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1. Introduction

In [15], Smith defined a class of algebras similar to the enveloping algebra of sls,
essentially by replacing the standard relation [e, f] = h in U(slz) with the relation [e, f] =
g(h), where g is an arbitrary polynomial in h. We will denote these algebras by S(g).
Among other results, Smith classified the finite-dimensional simple S(g)-modules, seen as
quotients of Verma modules, and introduced an analog of the Bernstein—Gelfand—Gelfand
category O for S(g).

The Smith algebras have been extensively studied and are related to down-up algebras,
a class of algebras introduced by Benkart and Roby in [1], inspired by the relations
satisfied by the down and up operators on a differential poset. Down-up algebras also
display many similarities with enveloping algebras of three-dimensional Lie algebras,
and include those Smith algebras S(g) with degg < 1. Later, in [4], Cassidy and Shelton
introduced generalized down-up algebras, which include all the Smith algebras S(g).

As with the enveloping algebra of sly, every Smith algebra has a Casimir element,
which generates its center and acts as a scalar on simple S(g)-modules. The corresponding
factor rings of S(g) by the maximal ideal of the center have been considered by Joseph
[9, Lemma 3.1], where simplicity criteria were given, and by Hodges [7], as algebras of
invariants of the Weyl algebra under the action of a cyclic group. Allowing S(g) to be
defined over a ring, then some of these quotients can further be seen as invariant rings
of differential operators on a multiplicity-free representation of an algebraic group under
the action of its derived subgroup [14]. Another interesting connection is with the Zhu
algebra of a vertex operator algebra associated to a positive definite rank-one lattice,
which is shown in [5] to be isomorphic to a finite-dimensional quotient of S(g).

Our main interest is the representation theory of the Smith algebras S(g). As we
mentioned, the finite-dimensional irreducible representations, the Verma modules and
category O have already been investigated in [15] (see also [8]). In Block’s classification
[2] of simple U(sly)-modules, along with the weight modules one finds also Whittaker
modules and other modules defined via localization, the latter being torsion free over the
polynomial algebra in h. A class of modules which has recently gained a lot of attention
in the context of Lie algebras is given by the modules which are free of finite rank over
the enveloping algebra of a Cartan subalgebra. These have been introduced and studied
in [12,13,16], and they are in a certain sense opposite to weight modules, as the action of
the Cartan subalgebra is torsion free, rather than semisimple. In particular, free rank one
simple s[,, 1 ;-modules were classified in [12], and in [16] such modules over sl,, 1 were also
constructed from modules over Witt algebras W,,. Similarly, such simple sp,,,-modules
were classified in [13]. These are the only simple finite-dimensional algebras for which
there exist modules that are free over the enveloping algebra of a Cartan subalgebra.
Parabolic induction from simple U (h)-free modules was studied in [3].

In this paper, we investigate the category of S(g)-modules which are free of finite rank
over the unital subalgebra generated by i and obtain families of such simple modules of
arbitrary rank. We dedicate particular attention to the case of rank one, where we obtain
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a full description of the isomorphism classes, a simplicity criterion, and an algorithm to
produce all composition series, resulting in a proof that such modules have finite length
and in a full description of the composition factors and their multiplicity.

Notations and conventions We work over an algebraically closed field k of characteristic
zero. Since a monic polynomial in k[h] is fully determined by its set of roots, we get
a bijection between the finite submultisets of k and monic polynomials in k[h]. For
convenience, we associate the field k to the zero polynomial. Given any f(h) € k[h], we
let Ry denote its multiset of roots. Conversely, given any finite multiset X of elements
of k, we let polyy € k[h] denote the unique monic polynomial such that Ry, = X,
that is, polyx = [[ cx(h — A). Adopting the usual convention that an empty product
equals 1, we assume polyy = 1. Moreover, we follow the convention that deg0 = —oo,
with its usual arithmetic properties.

Given a multiset X of elements of k and A € k, we denote by X \ {A} (re-
spectively, X U {A}) the multiset obtained from X by reducing (respectively, increas-
ing) by one the multiplicity of A in X, and proceed similarly for the difference and
union of arbitrary multisets. For example, {1,2,2,5,5,5} \ {3,5} = {1,2,2,5,5} and
{1,2,2,5,5,5} U{3,5} ={1,2,2,3,5,5,5,5}. The cardinality | X| of the (finite) multiset
X is the sum of the multiplicities of its elements. The underlying set obtained from X
(by eliminating repeated elements) will be denoted by X. Thus, |{1,2,2,5,5,5}| = 6
and {1,2,2,5,5,5} = {1,2,5}.

For n € N = Zy, set [n] = {1,...,n}, so in particular [0] = 0.

Acknowledgment Part of this research was carried out during visits of the first and
third named authors to the Faculty of Sciences (FCUP) and the Center of Mathematics
of the University of Porto (CMUP). They would like to express their gratitude for the
hospitality received. Moreover, the third named author would like to thank Professor
Olivier Mathieu for helpful conversations concerning the subject of this article.

2. The Smith algebra

Fix a polynomial g(h) € k[h]. The Smith algebra S(g) is the unital associative algebra
over k generated by x,y, h with definition relations:

[yl =y, [ha]=—z and [y,a]=g(h). (2.1)

This algebra was introduced by Smith in [15]. In case g(h) = 0, the generators x and
y commute and the representation theory of S(0) assumes characteristics which often
diverge from the general theory in case g # 0. In fact, S(0) is the enveloping algebra
of a 3-dimensional solvable (non-nilpotent) Lie algebra. Thus, henceforth we will always
implicitly assume that g # 0.



408 V. Futorny et al. / Journal of Algebra 655 (2024) 405—423

By [15, Lemma 1.4], there exists u(h) € k[h] such that g(h) = u(h — 1) — u(h).
Moreover, u(h) is uniquely determined up to its constant term, which can be arbitrary,
and deg(u) = deg(g) + 1 > 1. Fixing one such u, we denote the Smith algebra S(g) by
S, and remark that S, = S,4¢, for any C € k.

Let z, = a2y — u(h) = yx — u(h — 1). It is easy to see that z, is a central element in
S, and for this reason we call z, the Casimir element associated with u. In addition,
the center Z(S,) of S, is k[z,], the polynomial algebra in z, (see [15, Proposition 1.5],
or [11, Proposition 2.9]).

Next we show that the algebra S, acts on the polynomial algebra k[t] by differential
operators, with scalar central character. Denote by A; = k[t,d], where 0 = %, the
first Weyl algebra over k, realized here as the ring of differential operators on k[t] with
polynomial coefficients. Since g # 0, then deg (u) = deg (g)+1 > 1 and hence Ry 1o # 0
for any C € k. For C € k, every root A € Ry¢ and submultiset X C Ry \ {\} define
the polynomials:

u(h—1)+C
Qx(h=1(h=(A+1))

QRx(h) = polyy and Px(h)=

Equivalently, Px(h) = {polyg,, .\ ((ajux)(h — 1), where £ is the leading coefficient of
u+C.

Lemma 2.2. There exists a morphism of algebra o x: Sy — A1 such that
r—0Qx(0—1), y—tPx(@+1) and hw—0,
where 0 = t0 + X\ + 1. Moreover, z, is mapped to C.

Proof. Define actions of z, y and h on k[t] as in the statement above. Since 0t = ¢(0+ 1)
and 60 = 9(0 — 1), it follows that

(tPx(0+1)) (0Qx(0 — 1)) =toPx(0)Qx(0 —1) = ((6 —1) = \)Px(0)Qx (0 — 1),
(0Qx(0—1)) (tPx(0+ 1)) =0tQx(0)Px(0+1)= (6 — \)Px(0+1)Qx(0).

Then, from the equality u(h)+C = (h— ) Px(h+1)Qx (h), it follows that [y, z] acts on
k[t] as ((0—1)—A\)Px (0)Qx (0—1)—(0—\) Px (0+1)Qx (0) = u(0—1)+C—u(0)—C = g(0),
which is the action of g(h). Similarly, the relations [h,y] = y and [h,z] = —z are also
preserved by the action, thus inducing an S,-module structure by differential operators
on k[t], and hence the given morphism of algebras. It is straightforward to show that

vorx(z,)=C. DO

Example 2.3. Let g(h) = h, so that S(h) =~ U(sly), the universal enveloping algebra
of sly. Then we can take u(h) = —3h(h +1), C =0, A = 0 and X = {—1}, so that
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Qx(h) = h+1 and Px(h) = —3. We obtain an action of sly on k[t] where z acts by
d(td + 1), y acts by —1t and h acts by td + 1.
Concretely,

1
z-th =Ek(k+ 1)t" y-tk:—§tk+1 and h-t* = (k+1)t*, forall k> 0.

Using the fact that the action of x lowers the degree in ¢, annihilating only the constant
polynomials, and the action of y raises it, a straightforward argument shows that this is
an irreducible representation of sls.

As a consequence of the previous lemma, and using exponential modules for the
Weyl algebra (compare [6] for the case of slp), we can construct a class of non-weight
representations of S, as follows.

Definition 2.4. (Exponential modules) Let p € k[t] be a polynomial and consider the
Aj-module k[t]eP. Given C' € k, A € Ryyc and X C Ryyc \ {A} a submultiset, define
E(p, C, A\, X) to be the S,-module induced from the A;-module k[t]e? via the map ¢c a x
from Lemma 2.2.

Theorem 2.5. Assume that degp > 1. Then E(p,C, )\, X) is a k[h]-free module of rank
degp. Furthermore, if there is no p € Ryyc \ {A} such that pw — N € Zs1 then
E(p, C, A, Ruyc \ {\}) is simple.

Proof. Let n = degp. We claim that B = {eP, teP,...,t" 1eP} is a k[h]-basis of
Ep,C, N\, X).

From the relation (h — (A + 1 + s)) - te? = t5FT1p’eP we can show, by induction on
s, that t°eP € k[h]B for all s € N, so we conclude that B generates k[t]eP as a k[h]-
module. Now notice that h-qe? = (t(¢' +qp’) + (A+1)q)e?, for all g € k[t]. In particular,
h-geP = GeP, where deg§ = degp + degq. Thus, we can conclude that r(h) - geP? = §eP,
for some § € k[h] such that

deg ¢ = (degr)(degp) + deggq.

n—1
7=

Suppose, by contradiction, that Y.\ r;(h) - t'e? = 0, for some r; € k[h], not all zero.
If there is a unique i such that 7; # 0, then 0 = r;(h) - t'e? = GeP with deg§ =
i+ ndegr; > 0. Thus ¢ # 0, which contradicts the equality ge? = 0. So assume that at
least two of the r; are nonzero. Then there are 0 < ¢ < j < n — 1 such that r;,r; # 0
and (degr;)n+1i = (degr;)n+ j. Hence (degr; — degrj)n =35 —i € [n —1]. As [n — 1]
contains no multiples of n, this is impossible. Therefore B is k[h]-linearly independent
and the claim is proved.

Now consider the case X = R, ¢\ {\}. In this case, y acts as multiplication by jt, for
some 3 € k*. Replacing y with y/3, we can, and will, assume that g8 = 1, for simplicity,
so that y acts as multiplication by t.
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Let V C &(p,C, )\, X) be a nonzero submodule. We claim that t‘e? € V, for some
i € N. First, notice that (h — (A4 1) — yp'(y))ge? = tq'e?, for all ¢ € k[¢]. In particular,
(h—(A+1)—yp/(y))tier = jtieP, forall j € N, so {t/e? | j € N} is a basis of £(p, C, A, X)
of eigenvectors for the action of (h — (A+1) —yp'(y)). Thus, this operator has a diagonal
action on &E(p, C, A\, X') and hence also on V. Since the eigenspaces are one-dimensional,
V must contain some eigenvector, say t‘eP, for some i € N.

Let i € N be minimum such that t‘e? € V. Using induction on the number of elements
of X, one can prove that

Qx(mte? = | [T+ 147 —p) +tg; | ter,
pex

for j € N and for some ¢; € k[t]. Since

Vox-te? =Qx(0)0te? = Qx(h)(it'™t +t'p)e?

= H (AN +i—p) +tgioy |t + Qx (R)p (y)t'e?
neX

=i [T +i— @t e + (igi1(y) + Qx (W) (y)) t'e?,
peXx

we deduce that i [, x(A+i— w)ti=teP € V. By the minimality of i, we conclude that
i[l,ex(A+i—p)=0and from the hypothesis that y — A ¢ Z>1 for all p € X, it must
be that ¢ = 0. Therefore V' = &(p, C, \, X) and the simplicity of £(p, C, A\, Rytc \ {A})
is established. O

3. The category il of k[h]-free S,,-modules

Denote by U the category of S,,-modules that are free of finite rank over the subalgebra
k[h]. In this section we describe a skeleton of the category 11, the full subcategory of 4
consisting of modules that are free of rank one over k[h]. We show that any module in
$1; is of finite length, give an algorithm to determine all of its composition series, and
give an explicit classification of the simple objects in ;.

Let M € il have rank n, so we may assume that M = k[h]™ as a k[h]-module. Let
11,...,1, € k[R]™ be its canonical basis. We have

y(h*-1;) = (h—1D)*yl; and x(h*-1;) = (h+1)k2-1;, fori € [n] and k € N.
Therefore,

yf(h)-1;=f(h—1)y-1; and xf(h)-1, = f(h+1)x-1;, forie [n]and f(h) € k[h].
(3.1)
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In particular, the action of S, on M is uniquely defined by a choice

y-1;=:p; = (pij1,pi2s - -5 Din) € k[R]", (3.2)
r-1; =:q¢ = (¢,1,G2 - qn) €KkHh", (3.3)

for all i € [n]. By considering that [y,z] = g(h) = u(h — 1) — u(h), we deduce that the
p;,; and the g; ; must satisfy the relations

n n

g1 => | > aqii(h— Dpje(h) — pij(h+ 1)gje(h) | 1e,

=1 \j=1

for all ¢ € [n]. Writing Q@ = (g;;), P = (pi;) € M,(k[h]), we see that the above is
equivalent to the following matrix equation over k[h]:

Q(h—1)P(h) = P(h+1)Q(h) = g(h)I, (3.4)

where I € M, (k[h]) is the identity matrix. In fact, it is easy to see that (3.2) and (3.3)
define a S,,-module structure on M = k[h]™ extending the action of k[h] by multiplication
if and only if (3.4) holds.

Now, suppose that M has a central character xas : k[z,] = k, so that zm = xas(2)m,
for all z € Z(S,) = k[z,) and all m € M. Set C = xp(2y). Then we have zyl; =
(zy +u)1; = (u+ C)1;, which becomes

(u(h) + C)I = P(h+ 1)Q(h), (3.5)
in matrix form. Then (3.4) implies that
(uh—1)+C)YI =Q(h—1)P(h), (3.6)

which translates to yx1; = (u(h—1)4C)1;. Conversely, notice that (3.5) and (3.6) imply
(3.4) and moreover that M has a central character x s with xas(z,) = C.

Example 3.7. Let C € k, A\ € Rys¢c and X C Ryt \ {A}. Let p = Z?:o a;t! €
k[t] of degree n > 1 and € = E(p,C, A\, X). By Theorem 2.5, £ is k[h]-free with basis
{eP,...,t""LeP}. Hence there is an isomorphism of k[h]-modules k[h]™ — £ such that

1=t tel, icnl

Via this isomorphism, k[h]™ inherits from £ a structure of S,-module.

Recall, from Definition 2.4 and Lemma 2.2, that h acts on £ as § = t0+A+1 = 9t + A,
x acts as 0Qx (0 —1) = Qx(0)0 and y acts as tPx (6 + 1) = Px(0)t. Set v; = t'~LeP, for
i € [n]. Then we have, for i > 2,
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z-v; = Qx(0)0t" " e? = Qx (0)(0)t' e = Qx (0)(6 — N)vi1 = Qx (h)(h — A) - vi_1.

We conclude that ¢; ; = Qx(h)(h — X)d;—1;, for all 4,j € [n] with ¢ > 2, where Jy ¢ is

the Kronecker delta.
Now we take 7 = 1:

2o = Qx(0)0€” = Qx(0)p'e? = Qx(0) Y joyt/ 'e? = Qx

Jj=1

(h) - jaju;.
j=1

We conclude that ¢1 ; = Qx (h)je;, for all j € [n]. Therefore, we obtain

o 2010 a3 (n—1Dap_1 nay,]
(h—X\) 0 0 0 0
0 (h=X) 0 0 0
Q(h) = QX(h’) : : : : :
0 0 0 0 0
| O 0 e (h =) 0 |
Similarly, we obtain
r 0 1 0 0 0 T
0 0 1 0 0
0 0 0 0 0
P(h) = Px(h) : : : : :
0 0 0 0 1
(h—(A\+1)) a1 2as _ (n=2)an_» _ (n=Dayn_1
- non Ny noy, Nnon Non -
tp) —(h—(A+1 !
. (comp(p (h—(\+ >>)> |
noy,

where Comp(f(t)) denotes the companion matrix of f(¢) € (k[h])[t], as a polynomial
in ¢.

3.1. The category 34,

Now we will focus on the category ; of S,-modules which are free of rank 1 over
k[h]. In the following, we will identify M € 4; with k[h], the (left) regular k[h]-module.
We set pyr = -1 and gpr = x- 1. Whenever there is no ambiguity, we will simply denote
these elements of k[h] by p and ¢, respectively.

Notice that, by Lemma 2.2, the Casimir element z, acts on any exponential module
by a scalar. Next, we show that this property holds for all modules in i/;.

Lemma 3.8. Let M € $4y. Then M admits a central character xp that satisfies xapr(zy) =
p(h+1)g(h) —u(h) € k.
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Proof. By equation (3.4), we must have

q(h = 1)p(h) = p(h +1)a(h) = g(h) = u(h —1) — u(h).

Let f(h) = q(h)p(h + 1). Then we have f(h — 1) — f(h) = g(h). By [12, Lemma 4],
the solution of such an equation is unique up to the constant term. Therefore, f(h) =
u(h) + C, for some C € k. In particular C = p(h + 1)q(h) — u(h) and

1= (ey—ulh) - 1=z -p—u(h) = p(h+ 1)q(h) - u(h) = C,

thus proving the lemma. 0O

Let M € 4y and C = xar(2y). Let £ € k™ be the leading coefficient of u(h)+C'. Since
u(h) + C = p(h + 1)q(h), it follows that there is a multiset partition R,yc = X[V,
where X = R; and Y = R,(;,41) = R, — 1. Hence,

g(h) =&gpolyx =& [[ (A=) and p(h) =& polyy =& [] (h— (a+1)),
aeX acY

with &4, &, € k™ the leading coefficients of ¢ and p, respectively, so that £,&, = {¢. Thus,
M = k[h] is described by C, X and &,, and we will denote it by Ac(X,&,).
Given A € k*| let ¢y be the algebra automorphism of S, defined by

oa(x) =Xz, @aly)=A"'y and @a(h) =h.

For any M € S,—mod, define FAxM € S,—mod to be the module M with S,-action
twisted by ¢y, i.e., s-m = px(s)m, for all s € S, m € FxM. This defines a family of
functors

Fy:S,—mod — S,—mod,

for all A € k*. It is easy to see that Fy\F, = Fy,, for all A\, u € k*. In particular, the Fy
define category autoequivalences.

Notice now that FyxAc(X,&) = Ac(X,N,), for all A € k*, so in particular
Ac(X,&,) = Fe,Ac(X,1). Thus, it suffices to study the modules of the form Ac (X, 1),
which we simply denote by Ax(X).

We summarize the above construction.

Definition 3.9. Let C € k and let X be an arbitrary submultiset of the multiset R, ¢
of roots of u(h) + C. Let Y = R,1¢ \ X, the multiset complement of X in R,i¢. Let
g(h) = polyx = [[ex(h — ) and p(h) = “UoDEE € K[h]. Then Ac(X) = K[h] is the
regular k[h]-module, with action extended to S, by

wf(h) = f(h+1)q(h) and yf(h) = f(h—1)p(h), forall f(h)e K[h].
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We have proved the following lemma.

Lemma 3.10. Let M € S,—mod. Then M € i if and only if then there exist A € k™,
C € k and a submultiset X of Ryyco such that M ~ FyAc(X).

Lemma 3.11. Let C,C’ € k, X and X’ be submultisets of Ryyc and Ryicr, respectively,
and \, N € k*. Then FNAc(X) ~ FxAc/(X') if and only if C = C', A = X and
X=X

Proof. Assume that M = FyAg(X) ~ FyxAc/(X’) = M'. Then the central characters
must be the same, so C = C’. Moreover, any isomorphism of S,-modules is in particular
an isomorphism of k[h]-modules, and hence given by multiplication by a nonzero scalar.
Thus it can be assumed that the identity map is an isomorphism between the given S,-
modules. Then, by checking the action of x, we deduce that the isomorphism maps Agys
to X qpsr. Hence these polynomials have the same roots and the same leading coefficient,
and it follows that X = X’ and A= X. O

From Lemmas 3.10 and 3.11 we obtain a classification of the objects in il;.
Corollary 3.12. The following family is a skeleton of the category i :
{FAAc(X) | C ek, A€ k* and X C Ryjc (a submultiset)} .
3.2. The exponential modules in 4

From Theorem 2.5 we know that the exponential modules in 4f; are precisely those of
the form E(p, C, A\, X) with degp = 1. We will see that the latter exhaust all isomorphism
classes in 4, except for the isomorphism classes of Ac(Ry1¢,a), with Cya € k and
a # 0. Using the symmetry of the Weyl algebra A;, we define dual exponential modules
E(p,C, A, X)V which will cover the remaining isomorphism classes in il;.

Fix p(t) = at + 8, with «, 8 € k and « # 0. We know that E(p, C, A\, X) ~ AC()~(,§),
for some submultiset X C Rntc and § € k*. These are determined by -1 = { polys(h)
in Ac(X,€). Since Ends, (A (X, €)) = k1, where 1 stands for the identity on Ac (X, €),
we can assume that the isomorphism AC()Z', &) — E(p, C, \, X) takes the k[h]-generators
1le Ac()?,g) to e? € E(p,C, A\, X). Then from & poly(h) = - 1 we obtain

Epolyz(h)-ef =z -ef = Qx(0)0e? = apolyx(h) - e’

As E(p, C, A, X) is a free k[h]-module on {e?}, it follows that £ poly(h) = apolyx(h),
soé =aand X = X.
Combining the preceding considerations with Lemma 3.11, we obtain a characteriza-

tion of the exponential modules for S,, of rank 1.
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Lemma 3.13. Let p,j € k[h] with degp = 1 = degp, C,C € k, A € Rutc, A € R, &
and X C Rupe \ {A\}, X C Rota\ {\} submultisets. The following hold:

(a)
(b)

E(p,C, M\, X) ~ Ac(X, «), where p'(t) = a € k*;
E(p,C A\ X) ~Ep,C, N\, X) if and only if ) =7, C =C and X = X.

In particular, all modules Ax(X, ) are exponential modules, except for X = R, ¢.
In order to be able to include these latter ones, we define the modules &(p, C, A, X)V
using the symmetry of Aj.

Concretely, let 7: A1 — A; be the automorphism defined by ¢ — 0 and 0 — —t.
Then the algebra morphism ¢c x x: Sy — A1 defined by pca.x = 70 pc ., x induces
an Sy-module structure on the A;-module ]k[ ]eP, denoted by E(p,C, A ,X)V. So h acts
as 6 = 7(0) = —0t + A+ 1, z acts as —Qx (A)t and y acts as Px (6)d.

As before, we obtain a characterization of the modules £(p, C, A\, X)V in case degp = 1.

Lemma 3.14. Let p € k[h| with degp =1, C € k, A € Rysc and X C Rysc \ {A\} a
submultiset. Then

Ep,C X)) ~Ac(X U{A}, oY), where o =p/(t) € k*.
In particular, Ac(Ryrc,a™t) ~E(p,C, A\, Rusc \ {A})Y.
3.3. The submodule structure of Ac(X)

Next, we study the simplicity of the modules Ax(X) and, moreover, we will produce
an algorithm to describe the composition series for these modules. We will find that
Ac(X) always has finite length as an S,-module.

Unless otherwise noted, throughout this subsection, C' € k, X denotes an arbitrary
submultiset of R, ¢ and the polynomials p, ¢ € k[h] are as in Definition 3.9. In partic-
ular, ¢ is monic, X = R;and Y = Ry \ X = Rp(h+1)- Define

Lo(X) = {t(h) € k[h] | t(h) is monic, t(h) | t(h — 1)p(h) and t(h) | t(h + 1)q }U{O}
We think of L&(X) as a poset, under the polynomial divisibility relation.

Lemma 3.15. There is an order reversing bijection between Lo(X) and the lattice of
submodules of Ac(X). Under this correspondence, t € Lo(X) is mapped to tk[h] C
Ac(X). Moreover, if t # 0 then tk[h] ~ Ac(Rg), where g = w

Proof. Let M be an S,-submodule of Ac(X). Then M is an ideal of k[h], by restriction,
so it follows that M = t(h)k[h], for some t(h) € k[h]. If ¢ # 0, then we can assume that
t is monic, in which case M determines ¢. Since M is stable under the action of =, we
have
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t(h+ 1)q(h) = xt(h) € M = t(h)k[h],

thus t(h) divides t(h + 1)g(h). Similarly, looking at the action of y, we deduce that ¢(h)
divides t(h — 1)p(h).

Conversely, let 0 £t € Lo(X) and set § = %, p= W € k[h]. Notice
that g(h)p(h + 1) = q(h)p(h + 1) = u(h) + C, so that Rz and Rp(,41) define a partition

of Ry+¢. What’s more,

for all f(h) € k[h]. Hence tk[h] is a submodule of Ax(X) isomorphic to Ac(Rg). The
order reversing property is clear. O

As all nonzero submodules of Ax(X) are of the form Ax(X'), for some submultiset
X' of Ryyic, in order to find simplicity criteria and composition series for Ac(X), it
suffices to determine all of the maximal submodules of Ac(X). By the previous result,
this is tantamount to finding all minimal elements of Lo (X) \ {1}, i.e. all t € L(X)
with no proper nontrivial factors in Lo (X).

It will be convenient to introduce a partial order relation on k, given by a < f <~
B — a = nly, for some n € N (recall that char(k) = 0, so < is indeed antisymmetric).

Let t € Lo(X) and assume that ¢ # 0,1. Then R; is a nonempty finite multiset with
cardinality equal to deg(t) > 1, and thus it decomposes as a finite union of maximal
chains (the connected components of the Hasse diagram of the poset R;):

ool 1
S1 0 a1 S Oy

Set

50 that £(h) = ta, (h) -+ te,(h) = to, (R)Far (B). Thus to, (s, (h) | £, (h — 1) (h — 1)p(k)
and, since ged (s, (h), Ts, (h)) = 1, the latter is equivalent to

Moreover, as ged (ts, (h), s, (h — 1)) = 1 = ged (t5,(h — 1), %, (h)), (3.16) above is equiv-
alent to
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to,(h) | ts,(h=1)p(h) and & (h)|ts,(h—1)p(h).

Replacing p(h) with g(h) we deduce that t € Lo(X) <= ts,...,ts, € Lo(X), and
tk[h] = ﬂle ts,k[h]. Thus, we may assume that the roots of ¢(h) form a chain

<< ag,

with & > 1. Then, from t(h) | t(h — 1)p(h) we deduce that «; is a root of p, i.e.
a; —1 € Rypy1y =Y. Similarly, from ¢(h) | t(h + 1)q(h) we deduce that aj, € R, = X.
We call such a multiset a (p, ¢)-chain. Note that o — (1 — 1) =ax —a1 +1 € Z>;.

Lemma 3.17. Ifa; < -+ < oy, is a (p, q)-chain, then s(h) =[]/~ (h—(a1+7)) € Lo(X),

j=0
where m = o — aq.

Proof. We have

m—+1
(h—ar)s(h—1) = [[ (h— (a1 + ) = s(h)(h — (a1 +m + 1)),
7=0
(h— (a1 +m))s(h+1) = ,H (h— (a1 + 7)) = s(h)(h — (aq — 1)).

Since h —aq | p(h) and h — ap = h — (aq +m) | g(h), it follows that
s(h) | s(h—1p(h) and s(h)|s(h+1)g(h). O

Corollary 3.18. Let C' € k and X be a submultiset of Rutc, with Ry = X][Y.
Consider the S,-module Ac(X) € 1, as given in Definition 3.9. Then Ac(X) is simple
if and only if (X —=Y)NZx1 =0, i.e. if and only if there are no o € Y and p € X such
that 8 — a € Z;l.

Proof. Assume that Ao (X) is simple and assume, by contradiction, that there exist
a €Y and S € X such that f—a = m+1, for some m € N. Let s(h) = H;":O(hf(alqtj)),
with oy = a+ 1. Then deg(s) =m+1>21landao; S a1 +1<x--xa+m=p01is
a (p, q)-chain, so s(h) € L&(X) by Lemma 3.17. Hence, s(h)k[h] is a proper nontrivial
submodule of Ax(X), a contradiction.

Conversely, suppose that (X —Y)NZ>; = (0 and let S € Ac(X) be a submodule.
Then S = s(h)k[h] for some s(h) € Lo(X). If deg(s) > 1, then the multiset Ry is finite
and nonempty. Thus, by the preceding considerations, there is a divisor ¢(h) of s(h) with
deg (t) > 1 such that R; is a (p,q)-chain, say a3 < -+ < g, with oy — 1 € Y and
ap € X. Thence, oy — (1 — 1) =ap —a1+1 € Z>1 N (X —Y) = 0, a contradiction.
Thus, either s(h) =1 or s(h) = 0, proving that Ac(X) is simple. O
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Let us return to the classification of the minimal elements ¢t € Lo(X) \ {1}. We
already know that ¢ = 0 is minimal if and only if (X —Y)NZ>; = 0, so let’s assume
that deg(¢t) > 1. From our previous considerations, we know that R; is a (p, ¢)-chain,
say a1 < -+ < ap, with k > 1.

Suppose there is 1 < ¢ < k such that a;1 — o; = 2. Then, writing ¢(h) = t1(h)t2(h)
with #1(h) = [[;<;,(h—a;) and t2(h) = [[,5;(h— a; ), the argument we have used before
in (3.16) also shows that t € Lo(X) <= t1,t2 € Lo(X), and tk[h] = t1k[h] N t2k[A].
Thus, we may further assume that «; 11 —a; € {0,1}, for all 1 <4 < k. We call such a
chain a gapless chain. What’s more, taking m = ay —a; and s(h) = H;’;O(h — (a1 +7)),
we see that s(h) divides t(h) (because the chain is gapless) and s(h) € Lo(X), by
Lemma 3.17. As deg(s) = m + 1 > 1, it follows from the minimality of ¢ that ¢t = s;
whence, t is separable. In other words, the roots of ¢ are all distinct and form a gapless
(p,q)-chain a1 % -+ X .

Proposition 3.19. Let C' € k, X, Y and Lo(X) be as above. Then t is minimal in
Lo(X)\ {1} if and only if either one of the following conditions hold:

(a) t=0and (X —Y)NZs1 =0 (i.e., Ac(X) is simple);
(b) Ry is a finite gapless (p, q)-chain with no repeated elements, say aq % -+ X Qg,
with deg (t) = k, such that:

(1) there is no i < k with oy; € X;
(i) there is no i > 1 with o; —1 €Y.

Proof. The direct implication is clear from the preceding discussion. Conversely, condi-
tion (a) clearly implies the minimality of ¢ = 0. So assume that the roots of ¢ form the
chain ay % - -+ % oy, satisfying the conditions in (b). In particular, t # 0, as R; is finite.

Let s € Lo(X)\ {1} be a divisor of t. As t # 0, also s # 0 and thus deg(s) > 1. Then,
Rs € R; and the roots of s are of the form a;, X -+ X a4, with 1 <43 <--- <4y < k.
The fact that s € Lo(X) implies that R, is a (p, ¢)-chain and (b) forces i; = 1 and
ig = k. If s # t, then there is some j < /¢ such that a;,, , — a;; > 2. Hence, by the
argument preceding Proposition 3.19, (h — a4,)---(h — a;;) € Lo(X). In particular,

O[ij

€ X, forcing i; = k = iy, which contradicts j < ¢. The contradiction implies that
s = t, proving the minimality of t. O

Let C € k, X, p,q € kl|h] and Lo(X) be as above. Write Xy = X, ¢o = ¢ and
po = p. The previous proposition provides a method to construct any decreasing chain
of submodules

Ac(Xo) D) tﬂk[h} ~ Ac(Xl) D) tgtl]k[h} ~ Ac(Xz) Doeee, (320)

where ¢; is a minimal element of Lc(X;-1) \ {1}. As long as ¢; # 0, we can proceed with

4 = W’ pi = W and X; = R, for ¢ > 1. The minimality of ¢
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implies that Ac(X;—1)/Ac(X;) is simple, for all ¢ > 1. Then, to prove that all objects
in 44 have finite length, it is enough to show that, after a finite number of steps, the
minimal element obtained is t, = 0.

3.4. Composition series for Ac(X)

Recall the order < defined on k. Given a multiset Z C k and § € k, denote by Z_,4
the submultiset {o € Z | @ 5 B}. Let X C Ry4¢ be a submultiset and take g € X. If
(Rutc \ X) g5 # 0, we denote by X x 3 the submultiset of Ry.c defined by

Xxp={ByuXx\ {8},

where 3 € (Ryrc \ X )< is uniquely defined by imposing the minimum distance from
ﬂa ie., ﬂ 73 = min{ﬂia ‘ a € (Ru-l-c \X);%B}

Let t € Lo(X) \ {1} be minimal and suppose that ¢ # 0. Set ¢ = polyy. Then R;
is a finite gapless (p, ¢)-chain with no repeated elements, say a1 = -+ x i satisfying
Proposition 3.19(b). Set § = W. It follows that Ry = (X \ {ax}) U {a1 — 1}.
Furthermore, by Proposition 3.19(b)(ii),

k=ar— (g —1)=min{ap — |8 € (Ru+c\X)§ak}.

Thus, Rz = X % ay. Moreover, with this notation, the chain of submodules (3.20) can
be written as

Ac(X) D) tlﬂ{[h] ~ Ac(X*ﬁl) D) tQtl]k[h] ~ AC(X*ﬁl *52) Do, (3.21)

where (3; is the maximal element of the gapless (p;—_1, ¢;—1)-chain corresponding to t;, a
minimal element of Lo(X % 51 x -+ -+ B;-1) \ {1} which we are assuming to be nonzero.
Now, for any submultiset Z C R, ¢, define

UZ) = 3 [(Rusc \ Z)<4] > 0,
BeZ

where |- | denotes the number of elements of a multiset. Notice that ¢(Zx5) < {(Z) — 1,
whenever Z x 8 is defined. Finally, recall also that, by Corollary 3.18, A¢(Z) is simple
if and only if ¢(Z) = 0. Therefore, the chain (3.21) has maximal length bounded above
by £(X) and (X x 81 x -+ * B,) = 0, for some m < £(X). The last nonzero term of the
chain (3.21) will be the simple submodule Ac(X % 81 * -+ * Bi).

From the discussion above we obtain our desired result.

Proposition 3.22. Let Ac(X) € U;. Then Ac(X) has finite length, bounded above by
0X)+1.
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The method described above using Proposition 3.19 and the iterative construction
in (3.21) gives all possible composition series for Ac(X). Nevertheless, we will see that,
regardless of the choices made, the final multiset X x 51 x - - - % 8,,, obtained, with ¢(X %
B1 % -+ * By) = 0, will always be the same. We give an algebraic proof of this result,
using the notion of socle of a module M, denoted by soc(M), this being the sum of its
simple submodules, or equivalently, its unique maximal semisimple submodule.

Corollary 3.23. Let Ac(X) € t4. Thensoc (Ac(X)) = Ac(X*), where X* = X x 1% - -*
Bm is obtained iteratively by the method described above, terminating with {(X*) = 0. In
particular, X* depends only on X.

Proof. We have seen that there exist 0 < m < 4(X) and 5i,...,8m € Rutc such that
Ac(X * 1 * -+ * By) is a submodule of A¢(X) with (X x 31 % -+ * B;,,) = 0, hence
simple and thence contained in soc (A¢(X)).

The k[h]-module Ax(X) is just the regular module k[A], which contains no nontrivial
direct sums of submodules. It follows that the same must hold for Ac(X) as an S,-
module. Thus, its socle, being nonzero and semisimple, must be simple and equal to
Ac(X *B1x+*Bm). So Ac(X x 1% - -* ) is the unique simple submodule of Ax(X),
and the last nonzero term in all composition series for A¢(X). Now, by Lemma 3.11,
the uniqueness of the multiset X x 81 x - - - x 3, follows. O

Remark 3.24. Let R,1c = Ry []---]] Rk be the decomposition of R,¢ in to its maxi-
mal chains with respect to <. Then X™* is the unique submultiset of R, ¢ with £(X™*) =0
and |R; N X*| = |R; N X]|, for all i € [K].

Next, we will describe the remaining composition factors of Ac(X) and their mul-
tiplicities, obtaining as a corollary an exact formula for the length of Ax(X). Since
Ac(X)/soc (Ac(X)) is finite dimensional, Ac(X™*) occurs with multiplicity one and all
the other composition factors, if any, will be finite dimensional.

We summarize the classification of simple S,-modules of finite dimension given by
Smith in [15] (see also [10]). Let A € k, and ky = kvy be the one-dimensional k[h]-
module where h acts by A. Let b C S, be the unital subalgebra generated by h and y.
Then k) becomes a b-module by defining yvy = 0. The Verma module of highest weight
A for S, is defined by

Theorem 3.25. [15] Let A € k, then V(X)) has a unique mazimal submodule and hence
a unique simple subquotient, denoted by L(X). Furthermore, any simple S,-module of

dimension j s isomorphic to

L) =V(N)/2IV (N,
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for some X € k, where j is the minimal positive integer such that u(\) —u(A —j) = 0.

Lemma 3.26. Let Ac(X) € $41 and assume that Ac(X) is not simple. Let 0 # ¢ €
Lo(X)\ {1} be minimal. Then Ac(X)/tk[h] ~ L(B), where 8 is the mazimal element
of the gapless (p, q)-chain corresponding to t.

Proof. Let t(h) = (h—(B+1))(h—(B+2)) - -- (h—f), with < 8. Then N = Ac(X)/tk[h]
has dimension equal to 3 — . Define w # 0 to be the class of ¢(h)/(h — 8) in N. A
straightforward computation using the fact that h — (3 + 1) divides p shows that

yw =0, hz*w=(8—k)z*w, and yzFTlw = (u(B - (k+1)) —u(B))z"w,
for all k € N. Let kg be the minimal positive integer such that z*°w = 0. Then we have
0 = yz*ow = (u(B — ko) — u(B))z" ~tw.

As N is simple, it follows that N = spany, {a:kw |k=0,...,k — 1}, a simple S,-module
of highest weight 3. Thus, N ~ L(B). Since z*°~!w # 0, this implies that u(3 — ko) —

N

u(f) =0, and we have 8 — f =dimx N = ky. O

Remark 3.27. As a converse to the previous result, any simple finite-dimensional S,,-
module L(\) can be seen as a quotient of Ac(X) € #, for some C' € k and some
X C Ryic- Indeed, suppose that dimy L(A) = j > 1 and set C' = —u(\). Then, by The-
orem 3.25, A, A — j € Ryt and Ac({A}) is well defined. Moreover, A\ —j+1<--- < A
forms a (p,q)-chain for X = {A}, so tx(h) = Hz;é(h — (A —1) € Lc({A}), by
Lemma 3.17. Finally, the minimality of j given in Theorem 3.25 ensures, by Propo-
sition 3.19, that ¢)k[h] is a maximal submodule of Ax({\}), isomorphic to Ac({\ — j}),
and Ac({A})/tak[h] ~ L(A), by Lemma 3.26.

Now, for every submultiset Z of R, ¢, define the map ¢z: R,yc — N by

p2(8) = min {|(Rusc\ 2) 4411 2051}

where Z.p ={a € Z | B < a} and R,4¢ is the underlying set obtained from R,4c.
We are ready to describe the composition factors of Ac(X) and their multiplicities.

It turns out that this is best phrased using the Grothendieck group K¢(S,), which is the

free abelian group on the isomorphism classes of finitely generated S,-modules, modulo

the short exact sequences.

Theorem 3.28. Consider the Grothendieck group Ko(S,) = {[M] | M € S,—mod}. Let
Ac(X) € Uy. Then

[Ac(X)] =[Ac(X)]+ Y. ox(BIL(B)] € Ko(Su),

BERutc
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where Ac(X*) = soc (Ac(X)).

Proof. We prove it by induction on ¢(X).

If ¢(X) = 0, then clearly ¢x is the constant null map, X = X* and the claim is
proved. Suppose that ¢(X) > 0 and assume the claim to be true for any submultiset
Z C Ryyc such that £(Z) < ¢(X). There exists a minimal t € Lo(X) \ {1} and ¢ # 0,
since £(X) > 0. Let 8 be the maximal element of the gapless (p, ¢)-chain corresponding
to t (see Proposition 3.19). Then, by Lemmas 3.15 and 3.26, we have an exact sequence

Then [Ac(X)] = [Ac(X * B)] + [L(B)] € Ko(Sy). Since £(X = 3) < £(X) — 1, it follows
by the induction hypothesis that

[Ac(X)] = [LB)] + [Ac(X)]+ Y exus(@)[L(a)] € Ko(Sa),

a€ERy1c

where Ag(X*) = soc(Ac(X * 8)) = soc (Ac(X)). So it is sufficient to prove that

ox(B) = px«s(B) +1 and ¢x(a)=ex.p(a), forall a#p. (3.29)

Computing ¢x and px.g, we obtain:

|(Ru+C\X)<a|a 0‘7&[3;
Ru X ﬂ al = -
(Ruro A X ) ol {|<Ru+o\x>$|1, a=B;
|X?a‘a a%ﬂ;
X ol =
[(X * B)al {|X%ﬂ|_1’ a8,

Thus, (3.29) is satisfied and the theorem is proved. O

Corollary 3.30. The module Ac(X) € 4 has length 1 + Z ox(B).

BERutc
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