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Bayesian reference analysis for the Generalized
Gamma distribution
Pedro Luiz Ramos, and Francisco Louzada

Abstract—In this paper, we present a Bayesian reference
analysis for the generalized gamma distribution by using a ref-
erence prior, which has important properties such as one-to-one
invariance under reparametrization, consistent marginalization,
consistent sampling and leads to a proper posterior density. A
simulation study is performed in order to verify the efficiency of
our proposed methodology.

Index Terms—Bayesian Inference, Generalized Gamma Distri-
bution, Objective Prior, Reference Prior.

I. INTRODUCTION

The generalized gamma (GG) distribution [1] has proven
to be very flexible in characterizing the fading phenomenon
occurring in wireless communications [2], [3], [4], [5]. A
random variable X follows a GG distribution if its probability
density function (PDF) is given by

f (x |φ, µ, α) =
α

Γ(φ)
µαφxαφ−1 exp (−(µx)α) , (1)

where x > 0, Γ(φ) =
∫ ∞
0 e−x xφ−1dx is the gamma function,

α > 0 and φ > 0 are the shape parameters and µ > 0 is a
scale parameter. The GG distribution has relevant PDF with
various sub-models, such as the Weibull, gamma distribution,
Log-Normal, Nakagami-m, half-normal, Rayleigh, Maxwell-
Boltzmann and chi distributions.

The GG distribution is best known in the wireless communi-
cations scenario as α−µ distribution since it is a generalization
of the Nakagami-µ distribution [5]. Yacoub [6] presented an
important review of the α−µ distribution and its applications in
this area. The author argued that the proposed distribution ”has
as its base a fading model. Thence, its parameters are directly
associated with the physical properties of the propagation
medium”.

Although the maximum likelihood estimators (MLEs) for
the parameters of the GG distribution have been discussed
earlier [7], the MLEs may not be a good choice, since in many
cases the asymptotic confidence intervals are not achieved even
for samples greater than 400 [8]. In order to overcome this
problem, a Bayesian inference can be considered. Ramos et
al. [9] discussed an objective Bayesian analysis for the GG
distribution and proposed a geometric mean Jeffreys/Reference
prior to performing inference. However, the Jeffreys prior may
not be a good choice in the multiparametric case [10] as well
as its subsequently geometric mean with other priors.

In this letter, we derived a reference prior for the GG
distribution, which leads to a proper posterior density with
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interesting properties, such as one-to-one invariance, consistent
marginalization and consistent sampling properties [10]. These
results are important to perform inference for the parameters of
the GG distribution, especially for small and moderate sample
sizes.

II. BAYESIAN REFERENCE ANALYSIS

The main objective of reference Bayesian analysis in-
troduced by Bernardo [11] with further developments (see
Bernardo [10] and the references therein) is to specify a prior
distribution where the dominant information in the posterior
distribution is provided by the data. To achieve such prior the
authors maximize the expected Kullback-Leibler divergence
between the posterior distribution and the prior.

Bernardo [10] reviewed different procedures to derive ref-
erence priors considering ordered parameters. The necessary
steps to obtain reference priors can be seen in Proposition A.1.

Theorem II.1. Let θ = (φ, µ, α) be the vector of ordered
parameters. Then, the θ-reference prior is given by

πR(φ, µ, α) ∝
1
αµ

√
φ2ψ ′(φ)2 − ψ ′(φ) − 1
φ + φ2ψ ′(φ) − 1

. (2)

where ψ(k) = ∂
∂k log Γ(k) = Γ

′(k)
Γ(k) is the digamma function and

ψ ′(k) = ∂
∂kψ(k) is the trigamma function.

Proof. See Appendix A. �

The joint posterior distribution for φ, µ and α, using the
reference prior distribution (2) is given by

πR(θ |x) =
π(φ)

d(x)
αn−1

Γ(φ)n
µnαφ−1

n∏
i=1

xαφi exp

{
−µα

n∑
i=1

xαi

}
,

(3)
where

d(x) =
∫
A

αn−1π(φ)

Γ(φ)n
µnαφ−1

n∏
i=1

xαφi exp

{
−µα

n∑
i=1

xαi

}
dθ,

π(φ) =

√
φ2ψ ′(φ)2 − ψ ′(φ) − 1
φ + φ2ψ ′(φ) − 1

and A = {(0,∞) × (0,∞) ×

(0,∞)} is the parameter space for θ.

Theorem II.2. The posterior (3) is a proper posterior distri-
bution, i.e., d(x) < ∞.

Proof. See Appendix B. �

It is important to point out that using Proposition A.1 we can
obtain six different reference priors. However, the reference
prior (2) is the only one that returned a proper posterior.
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Due to the consistent marginalization property of the refer-
ence prior the reference marginal posterior distribution of φ
and α is

πR(φ, α |x) ∝ α
n−2 π(φ)Γ(nφ)

Γ(φ)n

©­­«
n

√∏n
i=1 xαi∑n

i=1 xαi

ª®®¬
nφ

.

The conditional posterior distributions for α, µ and φ are
given as follows:

πR(α |φ, x) ∝ α
n−2 ©­­«

n

√∏n
i=1 xαi∑n

i=1 xαi

ª®®¬
nφ

,

πR(φ|, α, x) ∝
π(φ)Γ(nφ)
Γ(φ)n

©­­«
n

√∏n
i=1 xαi∑n

i=1 xαi

ª®®¬
nφ

, (4)

πR(µ|φ, α, x) ∼ GG ©­«nφ,

(
n∑
i=1

xαi

) 1
α

, α
ª®¬ .

where GG(φ, µ, α) is the PDF of the GG distribution (1).
The conditional posterior distributions (4) are useful to

achieve the convergence of the Markov chain Monte Carlo
(MCMC) methods. Since the conditional distributions of α and
φ do not have closed forms, the Metropolis-Hastings algorithm
was used to obtain the subsequent quantities.

A. Comparison between the Jeffreys/Reference prior and the
proposed reference prior

Ramos et al. [9] proved that the Jeffreys prior led to an
improper posterior in the case of the GG distribution and
such posterior should not be. Moreover, it was presented a
reference prior where (µ, φ, α) are the ordered parameters that
also led to an improper posterior. Although both priors led
to improper posteriors, the obtained geometric mean returned
a proper posterior. The proposed Jeffreys/Reference prior is
given by

πJR(α, µ, φ) ∝
πJR(φ)

µ
√
α
,

where

πJR (φ) ∝
4

√
φ2ψ

′
(φ)3 − ψ

′
(φ)2 − ψ′(φ) −

ψ(φ)2
(
φ2ψ

′
(φ)2 − ψ

′
(φ) − 1

)
2ψ(φ) + φψ′(φ) + φψ(φ)2 + 1

.

However, the Jeffreys prior may not be adequate in many
situations and can lead to marginalization paradoxes and strong
inconsistencies (see Bernardo [10, pg. 41] and the references
therein), while the reference priors return consistent results.
Such problems may remain if we consider the geometric
mean with the Jeffreys prior. On the other hand, the proposed
(φ, µ, α)-reference prior provided a posterior distribution with
interesting properties, such as one-to-one invariance, consistent
marginalization, and consistent sampling properties. It is worth
mentioning that is not easy to find a reference prior that returns
a proper posterior as many reference priors can be obtained
depending on the ordered parameters or the selected compact
spaces.

III. NUMERICAL ANALYSIS

In this section, a simulation study is carried out for
the proposed model by computing the mean relative errors
(MRE) and the mean square errors (MSE) given by MREi =
1
N

∑N
j=1

θ̂i, j
θi
,MSEi =

1
N

∑N
j=1(θ̂i, j − θi)

2, for i = 1, 2, 3, where
N = 5, 000 is the number of estimates obtained through
the Bayes estimator. Considering this approach a good es-
timation procedure should return the MREs closer to one
with smaller MSEs. The results were computed with the
software R [12] using 2017 as seed to generate the pseudo-
random samples from the GG distribution. This procedure
was performed considering θ = ((0.5, 0.5, 3), (0.4, 1.5, 5)) and
n = (50, 60, . . . , 300). The 95% coverage probability was also
evaluated using the credibility intervals. For a large number of
experiments, using a 95% confidence level, the frequencies of
the intervals that covered the true values of θ should be closer
to 0.95.

For each simulated sample, 31, 000 iterations were per-
formed using MCMC methods. The first 1, 000 observations
were discarded as initial values. The thin considered was 30
to reduce the autocorrelation among the chains. Three chains
of size 1, 000 were obtained for each simulated sample at the
end of the procedure. The convergence of the chains were
confirmed by the Geweke criterion [13] with a 95% confidence
level. The posterior mode estimates were computed due to
the asymmetry of the marginal posterior distributions, yielding
2, 000 estimates for φ, µ and α. Although we have presented
the results for θ = ((0.4, 1.5, 5), (0.5, 0.5, 3)), the following
results were similar for other choices of φ, µ and α. Figures 1
and 2 show the MREs, MSEs, the coverage probability with
a 95% confidence level considering our proposed approach.

50 100 150 200 250 300

0.
75

0.
85

0.
95

1.
05

n

M
R

E
 (

φ)

50 100 150 200 250 300

0.
00

0.
02

0.
04

0.
06

n

M
S

E
 (

φ)

50 100 150 200 250 300

0.
92

0.
94

0.
96

0.
98

n

C
P

 (
φ)

50 100 150 200 250 300

0.
90

0.
95

1.
00

1.
05

n

M
R

E
 (

µ)

50 100 150 200 250 300

0.
00

0
0.

00
5

0.
01

0
0.

01
5

n

M
S

E
 (

µ)

50 100 150 200 250 300

0.
92

0.
94

0.
96

0.
98

n

C
P

 (
µ)

50 100 150 200 250 300

0.
90

0.
94

0.
98

1.
02

n

M
R

E
 (

α)

50 100 150 200 250 300

0.
0

0.
5

1.
0

1.
5

2.
0

n

M
S

E
 (

α)

50 100 150 200 250 300

0.
92

0.
94

0.
96

0.
98

n

C
P

 (
α)

Fig. 1. MREs, RMSEs for the parameters considering φ = 0.5, µ = 0.5 and
α = 4 for N = 5, 000 simulated samples and n = (50, 60, . . . , 300.

The results show that the MSEs decrease as n increases
and also, as expected, the values of MREs tend to one, i.e. the
estimators are asymptotically unbiased for the parameters. In
addition, the coverage probability for all parameters tends to
0.95 even for small values of n.



IEEE COMMUNICATIONS LETTERS, VOL. 14, NO. 8, AUGUST 20?? 3

50 100 150 200 250 300

0.
80

0.
90

1.
00

1.
10

n

M
R

E
 (

φ)

50 100 150 200 250 300

0.
00

0.
02

0.
04

0.
06

n

M
S

E
 (

φ)

50 100 150 200 250 300

0.
92

0.
94

0.
96

0.
98

n

C
P

 (
φ)

50 100 150 200 250 300

0.
96

1.
00

1.
04

n

M
R

E
 (

µ)

50 100 150 200 250 300

0.
00

0.
01

0.
02

0.
03

0.
04

n

M
S

E
 (

µ)

50 100 150 200 250 300

0.
92

0.
94

0.
96

0.
98

n

C
P

 (
µ)

50 100 150 200 250 300

0.
90

0.
94

0.
98

1.
02

n

M
R

E
 (

α)

50 100 150 200 250 300

0
1

2
3

4
5

n

M
S

E
 (

α)

50 100 150 200 250 300

0.
92

0.
94

0.
96

0.
98

n

C
P

 (
α)

Fig. 2. MREs, RMSEs for the parameters considering φ = 0.4, µ = 1.5 and
α = 5 for N = 5, 000 simulated samples and n = (50, 60, . . . , 300).

IV. CONCLUSIONS

In this work, we have introduced a new reference prior for
the generalized gamma distribution. The proposed reference
prior provided a posterior distribution with interesting proper-
ties, such as one-to-one invariance, consistent marginalization
and consistent sampling properties. In addition, the proposed
prior returns a proper posterior distribution and has better
properties than the Jeffreys/Reference prior. Numerical results
have shown that the MCMC using the proposed posterior
returns good estimates for the parameters as well as desirable
credibility intervals.
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APPENDIX A
PROOF OF THEOREM II.1

The following proposition will be applied to obtain the
reference prior for the GG distribution.

Proposition A.1. Bernardo [10, p. 40, Theorem 14] Consider
that θ = (θ1, . . . , θm) is a vector with ordered parameters and
p(θ |x) is the posterior distribution that has an asymptotically
normal distribution with dispersion matrix V(θ̂n)/n, where θ̂n
is a consistent estimator of θ and H(θ) = V−1(θ). Moreover,
Vj is the upper j × j submatrix of V, Hj = Vj and hj, j(θ) is
the lower right element of Hj . Then, if the parameter space
of θ j is independent of θ−j = (θ1, . . . , θ j−1, θ j+1, . . . , θm), for

j = 1, . . . ,m, and hj, j(θ) are factorized in the form h
1
2
j, j(θ) =

fj(θ j)gj(θ−j), j = 1, . . . ,m. Then the reference prior for the
ordered parameters θ is given by πR(θ) = π(θ j |θ1, . . . , θ j−1)×
· · · × π(θ2 |θ1)π(θ1), where π(θ j |θ1, . . . , θ j−1) = fj(θ j), for j =
1, . . . ,m and there is no need for compact approximations,
even if the conditional priors are not proper.

Firstly, the parameter space of θ j is independent of θ−j
for j = 1, 2, 3. The Fisher information matrix can be seen in
Ramos et al [9] and after some algebraic manipulations we
have

h
1
2
1,1(θ) =

√
φ2ψ ′(φ)2 − ψ ′(φ) − 1
φ + φ2ψ ′(φ) − 1

= f1(φ)g1(µ)g1(φ)

where f1(φ) =
√
φ2ψ′(φ)2−ψ′(φ)−1
φ+φ2ψ′(φ)−1 , g1(µ)=1 and g1(α) = 1.

h
1
2
2,2(θ) =

α

µ

√
φ + φ2ψ(φ) − 1

1 + 2ψ(φ) + φψ ′(φ) + φψ(φ)2
= g2(α) f2(µ)g2(φ)

where g2(φ) =
√

φ+φ2ψ(φ)−1
1+2ψ(φ)+φψ′(φ)+φψ(φ)2 , g2(α) = α, f2(µ) = 1

µ .

h
1
2
3,3(θ) =

√
1 + 2ψ(φ) + φψ ′(φ) + φψ(φ)2

α
= f3(α)g3(µ)g3(φ)

where g3(φ) =
√

1 + 2ψ(φ) + φψ ′(φ) + φψ(φ)2, g3(µ) = 1 and
f3(α) = 1

α .
From the Proposition A.1, for the ordered parameters
(φ, µ, α) the conditional reference priors are

π(α |µ, φ) ∝ f3(α) ∝
1
α
, π(µ|φ) ∝ f2(µ) ∝

1
µ
,

π(φ) ∝ f1(φ) ∝

√
φ2ψ ′(φ)2 − ψ ′(φ) − 1
φ + φ2ψ ′(φ) − 1

.
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Therefore, the joint θ-reference prior is

πR(φ, µ, α) ∝ π(α |µ, φ)π(µ|φ)π(φ)

∝
1
αµ

√
φ2ψ ′(φ)2 − ψ ′(φ) − 1
φ + φ2ψ ′(φ) − 1

.

APPENDIX B
PROOF OF THEOREM II.2

Since αn−1π(φ)
Γ(φ)n µnαφ−1 ∏n

i=1 xαφi exp
{
−µα

∑n
i=1 xαi

}
≥ 0 we

have

d(x) =

∞∫
0

∞∫
0

∞∫
0

αn−1π(φ)

Γ(φ)n
µnαφ−1

n∏
i=1

xαφi exp

{
−µα

n∑
i=1

xαi

}
dµdφdα

=

∞∫
0

∞∫
0

αn−2π(φ)

Γ(φ)n

n∏
i=1

xαφi
Γ(nφ)(∑n
i=1 xαi

)nφ dφdα

= s1 + s2 + s3 + s4,

where

s1 =

1∫
0

1∫
0

αn−2π(φ)

Γ(φ)n

n∏
i=1

xαφi
Γ(nφ)(∑n
i=1 xαi

)nφ dφdα

∝

1∫
0

1∫
0

αn−2 × 1 × φn−
3
2
©­­«

n

√∏n
i=1 xαi∑n

i=1 xαi

ª®®¬
nφ

dφdα

=

1∫
0

αn−2
1∫

0

φn−
3
2 e−nφ q(α)dφdα

=

1∫
0

αn−2 γ(n −
1
2, n q(α))

(n q(α))n− 1
2

dα

∝

1∫
0

αn−2 1
1n− 1

2
× 1 dα <

1∫
0

αn−
3
2 dα < ∞.

s2 =

∞∫
1

1∫
0

αn−2π(φ)

Γ(φ)n

n∏
i=1

xαφi
Γ(nφ)(∑n
i=1 xαi

)nφ dφdα

∝

∞∫
1

1∫
0

αn−2 × 1 × φn−
3
2
©­­«

n

√∏n
i=1 xαi∑n

i=1 xαi

ª®®¬
nφ

dφdα

=

∞∫
1

αn−2
1∫

0

φn−
3
2 e−nφ q(α)dφdα

=

∞∫
1

αn−2 γ(n −
1
2, n q(α))

(n q(α))n− 1
2

dα

∝

∞∫
1

αn−2 1
αn− 1

2
× 1 dα <

∞∫
1

α−
3
2 dα < ∞,

s3 =

1∫
0

∞∫
1

αn−2π(φ)

Γ(φ)n

n∏
i=1

xαφi
Γ(nφ)(∑n
i=1 xαi

)nφ dφdα,

∝

1∫
0

∞∫
1

αn−2 ×
1
φ

3
2
× nnφφ

n−1
2

©­­«
n

√∏n
i=1 xαi∑n

i=1 xαi

ª®®¬
nφ

dφdα

s3 =

1∫
0

αn−2
∞∫

1

φ
n−2

2 −1e−nφ p(α)dφdα

=

1∫
0

an−2 Γ(
n−2

2 , n p(α))

(n p(α)) n−2
2

dα

∝

1∫
0

αn−2 1
(α2)

n−2
2
× 1 dα =

1∫
0

α0dα < ∞,

and

s4 =

∞∫
1

∞∫
1

αn−2π(φ)

Γ(φ)n

n∏
i=1

xαφi
Γ(nφ)(∑n
i=1 xαi

)nφ dφdα

∝

1∫
0

∞∫
1

αn−2 ×
1
φ

3
2
× nnφφ

n−1
2

©­­«
n

√∏n
i=1 xαi∑n

i=1 xαi

ª®®¬
nφ

dφdα

=

1∫
0

αn−2
∞∫

1

φ
n−2

2 −1e−nφ p(α)dφdα

=

∞∫
1

an−2 Γ(
n−2

2 , n p(α))

(n p(α)) n−2
2

dα

∝

∞∫
1

αn−2 1
α

n−2
2
× α

n−2
2 −1e

−n log

(
xm

n
√∏n

i=1 xi

)
α

dα

=

∞∫
1

α−3e−Lαdα < ∞

where xm = max(x1, . . . , xn), L = n log
(

xm
n
√∏n

i=1 xi

)
> 0,

p(α) = log
©­­«

1
n

∑n
i=1 xαi

n

√∏n
i=1 xαi

ª®®¬, q(α) = log
©­­«

∑n
i=1 xαi

n

√∏n
i=1 xαi

ª®®¬ and

γ(y, x) =
∫ x

0 wy−1e−wdw.
Therefore, we have d(x) = s1 + s2 + s3 + s4 < ∞.


