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Pesticides are important agrochemicals to yield high crop productivity but their indiscriminate usemay harm the
environment and human health. In order to seek a compromise between effectiveness as insecticide and safety
for humans, it is essential to correlate their physiological action with molecular-level interaction with cell mem-
branes. In this study, we found that acephate interacts preferentially with positively charged Langmuir mono-
layers that represent simplified cell membranes. This was proven by comparing surface pressure-molecular
area (π-A) isotherms and polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) data
on monolayers of the zwitterionic 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) and 1-palmitoyl-2-
oleoyl-glycero-3-phosphocholine (POPC), the cationic dimethyldioctadecyl ammonium bromide (DODAB) and
1,2-dipalmitoyl-3-trimethylammonium-propane (DPTAP), and the anionic dihexadecyl phosphate (DHP) and
1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA). While acephate induced a closer packing of DODAB and
DPTAPmonolayers upon binding to their quaternary ammonium and choline groups, respectively, almost no ef-
fectswere observed in theπ-A isotherms of the other lipids. Suchpreferred interaction between acephate and the
positively-charged groups was confirmed with density-functional theory (DFT) calculations. Acephate also
changed the size and zeta potential of large unilamellar vesicles (LUVs) formed with cationic lipids. Taken to-
gether these results point to a physiological action related to acephate binding to positively charged groups
owing to its negative character, which may help establish conditions for the safe use of this insecticide.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The organophosphate insecticide acephate is used in food crops, ag-
ricultural seeds and non-flowering plants, and it acts on the tissues of
the nervous system of sucking and biting insects, leading them to
death [1]. Due to its toxicity to humans [2,3], acephate was banned in
Europe but it is available in the United States and in some developing
countries [4,5]. In Brazil, for instance, its use is restricted to specific plan-
tations and to low concentrations, but these restrictions are often ig-
nored. In fact, there is evidence that in 2017 and 2018 acephate was
the pesticide with the highest degree of irregular use in the country
[5], which is worrying because Brazil is the second largest exporter of
agricultural products in the world [6]. Even though acephate has been
used on a large scale and indiscriminately, its potential damage to
humanshas been investigated only in a few in vivo studies [7–9] and au-
topsies [10]. Acephate inhibits acetylcholinesterase in the hydrolysis of
the neurotransmitter acetylcholine, which is linked to several neural
disorders [11–13], and its damaging effects involvemetabolic pathways
[10]. The inhibition is believed to arise from an electrostatic interaction
between the negatively charged acephate groups and positively
charged groups of acetylcholinesterase [12]. It is therefore essential to
study the interaction mechanisms of acephate with cell structures at
the molecular level, especially the plasma membrane that defines the
cell boundaries and internal organelles [14]. Studies correlating in vivo
and in vitro effects of acephate in mice cells revealed the difficulty to
achieve a detailed understanding of such interactions [1]. These limita-
tions are due to the complexity of the cell structure, which can be
circumvented using simple models of self-organized lipids (mono or bi-
layers) that mimic the plasma membrane [15–17].

In this paper, we investigate the effects of acephate on Langmuir
films (lipid monolayers), large and giant unilamellar vesicles (LUVs
and GUVs). The first mimics one leaflet of the plasma membrane,
while LUVs and GUVs represent lipid self-assembled bilayers as in
membranes, with the size of GUVs being comparable to eukaryotic
cells [18]. A judicious choice was made of the lipids to form the
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monolayers and bilayers in order to verifywhether acephate has prefer-
ential interaction with charged groups. The lipids chosen (see Fig. 1)
were the zwitterionic 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine
(DPPC) and 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC),
dimethyldioctadecyl ammonium bromide (DODAB), dihexadecyl
phosphate (DHP), 1,2-dipalmitoyl-3-trimethylammonium-propane
(DPTAP) and 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA). DPPC
and POPC were selected because phosphatidyl cholines represent
~50% in mass in eukaryotic cells (organelles and plasma membranes)
[19–24]. DODAB and DPTAP have positively charged groups while
DPPA andDHP are anionic, then allowing us to test the hypothesis of di-
rect action from acephate in charged structures. In order to have a more
comprehensive body of data for the analysis we combine surface
pressure-molecular area (π-A) isotherms, Brewster Angle Microscopy
(BAM) and polarization-modulated infrared reflection absorption spec-
troscopy (PM-IRRAS) measurements in Langmuir monolayers, zeta po-
tential and dynamic light scattering (DLS) in LUVs and phase contrast
microscopy in GUVs.
2. Materials and methods

2.1. Materials

DPPC, DHP, DPTAP, DPPA, and POPC were purchased from Avanti
Polar Lipids, and DODAB was purchased from Fluka. All materials were
of analytical grade (> 99%). Acephate, chloroform, methanol, and poly-
vinyl alcohol (PVA - MW: 146,000–186,000) were purchased from
Fig. 1. Molecular structures of acephate and lipids: 1,2-dipalmitoyl-sn-glycerol-3
dimethyldioctadecylammonium bromide (DODAB); dihexadecyl phosphate (DHP); 1,2-dip
phosphate (DPPA). Up-left corner: dipole moment vector of acephate obtained by (DFT) calc
phosphorus; red – oxygen; blue – nitrogen; gray – carbon; and white – hydrogen.
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Sigma-Aldrich. Aqueous solutions and subphases were prepared using
ultrapure water (Mili-Q system, resistivity 18.2 MΩ.cm−1).

2.2. π-A isotherms

AKSV Langmuir trough,model 2000 (40mL subphase, 150 cm2)was
used to obtain the π-A isotherms of the lipid films. The lipids were dis-
solved in a mixture of chloroform and methanol (7:3, v:v) at a concen-
tration of 0.5 mg.mL−1. An aliquot of this solution was spread onto the
subphase containing either ultrapure water or an aqueous solution of
acephate (10−4 M). In subsidiary experiments we employed a higher
concentration of 10−3 M (below its solubility in water at 25 °C:
4.46 × 10−3 M) of acephate but the effects did not change to any signif-
icant extent, which is why all the results to be presented in this paper
were obtained only with 10−4 M. After organic solvent evaporation
(15 min), the barriers compressed the monolayer at 10 mm.min−1,
and the π-A isotherms were measured. The in-plane elasticity of the
monolayers was calculated from the isotherms using the compressional

modulus (Cs−1=−A ∂π
∂A

� �
T
,where A is themeanmolecular area andπ is

the surface pressure.

2.3. Brewster angle microscopy (BAM)

BAM measurements were carried by using an Accurion Nanofilm
EP4 Brewster-angle microscope (Goettingen, Germany) coupled to a
Langmuir trough (KSV Instruments Ltd., Helsinki, Finland). The mono-
layers of DODAB, DPTAP or DPPC were formed under the same
-phosphocholine (DPPC); 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC),
almitoyl-3-trimethylammonium-propane (DPTAP) and 1,2-dipalmitoyl-sn-glycero-3-
ulations (|μ| = 7.05 D). The atoms are represented by spheres: yellow – sulfur; orange –
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conditions as for the π-A isotherms. A polarized 658 nm laser, focusing
on the air-water interface with an incident angle of 53.1° (Brewster
angle), and a charged-coupled-device (CCD) camera were used to cap-
ture the images at different surface pressures.

2.4. PM-IRRAS measurements

ThePM-IRRASexperimentswereperformedwithaKSVPMI550instru-
ment (Finland) coupled to a Langmuir trough. The DODAB, DPTAP and
DPPC Langmuir films (atπ=30mN.m−1)were obtained in the absence
and presence of acephate in the aqueous subphase. The spectrawere ac-
quiredby focusing an infrared beam(80° relative to thenormal) polarized
in twoplans (p: parallel to the incidence plan; s: perpendicular to the inci-
dence plane) at subphase surface. The signal (S) is calculated as (Rp-Rs)/
(Rp+Rs),whereRp andRs are the reflectance of polarizations p and s, re-
spectively. PM-IRRAS background signals were acquired for ultrapure
water(intheabsenceofacephate)and10−4Macephatesolutionsubphase.

2.5. Preparation of large and giant unilamellar vesicles

To facilitate swelling of GUVs formed of cationic lipids, we adopted
the methodology described by Martins et al. [25]. Briefly, a solution of
DODAB or DPTAP (10 mM) in methanol:chloroform (1:3 – v:v) was
dried in a test-tube under N2 gas with a vortex. The films were left
under vacuum for 1 h to remove solvent traces. A sucrose solution
(0.2M) previously heated to 80 °Cwas added to the dried films. The hy-
drated films were left under heating (80 °C) during 20 min and
vortexing every 5 min. GUVs of DPPC were obtained as proposed by
Angelova et al. [26,27]. An aliquot of 8 μL of DPPC solution (1 mM)
was spread in two parallel platinumwires coupled in a Teflon chamber.
The systemwas dried in vacuum for 1 h to evaporate the solvent of the
lipid solution and then hydrated with a heated sucrose solution (0.2 M)
at 60 °C (above the phase transition temperature of DPPC [28]). The Tef-
lon chamber was biased with 1 V at 10 Hz for at least 1 h to yield the
electroformation of GUVs. The POPC vesicles were prepared using the
method byWeinberger et al. [29]. The experimental procedure consists
of spreading 400 μL of PVA aqueous solution (5% w/w) in a beaker and
let it dry at a temperature higher than 50 °C in the oven. Then, 10 μL
of 1 mM POPC chloroform solution were added in the beaker with
dried PVA and taken again to dry in a vacuum chamber for 1 h. For the
GUVs to swell, 500 μL of sucrose solution were added for 90 min.

Aliquotsof50μLofthesuspensioncontainingGUVsofDODAB,DPTAP,
DPPCandPOPCwereaddedtoaneight-wellpolymerchambercontaining
200 μL glucose solution (0.2M) or glucosemixedwith acephate solution
(0.2M/1 × 10−4 M – acephate final concentration in the chamber with
GUVs is 0.8 × 10−4 M). The osmolarity of sucrose and glucose solutions
was measured using an osmometer (Osmomat 3000, Gonotec,
Germany), and the concentration should be the same on the inner and
outerportionsofGUVs.Thus, possible changes in thevesiclemorphology
cannot be associated to differences inosmolarity. Thephase contrast im-
ageswereobtainedwithaNikonC2/C2siEclipseTi-E (Kyoto, Japan)opti-
cal microscope, using a 40× air objective. Videos lasting 30 min were
acquired in triplicate and 5 photoswere taken for eachmeasurement to
count the number of GUVs affected by the pesticide.

Large unilamellar vesicles (LUVs) formed with DODAB, DPTAP and
DPPC were prepared from stock solutions of chloroform at 2 mM. Dry
films of each lipid were obtained by evaporating the solvent under a
N2 flow, and the remaining traces of the organic solvent were elimi-
nated by placing the dried films under reduced pressure for at least
1 h. Lipids were resuspended in pre-heated ultrapure water (at a tem-
perature above the thermal phase transition) to a concentration of
2 mM to form multilamellar vesicles (MLVs). LUVs were obtained
with subsequent extrusion passing the MLVs suspensions through 0.4
and 0.1 μm polycarbonate membranes (Whatman, Sigma Aldrich) for
8 and 15 times, respectively. Finally, aliquots of LUVs suspension for
each lipid were added in ultrapure water or acephate solution (0.1, 10,
3

25, 50, 75 or 100 μM) to reach the final concentration of 100 μM.
These systems were characterized by Dynamic Light Scattering (DLS)
and Zeta Potential (Zetasizer Nano ZS90) at 25 °C to evaluate the size
and surface charge of the vesicles, respectively.

2.6. Molecular modeling

Electronic structure calculations were conducted for all compounds
(acephate and lipids) to evaluate local reactivities, electrostatic poten-
tials and adsorption (binding) energies. The calculations were con-
ducted in the framework of density functional theory (DFT) using
B3LYP [30–33] and CAM-B3LYP [34] exchange-correlation functionals
(for isolated and adsorbed systems, respectively) and 6-31G(d,p) basis
set. The presence of the solvent (water) was simulated via polarizable
continuum method (PCM) [35]. Gaussian 16 [36] computational pack-
age was employed for geometry optimizations/calculation of properties
and Orca 4.0 [37] for the calculation of adsorption energies. DFT-based
approaches on simplified acephate+lipid models were preferred to
classical methods to assess molecular features of the pesticide and
lipids. Hence, lipid/lipid interactions are not explicitly described, being
instead estimated from the electrostatic maps and local reactivities.

The local reactivities of the compounds were evaluated via
condensed-to-atoms Fukui indexes (CAFI) [38,39] and molecular elec-
trostatic potential (MEP) maps. CAFIs are defined in the framework of
conceptual DFT and can be employed to evaluatemolecular interactions
involving the frontier molecular orbitals of the compounds (called as
soft-soft interactions) and identify the most reactive sites of the mole-
cules in relation to electrophilic (f −) and nucleophilic (f +) external
agents [40]. On the other hand, MEP maps allow us to identify electron
rich and electron deficient regions of the molecules which are relevant
to predict electrostatic interactions (called hard-hard interactions).
CAFIs were estimated via a finite difference approximation, considering
the electronic populations of the atoms in neutral, anionic and cationic
configuration of the molecules [41,42]. Hirshfeld's partition charge
method was employed to estimate the electronic populations to avoid
negative indices [43,44]. The MEP color maps were estimated from the
atomic charges from CHelp scheme [45].

Adsorbed (acephate+lipid) systems were evaluated via DFT/CAM-
B3LYP/6-31G(d,p) approach to estimate the binding energies and
changes in CAFI and MEPs. The structures were initially designed by
aligning negatively and positively charged sites of the acephate and
lipids (DPPC, DODAB and DPTAP). Adsorption (or binding) energies
were estimated considering the difference in the total energies of
adsorbed (A + L) and isolated (A and L) compounds, before and after
adsorption, eliminating the basis set superposition error (BSSE) with
the counterpoise method [46], i.e.:

EADS ¼ EAþL
AþL Aþ Lð Þ− EAA Að Þ þ ELL Lð Þ

h i
−ΔEBSSE ð1Þ

ΔEBSSE ¼ EAþL
A Aþ Lð Þ−EAþL

A Að Þ
� �

þ EAþL
L Aþ Lð Þ−EAþL

L Lð Þ
� �

ð2Þ

where EX
Y(Z)represents the total energy of fragment X, calculated at the

optimized geometry of fragment Y and considering the basis set of frag-
ment Z. In our case, A + L, A and L represent the acephate + lipid
(adsorbed system), acephate and lipid, respectively. This approach
eliminates the artificial (mathematical) stabilization of A + L systems
due to the use of additional basis set of L to describe the electronic con-
figuration of A (and vice versa).

3. Results and discussion

3.1. Acephate interactions with lipid Langmuir monolayers

Fig. 2 shows the π-A isotherms for DODAB, DPTAP and DPPC ob-
tained on ultrapure water (solid lines) and in an acephate subphase



Fig. 2.π-A isotherms for the lipids (A)DODAB; (B)DPTAP; and (C)DPPC in the absence and presenceof acephate (10−4M)on subphase. The extrapolated area (Aext - from thehighest lipid
packing to zero pressure) is represented by a blue dashed line. The orange dashed line indicates that acephate molecules do not form Langmuir films on their own. (D) Compressional
modulus from π-A isotherms of the lipid films in the absence and presence of acephate.
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(10−4 M - dashed lines). The π-A isotherms in ultrapure water are con-
sistent with the literature [47]. To examine the effects from acephate,
the extrapolated area (EA)was determined by tracing a line from the re-
gion of highest lipid packing to zero pressure. The decrease in extrapo-
lated area (ΔAext) induced by acephate was 25 Å2 for DODAB and 23 Å2

for DPTAP monolayers. The π-A isotherms of DPPC, and the anionic
lipids DHP and DPPA are not shifted by acephate (Figs. S1 A and B, re-
spectively). This reveals the preferential interaction between acephate
and positively charged monolayers. Acephate might surround the qua-
ternary ammonium group (N+), decreasing electrostatic repulsion be-
tween DODAB polar headgroups and yielding a more closely-packed
monolayer. The similar trend for DODAB and DPTAP indicates that
acephate interacts with DPTAP choline (CN+(CH3)3) group. The shift
at 30 mN.m−1, which corresponds to the lateral pressure of plasma
membranes [48,49], is more prominent for DODAB than for DPTAP
monolayer. This difference is probably due to the stronger repulsive in-
teractions between DODAB molecules, which has only the positive
group in its head. DPTAP also has a glycerol group that can increase
the cohesive forces and diminish the DPTAP-DPTAP electrostatic repul-
sion. This repulsion is reflected by the larger mean molecular area for
which the surface pressure starts to rise for the ultrapure water sub-
phase (DODAB: 129 Å2; DPTAP: 103 Å2).

The lack of changes in the DPPC monolayer may indicate that
acephate could be placed underneath the monolayer, surrounding the
choline (CN+(CH3)3) group, and/or be located at within the headgroup
4

region without occupying an area at the air/water interface. The reason
why a decrease in molecular area of DPPC is not induced by acephate
might be related to the volume occupied by glycerol and phosphate
groups and/or to the repulsion between DPPC phosphate groups. In
DPPC the presence of phosphate promotes a more repulsive environ-
ment than DPTAP (the surface pressure starts to rise at 110 Å2 for
DPPC), but less repulsive than DODAB. Acephate does not promote
any shift at 30 mN.m−1 for DPPC, whose area remains at 58 Å2. Another
important feature is the increase in monolayer stability [50] caused by
acephate, as revealed by the increase in collapse pressure for DODAB
(41 to 49mN.m−1) and DPTAP (45 to 59mN.m−1). This effect is not ob-
served for DPPC, which is consistentwith the previous discussion on the
balance of attraction/repulsion interactions involving DPPC and
acephate.

A shift to smaller areas in π-A isotherms has been observed with
incorporation of gold nanoparticles in the subphase for DPPC, DODAB,
dipalmitoylphosphatidylglycerol (DPPG), dioleoylglycerophosphocholine
(DOPC), and cholesterol [51] and of KBr for DODAB [52]. Similarly to
the interpretation of the acephate results, the shifts were attributed
to a decreased repulsion between lipid headgroups caused by gold
nanoparticles or Br− ions.

The compressional modulus at 30 mN.m−1 in Fig. 2-D shows no ef-
fect from acephate on the DPPC monolayer which remains in the
liquid-condensed (LC) phase [53]. The monolayer packing caused by
acephate in DODAB and DPTAP resulted in a drastic change of Cs−1:
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from63±5 to 138±34mN.m−1 for DODAB (219%), which implies in a
LE-LC (liquid-expanded to liquid-condensed) phase transition, and
from 108 ± 2 to 220 ± 9 mN.m−1 for DPTAP (204%). A change in the
π-A isotherm slope is noticed at 21 mN.m1 for DODAB and 9 mN.m−1

for DPTAP. As for the anionic lipids, although the π-A isotherms for
DHP andDPPAmonolayers have not been affected by acephate, changes
were observed in Cs−1 from 560± 20 to 621± 37mN.m−1 (111%) and
from460±43 to 572±42mN.m−1 (124%), respectively. Therefore, the
presence of acephate in the subphase increases monolayer rigidity for
all lipids with residual charge. All Cs−1 graphics are present in Fig. S2.

A molecular-level study was performed by means of PM-IRRAS for
the interaction of acephate with DODAB and DPTAP monolayers.
Although π-A isotherms suggest acephate does not alter DPPC mono-
layers, an analysis was also performed to compare the effects with the
positively charged lipids. Fig. 3 shows the PM-IRRAS spectra of DODAB
monolayer at 30 mN.m−1 on ultrapure water (solid black line) and
acephate solution (10−4 M - dashed red line). The main vibration
band of DODAB polar headgroup is assigned to C\\N stretching at
913 cm−1 [54], which is shifted to 925 cm−1 by acephate owing to
ion-dipole interactions with the positively charged quaternary ammo-
nium group (N+). This should be expected from the affinity between
acephate and DODAB positive group inferred from discussion of the π-
A isotherms. In DPTAP, acephate induces a shift from 943 to 953 cm−1

in the band assigned to choline (υas(CN+(CH3)3), as shown in Fig. 4-A,
consistent with an ion-dipole attraction between the positive choline
group and acephate. Besides, the shift of the glycerol (υC=O) band
from 1730 to 1740 cm−1 suggests a weakening of the H-bonding
network around this group [55,56], probably as a consequence of the
presence of acephatemolecules. The effect from acephate on the organi-
zation of the alkyl chains can be probed by calculating the relative band
intensity between the symmetric and antisymmetric stretchings of CH2

(RI=υsCH2 intensity/υasCH2 intensity): the lower the relative intensity,
the higher the alkyl chain ordering [57]. RI is barely changed by
acephate for DODAB (RIwater = 0.55 and RIacephate = 0.52) in Fig. 3-B,
i.e. the orientation of DODAB aliphatic chains remains the same. In con-
trast, for DPTAP in Fig. 4-B a decrease is seen from RIwater = 0.64 to
RIacephate = 0.48 as acephate induces an increased order of the hydro-
phobic chains.
Fig. 3. DODAB PM-IRRAS spectra of (A) polar head region and (B) hydrocarbon chains region.
dashed ones are the spectra in the presence of acephate (10−4 M). RI: relative intensity.
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Theassignmentsofthemainvibrationalmodesofpolarheadgroupsof
DPPC inFig. 5-Aare inaccordancewith the literature [51,58]. Thebandat
970 cm−1 attributed to the antisymmetric stretching of choline group
(υas(CN+(CH3)3))[58]shifts to963cm−1withacephate inthesubphase.
Therefore,despite the lackofchanges inπ-A isotherms, theremightbean
ion-dipole attractive interaction between the DPPC cationic headgroup
(choline)andacephate.On theotherhand, an ion-dipoleattractive inter-
action could also be expected between the positive portion of acephate
molecule and phosphate in the DPPC headgroup. This interactionmay
have caused the splitting of the 1076 cm−1 band assigned to C-O-PO2

moiety into bands at 1055 and 1085 cm−1. The δCH2 and υC=O bands
(at 1464 and 1737 cm−1, respectively) of DPPC glycerol groupwere not
affected significantly, suggesting that acephate might be surrounding
the choline and phosphate headgroups, preferentially. The bands
assigned to symmetric and antisymmetric stretching of CH2 group
(2850 and 2920 cm−1) at the tails of DPPC are shown in Fig. 5-B. An in-
crease in relative intensity fromRIwater=0.46 toRIacephate=0.65 reveals
an increase of theDPPC alkyl chain disorder induced by acephate.

3.2. Molecular modeling

The acephate-lipid interactions were evaluated in detail using DFT
calculations for the local reactivity of isolated and adsorbed systems.
Fig. 6 illustrates the colored maps for CAFI and MEP descriptors for
acephate, DPPC, DODAB and DPTAP. Red regions define the most reac-
tive and negatively (or less positively*) charged sites, for CAFI and
MEP, respectively, while blue regions define nonreactive or (more*)
positively charged sites. Similar maps are presented in the Supplemen-
tary Material for all the lipids. Owing to the absence of spatial restric-
tions imposed by adjacent structures, the lipid tails presented an
“opened” conformation after geometry optimization via DFT-based cal-
culations. A preliminary evaluation of DPPC with distinct relative posi-
tions of the tails shows that the reactivity descriptors in Fig. 6 are
insensitive to such arrangement (see Fig. S3), so that similar results
are expected for structures with vertically aligned tails.

Overall, the CAFI and MEP maps in Fig. 6 reinforce the preferential
interaction between acephate and lipids with positive heads. Acephate
possesses an intense electron-rich region centered on the oxygen
The solid black lines represent the spectra in the subphase of ultrapure water and the red



Fig. 4.DPTAP PM-IRRAS spectra of (A) polar head region and (B) hydrocarbon chain region. The solid black lines represent the spectra for ultrapurewater and the red dashed ones refer to
the spectra in the presence of acephate (10−4 M). RI: relative intensity.
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atoms (attached to P), while the positive charges are spread out over the
molecule, mainly on the hydrogen atoms of -NH and -CH3. The spatial
restriction of an intense negative potential at the oxygens can facilitate
the interaction with positively charged structures. Moreover, since the
positive potential is linked to terminal methyl groups, it should be
more sensitive to thermally-induced structural changes, hindering the
effective interactions of acephate with negatively charged structures.
Fig. 5. DPPC PM-IRRAS spectra of (A) polar headgroup and (B) hydrocarbon chains region. The
spectra in the presence of acephate (10−4 M). RI: relative intensity.
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Another relevant feature inferred from Fig. S4 is that acephate-lipid
interactions are supposed to be governed by electrostatic effects
(hard-hard interactions) as effective acephate-DPPA interactions (via
S(f+)- phosphate(f −)) should be expected from the evaluation of
CAFI indexes.

The reactivity and adsorption energies of acephate+lipid (adsorbed)
systemswere estimated usingDFT,with structures designed by aligning
black lines represent the spectra for ultrapure water and the red dashed ones refer to the



Fig. 6. Color maps for the local reactivity of acephate, DPPC, DODAB and DPTAP. f + and f − define reactive sites towards nucleophiles and electrophiles, respectively. The structures
containing MEPs were rotated to facilitate visualization.

Table 1
Adsorption energies for each system in the gas phase and in water.

System Adsorption energy (kcal/mol)

Gas phase In water

Acephate + DPPC −47.508 −19.545
Acephate + DODAB −21.535 −6.682
Acephate + DPTAP −24.567 −8.281
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negatively and positively charged sites of acephate and lipids (DPPC,
DODAB and DPTAP). The results summarized in Fig. 7 (with the same
color scale of Fig. 6) and Table 1 indicate that acephate induces a signifi-
cant reduction inpotentialaroundthe lipidheads,withvery small effects
on the tails. The adsorption process can lead to two competing effects:
i) reduction of the repulsive forces between the lipid heads allowing
their approximation; ii) additional spatial restriction to the approxima-
tion of these structures. These effects aremore evident for DODAB and
DPTAP. InDPPCacephatealters the chargebalanceof the zwitterionic re-
gion, which is relevant for the interaction of adjacent lipidic units. Given
the effective interaction between oxygen atoms and choline groups of
the lipids, after adsorption it is noticed that reactive sulfur atoms
Fig. 7. Color maps for local reactivity of adsorbed systems: acephate+DPPC, acephate+DO
electrophiles, respectively. The structures containing MEPs were rotated to facilitate visualizat
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(towards electrophiles, i.e. with high f-) are exposed to the adjacent
units in all cases, suggesting that soft-soft interactions could act as anad-
ditional cohesive process.
DAB and acephate+DPTAP. f + and f − define reactive sites towards nucleophiles and
ion.
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All the calculations presented so far were conducted in a solvent (via
PCM). However, since the counterpoise method (for BSSE correction) is
generally applied in vacuo, we also estimated the adsorption energies in
the gas phase to evaluate the plausibility of the results. The relative
values are compatible, with an average 3-fold overestimation for the
gas-phase results. In particular, the adsorption energy for acephate
+DPPC is 2.7–2.9 times the value for acephate+DPTAP and acephate
+DODAB. This energy is compatible with a chemisorption process,
however, it is associated with the hydrogen bond NH—O (phosphate)
between acephate and DPPC. For DODAB and DPTAP the involved ener-
gies are compatible with a physisorption process. It is worth noting that
the models with one acephate molecule close to the lipids (DODAB,
DPTAP or DPPC) are not realistic for mono or bilayer systems. However,
they are useful to estimate molecular features associated with local
compounds reactivities and binding energies between acephate and
the lipids, being thus complementary to the experiments. Moreover,
as already mentioned, the lipid/lipid interactions can be estimated
from electrostatic potentials.

In summary, from π-A isotherms, PM-IRRAS spectra, and theoretical
calculations, one may propose the following interpretation: acephate
has a strong (localized) negative character that explains both the attrac-
tion to the lipid cationic headgroups (choline and quaternary
Fig. 8. Cartoons illustrating possible interactions between acephate and (A)DODAB; (B)DPTAP
represented by the following colors - red: glycerol group; orange: phosphate group; green: cho
sulfur; orange: phosphorus; red: oxygen; blue: nitrogen; gray: carbon; and white: hydrogen.
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ammonium) and less evident interaction with the anionic phosphate
groups. In the attractive interaction, O (negatively charged sites) and S
(nucleophilic site) atoms of acephate could approach N of the lipid cat-
ionic headgroups, while for the lipid phosphate group the approach
could be established through H atoms of acephate. This attraction
could shift the π-A isotherm of the anionic lipids (DHP and DPPA) to
smaller areas, which is not observed, probably as a consequence of the
distribution of the positive portion of charge along the whole acephate
molecule. The latter might favour the acephate molecules to be placed
underneath DHP and DPPA monolayers.

As for the ordering of the alkyl chains inferred from the relative in-
tensity between υsCH2 and υasCH2 bands, there is no indication of
changes for DODAB, while there was an ordering effect for DPTAP and
disordering one for DPPC. This pattern of behaviour may be related to
the level of lipid tail organization in the neat monolayers. For instance,
on an ultrapure water subphase, RIDPPC = 0.46, RIDODAB = 0.55, and
RIDPTAP = 0.64, indicating the alkyl chains are relatively more ordered
for DPPC, followed by DODAB, then DPTAP. In the presence of acephate,
RI for DODAB and DPTAP reaches similar values, 0.52 and 0.48 respec-
tively, thus with similar chain ordering. This result might explain why
DODAB RI does not change significantly in the presence of acephate,
once its tails are already relatively ordered in water, which is not the
; and (C)DPPCmonolayers on the Langmuir trough. The headgroups in lipid molecules are
line group. Atoms of acephate molecules are represented by the colored spheres – yellow:



Fig. 9. BAM images of DODAB, DPTAP and DPPC monolayers in the absence and presence of acephate (10−4 M) at low and high surface pressures. Scale bar: 40 μm.
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case of DPTAP. For DPPC, which is well-ordered on ultrapure water
(in relation toDODAB andDPTAP), the attractive interaction of acephate
with choline and phosphate groups leads to some loss in ordering. In a
sequence of cartoons in Fig. 8 we illustrate the possible interactions of
acephate with DODAB, DPTAP and DPPC, besides representing the
lipid alkyl chain ordering/packing, on the basis of the qualitative inter-
pretation just presented.

3.3. Morphological aspects of lipid monolayers in the presence of acephate

Fig. 9 shows BAM images of DODAB, DPTAP and DPPC Langmuir
monolayers at different surface pressures at 25 °C. Small, circular lipid
domains are seen in the expanded region of DODABmonolayer on ultra-
pure water (at 3 mN.m−1), which are turned into flower-like
domains (from ~10 to ~27 μm in diameter) upon compression, then
becoming progressively more homogeneous at high pressures [59].
With acephate in the subphase, the formation of these very small struc-
tures starts at earlier stages of compression. For neat DPTAP mono-
layer, ‘bubble-like’ features appear at maximum expansion, which
9

disappeared along the compression being replaced by small domains
(at ~8 mN.m−1), reaching a homogeneous state before monolayer col-
lapse [60]. Incorporation of acephate led to more scarce and spaced do-
mains, i.e. less densely packed. The shape and size of lipid domains in
monolayers have been attributed to the attractive and repulsive forces
during compression [61,62]. Thereby, the stabilization of positive charge
in DODAB andDPTAP polar heads caused by acephate (displacing theπ-
A isotherms to smaller areas) increasesmonolayers rigidity, leading to a
phase change in DODAB (from LE to LC). For DPTAP a similar change as
that for DODAB was observed. This also caused a decrease in the size of
the lipidmicro domains, interfering in film homogeneity at high surface
pressures. The BAM images for neat DPPC monolayer show typical
domains of LE-LC phase being formed at 9.7 mN.m−1 [63,64], which be-
come more homogeneous during compression until disappearing at
31.6 mN.m−1 (packed monolayer – LC phase). No significant changes
are noted in the presence of acephate, which would indicate that
acephate does not affect the monolayer morphology, consistent
with the π-A isotherms and compressional modulus results for DPPC
(Fig. 2).



Fig. 10. (A) Diameters and (B) zeta potential of DODAB (black line with square points), DPTAP (red line with circle points) and DPPC (blue lines with triangle points) at different
concentrations of acephate.
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3.4. Effects of acephate on lipid vesicles

LUVsandGUVsofDODAB,DPTAPandDPPCwereemployedasbilayer
models for cell membranes to compare the effects from acephate with
those on Langmuir monolayers. The full data from DLS measurements
with LUVs are given in the Supplementary Material (Table S1 and
Fig. S5). The DLS distribution graphs had one peak for all LUVs in the ab-
sence of acephate, with diameters ranging from 140 to 170 nm, as ex-
pected since the final extrusion was performed using polycarbonate
membranes with 0.1 μm pores. The PdI (Polydispersity Index) values
also indicated monodisperse samples with uniform size distributions
[65]. The diameter and zeta potential of LUVs of DODAB, DPTAP and
DPPC are shown in Fig. 10. The positive zeta potentials for DODAB
(33.5± 0.8mV) andDPTAP (41± 1mV) are expected from their posi-
tively charged head groups [66], while the near zero value (2.0 ±
0.2mV) for DPPC is typical due its zwitterionic nature [67]. Thediameter
ofDODABandDPTAPLUVs increasedwithacephate concentrationwhile
thezetapotentialbecamelesspositive. Incontrast,nosignificantchanges
wereobserved forDPPCLUVs. Thedecrease inpositive superficial charge
for the cationic lipids are more prominent for the acephate concentra-
tions of 75 and 100 μM, suggesting that acephate at concentrations close
or equal to that of the vesicles (i.e. 100 μM) adsorb on cationic LUVs
[68]. Since the PdI values indicatemonodisperse vesicleswithout aggre-
gation, the changes in zeta potential can be attributed to interactions be-
tween acephate and the lipid bilayers. This adsorption also increased the
diameter of the cationic LUVsmainly at higher acephate concentrations.
Fig. 11. DODAB, DPTAP, and DPPC GUVs in the absence (line A) and
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Fig. 11 shows the GUVs phase contrast microscopy images in the ab-
sence (row A) and presence (row B) of acephate (0.8 × 10−4 M) ac-
quired at 0 and 30 min of the experiment. All the vesicles in glucose
solution have the spherical shape typical of these structures [69–71].
The vesicles of DODAB, DPTAP and DPPC should have a gel phase
shape [25,70,72,73], since measurements were acquired below their
phase transition temperature (room temperature ~ 23 °C; the phase
transition temperature is 45 °C for DODAB [74], 42 °C for DPTAP [75]
and 41 °C for DPPC [76]). Though ion-dipole interactions between
acephate and the lipidswere inferred in the experimentswith Langmuir
monolayers, nomorphological changes or loss of phase contrast of GUVs
take place during the period of observation (around 30 min). Although
the zeta potentials for LUVs pointed to adsorption of acephate at the
vesicles, this adsorption was not sufficient to induce microscopic
changes in morphology or permeability of GUVs. The lack of changes
at the giant vesicles can be related to the difference in their size, curva-
ture and lipid packing, compared to the LUVs [77,78]. In subsidiary ex-
periments we increased the acephate concentration by 10 fold
(0.8 × 10−3 M), which is close to its limit of solubility, and still there
was no significant effect on the GUVs.

Owing to the importance of a fluid phase to mimic more realistically
the plasma membrane properties of eukaryotic cells [79], we also pro-
duced GUVs from the unsaturated lipid POPC which contains a
carbon‑carbon double bond in the alkyl chain and is at a fluid phase at
room temperature [80]. The π-A isotherms in Fig. S1\\C and the com-
pressional modulus data in Fig. S2\\F for POPC are consistent with the
presence (line B) of acephate (0.8 × 10−4 M). Scale bar – 10 μm.
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literature [81,82], and were not affected by incorporating acephate in
the subphase, similarly to DPPC. Hence, regardless of the lipid phase,
the isotherms of zwitterionic lipids are not affected by acephate. As ob-
served with GUVs made of DPPC, those obtained from POPC in Fig. S6
did not have their morphology altered by acephate. We also performed
additional experiments with DODAB and DPTAP GUVs, which were not
affected by acephate either.

A straightforward comparison of the results from Langmuir mono-
layers and lipid bilayers is not possible because of some differences in
the experimental procedures. Interaction of acephate may have been
facilitated in Langmuir monolayers since it could adsorb from the sub-
phase onto the monolayer while being formed – before being closely
packed. The LUVs and GUVs, on the other hand, were already formed
when acephate was added. One could nevertheless hypothesize that
the complete absence of effects from acephate on the GUVs, even for
the lipids whose monolayers were strongly affected, is evidence that
acephate seems unable to induce disruption in the membrane. How-
ever, acephate at high concentrations (acephate/lipid ratios 1:1.3 and
1:1) did affect DODAB and DPTAP LUVs, which indicates that it can dis-
rupt themembrane. The physiological action of acephate is then related
to the binding on positively charged groups which could trigger other
changes in the cell structure.

4. Conclusion

The pesticide acephate was found to possess a preferential interac-
tion with Langmuir monolayers whose headgroups are positively
charged. Indeed, acephate affected significantly the cationic DODAB
and DPTAP monolayers, with their π-A isotherms being typical of
more closely packed structures in the presence of acephate. From PM-
IRRAS data, we observed that acephate is attracted by the quaternary
ammonium (DODAB) and choline group (DPTAP), and its presence re-
duces the electrostatic repulsion between the lipid molecules. In con-
trast, acephate had negligible effects on the π-A isotherms of the
zwitterionic DPPC and anionic DHP and DPPA, in spite of its interaction
with phosphate groups and with the choline group of DPPC. These re-
sults are consistent with the localized negative character of acephate
(against a non-localized portion of positive charges) as inferred from
theoretical estimates. They also support the hypothesis according to
which the physiological action of acephate is associated with binding
to positively charged groups in themembrane. This conclusionwas con-
firmed with the changes induced by acephate on DODAB and DPTAP
LUVs, whichwere attributed to such binding.We hope that the findings
presented heremayhelp experimentalists and theoreticians to establish
the conditions under which acephate is effective as insecticide without
posing risks to human health.
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