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Abstract
Generalized empirical currents represent a vast class of thermodynamic observ-
ables of mesoscopic systems. Their fluctuations satisfy the thermodynamic
uncertainty relations (TURs), as they can be bounded by the average entropy
production. Here, we derive a general closed expression for the hyperaccurate
current in discrete-state Markovian systems, i.e. the one with the least fluc-
tuations, for both discrete- and continuous-time evolution. We show that its
associated hyperaccurate bound is generally much tighter than the one given
by the TURs, andmight be crucial to providing a reliable estimation of the aver-
age entropy production. We also show that one-loop systems (rings) exhibit
a hyperaccurate current only for finite times, highlighting the importance of
short-time observations. Additionally, we derive two novel bounds for the effi-
ciency of work-to-work converters, solely as a function of either the input or
the output power. Finally, our theoretical results are employed to analyze a six-
state model network for kinesin, and a chemical system in a thermal gradient
exhibiting a dissipation-driven selection of states.

Keywords: stochastic processes, non-equilibrium statistical physics,
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1. Introduction

Stochastic thermodynamics [1–5] constitutes a unified theory to describe the non-equilibrium
properties of mesoscopic systems, encompassing molecular motors [6, 7], colloidal particles
[2, 3], chemical reaction networks [8–10], and phase transitions [11–13]. The non-equilibrium
behavior of a system is typically characterized by a continuous dissipation of energy into the
environment to eventually reach and maintain a stationary state. The energy supply to sustain
this steady consumption might stem from the coupling to one [14–16] or multiple reservoirs
[17, 18], both considering fixed thermodynamic forces and time-dependent drivings [19, 20].

The breaking of detailed balance, a positive total entropy production rate, the presence
of steady probability currents, and a limited efficiency (in the case of thermal engines) are
only a few possible fingerprints of a non-equilibrium picture. Some of these features are also
intimately connected through the celebrated fluctuation theorems [2, 21] and satisfy universal
bounds known as thermodynamic uncertainty relations (TURs), generally dictating that the
dissipation constraints current fluctuations out of equilibrium. TURs have attracted increas-
ing attention in recent years, hinting at the fascinating perspective of estimating the entropy
production by measuring stochastic currents [22–25].

In its original formulation, the TUR relates fluctuations of any stochastic currents in steady
state arbitrarily far from equilibrium to the average total entropy production rate, ⟨Σ⟩ [26]:

σ2
J

⟨J⟩2
⩾ 2

⟨Σ⟩
, (1)

where σ2
J and ⟨J⟩ are the variance andmean of the current J over the ensemble of stochastic tra-

jectories, respectively, being such left side known as coefficient of variation squared (CV2) of
J. The TUR expressed in equation (1) has been proven to hold both forMarkovian discrete-state
systems [27] and for continuous-state systems following a Langevin dynamics [28–31]. Sub-
sequently, TURs have been extended to several cases, such as periodically-driven systems [32]
and discrete-time processes [33, 34], in turn generating a wealth of novel bounds in stochastic
thermodynamics [35, 36] and highlighting their connection with fluctuation theorems [37, 38].
Additionally, several TURs have been recently unified under a geometric interpretation [39].

As stated before, besides the richness of its physical content, i.e. the minimum amount of
dissipation required to have a current of a desired precision, TURs also play a leading role
in estimating the average entropy production, ⟨Σ⟩, by inverting equation (1). Some works in
this direction exploited the saturation of the bound in short-time experiments [24], even if the
bottleneck of this inference problem relies on the ability to identify a current approaching the
bound, so to provide a reliable estimate of ⟨Σ⟩. In [40], a closed expression for the hyperac-
curate current, i.e. the one minimizing the CV2, is derived for a set of overdamped Langevin
equations. This is clearly the best observable to bound the average entropy production rate
using equation (1).

Here, we generalize the concept of hyperaccurate current to Markovian discrete-state sys-
tems. To this aim, a simple method to estimate the variance of any generalized current in this
class of systems is introduced. Then, we derive a general closed (analytical) expression for
the hyperaccurate current in the case of both discrete (Markov chains) and continuous (master
equation) time evolution. For systems with only one loop in the transition network (rings), we
show that all currents have the same CV2 in the long-time limit, while finite-time hyperac-
curate currents can be defined. Conversely, in the presence of more than one loop, we derive
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the hyperaccurate current and its associated bound, both for finite times and in the long-time
regime. The knowledge of the hyperaccurate current can also provide two novel bounds for the
efficiency of general work-to-work converters, respectively as a function solely of the output
or input work. We then illustrate our theory for two paradigmatic master equation systems, a
six-state model for kinesin moving along a microtubule [41, 42], and a chemical system in a
thermal gradient exhibiting a dissipation-driven selection of states [10].

2. Generalized empirical currents

Consider a stochastic trajectory performed by a discrete-state system in the time interval t ∈
[0, tf]. This is characterized by the set of visited states, {xi}i=0,...,N. The generalized empirical
currents associated with this trajectory are defined as [27]:

J=
1
tf

∑
ml

dmlnml, (2)

where nml is the number of jumps from the state l to m up to time tf , and dml the element (ml)
of an anti-symmetric matrix d̂. The specific form of d̂ determines the current. Clearly, J is a
trajectory-dependent quantity, since nml depends on the set {xi}i=0,...,N as follows:

nml =
N−1∑
k=0

δxk,lδxk+1,m, (3)

where δi,j attempts to the Kronecker delta.
To evaluate the CV2 for discrete-state systems, we compute average and variance of a

generalized empirical current over all stochastic trajectories with the same duration tf . From
equation (2) and by employing the anti-symmetric property of d̂ together with the fact that it
does not depend on the trajectory, the average current is given by

⟨J⟩= 1
tf

∑
m<l

dmljml, (4)

where the sum now runs over all indices m< l, and jml is the average current from the state
l to m:

jml = ⟨nml− nlm⟩, (5)

where ⟨·⟩=
∑

x ·Pt(x), with Pt(x) the probability of a trajectory x of duration tf , starting at
time t. In what follows, we will focus on stationary process, so that the starting time becomes
immaterial andwe can get rid of the subscript t. Analogously, the variance of J reads as follows:

σ2
J =

1
tf 2

∑
mlm ′l ′

dmldm ′l ′Cmlm ′l ′ , (6)

where Cmlm ′l ′ = ⟨nmlnm ′l ′⟩− ⟨nml⟩⟨nm ′l ′⟩. Using again the anti-symmetry of dml, we can
restrict the summation in equation (6) over all indices m< l and m ′ < l ′, obtaining:

σ2
J =

1
tf 2

∑
m<l,m ′<l ′

dmldm ′l ′Mmlm ′l ′ , (7)

withMmlm ′l ′ = Cmlm ′l ′ +Clml ′m ′ −Cmll ′m ′ −Clmm ′l ′ . Later on we will determine the explicit
form of jml and σ2

J for Markov chains and master equation systems.
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3. Hyperaccurate currents and bound

The hyperaccurate current is determined by the matrix d̂ that minimizes the CV2, namely d̂(h).
Hence, for each element dij we have to solve the following equation:

∂

∂dij

σ2
J (t)

⟨J(t)⟩2

∣∣∣∣
d̂→d̂(h)

=
2
(
⟨J(h)⟩

∑
{ml} d

(h)
ml Mmlij−σ2

J(h) jij
)

⟨J(h)⟩3
= 0 ∀i, j, (8)

where ⟨J(h)⟩ and σ2
J(h) correspond to the mean and variance of the hyperaccurate current,

respectively, and {m, l} is a short notation to denote that the sum is constrained to m< l and
m ′ < l ′. Analogously, σ2

J(h) is the variance of the hyperaccurate current. We can exploit the fact

that CV2 does not change when multiplying d̂(h) by a constant. The solution of equation (8) is
therefore defined up to an arbitrary factor. From now on, we shall fix this constant by setting
σ2
J(h)/⟨J

(h)⟩= 1. This procedure is analogous to the one employed in [40]. Moreover, since
both Mmlij and jij diverge linearly with tf in the long-time limit, it is convenient to introduce
the scaled quantities M̃mlm ′l ′ =Mmlm ′l ′/tf and j̃ml = jml/tf that stay finite when tf →∞. With

these choices, from equation (8), the hyperaccurate coefficients d(h)ml have to satisfy:

∑
{ml}

d(h)ml M̃mlij = j̃ij ∀i, j. (9)

Moreover, we arrive at the general expression for the hyperaccurate bound, that is the min-
imum possible value of the CV2 of any generalized empirical current:

Bh =
1

⟨J(h)⟩
. (10)

It is worth mentioning that equations (9) and (10) hold for any discrete-state system, whether
it is described by a Markov chain or evolves according to a master equation, both at and out
of the steady-state. In the next sections, we shall derive the statistics of the currents, namely
mean and variance, for Markov chains and master equation systems, restricting ourselves to
the relatively simple, yet quite general, case of stationary processes for simplicity. We remark
that, although the expressions for themean and variancemight be cumbersome, all hyperaccur-
ate coefficients d(h)ij ’s can be computed analytically by solving equation (9). However, since
hyperaccurate currents are system-dependent, as also discussed in [40], finding an intuitive
physical explanation for their specific form is usually a hard task.

3.1. Statistics of currents for Markov chains

Markov chains are characterized by a discrete-time evolution. Indeed, a transition between
discrete states can only happen at a definite time interval, ∆t. As a consequence, a trajectory
of length tf will be necessarily constituted by N= tf/∆t transitions. Let pi;t the probability to
be in the state i at time t, the dynamics of a Markov chain is given by

pi;t+∆t =
∑
j

Aijpj;t, (11)
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being indeed fully specified by the transition matrix Aij = pi;t+∆t|pj;t. Hence, given a stochastic
trajectory {xi}i=0,...,N := x, taking place in the time interval t ∈ [0, tf], its path probability reads:

P(x) = px0;0

N∏
i=1

Axixi−1 . (12)

To simplify the notation, we neglect the subscript referring to the starting time, i.e. t= 0 in this
case. This probability is properly normalized, i.e.

∑
xP(x) = 1, with

∑
x :=

∑
x0,x1,...,xN

.
For stationary processes, the initial condition px0;0 is equal to the steady-state probability

distribution pstx0 , hence being independent of the starting time. Therefore, the average number
of jumps from the state l to the state m is given by:

⟨nml⟩=
∑
x

P(x)
N−1∑
k=0

δxk,lδxk+1,m

=
N−1∑
k=0

∑
x

pstx0

N∏
i=1

Axixi−1δxk,lδxk+1,m = NAmlp
st
l . (13)

where we used the following properties of the transition matrix Axixi−1 :∑
xN,xN−1,...,xk+2

N∏
i=k+2

Axixi−1 = 1,

and ∑
xk−1,xk−2,...,x0

k∏
i=1

Axixi−1p
st
x0 = pstxk .

Following a similar procedure, it is possible to compute the second moment, ⟨nmlnm ′l ′⟩, which
is given by:

⟨nmlnm′l′⟩=
∑
x

P(x)
N−1∑
k=0

δxk,lδxk+1,m

N−1∑
k′=0

δxk′ ,l′δxk′+1,m′

=
N−1∑
k=0

N−1∑
k′=0

∑
x

pstx0

N∏
i=1

Axixi−1δxk,lδxk+1,mδxk′ ,l′δxk′+1,m′ ,

where summations over k and k
′
in the equation above includes three kinds of terms: a first one

including only trajectories in which k ′ > k, a second one taking contributions from trajectories
in which k ′ < k, and a third one accounting for the cases k ′ = k. By evaluating each term
separately, we arrive at the following expression:

⟨nmlnm ′l ′⟩=
N−1∑
k=0

N−1∑
k ′=k+1

Am ′l ′pl ′,k ′∆t|m,(k+1)∆tAml p
st
l

+
N−1∑
k=0

k−1∑
k ′=0

Amlpl,k∆t|m ′,(k ′+1)∆tAm ′l ′ p
st
l ′

+
N−1∑
k=0

Aml p
st
l δll ′ δmm ′ . (14)
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Hyperaccurate coefficients, and thus the hyperaccurate bound, can be readily obtained substi-
tuting equations (13) and (14) into equation (9) for stationary processes described by aMarkov
chain.

From a broader perspective, the presented approach provides a simple path towards the
analytical expression of the variance of any generalized current in Markov chains. In the next
section, we will describe how to generalize it to deal with continuous-time evolution systems.

3.2. Statistic of currents for master equation systems

To adapt the formalism developed in the previous subsection to master equation systems, it is
sufficient to modify the transition matrix as follows:

Aij =

{
Wij∆t if j ̸= i

1−
∑

jWji∆t otherwise,
(15)

whereW ij is now the transition rate from the state j to the state i and corresponds to the (ij)th ele-
ment of the transition rate matrix Ŵ. As in the previous section, we consider time-independent
transition rates to ensure that the system will eventually reach a unique stationary state. With
this form of Aij, the moments of the generalized currents can be obtained by performing the
continuous-time limit, that is ∆t→ 0. Hence, we obtain:

⟨nml⟩=
ˆ tf

0
dt Wmlp

st
l = tfWmlp

st
l , (16)

⟨nmlnm ′l ′⟩=WmlWm ′l ′

ˆ tf

0
dt
ˆ t

0
dτ
(
pl ′;t|m;τp

st
l + pl;t|m ′;τp

st
l ′

)
+ δmm ′δll ′ tfWmlp

st
l . (17)

It is worth pointing out that the number of jumps occurring in a single trajectory is not fixed
a-priori by its duration for master equation systems.

As outlined above, equations (16) and (17) determine the hyperaccurate current and its asso-
ciated bound. However, it is instructive to derive the equation for hyperaccurate coefficients
explicitly in the long-time limit, i.e. tf →+∞. Noting that:

⟨nml⟩=Wml
2
tf

ˆ tf

0
dt
ˆ t

0
dτ pstl , (18)

and following the same procedure outlined in [40], we arrive at the following expression for
C̃mlm ′l ′ :

C̃mlm ′l ′ =WmlWm ′l ′

(
pstl ′

ˆ +∞

0
dt
(
pl;t|m ′;0 − pstl

)
+ pstl

ˆ +∞

0
dt
(
pl ′;t|m;0 − pstl ′

))
+ δmm ′δll ′Wmlp

st
l . (19)

As expected, there are no divergences in the long-time limit and the propagators only depend
on time differences since we are considering stationary processes. Since the expression for
C̃mlm ′l ′ enters into the definition of M̃mlij, we can write the equation for the hyperaccurate
coefficients as follows:∑

{ml}

d(h)ml M̃mlij = J stij , ∀i, j (20)

where J stij =Wijpstj −Wjipsti are the steady-state probability currents obtained from the master
equation.

6
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A useful way to handle equation (19) is to expand all probabilities in terms of the eigenval-
ues and eigenvectors of transition matrix Ŵ, i.e.

pl;t|m;0 = pstl +
M∑
i=2

v(i)l a
(m)
i eλit, (21)

whereM is the total number of accessible states in the system, v(i)l is the lth component of the
ith eigenvector, and λi its associated eigenvalue. Note that the eigenvalues are enumerated in
descending order so that λ1 = 0> λ2 > .. . > λM. Here, the initial conditions, i.e. the fact the
system is in the state m at time 0, are encoded in the coefficients a(m)i satisfying the following
equations:

pstl +
M∑
i=2

v(i)l a
(m)
i = δl,m, ∀l= 1, . . . ,M.

Hence, C̃mlij takes the following form:

C̃mlm ′l ′ =WmlWm ′l ′
∑
i⩾2

(
pstl ′

v(i)l a
(m ′)
i

λi
+ pstl

v(i)l ′ a
(m)
i

λi

)
+ δmm ′δll ′Wmlp

st
l . (22)

For the sake of simplicity, in all the examples considered here, the hyperaccurate coefficients
d(h)ml are numerically obtained by using the expression of C̃mlm ′l ′ given by equation (22) and
numerically inverting equation (20).

3.3. Finite-time hyperaccurate currents for rings

As a starting point, consider a discrete-state system constituted by one single loop (a ring) in
the transition network. At stationarity, all edges not belonging to the loop satisfy the detailed
balance, and hence such a system can only support a unique nonzero steady current, J st. In the
long-time limit, all possible currents of the system have to be proportional to J st, so that their
CV2 is equal to the one of J st, CV2

st:

CV2 =
α2σ2

J st

α2⟨Jst⟩2
= CV2

st (23)

where α is the proportionality factor. However, due to the transient regime of the propagators,
it is possible to define a finite-time hyperaccurate current for any one-loop system, even in
the presence of stationary processes. As illustrated in figure 1 for a simple three-state ring,
the hyperaccurate bound changes over time (dot-dashed vertical lines with increasing opa-
city). At the same time, the histogram of random currents with respect to their CV2 becomes
narrower and narrower as the time increases, eventually becoming a Dirac δ centered at Bh
(red star) when t→∞, consistently with the fact that all currents have the same CV2 in the
long-time limit. Although the performed analysis only shows the applicability of our frame-
work beyond the long-time limit, in the presented example, we realize that 2/⟨Σ⟩⩽ Bh(t)⩽
Bh, where Bh(t) is the hyperaccurate bound obtained for stationary trajectories of duration
tf = t. The first inequality comes from the definition of the hyperaccurate bound. Conversely,
the second inequality comes from a numerical observation holding true in several one-loop
systems we studied. Defining ⟨Σ⟩hyp(t) as a measure of the entropy production associated
with the hyperaccurate bound, i.e. ⟨Σ⟩hyp(t)≡ 2/Bh(t), the observed inequality translates to

7
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Figure 1. Finite-time hyperaccurate bound for a three-state ring with transition rates
W12 ≃ 0.65,W21 ≃ 0.34,W13 ≃ 0.24,W31 ≃ 0.83,W23 ≃ 0.78,W32 ≃ 0.52 (randomly
extracted from a uniform distribution between 10−1 and 1). Main: the histogram of
stochastic currents with respect to their CV2 is shown for increasing time, t, with increas-
ing opacity, and is compared to the finite-time hyperaccurate bound, Bh(t) (dot-dashed
lines). Currents have been generated by perturbing the hyperaccurate solution, i.e. using
dij = d(h)ij + ξij, with ξij drawn from a Gaussian distribution with zero mean and stand-

ard deviation 2× 10−2, only for the sake of visualization. Each histogram has been
computed with 103 currents. Inset: the entropy production estimated from Bh(t), the
hyperaccurate bound for trajectories of duration t, ⟨Σ⟩hyp(t)≡ 2/Bh(t), approaches the
actual value, ⟨Σ⟩, for short times. Here, their ratio is shown.

⟨Σ⟩hyp(t→+∞)⩽ ⟨Σ⟩hyp(t)⩽ ⟨Σ⟩ (see inset of figure 1). This intriguing observation might
be beneficial to estimate the dissipation of discrete-state Markovian systems, in line with a
recent result obtained for overdamped systems [24]. A proof of the validity of this property,
along with the subsequent design of a feasible experimental procedure to take advantage of it,
might be a fascinating topic for future works.

4. Hyperaccurate efficiency bounds

Hyperaccurate currents set the tightest possible bound to the entropy production rate of
stochastic systems. As a consequence, they also provide us with general bounds on the effi-
ciency of work-to-work converters that do not require a specific knowledge of system features,
being instead directly linked to the hyperaccurate bound Bh.

Work-to-work converters are a broad class of molecular engines operating at the nanoscale
at a constant temperature (isothermal). They convert a given form of input work, e.g. chem-
ical, into a different form of output work, e.g. mechanical, with a limited efficiency [43]. They
substantially differ from heat engines, as working substances do not undergo cyclic transform-
ation between two different temperatures. Cellular transporters [41, 42, 44], catalytic enzymes
[18, 45], Hsp70 chaperones [46] are a few prominent examples of these machines in biology.

The most relevant quantities in this scenario are the input,Win, and the output power,Wout.
Here, we derive two general upper bounds for the efficiency, each one depending on eitherWin

or Wout. We start with the expression the steady-state average entropy production:

⟨Σ⟩=
∑
(m,n)

(Wmnp
st
n −Wnmp

st
m) ln

Wmn

Wnm
, (24)

8
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which can be rewritten in the usual bilinear form ⟨Σ⟩=
∑

e JeFe, where Fe and Je are ther-
modynamic forces and fluxes, respectively, and the sum runs over all fundamental cycles
[47]. Clearly, Je is in general a linear combination of some microscopic stationary fluxes,
J stmn. Analogously, Fe will correspond to a combination of some microscopic forces, Fmn =
log(Wmn/Wnm).

To define an operating work-to-work converter, we consider the presence of a load and a
drive force, respectively Fl and Fd, with their corresponding fluxes, Jd and Jl. Hence, we have:

⟨Σ⟩= JdFd+ JlFl =
1
T
(Win +Wout) , (25)

where the right-hand side of this equation corresponds to the first law of thermodynamics
with no variations of internal energy. To operate as an engine, one necessarily requires that
the dissipation provided by the driving force, Win ⩾ 0, generates a work that counteracts the
external load, i.e.Wout ⩽ 0. Hence, the efficiency can be defined as follows:

η =−Wout

Win
∈ [0,1]. (26)

By combining equations (25) and (26) together with the fact that Bh ⩾ 2/⟨Σ⟩ by construction,
we obtain:

η ⩽ Bh|Wout|
2+Bh|Wout|

:= ηoutb . (27)

Analogously, a second bound involvingWin is derived:

η ⩽ 1− 2
BhWin

:= ηinb . (28)

Notice that both these bounds do not require specific knowledge of system features, and they
have to hold simultaneously at steady state. We stress the fact that ηoutb requires, in principle,
the measurement of the output power, whereas ηinb is solely based on the a-priori knowledge of
the input work, e.g. the available chemical energy from ATP [44, 46]. Moreover, it is possible
to show that ηoutb ⩽ ηinb , meaning that the knowledge of the output power provides a tighter
bound to the efficiency. This finding also agrees with the naive expectation that Wout is more
informative than Win to predict the efficiency of a work-to-work converter.

5. Applications

5.1. Hyperaccurate current and efficiency in a model network for kinesin

Kinesin is a molecular motor playing a fundamental role in biological processes, including
mitosis, meiosis, and the transport of cellular cargo [44, 48]. It consists of two amino acid
chains forming a coiled coil with two motor heads on one end that are able to bind to micro-
tubules. The other end of the dimer binds to cellular organelles. Kinesin performs processive
walks on microtubules by subsequent binding and unbinding of the two heads. The hydrolysis
of one adenosine triphosphate (ATP) into an adenosine diphosphate (ADP) and an inorganic
phosphate (P) in the catalytic site placed in the motor head drives conformational changes
that make the walk possible [41, 42]. It constitutes a remarkable example of a work-to-work
converter since it transduces chemical energy into mechanical work.

Here, we calculate both the hyperaccurate current and the efficiency bounds for kinesin, by
applying the developed framework to the six-state transition network introduced in [41, 42].
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Figure 2. Sketch of the six-state kinesin model [41, 42]. F+ and B+ denote the forward
and backward cycles, respectively. ATP states are indicated in red, while ADP states are
in blue. The dashed arrows indicates the mechanical step, taken forward from 2 to 5,
backward viceversa.

Let us start with a brief introduction to the model. Each state is determined by the chemical
composition of the two motor heads, e.g. ATP, ADP, or empty. Since we aim at describing
processive motion, we ignore states in which both heads have the same composition [41]. The
network of all possible transitions is sketched in figure 2. The system moves from the state
1 to 2 and from 4 to 5 via ATP binding; ADP binding drives the transition from the state 6
to 5 and from 3 to 2; the transition from the state 6 to 1 and from 3 to 4 are associated with
ATP hydrolysis. Moreover, the dashed arrows identify the forward (from 2 to 5) and backward
(from 5 to 2) mechanical steps.

There are six possible cycles in this network. F+ = 1→ 2→ 5→ 6→ 1, indicated in
figure 2, encompasses the ATP hydrolysis and the subsequent forward step. Conversely,
B+ = 2→ 3→ 4→ 5→ 2 (see figure 2) converts the energy fromATP hydrolysis into a back-
ward step. Additionally, the system can also hydrolyze two ATP molecules, while performing
no steps, following the purely dissipative cycle D+ = 1→ 2→ . . .→ 6→ 1, not reported in
figure. Clearly, also the opposite cycles involving ADP synthesis can be performed, namely
F−,B−, and D−. The net processive walk is given by a competition between forward and
backward cycles.

The dynamics of this system is controlled by two independent parameters, the dimension-
less load force and f= LF̃/kBT (F̃ and L being the load force and the step size, respectively),
and the chemical energy available from ATP hydrolysis,

∆µ= kBT ln
Keq[ATP]
[ADP][P]

, (29)

in dilute conditions. The dynamics of kinesin can be by a master equation in which the trans-
ition rate W ij from the state j to i is given by:

Wij = κijIij([X])Φij( f) (30)

where κij is a constant, Iij([X]) = [X] only if the reaction involves binding of X, otherwise it is
equal to 1, and Φ( f) takes the following form:

10
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Figure 3. Hyperaccurate bound for kinesin. Main: hyperaccurate bound (solid red)
and TUR (dot-dashed black) as a function of the load force f for ∆µ= 14.73. The
values of the all parameters have been fixed as in [41]. Black dots are random cur-
rents (102 for each f ). Inset: the ratio between the two bounds, Bh⟨Σ⟩/2 is shown
for ∆µ= 19.34 (pink), 14.73 (red), and 10.12 (dark red), corresponding to [ATP] =
10−10M,10−8M and 10−6M, respectively, with the concentrations of ADP and P fixed
to 50µM. The black line indicates 1. The moving peak corresponds to f=∆µ, with
kBT= 1, so that the kinesin can only dissipate energy, without performing net motion.

Φ25( f) = e−θf

Φ52( f) = e(1−θ)f

Φij( f) =
2

1+ eχijf
∀(i, j) ̸= (2,5) (31)

with θ and χij additional constant factors. This choice of the transition rates agrees with the
experimental observations, and also satisfies the energetic balance for each cycles [41]. This
condition states that detailed balance holds if no energy is available fromATP, otherwise chem-
ical energy is converted into mechanical motion. For example, by inspecting the cycle F+, we
have the following energetic balance:

kBT
∑

(i,j)∈F+

ln
Wij

Wji
=∆µ− kBTf. (32)

We notice that Keq in equation (29) can be written as:

Keq =
κ52κ21κ65κ16

κ25κ12κ56κ61
=

κ25κ54κ32κ43

κ52κ45κ23κ34
. (33)

From the transition matrix, hyperaccurate coefficients and bound can be readily obtained by
employing the framework outlined above. In figure 3, we reportBh (solid red) together with the
bound provided by the TUR (dot-dashed black) and an ensemble of CV2 of random currents
(black dots), as a function of the dimensionless load force f. By construction, Bh provides
the tighest possible bound to the CV2 and is markedly tighter than 2/⟨Σ⟩. Indeed, we also
report in the inset the ratio Bh⟨Σ⟩/2 for different values of∆µ, which quantifies the difference
between Bh and the TUR bound. As the system approaches equilibrium, this ratio decreases,
as expected [40, 49]. Moreover, its behavior as a function of f is non-monotonous, exhibiting
also the presence of a peak corresponding to the value kBTf=∆µ, where mechanical cycles
become futile and the motor only dissipates energy (see equation (32)).

11
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Figure 4. Hyperaccurate efficiency bound for kinesin. (a) The efficiency (thick black)
and the hyperaccurate bounds given by equations (27) (solid red) and (28) (dot-dashed
blue) are shown for∆µ= 5.52 ([ATP] = 10−12). The peak corresponds to the value of
f for which the kinesin changes behavior, from a transporter (before the peak) to an ATP
synthesizer (after the peak). (b) The same comparison is presented for∆µ= 19.34. The
kinesin stops moving forward when J stB = J stF , and η vanishes.

To quantify the performance of the hyperaccurate efficiency bounds, we explicitly write
down the steady-state entropy production. From equation (34), ⟨Σ⟩ reads

⟨Σ⟩= (J stF + J stB )∆µ− (J stF − J stB )kBTf, (34)

where J stB and J stF are the steady-state probability fluxes associated with the cycles B+ and F+,
respectively. Notice that J stF + J stB = J st16 + J st43, which is the total thermodynamic flux associated
with ATP hydrolysis,∆µ. Analogously, J stF − J stB = J st52 is associated with the mechanical step,
and thus with (minus) the load force f.

For a given force f, large values of ∆µ allow the kinesin to work as a motor, converting
chemical energy into mechanical motion. However, when∆µ is small, the available energy is
not sufficient to displace the kinesin, hence it effectively uses mechanical energy to produce
ATP or ADP (depending on the sign of f and∆µ) [44]. For simplicity, we perform the numer-
ical analysis for f > 0 and ∆µ > 0, although it can be straightforwardly extended to all other
cases. From equation (26), when the kinesin converts chemical into mechanical energy, the
efficiency reads

η =
J stF − J stB
J stF + J stB

kBTf
∆µ

, (35)

where the numerator is the output workWout =−(J stF − J stB )kBTf, since kinesin operates against
the external load force. Figure 4 shows the efficiency and its associated bounds for two repres-
entative values of∆µ. Results for other values of∆µ (not shown) exhibit similar features. For
∆µ= 5.52 (figure 4(a)), ηoutb provides a very tight bound for small values of f, while both ηoutb
and ηinb converges to the actual efficiency when η approaches its maximum. We also report a
change of behavior of the kinesin before and after the maximum efficiency, highlighting the
change of regime frommolecular transporter to an ATP synthesizer, respectively. In these con-
ditions, high efficiencies are also associated with small fluxes since for small ∆µ the system
is close to equilibrium. Conversely, when ∆µ= 19.34 (figure 4(b)), the system is far from
equilibrium and exhibits large probability fluxes. Although hyperaccurate efficiency bounds
are less tight than for ∆µ= 5.52, ηoutb still provides a tighter bound for the efficiency than
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Figure 5. Three-state chemical system in a temperature gradient, T1 > T2. Each state
can diffuse between the boxes with the same diffusion rate, d, and A can convert into
B or C in both boxes. The vertical position of a state is proportional to its energy, i.e.
EA > EB = EC. Red arrows indicate the net steady-state probability flux flowing through
C states only. This is the fastest net flux in the system. Blue arrows are associated to the
slow net flux that only visit B states.

the one derived using TUR [50]. We also notice that the system stops operating as a work-to-
work converter when the flux in the backward cycle is equal to the one in the forward cycle,
i.e. J stB = J stF .

5.2. Hyperaccurate currents and dissipation-driven selection of states

As a second application, we study a three-state chemical system diffusing in a temperature
gradient. This model has been introduced in [10] as a paradigmatic example of a selection
of chemical states driven by internal dissipation processes. Later on, a possible solution to
the furanose conundrum has been proposed starting from an analogous modelization [51].
These studies have been stimulated by, and in turn fueled, the idea that life might have been
an inevitable consequence of nonequilibrium thermodynamics [10].

The system consists of three chemical states, A,B and C, living in two different boxes at
two different temperatures, T1 and T2 with T1 > T2. Moreover, each chemical species can
diffusively move between the boxes, leading to a six-state model, as depicted in figure 5. All
possible internal transitions among states are:

Ai ⇋ Bi Ai ⇋ Ci i= 1,2 (36)

where Xi indicates the species X in the box i.
To determine the transition matrix governing the system dynamics, we write the chemical

rates in the standard Kramers’ form [10]:

kBiAi = e−∆E/kBTikAiBi
kCiAi = e−∆E/kBTikAiCi (37)

where kXiYi is the chemical rates associated with the reaction from Xi to Y i, and ∆E=
EA−EB = EA−EC for simplicity. We introduce a kinetic asymmetry by setting two differ-
ent energetic barriers in going from Ai to Bi, ∆ϵB, and from Ai to Ci, ∆ϵC, so that:

kAiBi = e−∆ϵ/kBTikAiCi , (38)

with∆ϵ=∆ϵB−∆ϵC > 0, which means that the state C is kinetically favorable with respect
to B [10].

We also assume that all species move between boxes with the same (symmetric) diffus-
ive rate, dA = dB = dC = d, for simplicity. We are interested in determining the total popula-
tion of species B and C at stationarity, i.e. [B1]

st + [B2]
st := [B]st and [C1]

st + [C2]
st := [C]st,
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Figure 6. Hyperaccurate bound for dissipation-driven selection of states [10].Main: for
increasing value of∆T ∈ [0.04,0.08] (with decreasing opacity), the selection parameter
RCB is shown as a function of ∆E (points), along with the bound R(h)

CB (red curves), for
∆ϵB = 3, ∆ϵC = 1, Tm = 0.7. Inset: RCB (open markers), its approximation for small
∆T in equation (39) (filled markers), and its bound R(b)

CB (red curves) are reported as
a function of ∆T for increasing value of the kinetic asymmetry, ∆ϵ (with decreasing
opacity). Here, ∆ϵB = 3, ∆ϵC ∈ [0.2,1.6], and Tm = 0.7. In all plots, we set d→+∞.

respectively. To quantify the unbalance between these two, we introduce the selection para-
meter RCB = log([C]st/[B]st), which can be interpreted as the stabilization energy of C with
respect to B. When T1 = T2 = T, the system is at thermodynamic equilibrium and eventually
reaches a Boltzmann distribution in which the states B and C are equally populated since they
have the same energy. Analogously, when d= 0, each box will relax to its own Boltzmann
distribution with temperature T i, and the total population of B will be identical to the one of
C. However, in the presence of diffusion and a temperature gradient, the system dissipates
thermal energy performing diffusive cycles between boxes. In particular, two stationary fluxes
emerge: one only flows through B states (blue arrows in figure 5) and exhibits slow dissipation,
while the other only flows through C states and dissipates faster (red arrows in figure 5). This
symmetry breaking is associated with the kinetic asymmetry in the energetic barriers and will
result in a steady-state population [C]st higher than [B]st, i.e. RCB > 1.

It is possible to show that, in the limit of fast diffusion d→+∞, and small gradient T1 ≳ T2,
we have:

RCB = log

(
1+

⟨Σ⟩
∆E

1
Peq
m (A)

∆ϵ

e−
∆ϵB
kBTm + e−

∆ϵC
kBTm

)
(39)

where Peq
m (A) is the equilibrium probability distribution of A at the average temperature Tm =

(T1 +T2)/2 and ⟨Σ⟩ is the entropy production. Moreover, a positive correlation between RCB
and ⟨Σ⟩ has been shown to hold even beyond this limit [10].

Providing a lower bound for the average entropy production, ⟨Σ⟩, we obtain a lower bound
for RCB, namely R(b)

CB , in terms of the hyperaccurate bound. In figure 6, we show RCB and R
(b)
CB

as a function of ∆E, for increasing values of the temperature gradient. When ∆E is small,
our bound predicts the correct value of selection, whereas some deviations appears when ∆E
increases. Similar findings are reported in the inset, in which the selection parameter (open
circles), its estimation from equation (39) (black dots), and the bound here derived (in red)
are reported versus∆T for two different values of the kinetic asymmetry,∆ϵ. Once again, the
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bound obtained from the hyperaccurate current, R(b)
CB , provides an accurate prediction for the

selection parameter close to the equilibrium, while deviations arise as the temperature gradient
increases.

6. Conclusions

TURs set universal bounds for the precision of a stochastic current, quantified as the ratio
between its variance and squared mean (CV2), in terms of the dissipation of the system. Thus,
by inverting this inequality, it is possible to provide a lower bound to the entropy production
and estimate the distance from thermodynamic equilibrium. The main advantage of this indir-
ect approach is that it does not require the large sample sizes and observational times that are
commonly required to provide a direct estimation of the entropy production. In [40], it has been
pointed out how the knowledge of the hyperaccurate current, i.e. the one with the minimum
CV2, might greatly improve our predicting power. Here, we introduced and derived the hyper-
accurate current for generic discrete-state Markovian systems, both evolving in discrete and
continuous time. Our analytical closed formula has been tested against twomodels of chemical
networks. Notice that the estimation of the entropy production for discrete-state systems using
this inverse approach is particularly challenging, since the TURwill not saturate at short times,
in general, for this class of systems, as shown in [25]. Moreover, measuring the hyperaccurate
current might be complicated even in simple controlled settings. However, the hyperaccur-
ate current can always be split into fundamental currents that might be easier to measure or
estimate using numerical approaches [23]. Such numerical methods will lead to an approx-
imate hyperaccurate bound, but a comparison with its exact value derived here might help
controlling and improving the approximation. As a side result, we also provided two hyperac-
curate bounds for the efficiency of work-to-work converters, as a function of either the input
or the output power. Whether the hyperaccurate current is estimated only numerically, as in
[23–25], or using the analytical insights presented here in combination with numerical meth-
ods, an approximate version of these efficiency bounds might be always employed without the
knowledge of the exact value of the hyperaccurate bound. Possible future extensions might
include the study of nonintegrated currents and nonstationary dynamics, and a connection
among TURs, hyperaccuracy, and information theory, whose role is becoming dominant in
understanding stochastic systems [52–54].

Additionally, we employed our framework to compute the finite-time hyperaccurate bounds
for one-loop discrete-state systems (rings). Our results suggest that short-time experiments
might be muchmore informative than the long-time limit to estimate the average dissipation. A
formal proof and generalization of this statement, along with a feasible experimental approach
for discrete-state Markovian dynamics, is left as an intriguing perspective for the future.
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