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Abstract. Fingerprint-based authentication systems represent what is most com-
mon in biometric authentication systems. Today’s simplest tasks, such as unlock-
ing functions on a personal cell phone, may require its owner’s fingerprint. How-
ever, along with the advancement of this category of systems, have emerged fraud
strategies that aim to guarantee undue access to illegitimate individuals. In this
case, one of the most common frauds is that in which the impostor presents man-
ufactured biometry, or spoofing, to the system, simulating the biometry of another
user. In this work, we propose a new framework that makes two filtered versions
of the fingerprint image in order to increase the amount of information that can be
useful in the process of detecting fraud in fingerprint images. Besides, we propose
a new texture descriptor based on the well-known dense Scale-Invariant Feature
Transform (SIFT): the statistical dense SIFT, in which their descriptors are sum-
marized using a set of signal processing functions. The proposed methodology is
evaluated in benchmarks of two editions of LivDet competitions, assuming com-
petitive results in comparison to techniques that configure the state of the art of
the problem.

Keywords: Liveness detection · Spoofing detection · Fingerprint authentication
system · Dense SIFT · Pattern recognition

1 Introduction

Currently, confirmation of a person’s identity is indispensable in carrying out the sim-
plest tasks, such as logging in to a webpage, as well as in the most important routines,
such as freeing access in work environments that demand a high degree of security and
employees control [1]. Thus, studies on biometric authentication systems (BAS) [18]
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are increasingly needed, which validate the identity of users of certain services through
the recognition of properties that preserve the individuality of each person. In this case,
these properties are defined mainly by two types of characteristics [38]: physiological,
such as fingerprints [3], faces [33], ears [5], etc.; and behavioral, such as voice [46],
walking mode [26], etc. Also, systems that make use of more than one characteristic of
the individual to perform authentication are not uncommon [11].

In the universe of BAS, we highlight those who use fingerprints [29] to perform the
recognition of individuals, which are called fingerprint authentication system (FAS).
This biometry is the most used in this context due to the ease of conducting its collection
and the high amount of techniques [19] and software packages [41] available in the
literature that helps in the improvement of theories involving this theme. Thus, BAS
based on fingerprints are biometric systems that receive more and more attention in the
academic environment and business solutions.

The convenience provided by the use of fingerprints as biometrics, combined with
advances in image recognition and classification technologies, has provided a consider-
able expansion in the use of FAS in practical solutions. As an example, we can mention
its popularization in usual applications in which it was more common to use passwords,
such as access tasks involving smartphones [44]. However, the threat of fraud, that is,
spoofing attacks, remains a disadvantage in this type of system since the security of
such applications can be compromised by imposters [20]. Notably, one of the most
common forms of FAS fraud is that known as spoofing presentation attack (SPA) [24],
which consists of the improper presentation of a fingerprint manufactured using syn-
thetic materials [7] to simulate the biometrics of a legitimate user of the system. To
encourage the development of techniques to soften this situation, several competitions
have been proposed in recent years [42], the first being held in 2009 [25]. The Liveness
Detection (LivDet) Competition gave rise to a series of databases composed of a large
volume of examples of legitimate fingerprints and synthetic fingerprints produced from
different materials. These bases currently form the benchmarks that are considered for
evaluating methodologies in works on this theme.

Recently, some methodologies have been proposed in an attempt to circumvent the
SPA threat in FASs. Most of these strategies are based mainly on three categories of
methods [30]:

C1 methods based on texture descriptor analysis and other characteristics inherent to
digital printing;

C2 methods composed of deep learning networks,
C3 hybrid methodologies or framework-based methods.

The first category of techniques, which is the most widely used in this theme [2],
is defined by creating the artificial characteristics, or hand-crafted features (HCF) [27],
extracted from the image of a fingerprint to perform the classifier training. Among these
features, those obtained from the texture descriptors [16] and image quality measures
[9] are recurrent. The methods that define the second category of problems are those
that analyze the natural characteristics of fingerprints and generally make use of deep
learning neural networks (DNN) [43], for which those particularly known as Deep Con-
volutional Neural Network (D-CNN) [31] present good results in the state-of-the-art for
SPA treatment. Finally, the last category of methods is defined by strategies that make
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use of both HCF and DNNs [37,45]. This category also comprises those that define
elaborated frameworks for the extraction of features, with pre-processing steps, dimen-
sionality reduction, and training of classifiers [35].

In this work, our advances are concentrated in the categories C1 and C3. Specifi-
cally, we innovate on two main fronts:

– with the proposal of a new framework for the extraction of characteristics of finger-
print images,

– with a new micropattern descriptor based on measurements taken from the well-
known Dense Scale-Invariant Feature Transform (DSIFT).

The paper is organized into 5 sections. In Sect. 2, we discuss some fundamentals of
the used descriptor (DSIFT). The formulation of the proposed method and the details
of all its functionalities are presented in Sect. 3. Our framework is evaluated in the
benchmarks of three different editions of the LivDet competition and the experimental
results obtained are presented in Sect. 4. The manuscript ends with conclusions and
proposals for future work in Sect. 5.

2 Dense SIFT Fundamentals

The pattern descriptor known as SIFT [23] is widely used in pattern recognition and
detection tasks in images [21]. In summary, its operation is conducted from the analysis
of gradient histograms present in the neighborhood of some points of interest present
in the image. This measure is invariant to scale and rotation transformations, however,
the characteristics represented by its descriptors are sparse, since they are dependent
on the set of determined keypoints. Thus, Liu et al. [22] propose a modification of the
method that takes into account all the points of an image for construct its descriptors:
the DSIFT.

In recent years, many variants of this pattern descriptor have been proposed to
improve its representation capacity. In this work, we will make use of one of its most
robust representations: the Pyramid Histogram Of visual Words (PHOW) [6]. In detail,
we can define this technique mathematically through 5 steps, detailed below:

1. Step 1: Consider the image I and a grid mesh M defined over I so that its nodes
are spaced apart by S pixels. Also, let’s assume that the M nodes are equally spaced
representations of N pixels of I , which make up the set P = {P1, P2, ..., PN}.

2. Step 2: A set of 4 neighborhoods is made around each pixel Pi of P , that is, V =
{Vi,1, Vi,2, Vi,3, Vi,4}. Each neighborhood Vi,j is centered on the pixel Pi and is
formed by grids of dimension 4 × 4, with each cell of these grids having dimension
σi,j × σi,j . Besides that, σi,1 < σi,2 < σi,3 < σi,4.

3. Step 3: Then, the gradients [10] are calculated in each of the 16 cells of each neigh-
borhood in V so that only the main 8 directions of the plan are considered, which
are presented in Δ:

Δ = {(0, 1); (1, 0); (0,−1); (−1, 0); (1, 1); (1,−1); (−1,−1); (−1, 1)}.

In addition, gradients with a magnitude below a pre-established threshold δ are dis-
regarded.
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4. Step 4: With the gradients in hand, the histogram of the directions present in each
cell in each neighborhood is calculated in V . Thus, for each cell, a histogram of
8-bins is associated. Consequently, for each neighborhood 4 · 4 = 16 of these his-
tograms are associated and, therefore, for each pixel Pi, 4 histograms of 16·8 = 128-
bins are associated or, for simplification purposes, four vectors �di,j , j = 1, 2, 3, 4,
of 128 coordinates.

5. Step 5: Finally, as a result of the DSIFT technique, we have a set of 4N descrip-
tors in the form of 128 coordinate vectors. Thus, given an image I , the descriptors
extracted with the DSIFT can be represented in their matrix form:

DI =

⎡
⎣

| | | | | |
�d1,1 �d1,2 �d1,3 �d1,4 �d2,1 · · · �dN,4

| | | | | |

⎤
⎦ ∈ R

128×4N . (1)

Throughout the text, for ease of notation, we will consider DI to be (di,j)i,j ∈
R

128×4N . In addition, in this work, we will follow the same parameterization of Bosch,
Zisserman, and Munoz [6]. In detail, we will define on I a grid mesh with uniform
spacing of S = 5 pixels; the dimensions of the four neighborhoods are defined by
(σi,1, σi,2, σi,3, σi,4) = (5, 7, 10, 12),∀i; and let’s disregard gradients of magnitude
less than δ = 10−6.

3 Proposed Multi-filter Framework and Statistical Dense SIFT
for Liveness Detection in Fingerprints

In this section, we present the components that form the proposed method for detect-
ing SPAs in FPASs. For this, we detail the operation of all strategies used through
algorithms and flowcharts that facilitate the understanding and reproducibility of the
developed material. Specifically, we present the following innovations obtained with
the proposed work:

– A new framework for the extraction and classification of characteristics of finger-
print images to conduct the discrimination of these images into two distinct groups:
the set of legitimate fingerprints and the set of fingerprints manufactured from syn-
thetic materials;

– A new descriptor of local patterns based on measurements taken from DSIFT his-
tograms, presented in Eq. (1),

– The proposed method is presented in the form of a generalization, and it is functional
in many configurations. Therefore, we present a practical instance of it.

3.1 Multi-filter Framework

Pattern descriptors, especially those dedicated to representing textures [34], may be
dependent on illumination conditions [40]. In this way, a correction step conducted by
histogram equalization strategies should be used to enhance the ability to represent the
pattern descriptor used. This being one of the initial steps of the proposed framework.
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It is known that, in the analysis of fingerprint images, some natural phenomena
associated with the human finger may occur, which end up compromising the image
collection performance by the sensor used [28]. As an example, we can mention the
cases in which the fingers are too wet or too dry, are dirty, are excessively oily, among
others. Thus, the characterization of the collected fingerprint is impaired in these sit-
uations and the use of a smoothing filter can be used to mitigate these difficulties.
However, the use of this type of technique can make it difficult to detect important
features of a fingerprint, which can be crucial for the classification step, since they are
dissolved in the image using these filters. This problem is intensified in cases where
the image captured by the sensor does not fit into any of the problem situations men-
tioned and, therefore, does not have any noise class in its composition. For this reason,
using the original image together with its smoothed version is a powerful strategy in the
task of representing the texture. Also, we propose the use of a sharpening filter so that
the characteristics that are not very outstanding can be highlighted in the image and,
consequently, are used in the task of representing the image together with the features
extracted from the original image and the smoothed image.

In the special case of the synthetic fingerprint recognition problem, some authors
[32] have already highlighted classes of patterns that are inherent to the counterfeiting
process, such as artifacts in the form of “holes” present inside of the finger and in the
form of extensive homogeneous regions that have lost many details through the man-
ufacturing process. For these situations, the filtering can also be useful in highlighting
substantial differences compared to the original image, since the effect of the filtering
can be more intense in images of synthetic fingers. For example, in Fig. 1, three ver-
sions of the fingerprint image from the same individual, whose code is “002 4 0” in the
database LivDet 2015 [15], is presented.

Fig. 1. Fingerprint of index “002 4 0” from “Hi Scan 2015” train database. Highlighted in red
are the patterns and artifacts generated in the fingerprints during the production process.

Specifically, in Fig. 1b, we see an artifact inside the fingerprint manufactured with
latex, highlighted by a red rectangle, which defines a region of high frequencies. In this
image, a smoothing would be much more efficient, and therefore more significant, than
it would be in the real fingerprint, shown in Fig. 1a. On the other hand, when analyzing
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the finger construction made with gelatin, shown in Fig. 1c, we notice the presence of
a very homogeneous region, highlighted by the red triangle, in which the use of sharp-
ening filtering would be more effective than it would be in the real image. In summary,
extracting the descriptor from three different versions of the same fingerprint should
increase the representational capacity of the descriptor, since the difference between
the features extracted from each of the three versions of the same image must be more
intense in manufactured fingerprints, due to the presence of artifacts, than in legitimate
fingerprints.

Thus, the proposed framework for SPA detection in FPAS consists of conducting
the following steps:

– Parameter initialization: to use the framework, it is necessary to define a pattern
descriptor that will be used to represent the images. Then, a histogram equaliza-
tion technique is defined. Also, the used filtering techniques are defined, one being
smoothing and one sharpening.

– Definition of the database: the method demands the use of a set of images of fin-
gerprints known to be legitimate and of fingerprints known to be manufactured since
it is necessary to carry out the training of a classifier.

– Illumination unbalance correction: In this phase of the method, the histogram of
the fingerprint image is equalized.

– Filtering: A smoothed version and a sharpened version of the original image are
calculated.

– Pattern extraction: A feature vector is extracted from the three versions considered
in the image using the selected pattern descriptor.

– Construction of feature vector: In this step, the feature vector of each of the three
versions of the fingerprint image is concatenated to compose only one feature vector
that represents the image. Then, according to the descriptor used, it may be necessary
to carry out the normalization of the characteristic vector, as well as to conduct some
feature selection process.

– Definition of the recognition model: After extracting a feature vector from each of
the considered fingerprint images, it is necessary to define a classifier, usually based
on some machine learning technique, using the fingerprints in which its category is
known. In other words, a training base is used to make the selected classifier capable
of separating the feature vectors between vectors extracted from legitimate finger-
prints and vectors extracted from manufactured fingerprints. Finally, after training,
the spoofing-detection model is defined based on the classifier.

In summary, in Fig. 2, a flowchart of the proposed framework is presented.

3.2 Statistical Dense SIFT

In this work, we propose a new way of summarizing the descriptors extracted from the
fingerprint image using DSIFT: the Statistical DSIFT (sDSIFT). In other words, given
an image I , we propose to represent its DSIFT descriptors DI , presented in Eq. (1), by
a vector of real coordinates, which must be obtained using simple measures extracted
from the 128 lines of DI . A preliminary strategy, which proved to be very effective
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Fig. 2. Flowchart of the proposed framework. In this case, d is the dimension of the feature
extracted from the image.

in the task of representing texture images, was proposed by Erpenbeck et al. [13], in
which the authors summarize the SIFT descriptors of 36 keypoints considered using
the mean and standard deviation. Our technique consists of a generalization in which,
specifically, given a matrix of descriptorsDI in the form presented in Eq. (1), we extract
from this matrix a set of vectors in R128 using a pre-established set of K functions FSP,
as defined in Eq. (2), and finally, we concatenate all these vectors to form the feature
vector that represents I .
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FSP := {f1, f2, f3, . . . , fK}, (2)

in which, fj is, for every j, a function defined in the form of the Eq. (3):

fj : R128×N ′ −→ R
128

D �−→ fj(D) := −→v j , (3)

where N ′ = 4N , and N is the pixel number considered in the DSIFT calculation.
Therefore, the proposed descriptor associates to a given image I , a vector �v ∈

R
128K , formed by statistics or measurements of the descriptors DI of the considered

image. In Algorithm 1, we present in detail, the operation of the proposed technique.

Algorithm 1. Proposed Statistical DSIFT.

Input:
I A given image.

FSP The set with K measures to be extracted from the DSIFT descriptors.

1: D := DSIFT(I) � Extract DSIFT descriptor from I .
2: for fj ∈ FSP do
3: −→v j := fj(D) � Calculate the statistics of the descriptors (D) using fj .
4: end for
5: −→v sDSIFT := [−→v 1,

−→v 2, ...,
−→v K ] � Join the vectors.

Output: −→v sDSIFT The Statistical DSIFT feature vector extracted from I .

3.3 Proposed Instance

The proposed method, described in the two previous Sects. 3.1 and 3.2, is a general-
ization that allows several configurations, since our framework allows the use of any
histogram equalization technique, smoothing filtering, sharpening filtering, and even
pattern descriptor. The same goes for our sDSIFT, as the definition of this descriptor
is dependent on the set of measures FSP. Thus, it is necessary to establish a specific
instance to make use of the proposed method in the detection of SPAs in FPASs. Below,
we indicate in detail the parameterization proposed and used in this paper:

– Framework:
• We use as histogram equalization technique, the automatic contrast-limited
adaptive histogram equalization (ACLAHE) [8], which is a technique based
on the adaptive histogram equalization that makes use of textural information
from blocks of the Image.

• As a smoothing filter, we are using a Gaussian filter defined by a standard devi-
ation kernel equal to 1.

• To perform the sharpening, we use a Laplace filter, in which the mask that
defines it is a matrix 5 × 5 with a central coordinate equal to 24 and other
coordinates equal to −1.
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• The pattern descriptor that we use in the framework is the proposed sDSIFT.
• We evaluate two normalization functions used in isolation in the framework.
In this case, the functions fnormalization,1 and fnormalization,2 used are, respec-
tively, the well-known normalizations Min-Max and z-score [17].

• The feature selection is done with a recent technique based on the meta-heuristic
genetic algorithm [36].

• To classify the images, we use a linear support vector machine (SVM).
– sDSIFT parameters: we use five measures (K = 5) to summarize the DSIFT
descriptors of the images. In this case, these used measures are [12]: the average
(f1), the standard deviation (f2), the maximum value (f3), the average energy (f4)
and the entropy (f5) between the columns of the descriptor matrix. Mathematically,
considering the matrix D = (di,j)i,j ∈ R

128×N ′
, the functions of FSP are presented

in Eq. (4):

f1(D) :=
1

N ′

⎡
⎣

N ′∑
j=1

d1,j , . . . ,

N ′∑
j=1

d128,j

⎤
⎦ , (4a)

f2(D) :=
1

N ′

⎡
⎢⎣

N ′∑
j=1

⎛
⎝d1,j −

N ′∑
r=1

d1,r
N ′

⎞
⎠

2

, . . . ,

N ′∑
j=1

⎛
⎝d128,j −

N ′∑
r=1

d128,r
N ′

⎞
⎠

2
⎤
⎥⎦ , (4b)

f3(D) :=
[

max
j∈{1,2,...,N ′}

{d1,j} , . . . , max
j∈{1,2,...,N ′}

{d128,j}
]

, (4c)

f4(D) :=
1

N ′

⎡
⎣

N ′∑
j=1

d21,j , . . . ,

N ′∑
j=1

d2128,j

⎤
⎦ , (4d)

f5(D) := −
⎡
⎣

N ′∑
j=1

p1,j · log2 (p1,j + ε) , . . . ,

N ′∑
j=1

p128,j · log2 (p128,j + ε)

⎤
⎦ , (4e)

in which, pi,j :=
di,j∑N ′
r=1 di,r

and ε := 10−10.

4 Experiments and Results

To validate the proposed material, we conduct practical assessments on the most well-
known benchmarks on the topic. The results show that the framework is able to increase
the fraud detection efficiency in FPASs with the use of sDSIFT. In this case, the two
most used editions of the Liveness Detection competition were considered for evalua-
tions. In detail, we consider the LivDet 2013 base [14], which consists of three sensors1:
Biometrika, Italdata, and Swipe; and we consider the LivDet 2015 base [15], consisting

1 The CrossMatch sensor has a cataloging error, so we do not consider it in the evaluations.
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of four sensors: CrossMatch, GreenBit, Digital, and Hi Scan. To carry out the training,
we apply the proposed methodology in the form of the framework to each sensor in
each base, making no exchange of information between sensors or bases.

To conduct our experiments, we developed a computational prototype of our frame-
work in MATLAB R2018a. To implement the proposed sDSIFT descriptor, we used the
VL Feat library [39], widely used in image processing and recognition tasks.

For our analysis, we consider three different versions of the proposed method:

V1 (sDSIFT + SVM): In this version, we are evaluating only the proposed descriptor
without considering any stage of the framework. At the end of the extraction of
the descriptor of each sensor, we conduct training and classification using a linear
SVM.

V2 (FW + sDSIFT + fnormalization,1): In this version, we consider the proposed
descriptor and all the steps of the defined instance of the framework, and the step of
feature vector normalization is done by the normalization function fnormalization,1.

V3 (FW + sDSIFT + fnormalization,2): A version similar to the previous one, with the
exception that we are using in this the normalization function fnormalization,2.

In Table 1, we present the results obtained using the three proposed versions of the
method and compare them with the performance of methods that define the state of the
art. In detail, for comparison, we consider: the winners of each edition of fingerprint
liveness detection competition [14,15]; three different techniques by Tan et al. [35];
and the Alshdadi et al. [4] method. These last two were chosen because they are recent
techniques that are similar to the proposed methodology.

Table 1. Comparison of accuracy (Acc), in percentage (%), obtained by three versions of the
proposed method. The best values are highlighted in bold. Avg represents the average accuracy
for each method considering all the sensors in each year of the competition. AVG represents the
average accuracy of each method considering all the sensors and all the years of competition.

Edition 2013 2015

Method Biometrika Italdata Swipe Avg Hi Scan CrossMatch Digital GreenBit Avg AVG

V1 95.85 90.3 92.34 92.83 86.88 90.74 83.68 90.26 87.89 90.01

V2 98.8 99.85 97.3 98.65 99.20 99.49 92.40 91.50 95.65 96.93

V3 99.6 96.6 96.5 97.57 98.40 99.35 98.10 94.40 97.56 97.56

CoALBP [35] 97 99.4 95.8 97.40 92.16 97.29 93.24 92.79 93.87 95.38

CoALBP-GIF [35] 96.7 98.6 95.2 96.83 90.16 97.18 93.24 94.83 93.85 95.13

Guided filter [35] 98.1 99.85 96.3 98.08 93.36 98.77 94.08 94.27 95.12 96.39

Winner [14,15] 95.3 96.5 85.93 92.58 94.36 98.1 93.72 95.4 95.40 94.19

Q-FFF [4] 98.7 98.8 96.5 98.00 96.4 96.73 91 97.37 95.38 96.5

According to the obtained results, we can see that, even though it is a very simple
descriptor, the proposed sDSIFT, used in isolation for the training of a linear SVM
and represented by V1, was able to overcome the winner’s results of the 2013 edition
of the LivDet competition. However, the other results presented by this technique are
inferior to the majority of the results that configure the state of the art in the specialized
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literature. As an example, we can note that this technique was the only one considered
to have an average accuracy of less than 90% in the 2015 edition. This fact is useful to
highlight the importance of using the framework, represented by the other two versions
of the proposed technique (V2 andV3) that use the framework together with the sDSIFT
descriptor since the results presented by these are much better than the results presented
with the isolated use of sDSIFT. Mathematically, the use of the framework compared to
the isolated use of sDSFIT improved 6.92% the accuracy obtained by the method in V2
and 7.55% in V3. Indeed, these techniques have the two best average accuracy results
(AVG) considering all sensors from the 2013 and 2015 competitions.

When we use the proposed descriptor together with the framework with normaliza-
tion performed by fnormalization,1 (V2), we obtain the best accuracy value in most of the
considered sensors. In addition, this version of the technique presents, on average, the
best accuracy when considering only the 2013 edition of the competition. In the case of
the 2015 competition, V2 has the second-best average accuracy value among the con-
sidered techniques, having shown accuracy greater than 99% in the classification of two
sensors from this base.

The use of sDSFIT together with the normalization function fnormalization,2 in the
framework (V3) seems to add greater stability to the method since this technique pre-
sented the best overall average accuracy (AVG) among all the other techniques. Being
its worst performance presented in the GreenBit sensor of LivDet 2015, in which it
presented 94.4% accuracy, which configures a result similar to those presented by the
techniques of Tan et al. [35] and only 1% less compared to the result presented by
the winner of the respective edition of the competition. Furthermore, when considering
only the 2015 edition, V3 presents more than 2% of better average accuracy compared
to the methods that represent the state of the art.

Thus, we can see that the results obtained by the proposed descriptor, although ade-
quate in some instances, have been considerably improved with the use of two different
versions of the proposed framework. Thus, the versions V2 and V3 of the proposed
method differ slightly from each other, presenting competitive results to those that rep-
resent the state of the art.

5 Conclusion

In this work, we propose a new texture descriptor, sDSIFT, and a new framework that
intends to improve the ability of descriptors to detect SPAs in FPASs. The method is
very wide and, therefore, it is necessary to define a specific instance of it to conduct its
use and, finally, classify fingerprints as being spoofings or legitimate.

Three different versions of the method were evaluated, one composed solely of the
proposed texture descriptor (V1) and two other versions composed of different configu-
rations of the framework used in conjunction with sDSIFT (V2 andV3). In this case, the
results presented by these last two proved to be much superior to the results presented
by the isolated use of sDSIFT in solving the problem, which serves as an indication
for the proof that the use of the proposed framework can improve the representation
capacity of a pattern descriptor. Besides, the results presented by V2 and V3 compare,
or even surpass, the techniques that represent the state of the art in the problem.
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We intend to analyze each of the stages of the proposed framework in isolation and
how they influence the ability to improve representation in the considered descriptor.
Also, we will evaluate more instances of the framework considering several different
configurations. In detail, we will evaluate the performance of other meta-heuristics and
other techniques, such as those based on auto-encoders, in the feature selection stage.
Finally, we will extend the proposed material theory to make it possible to fusion more
than one texture descriptor into the framework.
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