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Abstract
We investigate the equivalence theorem for integrable systems using two
formulations of the Alday–Arutyunov–Frolov model. We show that the S-
matrix is invariant under the field transformation which reduces the nonlinear
Dirac brackets of one formulation into the standard commutation relations in
the second formulation. We also explain how to perform the direct diag-
onalization of the transformed Hamiltonian by constructing the states corre-
sponding to self-adjoint extensions.

Keywords: integrable field theories, exact S matrices, coordinate Bethe ansatz

1. Introduction

The equivalence theorem [1–3] is a statement about the invariance of the S-matrix under field
redefinitions in a quantum field theory. In this paper we consider the equivalence theorem for
the Alday–Arutyunov–Frolov (AAF) model [4, 5], which is an interesting fermionic integr-
able model arising from the su ∣(1 1) subsector of string theory on ×AdS S5

5 background, for
which the full understanding of the classical and quantum integrability is still an open
problem. Some of its classical and quantum integrability properties, such as the S-matrix
factorization property, and classical integrability based on the inverse scattering method were
considered in [6–10].

There are two formulations of the AAF model, which were given in the original paper
[4, 5]. In the first formulation the Lagrangian is a two-dimensional purely fermionic quantum
field theory, invariant under the Lorentz transformation, with a very involved structure of the
Dirac brackets between the components of the fermionic field. This causes severe technical
complications when investigating the integrability properties of the model. From the per-
turbative analysis point of view, the information contained in the Dirac brackets is not used,
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and while it is possible to show the S-matrix factorization at the first loop order, there are
serious computational barriers to generalizing the analysis to higher loops. One would also
like to obtain a non-perturbative proof of the S-matrix factorization [11–13]. From the point of
view of the inverse scattering method [14–17] the complicated structure of the Dirac brackets
makes it hard to analyze the algebra of the Lax operator. In [8, 9] it was shown that the
classical algebra of Lax operators displays a non-ultralocal behavior [18–29]4. While for
simpler models classical integrability can be analyzed in detail, and the action-angle variables
can be found [9, 18–22], for the AAF model the nonlinear structure of the Dirac bracket is too
complicated, and the corresponding action-angle variables are still unknown. The quantiza-
tion of such non-ultralocal models is still an unsolved problem [21, 22].

In contrast, in the second formulation of the AAF model [4], one performs a field
transformation in order to reduce the complicated nonlinear structure of the Dirac brackets to
the standard canonical relations between the fermion field components. This is an obvious
advantage for further investigation of the integrable properties of the AAF model. It is not
hard to obtain the corresponding Lax pair from the representation given in [8]. The corre-
sponding algebraic structures for the Lax operator and the transition matrices are then
expected to have a simpler form. The price, however, is the loss of manifest relativistic
invariance in the resulting Lagrangian, which describes a very complicated interacting theory
with up to the sixth order terms in the fermion fields and their derivatives. It is not at all
obvious a priori that the S-matrices of both theories, related by a transformation of the fields,
will be the same, thus guaranteeing the quantum integrability of the transformed Lagrangian5.
The demonstration of this fact is the essence of the equivalence theorem.

More importantly, a general proof of the equivalence theorem would allow us to consider
a transformation of the fields, possibly a non-local one, to reduce the original non-ultralocal
theory to an ultralocal one, without affecting the quantum integrability of the theory. One
already has the freedom to use a gauge transformation of the Lax pair in order to simplify the
algebra of Lax operators (for details of this approach see [21, 22]). However, the equivalence
theorem would guarantee the S-matrix factorization property, allowing the consideration of a
much larger class of field transformations in order to reduce a given non-ultralocal model to
an ultralocal one.

There exists a number of different proofs and approaches to the equivalence theorem (see
[30–42] and the references therein), and, to the best of our knowledge, the most complete and
simple proof for renormalizable theories has been given in [43]. The proof assumes that the
theory is renormalized within the BPHZ scheme [44], and is based on a perturbative analysis
of the invariance of Green’s functions under field transformations6.

There is so far no strict proof of renormalizability of the AAF model. It is certainly not
power-counting renormalizable, due to derivatives present in the interaction vertices. The
infinite number of symmetries imposed by quantum integrability are nevertheless expected to
render the model renormalizable. However, the full proof of quantum integrability is also
missing. The S-matrix factorization has been shown only up to one-loop order [45], and the
inverse scattering method cannot be directly generalized, although some progress has been
made in this direction [8, 9].

4 The non-ultralocal structure of the Lax operator algebra for the AAF model is such that it contains not only the first
derivative of the delta-function, but also the second derivative. This leads to a more involved description of the
algebra in terms of r s s( , , )1 2 matrices. Nevertheless, it was also shown in [8, 9] that this complication leads only to a
shift in (r, s)-pair, defining the classical algebra between the transition matrices.
5 This is especially surprising since the original theory is a relativistic theory, while the transformed theory is not.
6 The equivalence theorem and the problems arising from the non-perturbative analysis have been considered in [35]
where it has been shown that in general the equivalence theorem does not hold.
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In this paper we show that the quantum Hamiltonian of the AAF model, for the second
formulation, can be diagonalized by means of the coordinate Bethe ansatz in the pseudo-
vacuum, if one employs a suitable regularization of the Hamiltonian in order to avoid singular
operator products at the same point7. This already gives a strong indication that the model is
indeed renormalizable, although a more complete analysis should still be done in order to
construct the physical vacuum, states and the S-matrix as in [46, 47]. In the process of
diagonalization we derive the explicit wave-functions and reproduce the S-matrix for the
original formulation of the AAF model [6, 7]. We also trace the essential steps of the proof of
the equivalence theorem and adapt it for our case. The key step of the proof is the required
renormalization of the wave-functions in order to guarantee the invariance of the S-matrix.
We then relate it with the regularization of the quantum Hamiltonian and the corresponding
renormalization of the wave-functions in the quantum-mechanical description. Finally, we
give a third interpretation of the results by showing that the diagonalization and the form of
the wave-function correspond to self-adjointness of the quantum-mechanical Hamiltonian,
which requires the construction of self-adjoint extensions similarly to the case considered in
[7, 48] for the Landau–Lifshitz model.

Our paper is organized as follows. In section 2 we give a summary of the known results
related to the integrability properties of the AAF model. In section 3 we briefly recap the
proof of [43], adapting it to our case and emphasizing only the essential differences arising in
this case. In section 4 we explain how to diagonalize the Hamiltonian of the AAF model in
the second formulation, and show that it requires a regularization of the quantum Hamilto-
nian, as well as a subtle construction of eigenstates. In section 5 we show that this con-
struction corresponds to finding self-adjoint extensions of the Hamiltonian, and make a
connection between the direct diagonalization and the perturbative proof via renormalization
of the wave-functions. In the last section, we discuss some open problems and future
directions. Finally, in the appendix, we collect some explicit formulas and computational
details used in the main text.

2. AAF model: overview

In this section we give a brief overview of the AAF model, and discuss its most essential
properties. A more complete account is given in [4, 5, 8, 9, 45]. The model arises from strings
on ×AdS S5

5 background by reduction to the ∣su (1 1) subsector, where the bosonic degrees
of freedom are eliminated in favor of the fermionic ones.

The Lagrangian of the AAF model, which is a two-dimensional fermionic model, has the
form:

ψρ ψ ψρ ψ λ ψρ ψ ψρ ψ ψψ

λ
ε ψ ψψρ ψ ψψ ψρ ψ

λ
ϵ ψψ ψρ ψ

ℒ = − − ∂ − ∂ + ∂ − ∂ +

+ ∂ ∂ − ∂ ∂ − ∂ ∂αβ
α β α β

αβ
α β( )

( ) ( )J
J

g

J

g

J

i

2
¯ ¯ i

2
¯ ¯ ¯

4
¯ ¯ ¯ ¯

16
( ¯ ) ¯ . (2.1)

AAF
0

0 0
0 1

1 1
1

2

2
5 5 3

3
2 5

Here, α β =, 0, 1, λ is the ’t Hooft coupling, J is the total angular momentum of the string in
S5, and the following representation of the Dirac matrices is used:

7 It is much harder to use the coordinate Bethe ansatz for the first formulation. In this case it is necessary first to
regularize the complex structure of the Dirac brackets.
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ρ ρ ρ ρ ρ= − = =( ) ( )1 0
0 1

, 0 i
i 0

, . (2.2)0 1 5 0 1

After some rescaling of the fields, the action can be written in the explicitly relativistic form
(for details see [4, 45]):

∫ ∫ ψ ψ ψψ ϵ ψ ψ ψγ ψ ψψ ψγ ψ

ϵ ψψ ψγ ψ

= ∂ − + ∂ ∂ − ∂ ∂

− ∂ ∂

αβ
α β α β

αβ
α β

( )S y y m
g

m
g

m

d d i ¯ ¯
4

¯ ¯ ¯ ¯

16
( ¯ ) ¯ , (2.3)

J
0

0

1 2 3 3

3 2 3

⎡
⎣⎢

⎤
⎦⎥

where the Dirac matrices γ μ have the form8:

γ γ γ γ γ= = − =( ) ( )0 1
1 0

, 0 1
1 0

, . (2.5)0 1 3 0 1

The coupling constants g2 and g3 were introduced in [45], where it was shown that the
quantum integrability, i.e., the S-matrix factorization property up to the first loop approx-
imation holds, provided the relation =g g2

2
3 between the coupling constants is satisfied. The

same condition was also shown in [8] to guarantee the classical integrability of the model.
The two-particle scattering S-matrix has the form:

θ θ
θ θ

θ θ
=

− −

+ −
( )

( )

( )
S ,

1 sinh

1 sinh
, (2.6)

mg

mg1 2

i

4 1 2

i

4 1 2

2

2

where θ1 and θ2 are the rapidities of the scattered particles with the momenta θ=p m sinh1
1

and θ=p msinh2
2. The dependence of the S-matrix on the difference of the rapidities is a

consequence of the relativistic invariance of the Lagrangian (2.3). Moreover, the above S-
matrix (2.6) has been obtained in the pseudo-vacuum, defined by the equation:

ψ =x( ) 0 0. (2.7)

The physical vacuum can be reconstructed using the standard methods [16, 46, 47]. In the
next sections we will discuss this point and the implications of this choice in more details.

The structure of the Dirac brackets for the components of the fermionic field ψ has a very
complicated form (see [4, 8] for details9), extending to the sixth order in the fermion field
components and their derivatives. The non-trivial structure of the Dirac brackets makes the
analysis of the AAF model a difficult problem in two aspects. Firstly, the perturbative
calculations seem to be impossible to continue beyond one loop, due to extremely involved
diagrammatic calculations and the cancelations mechanism, responsible for the factorization
of the n-particle scattering S-matrix. Most importantly, the attempts to develop the inverse
scattering method for the AAF model lead to serious barriers when trying to obtain, for
instance, the lattice version of the model. Indeed, as shown in [8, 9] the AAF model is a non-
ultralocal model (see [18–22, 29] and the references therein). In fact the algebra of the Lax

8 The matrices ρμ and γ μ in (2.2) are related by the following transformation:

γ ρ= = −
− −

μ μ − ( )M M M,
1

2
1 i
1 i

. (2.4)1

9 Notice that there were some missing factors in the Lagrangian given in [4], which propagated into the Dirac
structure as well. It was corrected later in [8]. We do not write here the lengthy formulas of Dirac brackets, and
instead refer the reader to the appendix F of [8] for the explicit expressions.
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pair has a more complex structure and contains terms proportional not only to the first
derivative of the delta-function, but also to the second derivative of the delta-function. In the
former case, the non-ultralocal algebra can be described using a pair of matrices—the (r, s)
pair which was considered in detail in [18]. In the case of integrable models which contain the
second derivatives of the delta-function, one has also to introduce, as was shown in [9], the
third matrix in order to completely describe the algebra of the Lax operator. For the AAF
model the exact form of the matrices r s s( , , )1 2 has a very complicated nonlinear character [8],
which is the direct consequence of the involved Dirac bracket structure of the theory.
Moreover, one is interested in the algebra of the transition matrices, which can be found via a
symmetrization procedure proposed by Mailett in [18], and is expressed in terms of the (u, v)
pair, which in turn can be found from the (r, s) pair. Remarkably, in the more complex case
described by the r s s( , , )1 2 matrices, the algebra of transition matrices has the same form as in
the simpler case described by the (r, s) pair, and can also be expressed in terms of only two
matrices—the ′ ′u v( , ) pair [9]. One can then construct the angle-action variables following the
standard procedure [14–17]. This program has been realized for simpler models in [9]. For the
AAF model one faces serious technical difficulties and, as we mentioned above, this is largely
due to the nonlinear structure of the Dirac brackets.

An alternative approach is to reduce the nonlinear Dirac brackets to the standard cano-
nical Poisson relations by means of some field redefinitions before calculating the Lax
algebra. As shown in [4], such a reduction is indeed possible, and the corresponding trans-
formation has the form:

ψ ψ ρ ψ ψψ ρ ψ ψψ ψ ψψ ψ ψψ ψ ψ ψψ

ρ ψ ψρ ψ ψψ ρ ψ ψ ψ ψψ

ψ ψ ψρ ψ ψ ψρ ψψ ψ ψψ ψ ψ ψ ψψ ψψ

ψρ ψρ ψ ψψ ψρ ψ ψ ψψ

→ + ∂ + ∂ + ∂ + ∂ ∂ − ∂

+ ∂ ∂ + ∂ ∂ ∂

→ + ∂ + ∂ + ∂ + ∂ ∂ − ∂

+ ∂ ∂ + ∂ ∂ ∂

a

J

a

J

a

J

a

J
a

J

a

J

a

J

a

J

a

J

a

J

a

J

a

J

( ¯ ) ( ¯ ) ( ¯ ) ( ¯ ¯ ) ¯

( ¯ ) ¯ ( ¯ )( ¯ ) ,

¯ ¯ ¯ ( ¯ ) ¯ ( ¯ ) ¯ ( ¯ ) ¯ ( ¯ ¯ ) ¯

¯ ( ¯ ) ¯ ¯ ( ¯ )( ¯ ) , (2.8)

1

2
1

1
2

3
1

1
2 3

4 1
2 2 4

4 1 1 1

5

4
0

1
0

1
6

6
1

1 1 1
2

1
*

2
1

1
2
*

3 1
1 2 3

4 1
2 2 4

4 1 1 1

5

4
0

1
0

1
6
*

6 1
1

1 1
2

where the coefficients …a a1 6 are:

λ λ λ

λ λ λ

= = − = −

= − = = −

a g a g a g

a g a g a g

i
2

, i
16

,
16

,

8
,

8
, i

5

32
, (2.9)

1 2 2 3 3 2
2

4 2
2

5 2
2

6

3 2

2
3

and ai
* denote the complex conjugate of ai. We also note that there exists the inverse to (2.8)

transformation10. We will use this fact when we discuss the equivalence theorem in the next
section.

Using the field redefinitions (2.8) and (2.9), one can show that the transformed
Lagrangian takes the form:

10 Its exact form can be found in [4].
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ψγ ψ ψψ ψψ ψγ ψ ψγ ψ ψ ψ ψψ

ψψ ψ ψ ψψ ψ ψ

ψψ ψγ ψ ψγ ψ

ψψ ψ ψ ψψ ψγ ψ ψψ ψ ψ

ℒ = ∂ − + ∂ − ∂ + ∂ + ∂

− ∂ ∂ − ∂ ∂

− ∂ ∂ − ∂ ∂

− ∂ − ∂ ∂ ∂ − ∂ ∂

α
α ( )

( )

( )

( ) ( ) ( )

( ) ( )

( ) ( )

m g
g

m

g

m

g

m

g

m

g

m

g

m

i ¯ ¯
i

2
( ¯ ) ¯ ¯

2
¯ ¯

8
( ¯ ) ¯

4
( ¯ ) ¯

i
8

( ¯ ) ¯ ¯

i
2

( ¯ ) ¯ ¯ ¯
2

( ¯ ) ¯ . (2.10)

2
1

1 1
1 2

1
2

1
2

3 2
1 1

2
2

2
1 1

2
2

2
2

1
1

1
2

1
2 1

1

2
2

2 1 1 1
1

1
2
3

3
2

1 1
2

⎡⎣ ⎤⎦

The new Hamiltonian can be easily read off from this expression (see (4.1) below), and
its complicated form is the trade-off for the standard canonical Poisson brackets for the
fermion fields. The transformation (2.8) can be also used to obtain the Lax pair, from the Lax
pair given in [8] for the transformed Lagrangian (2.10). It is expected that due to the simpler
canonical Poisson brackets of the transformed theory (2.10), the algebra of Lax operators will
have a simpler form. It is, however, not a priori obvious that the quantum theories corre-
sponding to the original (2.1) and the transformed (2.10) Lagrangians are equivalent. Here we
should specify what we mean by equivalent. The key object that encodes the integrability of
the model, i.e., the spectrum, is the n-particle scattering S-matrix. For the original theory, the
two-particle scattering S-matrix is given in (2.6). If the model is integrable for the quantum
theory (this has been checked in [45] for the Lagrangian (2.1) in the one-loop approximation),
then the n-particle S-matrix can be found from (2.6) and the S-matrix factorization property.
There is no strict proof, however, of the quantum integrability, and the most reliable method,
the inverse scattering method, has not yet been generalized for the quantum case for non-
ultralocal theories. One hopes to simplify this non-ultralocal algebra for the theory (2.10)
written in terms of the transformed fields (2.8). It is not, however, immediately obvious that
this classical transformation will guarantee the invariance of the S-matrix in the quantum
theory. This is the general statement of the equivalence theorem, which we will discuss for
our case in the next section. In section 4 we will also confirm our results by performing an
explicit diagonalization of the quantum Hamiltonian corresponding to the transformed the-
ory (2.10).

3. The equivalence theorem: S-matrix invariance

In this section we follow the proof of [43], modifying it appropriately for our case, to show
the invariance of the S-matrix under the field transformations (2.8). As we mentioned above,
due to the Lorentz invariance of the original theory (2.3), the n-particle scattering S-matrix of
the original theory depends only on the difference of the rapidities of the scattered particles
(see (2.6)). Hence, it is not evident that the S-matrix will retain this form under the field
transformations (2.8), resulting in the Lagrangian (2.10) which does not have an explicit
relativistic invariant form.

The proof of the theorem for a fermionic model is similar to the case of a single bosonic
field given in [43]. There are, however, some differences, and therefore we briefly retrace the
steps of the proof adapting it for the fermionic case. We also give a simpler derivation of one
of the key relations (see (3.14) below), which leads to the invariance of the S-matrix. We
stress here that the following proof is valid only for renormalizable theories, and in the case of
the AAF model the proof of renormalizability is so far missing. In fact, it is not even a power-
counting renormalizable theory. It is, however, supposed to be renormalizable due to
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integrability and the infinite symmetries associated with it [4, 6]. In the next section we will
show that the quantum Hamiltonian can be diagonalized via the coordinate Bethe ansatz,
suggesting renormalizability of the theory.

We start by showing that the Green functions of the original and transformed Lagran-
gians are invariant under the field redefinitions. Using this result, one shows that the S-matrix
of the two Lagrangians is also invariant, up to some renormalization for the fields. We first
represent the Lagrangian (2.3) in a more general form:

ψ ψ ψγ ψ ψψ λℒ = ∂ − + ℒα
α m( , ¯ ) i ¯ ¯ , (3.1)int

where ℒint is the interaction term, the Dirac matrices are given by (2.5), and λ is a coupling
constant. One would like to show that the S-matrix is invariant under the change of variables:

ψ ψ ψ ψ→ + F ( , ¯ ), (3.2)

ψ ψ ψ ψ→ + F¯ ¯ ¯ ( , ¯ ), (3.3)

where ψ ψ ψ ψ γ=F F¯ ( , ¯ ) ( , ¯ )† 0. The function ψ ψF ( , ¯ ), which can be easily read off from the
formulas (2.8) and (2.9), is a polynomial in ψ, ψ̄ and their derivatives, and satisfies the
following restriction ψ ψ ψ≠ −F ( , ¯ ) . We will denote the transformed Lagrangian by

ψ ψℒ ( , ¯ )T , i.e.:

ψ ψ ψ ψ ψ ψ ψ ψℒ = ℒ + +( )F F( , ¯ ) ( , ¯ ), ¯ ¯ ( , ¯ ) . (3.4)T

To show that the Green function is invariant under the change of variables (3.2) and (3.3), one
considers the transformations:

ψ ψ ψ ψ ρ ψ ψ= +ρ F( , ¯ ) ( , ¯ ), (3.5)( )

ψ ψ ψ ψ ρ ψ ψ= +ρ F¯ ( , ¯ ) ¯ ¯ ( , ¯ ), (3.6)( )

where the parameter ρ ∈ [0, 1]. For such a transformation, we have the corresponding
Lagrangian:

ψ ψ ψ ψ ψ ψ ψ ψℒ = ℒρ
ρ ρ( )( , ¯ ) ( , ¯ ), ¯ ( , ¯ ) . (3.7)( ) ( )

For ρ = 0 one obtains the original Lagrangian (3.1) and for ρ = 1 one finds the transformed
Lagrangian (3.4).

The main result of [43] is that the Green functions are invariant under the field redefi-
nition that relates the original and transformed theories. In the appendix we give the deri-
vation of this result adapted to our case of a fermion field. Explicitly, the relation has the
form:

∏

∏

ζ ψ ψ ζ ψ ψ

ζ ψ ψ ζ ψ ψ= + + + +

=

ℒ

=

ℒ

{ }( ) ( )

{ }T x

T F F F F x

( , ¯ ) ¯ ( , ¯ ) ( )

, ¯ ¯ ¯ , ¯ ¯ ( ) , (3.8)

i

s

i i i

i

s

i i i

M

1

1

T

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

where ζ ψ ψ ζ ψ ψ ζ ψ ψ…( , ¯ ), ( , ¯ ), , ( , ¯ )s1 2 are arbitrary functions of fields. The indices ℒ and
ℒT in (3.8) indicate that the correlation functions in (3.8) are calculated with respect to the
Lagrangians ℒ (3.1) and ℒT (3.4) respectively. The index M in the right-hand side of (3.8) is
the order of the expansion in the parameter ρ. The S-matrix invariance under the field
redefinitions follows from this relation, up to some field renormalization. This field
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renormalization will be reinterpreted in the next section by means of the direct diagonalization
of the quantum Hamiltonian Δ (see (4.1) below).

First, we recall that all the perturbative calculations in [6, 45] for the AAF model with the
original Lagrangian (2.3) were performed with respect to the false vacuum (2.7). As we
commented earlier, the S-matrix (2.6) has been obtained exactly in this pseudo-vacuum, from
which one can in principle obtain the physical S-matrix by the procedure outlined in [46, 47].
We will show below that for the transformed Lagrangian (2.10), and generally for the family
ℒρ corresponding to the field transformations (3.5) and (3.6), the vacuum can also be chosen
to be the pseudo-vacuum defined as in (2.7).

The choice of the false vacuum is motivated by the fact that the perturbative calculations
are significantly simpler to carry out. This is due to the structure of the free propagator
described by the Lagrangian of the original theory ψ ψℒ( , ¯ ) (2.3), which in the false vacuum
(2.7) is a purely retarded propagator −D x y( )ret . It has the following form:

∫Ω ψ ψ Ω
π ε

− = = ∂ +
− +

− −
D x y T x y m

p

p m p
( ) ( ) ¯ ( ) (i )

d

4

ie

2i
, (3.9)

p x y

ret
(0) (0)

free

2

2

i ·( )

2 2
0

where we have denoted the pseudo-vacuum of the original theory by Ω(0), satisfying the
condition:

ψ Ω =x( ) 0. (3.10)(0)

A few comments are in order. First, the pole prescription is still invariant under Lorentz
transformations. More importantly, as explained in [6], one can readily prove a non-
renormalizability theorem, which states that the ground state energy is not renormalized, the
one-point Green function does not acquire any quantum correction, and the two-point
scattering matrix is given by the sum of bubble diagrams. The latter calculation is usually
quite simple to carry out,11 and, assuming the quantum integrability of the theory, it is enough
to obtain the n-particle scattering matrix.

For the proof of the equivalence theorem, it is the non-renormalizability of the one-point
Green function that plays a key role. Indeed, as explained in [43], one must assume that the
original Lagrangian is such that the full two-point function has a simple pole at =p m. In our
case, due to the false vacuum and the non-renormalization theorem of the one-point Green
function, this assumption is not needed—the full propagator coincides with the free propa-
gator and has the form (3.9). Then, choosing the functions ζ1 and ζ2 in (A.6) as follows:

ζ ψ ψ ψ ψ ψ=ρ ρ ρ( ) x x, ¯ ( ) ( , ¯ )( ), (3.11)1
( ) ( ) ( )

ζ ψ ψ ψ ψ ψ=ρ ρ ρ( ) y y, ¯ ( ) ¯ ( , ¯ )( ), (3.12)2
( ) ( ) ( )

one obtains from the general formula (A.14):

∫

Ω ψ ρ ψ ψ ψ ρ ψ ψ Ω

π ε

+ +

= ∂ +
− +

ρ ρ

− −

( )( )T F x F y

m
p

p m p

( , ¯ ) ( ) ¯ ¯ ( , ¯ ) ( )

(i )
d

4

ie

2i
. (3.13)

p x y

( ) ( )

2

2

i ·( )

2 2
0

11 See [7, 45, 49] for a general method to calculate such bubble diagrams. The key point is that in the false vacuum
the one-loop correction to the two-particle scattering is proportional to the tree vertex, where two external lines can be
taken off-shell. This allows one to easily calculate the scattering process for bubble diagrams with an infinite number
of loops.
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To simplify our notations we have denoted in the above formula: ψ ψ ψ ψ≡ρ ρ ( , ¯ )( ) ( ) ,
ψ ψ ψ ψ≡ρ ρ¯ ¯ ( , ¯ )( ) ( ) , and have omitted here and in what follows the indicesM and ℒρ. We have

also explicitly denoted by Ω ρ( ) the vacuum of the transformed theory corresponding to ℒρ.
We stress that the right-hand side of the equation (3.13) is invariant under the orthochronous
Lorentz transformations. Thus, despite the fact that the field transformations given in (3.5),
(3.6) and (2.8) are not Lorentz invariant,12 the relation (3.13) implies that the Green’s function
on the left-hand side is still Lorentz invariant. In the next section we will use this fact
explicitly when diagonalizing the quantum Hamiltonian of the model and when choosing a
solution of the quantum-mechanical wave-function consistent with this requirement. This will
also explain the fact that the S-matrix for the transformed theory depends on the difference of
the rapidities as in (2.6).

One can use the formula (3.13), and proceed as in [43] to derive the following key
relation:

ρ
Ω ψ ψ Ω− − =ρ ρ

→
p m

Z
T p plim ( )

1

( )
ˆ ( ) ˆ̄ ( ) i. (3.14)

p m 2
( ) ( )

Here ψ pˆ ( ) denotes the Fourier transform of ψ x( ), and ρZ ( ) is a factor that depends on the
exact structure of PI1 vertex function of ψ ψF x x( ( ), ¯ ( )) and ψ x( ). The demonstration of this
formula is based on the spectral properties of PI1 vertex functions. The generalization to the
fermionic field is immediate and we refer to [43] for details, as well as the explicit formulas in
the appendix for the fermionic case. We give below another, simpler derivation of the formula
(3.14), taking into account the choice of a false vacuum (3.10) for the original theory. First we
address the relation of the vacuum Ω ρ( ) of the transformed theory to the pseudo-vacuum of the
original theory Ω(0) (3.10). For the sake of clarity, we change the notations here and denote
the field of the original theory by χ x( ), and the field of the transformed theory by ψ x( ). Thus,
in this notation, the field transformations are:

χ ψ ρ ψ ψ= +x x F( ) ( ) ( , ¯ ), (3.15)

χ ψ ρ ψ ψ= +x x F¯ ( ) ¯ ( ) ¯ ( , ¯ ), (3.16)

and the choice of the false vacuum (3.10) takes the form:

χ Ω =x( ) 0. (3.17)(0)

The original Lagrangian takes the form χ χℒ( , ¯ ), and the transformed Lagrangian becomes
ψ ψ χ ψ ψ χ ψ ψℒ ≡ ℒρ( , ¯ ) ( ( , ¯ ), ¯ ( , ¯ )). One would like, for the reasons explained above, to be

able to choose a pseudo-vacuum for the transformed Lagrangian ψ ψℒρ( , ¯ ), which now
should satisfy the condition:

ψ Ω =ρx( ) 0. (3.18)( )

We must, however, show that this is possible and consistent with the field redefinitions (3.15)
and (3.16). Indeed, as we had noted in section 2, there exists an inverse transformation to
(3.15),13 and, therefore, one can write the inverse functions ψ χ χ( , ¯ ), and ψ χ χ¯ ( , ¯ ). In fact
these functions have a polynomial form which extends up to the seventh order in χ x( ), and
χ x¯ ( ), as well as their derivatives. We then find:

ψ Ω χ ρ χ χ Ω= −( )x x G x( ) ( ) ( , ¯ )( ) , (3.19)(0) (0)

12 This implies of course that the Lagrangian (2.10) is also not Lorentz invariant.
13 For its explicit form see appendix D of [4].
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where χ χG ( , ¯ ) is some polynomial in χ x( ), χ x¯ ( ) and their derivatives. Thus, up to the
normal ordering for the operators and some regularization of the singular operator product
that appears in χ χG ( , ¯ ),14 we find:

ψ Ω =x( ) 0. (3.20)(0)

Thus, the vacuum Ω ρ( ), corresponding to the Lagrangian ψ ψℒρ( , ¯ ), should satisfy the
relation:

Ω ρ Ω=ρ Z ( ) , (3.21)( ) (0)

where ρZ ( ) is some renormalization constant depending in general on the parameter ρ, and
which should satisfy the condition =Z (0) 1. Hence, we have shown that Ω ρ( ) is a false
vacuum (3.18) of the transformed theory with Lagrangian ψ ψℒρ( , ¯ ).

This relation will be confirmed in the next section where we will show that the quantum
Hamiltonian can be diagonalized in the vacuum defined by (3.21) and reproduces the S-matrix
of the AAF model.

Next, we note that the free part of the Lagrangian ℒρ coincides with that of the
Lagrangian of the original theory (2.3). Since we have shown above that the vacuum of the
transformed theory can be chosen to be the pseudo-vacuum Ω∣ 〉ρ( ) (3.18), we can use the non-
renormalizability theorem of [6] to show that the full propagator Ω ψ ψ Ω〈 ∣ ∣ 〉ρ ρT x y( ) ¯ ( )( ) ( )

coincides with the free propagator (3.9). We find:

∫
ρ

Ω ψ ψ Ω Ω ψ ψ Ω
π

= =ρ ρ − −

Z
T x y T x y

p
D p

1

( )
( ) ¯ ( ) ( ) ¯ ( )

d

4
( )e , (3.22)p x y

2
( ) ( ) (0) (0)

2

2
i ·( )

where D(p) is the free propagator in the momentum space:

ϵ
=

+
− +

D p
p m

p m p
( )

i( )

2i
. (3.23)

2 2
0

Writing this formula in momentum space and evaluating the residue of both sides at the
simple pole =p m, we find the formula (3.14). This simple derivation of the formula (3.14)
reproduces the result in [43] which was obtained in the physical vacuum and with the use of
the spectral properties of the PI1 interaction vertices. Here we have avoided those
complications and the additional assumption that there is a simple pole at =p m, by using
the false vacuum and the non-renormalization theorem of [6].

Using the formula (3.14), the S-matrix can be found from the reduction formula [44]
written in terms of the renormalized fields ψ ψ≡

ρ
r

Z

1

( )
15:

ρ Ω ψ

ψ Ω

… … ∼ − …

× … … −

ρ
ρ

ρ
ρ

→

→

( )( )

( )( ) ( )

S k k q q u q q m T q

k k m u k

, , ; , , ; lim ¯ ( ) · · ˆ ( )

ˆ̄ · · . (3.24)

n l q m

k m

Z
r

Z
r

n n n

1 1 1 1
( ) 1

( ) 1

1
( )

( )

j

i

The independence of ρ… …S q q p p( , , ; , , ; )k n1 1 on the parameter ρ is a straightforward
generalization, and can be proved without any changes following the same steps presented in
[43], by using the corresponding formulas for the fermion case, collected in the appendix.

14 This point will be discussed in more details in the next section.
15 The antiparticle states do not enter in the reduction formula (3.24), due to non-renromalization theorem discussed
earlier.
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4. Diagonalization of AAF Hamiltonian

The perturbative proof of the invariance of the S-matrix suffers from several limitations.
Firstly, as we stressed above, there is no proof so far that the AAF model is a renormalizable
model. Secondly, as emphasized in [35] the equivalence theorem may not be valid in the non-
perturbative regime. Since the model under consideration is a classically integrable model,
and is expected to be integrable for the quantum theory as well, we are mainly interested in
the non-perturbative analysis. Integrability provides an opportunity to check and interrelate
several fine points that appear in the proof of the equivalence theorem. For instance, it is
interesting to see how the renormalization of the wave-functions in (3.24) emerges through
more reliable methods of integrable systems. There are essentially two approaches to non-
perturbative analysis: the inverse scattering method, and the direct diagonalization of the
corresponding Hamiltonian via the coordinate Bethe ansatz. To realize the first program one
needs to understand the quantization of non-ultralocal integrable models, which so far is an
ill-understood and unsolved problem. There has been some progress in this direction [8, 9] for
the non-ultralocal models that describe models such as the AAF model, however the program
is still far from being complete (see for example [10, 21, 22, 29, 50, 51] and the references
therein).

Thus, we choose here the second direction, which requires the direct diagonalization of
the Hamiltonian of the AAF model. As we will see below, in the process of diagonalization
one encounters new types of difficulties, associated with the singular behavior of generalized
functions. These singularities appear as a result of the operator products at the same point, and
cannot be avoided, as is the case for some simpler integrable models. We refer the reader to
the papers [7, 48] for a more detailed discussion and methods which were used in order to
show the quantum integrability of the Landau–Lifshitz model directly in the continuous case.
Since there is currently no lattice description of the AAF model, one has to deal with such
singularities directly in the continuous theory as well.

We briefly review the method used in [7, 48] for the Landau–Lifshitz model to deal with
the singular operator products, and give a slightly different and more convenient formulation
in terms of the Sklyanin’s product [52], in order to proceed with the diagonalization of the
AAF Hamiltonian. The Hamiltonian of the AAF model can be easily read off from the
transformed Lagrangian (2.10) and has the form:

ψ γ ψ ψ γ ψ ψ γ ψ

ψ ψ γ γ ψ ψ ψ ψ γ γ ψ ψ

ψ ψ γ γ ψ ψ ψ ψ γ γ ψ ψ

ψ ψ ψ γ γ γ ψ ψ ψ

ψ ψ ψ γ γ γ ψ ψ ψ

= − ∂ − ∂ +

+ ∂ − ∂

+ ∂ ∂ + ∂ ∂

−
+

∂ ∂

+ ∂ ∂



( )
( )

( )

(

( ) m

g

g

m

g g

m

g

m

i

2
i

2

2

2

8

i
8

i i i i i i i i i i i i

i j i i j j i j i j i i j j i j

i j i i j j i j i j i i j j i j

i j k i i j j k k i j k

i j k i i j j k k i j k

† 3
1 1

† 3 † 0

2
† † 0 3

1
†

1
† 0 3

2 † † 0 0
1 1 1

†
1

† 0 0

3 2
2

† †
1

† 0 0 0
1

2
2

2
† †

1
† 0 0 3

1
2

1 1 2 2 1 1 2 2 1 1 2 2

1 1 1 2 1 2 2 2 1 1 1 2 1 2 2 2

1 1 1 2 1 2 2 2 1 1 1 2 1 2 2 2

1 1 1 1 2 1 2 1 2 2 2 2

1 1 1 1 2 1 2 1 2 2 2 2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
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ψ ψ ψ γ γ γ ψ ψ ψ

ψ ψ ψ γ γ γ ψ ψ ψ

ψ ψ ψ γ γ γ ψ ψ ψ

ψ ψ ψ ψ γ γ γ γ ψ ψ ψ ψ

− ∂ ∂

− ∂ ∂ ∂

− ∂ ∂ ∂

+ ∂ ∂ ∂ ∂

)
(

)
( )

g

m

g

m

i
2

2
. (4.1)

i j k i i j j k k i j k

i j k i i j j k k i j k

i j k i i j j k k i j k

i j k l i i j j k k l l i j k l

† †
1
2 † 0 0 3

1

2
2

2
† †

1
† 0 0 3

1 1

†
1

†
1

† 0 0 3
1

2
3

3
† †

1
†

1
† 0 0 0 0

1 1

1 1 1 1 2 1 2 1 2 2 2 2

1 1 1 1 2 1 2 1 2 2 2 2

1 1 1 1 2 1 2 1 2 2 2 2

1 1 1 1 1 2 1 2 1 2 1 2 2 2 2 2

It is quite impressive that such a complex Hamiltonian describes an integrable model16. The
Hamiltonian is very complicated in comparison to, e.g., the fermionic Thirring model, which
has a much simpler Hamiltonian.

The simplicity of the fermionic Thirring model is not only due to the presence of the
higher order terms in fermionic fields in (4.1). The main difficulty arises due to the presence
of derivatives in the interaction terms. It is easy to check that any naive attempt to diagonalize
the Hamiltonian (4.1) immediately produces singular terms of the form δ∼∂ (0)1

2 . For some
simpler models with delta-function potential, e.g., the fermionic Thirring model, this problem
is usually avoided and is dealt with in the standard manner. This is, however, not correct in
general, and even for delta-function potentials it is necessary to construct the self-adjoint
extensions. For the singularities that are exhibited in the AAF model Hamiltonian, which are

δ∼∂ (0)1
2 , the problem is even more severe, and one cannot avoid performing a more careful

analysis.
First we introduce a regularization of the operator products in (4.1). This is done by

means of Sklyanin’s product, which for the product of two operators has the form [52] 17:

∫ ∫
Δ

◦ ≡
Δ Δ

Δ

Δ

Δ

→ −

+

−

+
A x B x u vA u B v( ) ( ) lim

1
d d ( ) ( ). (4.3)

x

x

x

x

0 2 2

2

2

2

For a product of n operators …A x A x( ), , ( )n1 the generalization of the above product is
straightforward:

∫ ∫Δ
◦… ◦ ≡ … …

Δ Δ

Δ

Δ

Δ

→ −

+

−

+
A x A x u u A u A u( ) · ( ) lim

1
d d ( ) · · ( ). (4.4)n n x

x

x

x

n n n1
0 2

2

1
2

2

1 1

Thus, our starting point is the Hamiltonian in (4.1) where instead of the usual product,
resulting in ill-defined singular expressions, we use the Sklyanin’s product (4.4). We denote
the Hamiltonian (4.1) regularized in such a way by Δ . All the following computations will
be performed with this Hamiltonian and the limit Δ → 0 will be taken only at the end. We
take the vacuum ∣ 〉0 to be the same pseudo-vacuum considered in the perturbative analysis in

16 It is worth mentioning that the Hamiltonian of the original theory (2.3) has a very simple form. In contrast, the
Dirac brackets structure is a very complicated one, while for the transformed theory with the Hamiltonian (4.1) one
has the standard Poisson brackets.
17 Alternatively, one could proceed as in [7, 48] and introduce regularized fields:

∫ψ ψ= −η x yF x y y( ) d ( ) ( ), (4.2)

where −ηF x y( ) is some smooth symmetric function which depends on η in such a way that in the limit η → 0 one
has δ− ↝ −ηF x y x y( ) ( ). It can be shown that both methods lead to the same results. We will use in this paper the
regularization based on a more transparent Sklyanin’s product.
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[6, 45] and in section 3, i.e., the vacuum satisfies the condition (3.18)18: ψ ∣ 〉 =0 0. Then it is
clear from (4.1) that ∣ 〉 =Δ 0 0.

For the one-particle sector that Hamiltonian coincides with the free theory, and, thus, we
consider the state:

∫ψ ψ χ= x x xd ( ) ( ) 0 , (4.5)k
k

1
†

which is the eigenstate of the Hamiltonian Δ , i.e., ψ ψ=Δ E1 1 1, provided the
quantum-mechanical wave function χ x( )k has the form:

χ =
θ

θ
θ

−
x( ) e

e
e , (4.6)k x m

2

2
i sinh( )

⎛
⎝⎜

⎞
⎠⎟

and eigenvalue θ=E m cosh ( )1 , where θ is the rapidity.
Let us now consider the first non-trivial case—the two-particle sector. One can try to

proceed as in the case of the fermionic Thirring model and consider the naive generalization
of the form:

∫ψ ψ ψ χ= x y x y x yd d ( ) ( ) ( , ) 0 . (4.7)k k
k k

2
† †
1 2

1 2

Here, the two-particle quantum-mechanical wave-function χ x y( , )k k1 2 should satisfy the anti-
symmetry condition:

χ χ= −x y y x( , ) ( , ). (4.8)k k k k1 2 2 1

However, even in the case of the fermionic Thirring model, the corresponding functions
χ x y( , )k k1 2 are not continuous on the line x = y. In the AAF model case we expect that neither
the function χ x y( , )k k1 2 nor its derivatives will be continuous functions on the line x = y.
Thus, instead of the ill-defined expression (4.8) on the line x = y, we take the two-particle state
to be the well-defined principal value integral:

∫ ∫ ∫ψ ψ ψ χ= +
η

η

η→ −∞

+∞

−∞

−

+

+∞
y x x x y x ylim d d d ( ) ( ) ( , ) 0 . (4.9)

y

y
k k

k k
2

0

† †
1 2

1 2
⎛
⎝⎜

⎞
⎠⎟

This choice immediately raises the question of what happens on the line x = y. Even though
the function χ x y( , )k k1 2 is not continuous, one could still write an additional two-particle
wave-function for the points on the line x = y. Later we will see that such an extra term will be
required in order to diagonalize the Hamiltonian Δ . We also note that a similar extra term
appears in the Landau–Lifshitz model (see [7, 52] and the formula (4.33) below).

After some lengthy calculations, where one has to take into account the fact that neither
the wave-function χ x y( , )k k1 2 nor its derivatives are in general continuous functions, the
action of the regularized Hamiltonian Δ on ψ 2 in (4.9) can be organized in powers of the
regularization parameter Δ as follows19:

18 To simplify the notation, in this section we denote: Ω∣ 〉 ≡ ∣ 〉ρ0 ( ) , for ρ = 1.
19 The parameter η is the regulator of the principal value prescription in (4.9), and the parameter Δ is the regulator of

Δ . In the course of the calculation we will always consider first the limit η → 0, and only after that we remove the
regularization Δ → 0.
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∫
∫ ∫

ψ θ θ ψ Δ Ω ψ ψ

Δ
Ω ψ ψ Δ Ω

= + +

+ +

Δ ( ) ( )H m y y y y

y y y y y y

cosh cosh d ( ) ( ) ( ) 0

1
d ( ) ( ) ( ) 0 d ( ). (4.10)

2 1 2 2
0

1 1
†

2
†

2 1
†

2
†

3

⎡⎣ ⎤⎦

Thus, the Hamiltonian can be diagonalized provided the last three integrals, containing
Ω Ω,1 2 and Ω ,3 vanish. The exact expression for Ω1 has the following form:

Ω χ η χ η χ η χ η

χ χ

χ χ

χ χ

χ χ

= − − + + − − +

− ∂ + ∂

− ∂ + ∂

+ ∂ ∂ + ∂ ∂

− ∂ ∂ + ∂ ∂

η η

η η

η η

η η

= − = +

= − = +

= − = +

= − = +

y y y y y y y y

g x y x y

g x y x y

m
g x y x y

m
g x y x y

2i ( , ) ( , ) 2i ( , ) ( , )

i ( , ) ( , )

i ( , ) ( , )

1
( , ) ( , )

1
( , ) ( , ) , (4.11)

x
x y

x
x y

x
x y

x
x y

y x
x y

y x
x y

y x
x y

y x
x y

1
12 12 21 21

2
11 11

2
22 22

2
12 12

2
21 21

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

while Ω2 has the form:

Ω χ η χ η χ η χ η

χ χ

χ χ

χ η χ η

χ η χ η

= − − + + − − +

+ ∂ − ∂

− ∂ − ∂

− − − +

+ − − +

η η

η η

= − = +

= − = +

( ) ( )

( ) ( )

g y y y y g y y y y

m
g x y x y

m
g x y x y

m
g

y
y y

y
y y

m
g

y
y y

y
y y

i ( , ) ( , ) i ( , ) ( , )

1
( , ) ( , )

1
( , ) ( , )

1

2

d

d
( , )

d

d
( , )

1

2

d

d
( , )

d

d
( , ) . (4.12)

x
x y

x
x y

x
x y

x
x y

2 2
11 11

2
22 22

2
12 12

2
21 21

2
12 12

2
21 21

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

The exact expression for Ω3, corresponding to the solution of the equations Ω = 01 and
Ω = 02 , will be given below (see (4.17)).

Our first result is that the equation Ω = 01 reproduces exactly the two-particle S-matrix of
the AAF model (2.6). To show this, we start with the standard coordinate Bethe ansatz for the
wave-function of an integrable model [16]:

χ θ θ θ θ< = −+ +( ) ( ) ( ) ( )( ) ( )x y x y Au u Bu uFor : ( , ) e e , (4.13)k k k k p x p y k k p y p x
1 2

i
2 1

i1 2 1 2 1 2 1 2 1 2

χ θ θ θ θ> = −+ +( ) ( ) ( ) ( )( ) ( )x y x y Bu u Au uFor : ( , ) e e . (4.14)k k k k p x p y k k p x p y
1 2

i
2 1

i1 2 1 2 1 2 1 2 1 2

Here we have denoted θ =
θ

θ−
u u( ) e

e
k

1 0

2

2
1

⎛
⎝⎜

⎞
⎠⎟, where u0 is a normalization constant, and the

momentum is θ=p m sinh ( )i i . The above ansatz is suitable for a Lorentz invariant theory,
e.g., for the fermionic Thirring model. Since the transformation of the fields (2.8) results in a
Lagrangian that is not invariant under the Lorentz transformation, the form of (4.13) and
(4.14) can now be justified by invoking the equivalence theorem (see the discussion after
(3.13)). Thus, we expect that the form of the wave-function (4.13) and (4.14) is the same as in
the original Lorentz invariant theory (2.3). Indeed, substituting the formulas (4.13) and (4.14)
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into the equation Ω = 01 (4.11), one finds after some straightforward calculations that the S-
matrix has the form:

θ θ
θ θ

θ θ
=

− −

+ −
( )

( )
( )

S ,
1 i sinh

1 i sinh
. (4.15)

mg

mg1 2
4 1 2

4 1 2

2

2

This is exactly the two-particle S-matrix of the AAF model (2.6), obtained from perturbative
calculations in the original theory.

We must still deal with the extra terms Ω2 and Ω3 in (4.10). Substituting the ansatz (4.13)
and (4.14) into (4.12), one obtains:

∫
∫

Ω ψ ψ θ θ
θ θ

ψ ψ

= − +
−

× +

( ) ( )

( )

y y y y A B g

y y y

d ( ) ( ) ( ) 0 2( )i cosh cosh cosh
2

d ( ) ( )e 0 . (4.16)p p y

2 1
†

2
†

2 1 2
1 2

1
†

2
† i 1 2

⎡⎣ ⎤⎦ ⎛
⎝⎜

⎞
⎠⎟

Thus, Ω2 does not vanish, except for an uninteresting non-scattering case, and the
corresponding term in (4.10) goes to infinity as Δ → 0. We also note here that using the
formulas (4.13) and (4.14) one can show that the term Ω∼ 3 in (4.10) takes the following form:

∫ ∫
∫
∫

Ω ψ ψ

ψ ψ

ψ ψ

= − ∂

− ∂

+ ∂ ∂

+

+

+

( )

( )

( )

y y c g y y y

c g y y y

c
m

g y y y

d ( ) i d ( ) ( )e

i d ( ) ( )e

2
d ( ) ( )e , (4.17)

y
p p y

y
p p y

y y
p p y

3 1 2 1
†

1
† i

1 2 2
†

2
† i

1 2 1
†

2
† i

1 2

1 2

1 2

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
where the constant c1 is given by the formula = + θ θ−

c A B2( ) sinh ( )1 2
1 2 . Hence, the ansatz

(4.9) is not enough in this case to diagonalize the Hamiltonian. To solve this problem, we
recall that in our ansatz (4.9) for the wave-function χ x y( , )k k1 2 we had removed the points
corresponding to the line x = y, since we expect that neither the wave function nor its
derivatives are continuous functions. One, therefore, should add a state corresponding to the
removed line x = y. Clearly, the only term that one can form from the components
ψ ψx x( ), ( )1 2 of a fermion field is a state of the type:

∫ ψ ψy y y f yd ( ) ( ) ( ), (4.18)1
†

2
†

where f(y) is some continuous function. The formula (4.18) should be understood in the sense
of the regularization (see (4.3) and (4.4)) which we have adopted for a product of operators at
the same point. Thus, the product of ψ ψy y( ) ( )1

†
2
† is regularized using the Sklyanin’s product,

and, written explicitly, the formula (4.18) can be cast in the following form:

∫ ∫ ∫ψ
η

ψ ψ′ =
η

η

η

η

−∞

+∞

−

+

−

+
v x y x y f x y

1
d d d ( ) ( ) ( , ) 0 . (4.19)

v

v

v

v

k k
k k

2 2 2

2

2

2
† †
1 2

1 2⎡⎣ ⎤⎦

In this expression we consider the functions f x y( , )k k1 2 to be continuous. It is then clear that
in the limit η → 0 the terms ψ ψ∼ y y( ) ( )1

†
1
† and ψ ψ∼ y y( ) ( )2

†
2
† will disappear and one obtains

the ill-defined expression (4.18). In contrast, there are no singular operator products in (4.19),
and the expression is well-defined. Thus, we take our complete two-particle wave function to
be:
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ψ ψ ψ= + ′ . (4.20)complete
2

2 2

In section 5 we will show that the addition of the extra term (4.19), and the constraints we will
obtain below in order to diagonalize the Hamiltonian, correspond to the construction of self-
adjoint extensions for the quantum-mechanical Hamiltonian, in a manner similar to the case
of the Landau–Lifshitz model considered in detail in [7, 48].

To show this, it is convenient to split the result of ψ ′HF 2
into two terms

ψ Λ Λ′ = +HF 2 1 2. The explicit form of the first term is:

∫
∫ ∫

Λ ψ ψ

ψ ψ ψ ψ

= − ∂

− ∂ + ∂ ∂

g y y y f y y

g y y y f y y
g

m
y y y f y y

( i) d ( ) ( ) ( , )

i d ( ) ( ) ( , ) 2 d ( ) ( ) ( , ) . (4.21)

y

y y y

1 2 1
†

1
† 12

2 2
†

2
† 12 2

1
†

2
† 12

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

Comparing the above expression with (4.17) we see that when considering the action of the
Hamiltonian  on the complete state (4.20) the term Ω∼ 3 will cancel with the term Λ1 above,
if one sets:

= − +( )f y y c( , ) ( )e . (4.22)p p y12
1

i 1 2

In the next section we will also show that this choice of f y y( , )12 is in perfect agreement with
construction of self-adjoint extensions. Collecting the rest of the terms, we find:

∫

∫

∫

∫

ψ θ θ ψ

Δ
θ θ

θ θ
ψ ψ

ψ ψ

ψ ψ

ψ ψ

= +

+ − +

×
−

− ∂ + ∂

+ ∂ ∂

− ∂ − ∂

+

=

=

=

( ) ( )

( ) ( )

( )

H m

A B g

y y y

g y y y f x y f x y

m
g y y y f x y

y y y f x y f x y

cosh cosh

2
( )i cosh cosh

cosh
2

d ( ) ( )e 0

i d ( ) ( ) ( , ) ( , ) 0

2
d ( ) ( ) ( , ) 0

2i d ( ) ( ) ( , ) ( , ) 0 . (4.23)

F

p p y

x x
x y

x y
x y

x y
x y

complete
2

1 2 2 2

2 1 2

1 2
1
†

2
† i

2 1
†

2
† 11 22

2 1
†

2
† 12

1
†

2
† 12 12

1 2

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎛
⎝⎜

⎞
⎠⎟

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
It is easy to see from the above formula that the Hamiltonian can be diagonalized by choosing
the functions f x y( , )11 , f x y( , )22 , and f x y( , )12 as follows:

Δ λ λ= − + −+ +( ) ( )f x y A B( , ) ( ) e e , (4.24)p x p y p y p x12
1

i
2

i1 2 1 2
⎡⎣ ⎤⎦

Δ= − + −+ +( ) ( )f x y A B a( , ) ( ) e e , (4.25)p x p y p y p x11
11

i i1 2 1 2
⎡⎣ ⎤⎦

Δ= − + −+ +( ) ( )f x y A B a( , ) ( ) e e , (4.26)p x p y p y p x22
22

i i1 2 1 2
⎡⎣ ⎤⎦

where a a,11 22 are some constants, and λ1 and λ2 satisfy the condition:

λ λ
θ θ

− =
−

2sinh
2

. (4.27)1 2
1 2⎛

⎝⎜
⎞
⎠⎟
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This is consistent with the general antisymmetry property: = −f x y f y x( , ) ( , )ij ji and our
choice for f y y( , )12 in (4.22). Restricting the solution to the case = =a a 011 22 , one easily
finds the solution for λ1 and λ2:

λ
θ θ

= +
−

+ +g h g h
1

2
1 2sinh

2
( ) , (4.28)1

1 2
2 1 2

2
2

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

λ
θ θ

= −
−

+ +g h g h
1

2
1 2sinh

2
( ) , (4.29)2

1 2
2 1 2

2
2

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

where h1 and h2 are some functions of θi and Δ. Since the parameter Δ corresponds to the
regularization of the Hamiltonian Δ , we conclude from the above formulas that the complete
wave-function requires renormalization. This corresponds exactly to the perturbative proof of
the equivalence theorem, and is the key point in proving the S-matrix invariance (see (3.24)).
Thus, we can see now how the renormalization of the wave-function appears in the direct
diagonalization and in the perturbative proof.

Finally, we show that:

ψ θ θ ψ= +Δ ( ) ( )m cosh cosh , (4.30)complete
2

1 2 complete
2

⎡⎣ ⎤⎦
where the complete two-particle state has the form:

∫ ∫ ∫

∫ ∫ ∫

ψ
η

ψ ψ

ψ ψ χ

=

+ +

η η

η

η

η

η

η

η

→ −∞

+∞

−

+

−

+

→ −∞

+∞

−∞

−

+

+∞

v x y x y f x y

y x x x y x y

lim
1

d d d ( ) ( ) ( , ) 0

lim d d d ( ) ( ) ( , ) 0 . (4.31)

v

v

v

v

k k
k k

y

y
k k

k k

complete
2 0 2 2

2

2

2
† †

0

† †

1 2
1 2

1 2
1 2

⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟

The two-particle S-matrix has the form (4.15) and coincides with the expression obtained
from the perturbative analysis of the original relativistic invariant theory (2.3). We stress that
these results are valid only in the pseudo-vacuum, in agreement with the proof of the S-matrix
invariance given in the previous section.

It is interesting to compare the form of the complete two-particle state (4.31) for the AAF
model with that of the Landau–Lifshitz model [7, 48, 52]. Both models exhibit the same type
of singularity in the quantum-mechanical Hamiltonian (namely, singularities of the type

δ∼ ″(0)), and require construction of the self-adjoint extensions. The Hamiltonian for the
isotropic Landau–Lifshitz model has the form:

∫= ∂ ⃗∂ ⃗( )H x S S
1

2
d . (4.32)x x

It was shown in [7, 52] that the two-particle state can be written in the form:

∫ ∫ ∫ψ Ψ Ψ Ψ= +
>

x g x x x y g x y x yd ( ) ( ) d d ( , ) ( ) ( ) 0 . (4.33)LL
x y

1 2
†

2 1
†

1
†

The bosonic fields Ψ x( )n are defined by means of the following decompositions:

∑ Ψ Ψ= +
=

∞

S x s s x x( ) ( ) ( ), (4.34)
n

n n n
3

0
3

1

3 †

∑Ψ Ψ Ψ= ++

=

∞

+S x s x s x x( ) ( ) ( ) ( ),
n

n n n0
†

1
†

1

3
1

†
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∑Ψ Ψ Ψ= +−

=

∞

+S x s x s x x( ) ( ) ( ) ( ),
n

n n n0 1

1

†3 †
1

where = = = = + ⩾s s s n s n n n1; 2 ; ; ( 1) ; ( 1)n n0
3

0
† 3 † , and satisfy the algebra:

Ψ Ψ δ δ= −x y x y( ), ( ) ( ); (4.35)m n mn
†⎡⎣ ⎤⎦

Ψ =x( ) 0 0. (4.36)n

The functions g x( )1 and g x y( , )2 are continuous, and are defined as follows:

< = ++ +( ) ( )x y g x y c cFor : ( , ) e ¯e , (4.37)p x p y p y p x
2

i i1 2 1 2

> = ++ +( ) ( )x y g x y c cFor : ( , ) ¯e e , (4.38)p x p y p y p x
2

i i1 2 1 2

and

=g x g x x( ) ( , ). (4.39)1 2

The derivative of g x y( , )2 is not a continuous function and satisfies the discontinuity
condition:

∂ − ∂ = ∂ ∂
η

η

= −

= +

=
( )g x y g x y( , ) ( , ) . (4.40)x y

y x

y x
x y

x y2 2

Using the equations (4.37)–(4.40), one finds the S-matrix of the Landau–Lifshitz model:

=
− +

−
S p p

p p p p

p p
( , )

2( ) i

2( )
. (4.41)1 2

1 2 1 2

1 2

It is clear now from the formulas (4.13), (4.14) and (4.24) that the form of the two-particle
state (4.31) for the AAF model has the same structure as the corresponding state (4.33) for the
Landau–Lifshitz model. Thus, the AAF model can be considered as the fermionic counterpart
of the bosonic Landau–Lifshitz model. The crucial difference, however, is that in the case of
the Landau–Lifshitz model the function g x y( , )2 is continuous at the line x = y, while in the
case of the AAF model the corresponding function χ x y( , )k k1 2 , together with its first
derivative, are not continuous and satisfy a much more involved discontinuity condition
Ω = 01 , where Ω1 is given by the expression (4.11). As a consequence, the integrals in (4.31)
are defined via the principal value.

For the n-particle sector the analysis can be carried out in a similar manner, and will
presented in a more complete form elsewhere.

5. Self-adjoint extensions

We now interpret the results of the previous section by analyzing the self-adjointness of the
quantum-mechanical Hamiltonian Ĥ , corresponding to regularized Hamiltonian Δ . We
show below that this condition requires the construction of self-adjoint extensions20, and the
resulting formulas reproduce the extra term in the two-particle state (4.19), required to
diagonalize the Hamiltonian Δ .

20 We refer the reader to the papers [7, 48] for a more detailed discussion of a similar analysis for the Landau–
Lifshitz model.
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We start by considering the vector space spanned by the elements of the form21:

Ψ = ⨂f x y f x y( , ) ( , ), (5.1)ij mn
1 2

where for notational convenience we have changed our notation: χ( )f x y x y( , ), ( , )ij ij

→ ( )f x y f x y( , ), ( , )ij ij
1 2 . Thus, the complete two-particle state (4.31) takes the form:

∫ ∫ ∫

∫ ∫ ∫

ψ ψ ψ

η
ψ ψ

= +

+

η

η

η

η

η

η

−∞

+∞

−∞

−

+

+∞

−∞

+∞

−

+

−

+

y x x x y f x y

v x y x y f x y

d d d ( ) ( ) ( , ) 0

1
d d d ( ) ( ) ( , ) 0 . (5.2)

y

y
k k

k k

v

v

v

v

k k
k k

complete
2

† †
2

2 2

2

2

2
† †

1

1 2

1 2

1 2

1 2

⎛
⎝⎜

⎞
⎠⎟

⎡⎣ ⎤⎦
We define the scalar product between two states of the type (5.1) as follows:

∫ ∫ ∫

∫ ∫ ∫

Φ Ψ α
η

=

+ +

η

η

η

η

η

η

−∞

+∞

−

+

−

+

−∞

+∞

−∞

−

+

+∞

v x y g x y f x y

y x x g x y f x y

1
d d d ( , ) ( , )

d d d ( , ) ( , ), (5.3)

v

v

v

v
ij ij

y

y

ij ij

2 2

2

2

2

1
*

1

2
*

2

⎛
⎝⎜

⎞
⎠⎟

⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟

where Φ is a state defined similarly to (5.1):

Φ = ⨂g x y g x y( , ) ( , ), (5.4)ij mn
1 2

and α is some constant that we fix later by imposing the condition of the self-adjointness of Ĥ .
The Hamiltonian action on Ψ can be written in the following general form:

Ψ = ⨂( ) ( )H hf x y D f x yˆ ˆ ( , ) ˆ ( , ). (5.5)
ij

x y
mn

1 ( , ) 2

Here the operator ( )D fˆ x y
mn

( , ) 2 has the form:

γ δ γ δ γ δ γ δ= − ∂ + + − ∂ +( ) ( )( )D f m m fˆ i i , (5.6)x y
mn

mk nk x mk nk nk mk y nk mk
k k

( , ) 2
3 0 3 0

21 2 1 2 2 1 2 1
1 2⎡⎣ ⎤⎦

and is defined in such a way as to reproduce the correct spectrum (4.30) when acting on the

ansatz (4.13) and (4.14) for f x y( , )k k
2

1 2 . The operator ( )hfˆ
ij

1 is fixed from the self-adjointness
condition:

Φ Ψ Φ Ψ=H Hˆ ˆ . (5.7)

Substituting (5.3) into (5.7), and taking into account the fact that neither the function
f x y( , )k k
2

1 2 nor its derivatives are continuous, after several integrations by parts one obtains
the following relation:

∫ ∫ ∫

∫

α
η

−

= −

η

η

η

η

η

η

−∞

+∞

−

+

−

+

−∞

+∞

= +

= −

( ) ( )v x y g x y hf x y hg x y f x y

y g x y f x y g x y f x y

1
d d d ( , ) ˆ ( , ) ˆ * ( , ) ( , )

2i d ( , ) ( , ) ( , ) ( , ) . (5.8)

v

v

v

v
ij ij ij ij

x y

x y

2 2

2

2

2

1
*

1 1 1

2
*12

2
12

2
*21

2
21

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦

21 Here we again restrict our considerations for the case n = 2. The general case is a straightforward generalization
and will be presented elsewhere.
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Denoting:

η≡ ±±f y f y y( ) ( , ) (5.9)ij ij
2( ) 2

η≡ ±±g y g y y( ) ( , ), (5.10)ij ij
2( ) 2

and using the relations = −+ −f y f y( ) ( )2( )
12

2( )
21 , etc, the expression (5.8) can be written in the

form:

∫ ∫ ∫

∫

α
η

× −

= −

η

η

η

η

−∞

+∞

−

+

−

+

−∞

+∞

− − + +

( ) ( )

v x y

g x y hf x y hg x y f x y

y g y f y g y f y

2
1

d d d

( , ) ˆ ( , ) ˆ * ( , ) ( , )

4i d ( ) ( ) ( ) ( ) . (5.11)

v

v

v

v

2 2

2

2

2

1
*12

1
12

1
12

1
12

2( )
*12

2( )
12

2( )
*21

2( )
21

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦
We next fix the operator ĥ as follows. First, we choose:

= +− +f y y f y f y( , ) ( ) ( ) . (5.12)1
12

2( )
12

2( )
12⎡⎣ ⎤⎦

Up to a multiplicative factor, this coincides precisely (see (4.13) and (4.14)) with our earlier
expression (4.22). We now define the operator ĥ:

= −− +( )hf y y f y f yˆ ( , ) i ( ) ( ) . (5.13)1
12

2( )
12

2( )
12⎡⎣ ⎡⎣ ⎤⎦

It is easy to check that this definition respects the symmetry properties of the functions, in

particular we have: = −( ) ( )hf y y hf y yˆ ( , ) ˆ ( , )1
12

1
21

. Now, it is easy to see that in the limit
η → 0 the integrand in the left-hand side of (5.11) can be written in the form:

− = −− − + +( ) ( )g hf hg f y y g f g f yˆ ˆ * ( , ) 2i ( ). (5.14)1
*12

1
12

1
12

1
12

2( )
*12

2( )
12

2( )
*12

2( )
12⎡

⎣⎢
⎤
⎦⎥

⎡⎣ ⎤⎦
Thus, the left and the right-hand sides of (5.11) coincide if we set α = 1 in the definition
of the scalar product (5.3). In this way the self-adjointness of Ĥ is shown, and, in
addition, we have shown that the choice of f y y( , )1

12 in (5.12) is in perfect agreement
with our earlier analysis and with the solution we have found in (4.22). Thus, we
conclude that the extra term (4.19) arising in the analysis of the diagonalization of the
quantum Hamiltonian Δ corresponds, in the quantum-mechanical picture, to the
construction of a self-adjoint extension in order to guarantee self-adjointess of the
quantum-mechanical Hamiltonian Ĥ .

6. Conclusion

In this paper we have considered the equivalence theorem for the AAF model, which asserts
the invariance of the S-matrix under field redefinitions. The consideration of such field
redefinitions is motivated by the possibility to reduce the complicated Dirac brackets for the
components of the fermion field of the original AAF theory to the standard Poisson brackets.
In such a way one achieves a significant simplification when considering the integrability
properties of the AAF model from the point of view of the inverse scattering method. We
have shown here the invariance of the S-matrix under such transformation by appropriately
modifying the perturbative proof of [43], as well as performing the direct diagonalization of
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the corresponding Hamiltonian. The latter has been achieved by regularizing the singular
operator products at the same point by means of the Sklyanin’s product. This procedure leads
to a non-trivial realization of the n-particle states and the corresponding quantum-mechanical
wave-functions, which have complicated continuity properties. We show that neither the
wave-function nor its derivatives are continuous functions and satisfy rather complicated
discontinuity equations. We were able to solve the latter to show the integrability of the model
and also that the S-matrix is unchanged.

An interesting problem to consider is whether a field transformation would allow us to
reduce a non-ultralocal theory to an ultralocal one. The AAF model serves as a repre-
sentative example of a classically integrable model which exhibits most of the difficulties
associated with quantization of such integrable models. We have shown that the direct
diagonalization requires regularization of the singular product of operators at the same point
as well as the construction of the self-adjoint extensions. It is not known how to use the
quantum inverse scattering method for non-ultralocal models, which classically can be
described by the (r, s) pair in the case of the simpler non-ultralocal models [18]. In the case
for the AAF model the situation seems to be even more complicated, and the non-ultralocal
structure is such that the classical algebra of Lax operators requires already three matrices
r s s( , , )1 2 . Interestingly, the algebra of transition matrices for both cases can still be
described by a (u, v) pair of matrices, constructed from the r s s( , , )1 2 matrices. Since the
quantization of such models is not currently known, one can try to perform a gauge
transformation of the Lax pair in order to reduce the model to an ultralocal one. This does
not seem to be possible for the majority of interesting models due to the limited class of
allowed transformations. On the other hand, if the proof of the equivalence theorem from
the first principles can be given in some generality, then we are allowed to consider a much
larger class of transformations without the necessity to perform each time the direct
diagonalization22. One could in principle, in this case, try to reduce the AAF model, or any
other non-ultralocal model, to an ultralocal one by considering the most general field
transformation order by order.

Another point that was not addressed in the paper is the proof of renormalizability of
the AAF model within the BPHZ scheme. The equivalence theorem considered in [43], and
which we had adopted for our model, relies on renormalizability, which we had simply
assumed based on (not strictly proven) integrability and the symmetries associated with it.
The fact that the quantum Hamiltonian can be diagonalized gives a strong indication that
this is indeed the case. However, we have given here the proof for the false vacuum, and
one has to still reconstruct the physical vacuum and the states. It would be interesting to
show the renormalizability of the AAF model strictly and complete the proof. For two-
dimensional integrable quantum field theories, the proof of the equivalence theory must
somehow be simpler. Indeed, it was shown in [12] that it is enough to find only two
quantum conserved commuting charges in order to guarantee the factorization of the S-
matrix. Thus, provided these two charges, one can only show the invariance of the two-
particle scattering S-matrix. The calculation of the latter is a much simpler task, as was
shown for example in [6, 45, 53, 54]. These and related problems will be considered in
future publications.

22 Although we have shown here how to perform a direct diagonalization of the quantum Hamiltonian (4.1), it is
clear that this is a very non-trivial and technically difficult procedure if we have to do it for every transformation.
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Appendix. Invariance of Green’s function

We start by considering a set of arbitrary functions ζ ψ ψ ζ ψ ψ ζ ψ ψ…( , ¯ ), ( , ¯ ), , ( , ¯ )s1 2 and
Λ ψ ψ( , ¯ ). Then, following [43], one can obtain the following equation23:

∫ δ ψ ψ
δψ

Λ Γ δΓ
δψ

Λ
⃗ℒ

=
⃗ρ

T y y x T xd
( , ¯ )

( ) ( ) i ( ) , (A.3)2
⎪ ⎪
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⎨
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⎬
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⎦
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⎧⎨⎩
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⎦
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where

∏Γ ζ ψ ψ=
=

x x( ) ( , ¯ )( ), (A.4)
i

s

i i

1
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δψ
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x x x( ) ( 1) ( ) ( ). (A.5)
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Here, the factor − +( 1)i 1 arises due to anticommutativity of the fields. Choosing the function
Γ x( ) as follows:

∏Γ ζ ψ ψ ψ ψ ψ ψ= ρ ρ

=
{ }( )x x( ) ( , ¯ ), ¯ ( , ¯ ) ( ), (A.6)

i

s

i i

1

( ) ( )

where ψ ψ ψρ ( , ¯ )( ) and ψ ψ ψρ¯ ( , ¯ )( ) are given by (3.5) and (3.6) respectively, the equation
analogous to (A.3), and written for some order M of the parameter ρ, becomes:

∫
δ ψ ψ

δψ
ρδ
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23 For any functionals Λ and Γ of ψ, ψ̄ and their higher derivatives, one defines:

∑δΛ
δ
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μ μ=

∞

f n f

( 1)

! ...
, (A.1)

j n

n

j0

... n
n

1
1

where j = 1, 2 and ψ=f1 and ψ=f ¯2 .
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Similarly, one obtains the equation corresponding to ψ̄ :

∫
δ ψ ψ

δψ
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The superscript ℒρ is a reminder that the correlation functions are computed using the general
Lagrangian (3.7) for any parameter ρ. The last two equations have a more complicated form
in comparison to the case of a single bosonic field considered in [43]. The main difference is
the mixing of the terms δ

δψ
F̄⃗ and δ

δψ
F⃗

¯
in the above equations. We will see shortly that this mixing

induces some modifications in the proof of the theorem.
The trick to show that the Green function is invariant under the change of variables (3.5)

and (3.6) consists of deriving the transformed Green’s function in relation to the parameter ρ
and showing after some algebraic manipulations that the derivative of the Green function with
respect to the parameter ρ is zero, thus showing the independence of Green’s function on the
parameter ρ. It is easy to see that:
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The first term on the right side of the equation (A.9) can be transformed as follows. Using the
relation:

ρ
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Using equations (A.7) and (A.8) repeatedly by substituting Λ Λ Λ Λ=( , ¯ ) ( , ¯ )i i , where the
sequences Λ Λ = …i n( , ¯ ), 0i i are given by the following iterative formulas:
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one can show, using (A.11), that the equation (A.9) can be written in the following form:
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Equation (A.12) is true for all ⩾n 0, if the last two terms on the right are equal to zero when
n = 0. Note that Λn is of the order ρn. We will see later that this is important to show the
invariance of the Green function under change of variables. The iterative construction of Λ
and Λ̄ which we have used here is much more complicated than the construction used in the
bosonic model [43]. We can rewrite (A.9) as:
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In equation (A.13) it is always possible to choose ⩾n M , thus, the right side of the
equation (A.13) is equal to zero, since Λn and Λ̄n are of the order ρn. Thus, the Green’s
function is invariant under the change of variables (3.5) and (3.6). Then we find:
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∏

∏

ζ ψ ψ ζ ψ ψ

ζ ψ ψ ζ ψ ψ= + + + +

=

ℒ

=

ℒ

{ }( ) ( )

{ }T x

T F F F F x

( , ¯ ) ¯ ( , ¯ ) ( )

, ¯ ¯ ¯ , ¯ ¯ ( ) . (A.15)

i

s

i i i

i

s

i i i

M

1

1

T

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

A key point to stress is that the original Lagrangian ℒ (2.3) has a manifestly Lorentz invariant
form, while the transformed Lagrangian ℒT in (3.4) does not. Nevertheless, the relation above
shows that Green’s functions still exhibit Lorentz invariance, provided the functions ζ ψ ψ( , ¯ )i

are well-defined tensors.
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