν̂i sinh(ẑi)]

}τ̂i] if i ∈ C,
(19)

where ẑi = (yi − μ̂i)/σ̂i, μi = β̂01 + · · · + x1[i, p1 + 1]β̂p11, σi = exp(β̂02 + · · · + x2[i, p2 +
1]β̂p22), νi = exp(β̂03 + · · · + x3[i, p3 + 1]β̂p33), and τi = exp(β̂04 + · · · + x4[i, p4 +
1]β̂p44). In fact, rMi ranges from a maximum value +1 and minimum value −∞. A dis-
advantage of the martingale residual is that the distribution of rMi is markedly skewed, and so
it fails to have similar properties to those of the normal distribution. Suitable transformations
to achieve a more normal shaped form would be more appropriate for residual analysis.

Another possibility is to use a transformation of the martingale residual based on the
deviance residuals for the Cox model in the case of no time-dependent covariates (Therneau
et al., 1990).We shall use this transformation of themartingale residual in order to have a new
residual symmetrically distributed around zero. A more extensive examination of this resid-
ual is given by Leiva et al. (2007) and Ortega et al. (2008). Thus, a martingale-type residual
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for the ESC regression model can be expressed as

rDi = sign(rMi )
{

− 2
[
rMi + δi log(δi − rMi )

]}1/2
,

where rMi is defined in Eq. (19) for i ∈ F (δi = 1) or i ∈ C (δi = 0).
For uncensored data, we can use the diagnostic tools in the gamlss package. The first tech-

nique consists in the normalized randomized quantile residuals (Dunn and Smyth, 1996)
given by r̂i = �−1(ui), where �−1(·) is the inverse cdf of a standard normal variate and
ui = F(yi|θ̂i).

The second technique already known in the literature is the normal probability plot with
envelope. Atkinson (1985) suggested the construction of envelopes to enable better interpreta-
tion of the normal probability plots of the residuals. Such envelopes are simulated confidence
bands that contain the residuals, such that if themodel is well fitted, themajority of points will
be within these bands and randomly distributed. The construction of the confidence bands
follows the steps:

� Fit the proposed model, we evaluate the normalized randomized quantile residuals r̂i;
� Simulate k samples of size n of the response variable using the fitted model;
� For each sample, we compute the residuals r̂i j, j = 1, 2, . . . , k and i = 1, 2, . . . , n;
� Arrange each group of n residuals in rising order to obtain r̂(i) j;
� For each i, obtain the minimum and maximum r̂(i) j, namely:

r(i)I = min{r(i) j : 1 ≤ j ≤ k} and r(i)S = max{r(i) j : 1 ≤ j ≤ k};
� Include the minimum and maximum together with the values of r̂i against the expected
percentiles of the standard normal distribution.

The minimum and maximum values of r̂(i) j define the envelope. If the model under study
is correct, the observed values of r̂i should be inside the bands and distributed randomly.

7. Applications

In this section, we provide two applications to real data to illustrate the flexibility of the ESC
regressionmodel. The computations are performed using the gamlss subroutine in the R soft-
ware and the script is described in the Appendix. For the first dataset, we prove empirically the
flexibility of the new regression model when all parameters are modeled by explanatory vari-
ables (complete model). For the second dataset, we present an application, where the scale
and skewness parameters are modeled by explanatory variables. For both applications, we
provide the goodness-of-fit statistics Akaike information criterion (AIC) and Bayesian infor-
mation criterion (BIC). The computational codes for the applications in subsection 7.1 and
7.2 are available on the web at http://goo.gl/zANZuz and http://goo.gl/ZBf8R8, respectively.

7.1. Shrimp data

Consider the data on biometric measurements in shrimps of farfantepenaeus brasiliensis
species. These data were obtained from three regions of the Rio Grande do Norte state in
Brazil, for which the objective was to relate the weights of the shrimps in each region. The
importance of characterizing the weights of shrimps per region is discussed by Pinheiro
(2008).

To exemplify the new propose, we consider the full sample (n = 120), where the response
variable ti represents the ith shrimpweight in grams and the three groups of region are defined

http://goo.gl/zANZuz
http://goo.gl/ZBf8R8
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Figure . The empirical density ofY in the different regions.

by dummy variables: Baia formosa (xi1 = 0 and xi2 = 0), Diogo Lopes (xi1 = 1 and xi2 = 0),
and Touros (xi1 = 0 and xi2 = 1). Let the random variable yi = log(ti) have the ESC distri-
bution (5). As a preliminary analysis, we note that the explanatory variable region affects the
location, scale, bimodality, and asymmetry parameters. This fact can easily be observed in
Fig. 6.

Next, we present results by fitting the model

yi = μi + σizi,

where zi has density function (7) and the model parameters are defined by

μi = β01 + β11xi1 + β21xi2, σi = exp(β02 + β12xi1 + β22xi2),
νi = exp(β03 + β13xi1 + β23xi2), and τi = exp(β04 + β14xi1 + β24xi2).

Table 4 provides the MLEs, their approximate standard errors, and p-values, all quantities
obtained from the fitted ESC regression model. The values of the goodness-of-fit statistics
are AIC = 142.9 and BIC = 176.3. The results in Table 4 reveal that the explanatory variable
region should be used to model the location, scale, bimodality, and skewness parameters at
the 5% level. Therefore, we can conclude that for each region, the weights of shrimps have
different forms (bimodal and unimodal), different location scales, and asymmetry, and then
they cannot be fitted only with a location model.

... Global influence analysis
Here, we compute the case deletion measures GDi(θ) and LDi(θ) for the shrimp data. The
results of such influence measure index plots are displayed in Fig. 7. We may note that the
62th observation is a possible influential observation.

Table. MLEsof theparameters and their approximate standarderrors from thefittedESC regressionmodel
to the shrimp data.

Parameter Estimate SE p-Value Parameter Estimate SE p-Value

β01 . . <. β03 − . . <.
β11 − . . . β13 . . .
β21 . . <. β23 . . .
β02 − . . <. β04 − . . .
β12 . . . β14 . . .
β22 − . . . β24 − . . .
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Figure . Index plots for θ: (a) GDi(θ) (generalized Cook’s distance) and (b) LDi(θ) (likelihood distance).

... Local influence analysis
In this section, we perform the local influence analysis for the shrimp data using the ESC
regression model.

Case-weight perturbation
By applying the local influence methodology, where the case-weight perturbation is used,

the four largest eigenvalues of the matrix B are 1.65, 1.64, 1.26, and 1.12. Figure 8 displays
the index plots of theUi measure and the total influence Ci. These plots reveal that the 62th
observation also appears as possible influential observation.

Response perturbation
Next, the influence of perturbations in the observed times is analyzed. Here, we adopt the

Ui measure instead of dmax because the first eight eigenvalues are large. Figure 9 displays the
index plot of theUi measure and the total local influenceCi.

Under the sensitivity analysis, we note that the 62th observation once more appears as a
possible influential point. In fact, this shrimp has the largest weight for Diogo Lopes region,
being very different from the other measurements. The shrimps detected as possible influ-
ential observations in Fig. 9 represent the measurements y105 = 2.89 and y107 = 2.88 of the
Touro region. Combining with the plots of Fig. 6, we can note that these two shrimps stabilize
the growth of the density.

Figure . Index plots for θ (case-weight perturbation): (a) dmax and (b) total local influence.
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Figure . Index plots for θ (response perturbation): (a) dmax and (b) total local influence.

... Residual analysis
In order to detect possible outlying observations as well as departures from the assumptions
made for the ESC regression model, we present in Fig. 10 the index plot as well as the normal
probability plot with generated confidence band for the quantile residual. Note that the quan-
tile residual seems to follow approximately a normal distribution, thus indicating a suitable
fitted model. Note that the observations detected in the influence analysis are not detected in
the residual analysis.

In order to assess whether the model fits the data appropriately, the empirical cdf and esti-
mated cdf of the ESC regressionmodel are plotted in Fig. 11 for different regions.We conclude
that the Exp-ESC regression model provides a very good fit to the shrimp data.

7.2. Entomology data

In the second application, we take a dataset from a study carried out at the Department of
Entomology of the Luiz de Queiroz School of Agriculture, University of São Paulo. Such study
aims to assess the longevity of the Mediterranean fruit fly (ceratitis capitata), which is consid-
ered a pest in agriculture. Instead of using an insecticide, Silva et al. (2013) conducted a study
using small portions of food containing substances extracted from a tree called “neem.” The

Figure . (a) Index plot of the quantile residuals for the shrimp data. (b) Normal probability plot with enve-
lope for the quantile residuals from the fitted ESC regression model to the shrimp data.
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Figure . Estimated cumulative fitted values from the ESC fitted model to the shrimp data.

experiment was completely randomized with 11 treatments, consisting of different extracts of
the neem tree at concentrations of 39, 225, and 888 ppm, where the response variable is the
lifetime of the adult flies in days after exposure to the treatments. The experimental period
was set at 51 days, so that the numbers of larvae that survived beyond this period are con-
sidered as censored observations. From the results of the experiment, these 11 treatments are
allocated into two groups, namely:

� Group 1: Control 1 (deionized water); Control 2 (acetone - 5%); aqueous extract of seeds
(AES) (39 ppm); AES (225 ppm); AES (888 ppm); methanol extract of leaves (MEL) (225
ppm); MEL (888 ppm); and dichloromethane extract of branches (DMB) (39 ppm).

� Group 2: MEL (39 ppm); DMB (225 ppm); and DMB (888 ppm).
Let ti be the lifetime of ceratitis capitata adults in days, δi the censoring indicator, and xi1

the dummy variable indicating the groups (0 = group 1 and 1 = group 2). In a preliminary
analysis, we note that only the scale and skewness parameters require explanatory variables.
Next, we present results by fitting the model

yi = β01 + σi zi,

where zi, for i = 1, . . . , 172, has density function f (zi; ν, τi) given by (7) and the model
parameters are given by

μi = β01, σi = exp(β02 + β12xi1), νi = exp(β03), and τi = exp(β04 + β14xi1).

Table 5 provides theMLEs, their approximate standard errors, and p-values obtained from
the fitted ESC regression model. We can conclude that the explanatory variable group should
be used to model the scale and skewness parameters at the 1% level. The goodness-of-fit
statistics obtained are AIC = 309.3 and BIC = 328.2. Recently, Cordeiro et al. (2015) fitted
the log-generalized Weibull-log-logistic (LGW-LL) to these data and obtained the statistics
AIC = 341 and BIC = 357. We conclude that the ESC regression model provides a good fit
to these data.

Table . MLEsof theparameters and their approximate standard errors from thefitted ESC regressionmodel
to the entomology data.

Parameter Estimate SE p-Value Parameter Estimate SE p-Value

β01 . . <. β03 . . <.
β02 − . . . β04 . . .
β12 − . . <. β14 − . . <.
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Figure . Index plots for θ: (a) GDi(θ) (generalized Cook’s distance) and (b) LDi(θ) (likelihood distance).

... Global influence analysis
Here, we compute the case deletion measures GDi(θ) and LDi(θ) for the entomology data.
The results of such influence measure index plots are displayed in Fig. 12. Based on these
plots, we note that the cases 92 and 133 are possibly influential observations.

... Local influence analysis
Case-weight perturbation

By applying the local influence methodology, where case-weight perturbation is applied,
we obtain Cdmax = 1.15 as the maximum curvature. Figure 13 displays the index plots of the
eigenvector corresponding to dmax and the total influenceCi. Wemay conclude that the obser-
vations 145 and 157 present larger influence.

Response perturbation
The influence of perturbing the observed response Y will be analyzed. The value for the

maximum curvature obtained is Cdmax = 10.41. Figure 14 displays the index plots for dmax

and total local influence Ci. We may conclude that the observations 96 and 153 are possible
influential points.

The global influential analysis indicates that the observations 92 and 133 are possible influ-
ential. The 92th observation has the large lifetime of the group 2 and the 133th observation has

Figure . Index plots for θ (case-weight perturbation): (a) dmax and (b) total local influence.
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Figure . Index plots for θ (response perturbation): (a) dmax and (b) total local influence.

the smallest lifetime of the group 1. Under the local influential analysis (case-weight pertur-
bation), the observations 145 and 157 are detected and they represent the smallest lifetimes of
the group 2 with lifetimes t145 = t157 = 1. Finally, with the local influential analysis (response
perturbation), the detected observations 96th and 153th are the intermediary measures of the
group 2.

... Residual analysis
In order to detect possible outliers as well as departures from the assumptions made for the
ESC regressionmodel, we present in Fig. 15 the normal probability plot with generated confi-
dence band and the index plot for the martingale-type residual. By analyzing these plots, the
asymmetry is observed. However, there is no indication of departures from the assumptions
made for the model as well as the presence of outlying observations.

Finally, in order to assess if the model is appropriate, the empirical and estimated sur-
vival functions of the ESC regression model are plotted in Fig. 16 for the different groups.
We may conclude from the plots that the ESC regression model provides a suitable fit to the
entomology data.

Figure . (a) Normal probability plot with envelope for the martingale-type residual rDi
from the fitted

ESC regression model to the entomology data. (b) Index plot of the martingale-type residual rDi
for the

entomology data.
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Figure . Estimated and empirical survival functions for the entomology data.

8. Conclusions

In this article, we propose a general class of exponentiated sinhCauchy (ESC) regressionmod-
els, where the mean, dispersion, skewness, and bimodal parameters vary across observations
through regression structures. The former class of regressionmodels is very suitable for mod-
eling censored and uncensored lifetime data. The proposed model serves as an important
extension to several existing regression models and could be a valuable addition to the litera-
ture.We use theGAMLSS script in the R package to obtain themaximum likelihood estimates
and perform asymptotic tests for the model parameters based on the asymptotic distribution
of the estimates. We offer some interesting insights, especially regarding model checking, and
provide applications of influence diagnostics (global, local, and total influence) in the pro-
posed class of regression models with censored data. We also discuss the adequacy of the
regression models via martingale-type and quantile residuals. Several simulation studies are
performed for different parameter settings, sample sizes, and censoring percentages. More-
over, the usefulness of themodel is also illustrated through the analysis of real datasets. Finally,
the proposed algorithm for estimating the parameters in the probability density, cumulative
distribution, and quantile functions has been coded and implemented in the GAMLLS script
available in the article.

Appendix: Script for the ESC regressionmodel

Here, we provide a brief discussion of the script for the ESC regression model implemented
in the GAMLSS R package. The first step to run the codes is to load the gamlss and
gamlss.cens packages as well as the ESC model codes. After loading the codes, the pdf,
cdf, and qf will be available to be used. It is also available to the function to generate random
values having the ESC distribution.

In the example below, we present two ways to obtain theMLEs of themodel parameters for
uncensored and censored data. For both models, m1 and m2, we are modeling all parameters
with the explanatory variableX . After fitting the selectedmodels, we can access the goodness-
of-fit statistics. Finally, the codes to access the residual analysis, for uncensored and censored,
respectively, are reported.
library(gamlss); library(gamlss.cens);

source("https://goo.gl/DxWFB6")
dESC(y,mu,sigma,nu,tau) #pdf
pESC(q,mu,sigma,nu,tau) #cdf
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qESC(p,mu,sigma,nu,tau) #qf
rESC(n,mu,sigma,nu,tau) #sample
m1=gamlss(y∼X, sigma.fo=∼X, nu.fo=∼X,tau.fo=∼X,
family=”ESC”)

m2=gamlss(Surv(y,delta)∼X,sigma.fo=∼X, nu.fo=∼X,tau.fo=∼X,
family=”ESC”)

AIC(m1); BIC(m1)
#Residual analysis
plot(m1$residuals,ylim=c(-3,3),ylab="Quantile residuals")
rm=delta+log(1-pESC(y,m2$mu.fv,m2$sigma.fv,m2$nu.fv,
m2$tau.fv))

rd=sign(rm)∗(-2∗(rm+log(delta-rm)))^(0.5)
plot(rd,ylab=’Martingale-type residual’,pch=16,ylim=c(-3,3))
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