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1. Introduction

In [15], Smith defined a class of algebras similar to the enveloping algebra of sl2, 
essentially by replacing the standard relation [e, f ] = h in U(sl2) with the relation [e, f ] =
g(h), where g is an arbitrary polynomial in h. We will denote these algebras by S(g). 
Among other results, Smith classified the finite-dimensional simple S(g)-modules, seen as 
quotients of Verma modules, and introduced an analog of the Bernstein–Gelfand–Gelfand 
category O for S(g).

The Smith algebras have been extensively studied and are related to down-up algebras, 
a class of algebras introduced by Benkart and Roby in [1], inspired by the relations 
satisfied by the down and up operators on a differential poset. Down-up algebras also 
display many similarities with enveloping algebras of three-dimensional Lie algebras, 
and include those Smith algebras S(g) with deg g � 1. Later, in [4], Cassidy and Shelton 
introduced generalized down-up algebras, which include all the Smith algebras S(g).

As with the enveloping algebra of sl2, every Smith algebra has a Casimir element, 
which generates its center and acts as a scalar on simple S(g)-modules. The corresponding 
factor rings of S(g) by the maximal ideal of the center have been considered by Joseph 
[9, Lemma 3.1], where simplicity criteria were given, and by Hodges [7], as algebras of 
invariants of the Weyl algebra under the action of a cyclic group. Allowing S(g) to be 
defined over a ring, then some of these quotients can further be seen as invariant rings 
of differential operators on a multiplicity-free representation of an algebraic group under 
the action of its derived subgroup [14]. Another interesting connection is with the Zhu 
algebra of a vertex operator algebra associated to a positive definite rank-one lattice, 
which is shown in [5] to be isomorphic to a finite-dimensional quotient of S(g).

Our main interest is the representation theory of the Smith algebras S(g). As we 
mentioned, the finite-dimensional irreducible representations, the Verma modules and 
category O have already been investigated in [15] (see also [8]). In Block’s classification 
[2] of simple U(sl2)-modules, along with the weight modules one finds also Whittaker 
modules and other modules defined via localization, the latter being torsion free over the 
polynomial algebra in h. A class of modules which has recently gained a lot of attention 
in the context of Lie algebras is given by the modules which are free of finite rank over 
the enveloping algebra of a Cartan subalgebra. These have been introduced and studied 
in [12,13,16], and they are in a certain sense opposite to weight modules, as the action of 
the Cartan subalgebra is torsion free, rather than semisimple. In particular, free rank one 
simple sln+1-modules were classified in [12], and in [16] such modules over sln+1 were also 
constructed from modules over Witt algebras Wn. Similarly, such simple sp2n-modules 
were classified in [13]. These are the only simple finite-dimensional algebras for which 
there exist modules that are free over the enveloping algebra of a Cartan subalgebra. 
Parabolic induction from simple U(h)-free modules was studied in [3].

In this paper, we investigate the category of S(g)-modules which are free of finite rank 
over the unital subalgebra generated by h and obtain families of such simple modules of 
arbitrary rank. We dedicate particular attention to the case of rank one, where we obtain 
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a full description of the isomorphism classes, a simplicity criterion, and an algorithm to 
produce all composition series, resulting in a proof that such modules have finite length 
and in a full description of the composition factors and their multiplicity.

Notations and conventions We work over an algebraically closed field k of characteristic 
zero. Since a monic polynomial in k[h] is fully determined by its set of roots, we get 
a bijection between the finite submultisets of k and monic polynomials in k[h]. For 
convenience, we associate the field k to the zero polynomial. Given any f(h) ∈ k[h], we 
let Rf denote its multiset of roots. Conversely, given any finite multiset X of elements 
of k, we let polyX ∈ k[h] denote the unique monic polynomial such that R polyX = X, 
that is, polyX =

∏
λ∈X(h − λ). Adopting the usual convention that an empty product 

equals 1, we assume poly∅ = 1. Moreover, we follow the convention that deg 0 = −∞, 
with its usual arithmetic properties.

Given a multiset X of elements of k and λ ∈ k, we denote by X \ {λ} (re-
spectively, X ∪ {λ}) the multiset obtained from X by reducing (respectively, increas-
ing) by one the multiplicity of λ in X, and proceed similarly for the difference and 
union of arbitrary multisets. For example, {1, 2, 2, 5, 5, 5} \ {3, 5} = {1, 2, 2, 5, 5} and 
{1, 2, 2, 5, 5, 5} ∪ {3, 5} = {1, 2, 2, 3, 5, 5, 5, 5}. The cardinality |X| of the (finite) multiset 
X is the sum of the multiplicities of its elements. The underlying set obtained from X
(by eliminating repeated elements) will be denoted by X. Thus, | {1, 2, 2, 5, 5, 5} | = 6
and {1, 2, 2, 5, 5, 5} = {1, 2, 5}.

For n ∈ N = Z�0, set [n] = {1, . . . , n}, so in particular [0] = ∅.

Acknowledgment Part of this research was carried out during visits of the first and 
third named authors to the Faculty of Sciences (FCUP) and the Center of Mathematics 
of the University of Porto (CMUP). They would like to express their gratitude for the 
hospitality received. Moreover, the third named author would like to thank Professor 
Olivier Mathieu for helpful conversations concerning the subject of this article.

2. The Smith algebra

Fix a polynomial g(h) ∈ k[h]. The Smith algebra S(g) is the unital associative algebra 
over k generated by x, y, h with definition relations:

[h, y] = y, [h, x] = −x and [y, x] = g(h). (2.1)

This algebra was introduced by Smith in [15]. In case g(h) = 0, the generators x and 
y commute and the representation theory of S(0) assumes characteristics which often 
diverge from the general theory in case g �= 0. In fact, S(0) is the enveloping algebra 
of a 3-dimensional solvable (non-nilpotent) Lie algebra. Thus, henceforth we will always 
implicitly assume that g �= 0.
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By [15, Lemma 1.4], there exists u(h) ∈ k[h] such that g(h) = u(h − 1) − u(h). 
Moreover, u(h) is uniquely determined up to its constant term, which can be arbitrary, 
and deg (u) = deg (g) + 1 � 1. Fixing one such u, we denote the Smith algebra S(g) by 
Su and remark that Su = Su+C , for any C ∈ k.

Let zu = xy − u(h) = yx − u(h − 1). It is easy to see that zu is a central element in 
Su and for this reason we call zu the Casimir element associated with u. In addition, 
the center Z(Su) of Su is k[zu], the polynomial algebra in zu (see [15, Proposition 1.5], 
or [11, Proposition 2.9]).

Next we show that the algebra Su acts on the polynomial algebra k[t] by differential 
operators, with scalar central character. Denote by A1 = k[t, ∂], where ∂ = d

dt , the 
first Weyl algebra over k, realized here as the ring of differential operators on k[t] with 
polynomial coefficients. Since g �= 0, then deg (u) = deg (g) +1 � 1 and hence Ru+C �= ∅
for any C ∈ k. For C ∈ k, every root λ ∈ Ru+C and submultiset X ⊆ Ru+C \ {λ} define 
the polynomials:

QX(h) = polyX and PX(h) = u(h− 1) + C

QX(h− 1)(h− (λ + 1)) .

Equivalently, PX(h) = ξ poly Ru+C\({λ}∪X)(h − 1), where ξ is the leading coefficient of 
u + C.

Lemma 2.2. There exists a morphism of algebra ϕC,λ,X : Su → A1 such that

x 	→ ∂QX(θ − 1), y 	→ tPX(θ + 1) and h 	→ θ,

where θ = t∂ + λ + 1. Moreover, zu is mapped to C.

Proof. Define actions of x, y and h on k[t] as in the statement above. Since θt = t(θ+1)
and θ∂ = ∂(θ − 1), it follows that

(tPX(θ + 1)) (∂QX(θ − 1)) = t∂PX(θ)QX(θ − 1) = ((θ − 1) − λ)PX(θ)QX(θ − 1),

(∂QX(θ − 1)) (tPX(θ + 1)) = ∂tQX(θ)PX(θ + 1) = (θ − λ)PX(θ + 1)QX(θ).

Then, from the equality u(h) +C = (h −λ)PX(h +1)QX(h), it follows that [y, x] acts on 
k[t] as ((θ−1) −λ)PX(θ)QX(θ−1) −(θ−λ)PX(θ+1)QX(θ) = u(θ−1) +C−u(θ) −C = g(θ), 
which is the action of g(h). Similarly, the relations [h, y] = y and [h, x] = −x are also 
preserved by the action, thus inducing an Su-module structure by differential operators 
on k[t], and hence the given morphism of algebras. It is straightforward to show that 
ϕC,λ,X(zu) = C. �
Example 2.3. Let g(h) = h, so that S(h) 
 U(sl2), the universal enveloping algebra 
of sl2. Then we can take u(h) = −1h(h + 1), C = 0, λ = 0 and X = {−1}, so that 
2
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QX(h) = h + 1 and PX(h) = −1
2 . We obtain an action of sl2 on k[t] where x acts by 

∂(t∂ + 1), y acts by −1
2 t and h acts by t∂ + 1.

Concretely,

x · tk = k(k + 1)tk−1, y · tk = −1
2 t

k+1 and h · tk = (k + 1)tk, for all k � 0.

Using the fact that the action of x lowers the degree in t, annihilating only the constant 
polynomials, and the action of y raises it, a straightforward argument shows that this is 
an irreducible representation of sl2.

As a consequence of the previous lemma, and using exponential modules for the 
Weyl algebra (compare [6] for the case of sl2), we can construct a class of non-weight 
representations of Su as follows.

Definition 2.4. (Exponential modules) Let p ∈ k[t] be a polynomial and consider the 
A1-module k[t]ep. Given C ∈ k, λ ∈ Ru+C and X ⊆ Ru+C \ {λ} a submultiset, define 
E(p, C, λ, X) to be the Su-module induced from the A1-module k[t]ep via the map ϕC,λ,X

from Lemma 2.2.

Theorem 2.5. Assume that deg p � 1. Then E(p, C, λ, X) is a k[h]-free module of rank 
deg p. Furthermore, if there is no μ ∈ Ru+C \ {λ} such that μ − λ ∈ Z�1 then 
E(p, C, λ, Ru+C \ {λ}) is simple.

Proof. Let n = deg p. We claim that B = {ep, tep, . . . , tn−1ep} is a k[h]-basis of 
E(p, C, λ, X).

From the relation (h − (λ + 1 + s)) · tsep = ts+1p′ep we can show, by induction on 
s, that tsep ∈ k[h]B for all s ∈ N, so we conclude that B generates k[t]ep as a k[h]-
module. Now notice that h · qep = (t(q′ + qp′) +(λ +1)q)ep, for all q ∈ k[t]. In particular, 
h · qep = q̂ep, where deg q̂ = deg p + deg q. Thus, we can conclude that r(h) · qep = q̂ep, 
for some q̂ ∈ k[h] such that

deg q̂ = ( deg r)( deg p) + deg q.

Suppose, by contradiction, that 
∑n−1

i=0 ri(h) · tiep = 0, for some ri ∈ k[h], not all zero. 
If there is a unique i such that ri �= 0, then 0 = ri(h) · tiep = q̂ep with deg q̂ =
i + n deg ri � 0. Thus q̂ �= 0, which contradicts the equality q̂ep = 0. So assume that at 
least two of the ri are nonzero. Then there are 0 � i < j � n − 1 such that ri, rj �= 0
and ( deg ri)n + i = ( deg rj)n + j. Hence ( deg ri − deg rj)n = j − i ∈ [n − 1]. As [n − 1]
contains no multiples of n, this is impossible. Therefore B is k[h]-linearly independent 
and the claim is proved.

Now consider the case X = Ru+C \{λ}. In this case, y acts as multiplication by βt, for 
some β ∈ k×. Replacing y with y/β, we can, and will, assume that β = 1, for simplicity, 
so that y acts as multiplication by t.
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Let V ⊆ E(p, C, λ, X) be a nonzero submodule. We claim that tiep ∈ V , for some 
i ∈ N. First, notice that (h − (λ + 1) − yp′(y))qep = tq′ep, for all q ∈ k[t]. In particular, 
(h −(λ +1) −yp′(y))tjep = jtjep, for all j ∈ N, so 

{
tjep | j ∈ N

}
is a basis of E(p, C, λ, X)

of eigenvectors for the action of (h − (λ +1) −yp′(y)). Thus, this operator has a diagonal 
action on E(p, C, λ, X) and hence also on V . Since the eigenspaces are one-dimensional, 
V must contain some eigenvector, say tiep, for some i ∈ N.

Let i ∈ N be minimum such that tiep ∈ V . Using induction on the number of elements 
of X, one can prove that

QX(h)tjep =

⎛⎝∏
μ∈X

(λ + 1 + j − μ) + tqj

⎞⎠ tjep,

for j ∈ N and for some qj ∈ k[t]. Since

V � x · tiep = QX(θ)∂tiep = QX(h)(iti−1 + tip′)ep

= i

⎛⎝∏
μ∈X

(λ + i− μ) + tqi−1

⎞⎠ ti−1ep + QX(h)p′(y)tiep

= i
∏
μ∈X

(λ + i− μ)ti−1ep + (iqi−1(y) + QX(h)p′(y)) tiep,

we deduce that i 
∏

μ∈X(λ + i − μ)ti−1ep ∈ V . By the minimality of i, we conclude that 
i 
∏

μ∈X(λ + i − μ) = 0 and from the hypothesis that μ − λ /∈ Z�1 for all μ ∈ X, it must 
be that i = 0. Therefore V = E(p, C, λ, X) and the simplicity of E(p, C, λ, Ru+C \ {λ})
is established. �
3. The category U of k[h]-free Su-modules

Denote by U the category of Su-modules that are free of finite rank over the subalgebra 
k[h]. In this section we describe a skeleton of the category U1, the full subcategory of U
consisting of modules that are free of rank one over k[h]. We show that any module in 
U1 is of finite length, give an algorithm to determine all of its composition series, and 
give an explicit classification of the simple objects in U1.

Let M ∈ U have rank n, so we may assume that M = k[h]n as a k[h]-module. Let 
11, . . . , 1n ∈ k[h]n be its canonical basis. We have

y(hk · 1i) = (h− 1)ky1i and x(hk · 1i) = (h + 1)kx · 1i, for i ∈ [n] and k ∈ N.

Therefore,

yf(h) ·1i = f(h−1)y ·1i and xf(h) ·1i = f(h+1)x ·1i, for i ∈ [n] and f(h) ∈ k[h].
(3.1)
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In particular, the action of Su on M is uniquely defined by a choice

y · 1i =: pi = (pi,1, pi,2, . . . , pi,n) ∈ k[h]n, (3.2)

x · 1i =: qi = (qi,1, qi,2, . . . , qi,n) ∈ k[h]n, (3.3)

for all i ∈ [n]. By considering that [y, x] = g(h) = u(h − 1) − u(h), we deduce that the 
pi,j and the qi,j must satisfy the relations

g(h)1i =
n∑

�=1

⎛⎝ n∑
j=1

qi,j(h− 1)pj,�(h) − pi,j(h + 1)qj,�(h)

⎞⎠ 1�,

for all i ∈ [n]. Writing Q = (qi,j), P = (pi,j) ∈ Mn(k[h]), we see that the above is 
equivalent to the following matrix equation over k[h]:

Q(h− 1)P (h) − P (h + 1)Q(h) = g(h)I, (3.4)

where I ∈ Mn(k[h]) is the identity matrix. In fact, it is easy to see that (3.2) and (3.3)
define a Su-module structure on M = k[h]n extending the action of k[h] by multiplication 
if and only if (3.4) holds.

Now, suppose that M has a central character χM : k[zu] → k, so that zm = χM (z)m, 
for all z ∈ Z(Su) = k[zu] and all m ∈ M . Set C = χM (zu). Then we have xy1i =
(zu + u)1i = (u + C)1i, which becomes

(u(h) + C)I = P (h + 1)Q(h), (3.5)

in matrix form. Then (3.4) implies that

(u(h− 1) + C)I = Q(h− 1)P (h), (3.6)

which translates to yx1i = (u(h −1) +C)1i. Conversely, notice that (3.5) and (3.6) imply 
(3.4) and moreover that M has a central character χM with χM (zu) = C.

Example 3.7. Let C ∈ k, λ ∈ Ru+C and X ⊆ Ru+C \ {λ}. Let p =
∑n

j=0 αjt
j ∈

k[t] of degree n � 1 and E = E(p, C, λ, X). By Theorem 2.5, E is k[h]-free with basis 
{ep, . . . , tn−1ep}. Hence there is an isomorphism of k[h]-modules k[h]n → E such that

1i 	→ ti−1ep, i ∈ [n].

Via this isomorphism, k[h]n inherits from E a structure of Su-module.
Recall, from Definition 2.4 and Lemma 2.2, that h acts on E as θ = t∂+λ +1 = ∂t +λ, 

x acts as ∂QX(θ− 1) = QX(θ)∂ and y acts as tPX(θ + 1) = PX(θ)t. Set vi = ti−1ep, for 
i ∈ [n]. Then we have, for i � 2,
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x · vi = QX(θ)∂ ti−1ep = QX(θ)(∂t)ti−2ep = QX(θ)(θ − λ)vi−1 = QX(h)(h− λ) · vi−1.

We conclude that qi,j = QX(h)(h − λ)δi−1,j , for all i, j ∈ [n] with i � 2, where δk,� is 
the Kronecker delta.

Now we take i = 1:

x · v1 = QX(θ)∂ ep = QX(θ)p′ep = QX(θ)
n∑

j=1
jαjt

j−1ep = QX(h) ·
n∑

j=1
jαjvj .

We conclude that q1,j = QX(h)jαj , for all j ∈ [n]. Therefore, we obtain

Q(h) = QX(h)

⎡⎢⎢⎢⎢⎢⎢⎣

α1 2α2 3α3 · · · (n− 1)αn−1 nαn

(h− λ) 0 0 · · · 0 0
0 (h− λ) 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 0
0 0 · · · · · · (h− λ) 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Similarly, we obtain

P (h) = PX(h)

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1

(h−(λ+1))
nαn

− α1
nαn

− 2α2
nαn

· · · − (n−2)αn−2
nαn

− (n−1)αn−1
nαn

⎤⎥⎥⎥⎥⎥⎥⎦
= PX(h)

(
Comp

(
tp′ − (h− (λ + 1))

nαn

))t

,

where Comp(f(t)) denotes the companion matrix of f(t) ∈ (k[h])[t], as a polynomial 
in t.

3.1. The category U1

Now we will focus on the category U1 of Su-modules which are free of rank 1 over 
k[h]. In the following, we will identify M ∈ U1 with k[h], the (left) regular k[h]-module. 
We set pM = y ·1 and qM = x ·1. Whenever there is no ambiguity, we will simply denote 
these elements of k[h] by p and q, respectively.

Notice that, by Lemma 2.2, the Casimir element zu acts on any exponential module 
by a scalar. Next, we show that this property holds for all modules in U1.

Lemma 3.8. Let M ∈ U1. Then M admits a central character χM that satisfies χM (zu) =
p(h + 1)q(h) − u(h) ∈ k.
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Proof. By equation (3.4), we must have

q(h− 1)p(h) − p(h + 1)q(h) = g(h) = u(h− 1) − u(h).

Let f(h) = q(h)p(h + 1). Then we have f(h − 1) − f(h) = g(h). By [12, Lemma 4], 
the solution of such an equation is unique up to the constant term. Therefore, f(h) =
u(h) + C, for some C ∈ k. In particular C = p(h + 1)q(h) − u(h) and

zu · 1 = (xy − u(h)) · 1 = x · p− u(h) (3.1)= p(h + 1)q(h) − u(h) = C,

thus proving the lemma. �
Let M ∈ U1 and C = χM (zu). Let ξC ∈ k× be the leading coefficient of u(h) +C. Since 

u(h) + C = p(h + 1)q(h), it follows that there is a multiset partition Ru+C = X
∐

Y , 
where X = Rq and Y = Rp(h+1) = Rp − 1. Hence,

q(h) = ξq polyX = ξq
∏
α∈X

(h− α) and p(h) = ξp polyY +1 = ξp
∏
α∈Y

(h− (α + 1)),

with ξq, ξp ∈ k× the leading coefficients of q and p, respectively, so that ξqξp = ξC . Thus, 
M = k[h] is described by C, X and ξq, and we will denote it by AC(X, ξq).

Given λ ∈ k×, let ϕλ be the algebra automorphism of Su defined by

ϕλ(x) = λx, ϕλ(y) = λ−1y and ϕλ(h) = h.

For any M ∈ Su−mod, define FλM ∈ Su−mod to be the module M with Su-action 
twisted by ϕλ, i.e., s ·m = ϕλ(s)m, for all s ∈ Su, m ∈ FλM . This defines a family of 
functors

Fλ : Su−mod −→ Su−mod,

for all λ ∈ k×. It is easy to see that FλFμ = Fλμ, for all λ, μ ∈ k×. In particular, the Fλ

define category autoequivalences.
Notice now that FλAC(X, ξq) = AC(X, λξq), for all λ ∈ k×, so in particular 

AC(X, ξq) = FξqAC(X, 1). Thus, it suffices to study the modules of the form AC(X, 1), 
which we simply denote by AC(X).

We summarize the above construction.

Definition 3.9. Let C ∈ k and let X be an arbitrary submultiset of the multiset Ru+C

of roots of u(h) + C. Let Y = Ru+C \X, the multiset complement of X in Ru+C . Let 
q(h) = polyX =

∏
α∈X(h − α) and p(h) = u(h−1)+C

q(h−1) ∈ k[h]. Then AC(X) = k[h] is the 
regular k[h]-module, with action extended to Su by

xf(h) = f(h + 1)q(h) and yf(h) = f(h− 1)p(h), for all f(h) ∈ k[h].
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We have proved the following lemma.

Lemma 3.10. Let M ∈ Su−mod. Then M ∈ U1 if and only if then there exist λ ∈ k×, 
C ∈ k and a submultiset X of Ru+C such that M 
 FλAC(X).

Lemma 3.11. Let C, C ′ ∈ k, X and X ′ be submultisets of Ru+C and Ru+C′ , respectively, 
and λ, λ′ ∈ k×. Then FλAC(X) 
 Fλ′AC′(X ′) if and only if C = C ′, λ = λ′ and 
X = X ′.

Proof. Assume that M = FλAC(X) 
 Fλ′AC′(X ′) = M ′. Then the central characters 
must be the same, so C = C ′. Moreover, any isomorphism of Su-modules is in particular 
an isomorphism of k[h]-modules, and hence given by multiplication by a nonzero scalar. 
Thus it can be assumed that the identity map is an isomorphism between the given Su-
modules. Then, by checking the action of x, we deduce that the isomorphism maps λqM
to λ′qM ′ . Hence these polynomials have the same roots and the same leading coefficient, 
and it follows that X = X ′ and λ = λ′. �

From Lemmas 3.10 and 3.11 we obtain a classification of the objects in U1.

Corollary 3.12. The following family is a skeleton of the category U1:{
FλAC(X) | C ∈ k, λ ∈ k× and X ⊆ Ru+C (a submultiset)

}
.

3.2. The exponential modules in U1

From Theorem 2.5 we know that the exponential modules in U1 are precisely those of 
the form E(p, C, λ, X) with deg p = 1. We will see that the latter exhaust all isomorphism 
classes in U1, except for the isomorphism classes of AC( Ru+C , α), with C, α ∈ k and 
α �= 0. Using the symmetry of the Weyl algebra A1, we define dual exponential modules 
E(p, C, λ, X)∨ which will cover the remaining isomorphism classes in U1.

Fix p(t) = αt + β, with α, β ∈ k and α �= 0. We know that E(p, C, λ, X) 
 AC(X̃, ξ), 
for some submultiset X̃ ⊆ Rn+C and ξ ∈ k×. These are determined by x ·1 = ξ poly

X̃
(h)

in AC(X̃, ξ). Since EndSu
(AC(X̃, ξ)) = k 1, where 1 stands for the identity on AC(X̃, ξ), 

we can assume that the isomorphism AC(X̃, ξ) → E(p, C, λ, X) takes the k[h]-generators 
1 ∈ AC(X̃, ξ) to ep ∈ E(p, C, λ, X). Then from ξ poly

X̃
(h) = x · 1 we obtain

ξ poly
X̃

(h) · ep = x · ep = QX(θ)∂ep = α polyX(h) · ep

As E(p, C, λ, X) is a free k[h]-module on {ep}, it follows that ξ poly
X̃

(h) = α polyX(h), 
so ξ = α and X̃ = X.

Combining the preceding considerations with Lemma 3.11, we obtain a characteriza-
tion of the exponential modules for Su of rank 1.
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Lemma 3.13. Let p, ̃p ∈ k[h] with deg p = 1 = deg p̃, C, C̃ ∈ k, λ ∈ Ru+C , λ̃ ∈ Ru+C̃

and X ⊆ Ru+C \ {λ}, X̃ ⊆ Ru+C̃ \ {λ̃} submultisets. The following hold:

(a) E(p, C, λ, X) 
 AC(X, α), where p′(t) = α ∈ k×;
(b) E(p, C, λ, X) 
 E(p̃, C̃, ̃λ, X̃) if and only if p′ = p̃′, C = C̃ and X = X̃.

In particular, all modules AC(X, α) are exponential modules, except for X = Ru+C . 
In order to be able to include these latter ones, we define the modules E(p, C, λ, X)∨
using the symmetry of A1.

Concretely, let τ : A1 → A1 be the automorphism defined by t 	→ ∂ and ∂ 	→ −t. 
Then the algebra morphism ϕ̃C,λ,X : Su → A1 defined by ϕ̃C,λ,X = τ ◦ ϕC,λ,X induces 
an Su-module structure on the A1-module k[t]ep, denoted by E(p, C, λ, X)∨. So h acts 
as θ̃ = τ(θ) = −∂t + λ + 1, x acts as −QX(θ̃)t and y acts as PX(θ̃)∂.

As before, we obtain a characterization of the modules E(p, C, λ, X)∨ in case deg p = 1.

Lemma 3.14. Let p ∈ k[h] with deg p = 1, C ∈ k, λ ∈ Ru+C and X ⊆ Ru+C \ {λ} a 
submultiset. Then

E(p, C, λ,X)∨ 
 AC(X ∪ {λ} , α−1), where α = p′(t) ∈ k×.

In particular, AC( Ru+C , α−1) 
 E(p, C, λ, Ru+C \ {λ})∨.

3.3. The submodule structure of AC(X)

Next, we study the simplicity of the modules AC(X) and, moreover, we will produce 
an algorithm to describe the composition series for these modules. We will find that 
AC(X) always has finite length as an Su-module.

Unless otherwise noted, throughout this subsection, C ∈ k, X denotes an arbitrary 
submultiset of Ru+C and the polynomials p, q ∈ k[h] are as in Definition 3.9. In partic-
ular, q is monic, X = Rq and Y = Ru+C \X = Rp(h+1). Define

LC(X) = {t(h) ∈ k[h] | t(h) is monic, t(h) | t(h− 1)p(h) and t(h) | t(h + 1)q(h)}
⋃

{0} .

We think of LC(X) as a poset, under the polynomial divisibility relation.

Lemma 3.15. There is an order reversing bijection between LC(X) and the lattice of 
submodules of AC(X). Under this correspondence, t ∈ LC(X) is mapped to tk[h] ⊆
AC(X). Moreover, if t �= 0 then tk[h] 
 AC( Rq), where q = t(h+1)q(h)

t(h) .

Proof. Let M be an Su-submodule of AC(X). Then M is an ideal of k[h], by restriction, 
so it follows that M = t(h)k[h], for some t(h) ∈ k[h]. If t �= 0, then we can assume that 
t is monic, in which case M determines t. Since M is stable under the action of x, we 
have
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t(h + 1)q(h) = xt(h) ∈ M = t(h)k[h],

thus t(h) divides t(h + 1)q(h). Similarly, looking at the action of y, we deduce that t(h)
divides t(h − 1)p(h).

Conversely, let 0 �= t ∈ LC(X) and set q = t(h+1)q(h)
t(h) , p = t(h−1)p(h)

t(h) ∈ k[h]. Notice 
that q(h)p(h + 1) = q(h)p(h + 1) = u(h) +C, so that Rq and Rp(h+1) define a partition 
of Ru+C . What’s more,

xt(h)f(h) = t(h + 1)f(h + 1)q(h) = t(h)f(h + 1)q and

yt(h)f(h) = t(h− 1)f(h− 1)p(h) = t(h)f(h− 1)p,

for all f(h) ∈ k[h]. Hence tk[h] is a submodule of AC(X) isomorphic to AC( Rq). The 
order reversing property is clear. �

As all nonzero submodules of AC(X) are of the form AC(X ′), for some submultiset 
X ′ of Ru+C , in order to find simplicity criteria and composition series for AC(X), it 
suffices to determine all of the maximal submodules of AC(X). By the previous result, 
this is tantamount to finding all minimal elements of LC(X) \ {1}, i.e. all t ∈ LC(X)
with no proper nontrivial factors in LC(X).

It will be convenient to introduce a partial order relation on k, given by α � β ⇐⇒
β − α = n1k, for some n ∈ N (recall that char(k) = 0, so � is indeed antisymmetric).

Let t ∈ LC(X) and assume that t �= 0, 1. Then Rt is a nonempty finite multiset with 
cardinality equal to deg (t) � 1, and thus it decomposes as a finite union of maximal 
chains (the connected components of the Hasse diagram of the poset Rt):

s1 : α1
1 � · · · � α1

k1
;

...

s� : α�
1 � · · · � α�

k�
.

Set

tsi(h) =
ki∏
j=1

(h− αi
j), tsi(h) = t(h) (tsi(h))−1

,

so that t(h) = ts1(h) · · · ts�(h) = tsi(h)tsi(h). Thus tsi(h)tsi(h) | tsi(h − 1)tsi(h − 1)p(h)
and, since gcd

(
tsi(h), tsi(h)

)
= 1, the latter is equivalent to

tsi(h) | tsi(h− 1)tsi(h− 1)p(h) and tsi(h) | tsi(h− 1)tsi(h− 1)p(h). (3.16)

Moreover, as gcd
(
tsi(h), tsi(h− 1)

)
= 1 = gcd

(
tsi(h− 1), tsi(h)

)
, (3.16) above is equiv-

alent to
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tsi(h) | tsi(h− 1)p(h) and tsi(h) | tsi(h− 1)p(h).

Replacing p(h) with q(h) we deduce that t ∈ LC(X) ⇐⇒ ts1 , . . . , ts� ∈ LC(X), and 
tk[h] =

⋂�
i=1 tsik[h]. Thus, we may assume that the roots of t(h) form a chain

α1 � · · · � αk,

with k � 1. Then, from t(h) | t(h − 1)p(h) we deduce that α1 is a root of p, i.e. 
α1 − 1 ∈ Rp(h+1) = Y . Similarly, from t(h) | t(h + 1)q(h) we deduce that αk ∈ Rq = X. 
We call such a multiset a (p, q)-chain. Note that αk − (α1 − 1) = αk − α1 + 1 ∈ Z�1.

Lemma 3.17. If α1 � · · · � αk is a (p, q)-chain, then s(h) =
∏m

j=0(h −(α1+j)) ∈ LC(X), 
where m = αk − α1.

Proof. We have

(h− α1)s(h− 1) =
m+1∏
j=0

(h− (α1 + j)) = s(h)(h− (α1 + m + 1)),

(h− (α1 + m))s(h + 1) =
m∏

j=−1
(h− (α1 + j)) = s(h)(h− (α1 − 1)).

Since h − α1 | p(h) and h − αk = h − (α1 + m) | q(h), it follows that

s(h) | s(h− 1)p(h) and s(h) | s(h + 1)q(h). �
Corollary 3.18. Let C ∈ k and X be a submultiset of Ru+C , with Ru+C = X

∐
Y . 

Consider the Su-module AC(X) ∈ U1, as given in Definition 3.9. Then AC(X) is simple 
if and only if (X − Y ) ∩Z�1 = ∅, i.e. if and only if there are no α ∈ Y and β ∈ X such 
that β − α ∈ Z�1.

Proof. Assume that AC(X) is simple and assume, by contradiction, that there exist 
α ∈ Y and β ∈ X such that β−α = m +1, for some m ∈ N. Let s(h) =

∏m
j=0(h −(α1+j)), 

with α1 = α + 1. Then deg (s) = m + 1 � 1 and α1 � α1 + 1 � · · · � α1 + m = β is 
a (p, q)-chain, so s(h) ∈ LC(X) by Lemma 3.17. Hence, s(h)k[h] is a proper nontrivial 
submodule of AC(X), a contradiction.

Conversely, suppose that (X − Y ) ∩ Z�1 = ∅ and let S ⊆ AC(X) be a submodule. 
Then S = s(h)k[h] for some s(h) ∈ LC(X). If deg (s) � 1, then the multiset Rs is finite 
and nonempty. Thus, by the preceding considerations, there is a divisor t(h) of s(h) with 
deg (t) � 1 such that Rt is a (p, q)-chain, say α1 � · · · � αk, with α1 − 1 ∈ Y and 
αk ∈ X. Thence, αk − (α1 − 1) = αk − α1 + 1 ∈ Z�1 ∩ (X − Y ) = ∅, a contradiction. 
Thus, either s(h) = 1 or s(h) = 0, proving that AC(X) is simple. �
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Let us return to the classification of the minimal elements t ∈ LC(X) \ {1}. We 
already know that t = 0 is minimal if and only if (X − Y ) ∩ Z�1 = ∅, so let’s assume 
that deg (t) � 1. From our previous considerations, we know that Rt is a (p, q)-chain, 
say α1 � · · · � αk, with k � 1.

Suppose there is 1 � i < k such that αi+1 − αi � 2. Then, writing t(h) = t1(h)t2(h)
with t1(h) =

∏
j�i(h −αj) and t2(h) =

∏
j>i(h −αj), the argument we have used before 

in (3.16) also shows that t ∈ LC(X) ⇐⇒ t1, t2 ∈ LC(X), and tk[h] = t1k[h] ∩ t2k[h]. 
Thus, we may further assume that αi+1 − αi ∈ {0, 1}, for all 1 � i < k. We call such a 
chain a gapless chain. What’s more, taking m = αk −α1 and s(h) =

∏m
j=0(h − (α1 + j)), 

we see that s(h) divides t(h) (because the chain is gapless) and s(h) ∈ LC(X), by 
Lemma 3.17. As deg (s) = m + 1 � 1, it follows from the minimality of t that t = s; 
whence, t is separable. In other words, the roots of t are all distinct and form a gapless 
(p, q)-chain α1 �− · · · �− αk.

Proposition 3.19. Let C ∈ k, X, Y and LC(X) be as above. Then t is minimal in 
LC(X) \ {1} if and only if either one of the following conditions hold:

(a) t = 0 and (X − Y ) ∩ Z�1 = ∅ (i.e., AC(X) is simple);
(b) Rt is a finite gapless (p, q)-chain with no repeated elements, say α1 �− · · · �− αk, 

with deg (t) = k, such that:

(i) there is no i < k with αi ∈ X;
(ii) there is no i > 1 with αi − 1 ∈ Y .

Proof. The direct implication is clear from the preceding discussion. Conversely, condi-
tion (a) clearly implies the minimality of t = 0. So assume that the roots of t form the 
chain α1 �− · · · �− αk, satisfying the conditions in (b). In particular, t �= 0, as Rt is finite.

Let s ∈ LC(X) \{1} be a divisor of t. As t �= 0, also s �= 0 and thus deg (s) � 1. Then, 
Rs ⊆ Rt and the roots of s are of the form αi1 �− · · · �− αi� , with 1 � i1 < · · · < i� � k. 
The fact that s ∈ LC(X) implies that Rs is a (p, q)-chain and (b) forces i1 = 1 and 
i� = k. If s �= t, then there is some j < � such that αij+1 − αij � 2. Hence, by the 
argument preceding Proposition 3.19, (h − αi1) · · · (h − αij ) ∈ LC(X). In particular, 
αij ∈ X, forcing ij = k = i�, which contradicts j < �. The contradiction implies that 
s = t, proving the minimality of t. �

Let C ∈ k, X, p, q ∈ k[h] and LC(X) be as above. Write X0 = X, q0 = q and 
p0 = p. The previous proposition provides a method to construct any decreasing chain 
of submodules

AC(X0) ⊃ t1k[h] 
 AC(X1) ⊃ t2t1k[h] 
 AC(X2) ⊃ · · · , (3.20)

where ti is a minimal element of LC(Xi−1) \ {1}. As long as ti �= 0, we can proceed with 
qi = ti(h+1)qi−1(h) , pi = ti(h−1)pi−1(h) and Xi = Rqi , for i � 1. The minimality of ti
ti(h) ti(h)
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implies that AC(Xi−1)/AC(Xi) is simple, for all i � 1. Then, to prove that all objects 
in U1 have finite length, it is enough to show that, after a finite number of steps, the 
minimal element obtained is t� = 0.

3.4. Composition series for AC(X)

Recall the order � defined on k. Given a multiset Z ⊆ k and β ∈ k, denote by Z�−β
the submultiset {α ∈ Z | α �− β}. Let X ⊆ Ru+C be a submultiset and take β ∈ X. If 
( Ru+C \X)�−β �= ∅, we denote by X 
 β the submultiset of Ru+C defined by

X 
 β = {β̂} ∪X \ {β},

where β̂ ∈ ( Ru+C \X)�−β is uniquely defined by imposing the minimum distance from 

β, i.e., β − β̂ = min{β − α | α ∈ ( Ru+C \X)�−β}.
Let t ∈ LC(X) \ {1} be minimal and suppose that t �= 0. Set q = polyX . Then Rt

is a finite gapless (p, q)-chain with no repeated elements, say α1 �− · · · �− αk satisfying 
Proposition 3.19(b). Set q = t(h+1)q(h)

t(h) . It follows that Rq = (X \ {αk}) ∪ {α1 − 1}. 
Furthermore, by Proposition 3.19(b)(ii),

k = αk − (α1 − 1) = min{αk − β | β ∈ ( Ru+C \X)�−αk
}.

Thus, Rq = X 
 αk. Moreover, with this notation, the chain of submodules (3.20) can 
be written as

AC(X) ⊃ t1k[h] 
 AC(X 
 β1) ⊃ t2t1k[h] 
 AC(X 
 β1 
 β2) ⊃ · · · , (3.21)

where βi is the maximal element of the gapless (pi−1, qi−1)-chain corresponding to ti, a 
minimal element of LC(X 
 β1 
 · · · 
 βi−1) \ {1} which we are assuming to be nonzero.

Now, for any submultiset Z ⊆ Ru+C , define

�(Z) =
∑
β∈Z

|( Ru+C \ Z)�−β | � 0,

where | · | denotes the number of elements of a multiset. Notice that �(Z 
β) � �(Z) − 1, 
whenever Z 
 β is defined. Finally, recall also that, by Corollary 3.18, AC(Z) is simple 
if and only if �(Z) = 0. Therefore, the chain (3.21) has maximal length bounded above 
by �(X) and �(X 
 β1 
 · · · 
 βm) = 0, for some m � �(X). The last nonzero term of the 
chain (3.21) will be the simple submodule AC(X 
 β1 
 · · · 
 βm).

From the discussion above we obtain our desired result.

Proposition 3.22. Let AC(X) ∈ U1. Then AC(X) has finite length, bounded above by 
�(X) + 1.
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The method described above using Proposition 3.19 and the iterative construction 
in (3.21) gives all possible composition series for AC(X). Nevertheless, we will see that, 
regardless of the choices made, the final multiset X 
 β1 
 · · · 
 βm obtained, with �(X 


β1 
 · · · 
 βm) = 0, will always be the same. We give an algebraic proof of this result, 
using the notion of socle of a module M , denoted by soc(M), this being the sum of its 
simple submodules, or equivalently, its unique maximal semisimple submodule.

Corollary 3.23. Let AC(X) ∈ U1. Then soc (AC(X)) = AC(X�), where X� = X
β1
· · ·

βm is obtained iteratively by the method described above, terminating with �(X�) = 0. In 
particular, X� depends only on X.

Proof. We have seen that there exist 0 � m � �(X) and β1, . . . , βm ∈ Ru+C such that 
AC(X 
 β1 
 · · · 
 βm) is a submodule of AC(X) with �(X 
 β1 
 · · · 
 βm) = 0, hence 
simple and thence contained in soc (AC(X)).

The k[h]-module AC(X) is just the regular module k[h], which contains no nontrivial 
direct sums of submodules. It follows that the same must hold for AC(X) as an Su-
module. Thus, its socle, being nonzero and semisimple, must be simple and equal to 
AC(X 
β1 
 · · ·
βm). So AC(X 
β1 
 · · ·
βm) is the unique simple submodule of AC(X), 
and the last nonzero term in all composition series for AC(X). Now, by Lemma 3.11, 
the uniqueness of the multiset X 
 β1 
 · · · 
 βm follows. �
Remark 3.24. Let Ru+C = R1

∐
· · ·

∐
Rk be the decomposition of Ru+C in to its maxi-

mal chains with respect to �. Then X� is the unique submultiset of Ru+C with �(X�) = 0
and |Ri ∩X�| = |Ri ∩X|, for all i ∈ [k].

Next, we will describe the remaining composition factors of AC(X) and their mul-
tiplicities, obtaining as a corollary an exact formula for the length of AC(X). Since 
AC(X)/soc (AC(X)) is finite dimensional, AC(X�) occurs with multiplicity one and all 
the other composition factors, if any, will be finite dimensional.

We summarize the classification of simple Su-modules of finite dimension given by 
Smith in [15] (see also [10]). Let λ ∈ k, and kλ = kvλ be the one-dimensional k[h]-
module where h acts by λ. Let b ⊆ Su be the unital subalgebra generated by h and y. 
Then kλ becomes a b-module by defining yvλ = 0. The Verma module of highest weight 
λ for Su is defined by

V (λ) = Su ⊗b kλ 
 k[x].

Theorem 3.25. [15] Let λ ∈ k, then V (λ) has a unique maximal submodule and hence 
a unique simple subquotient, denoted by L(λ). Furthermore, any simple Su-module of 
dimension j is isomorphic to

L(λ) = V (λ)/xjV (λ),
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for some λ ∈ k, where j is the minimal positive integer such that u(λ) − u(λ − j) = 0.

Lemma 3.26. Let AC(X) ∈ U1 and assume that AC(X) is not simple. Let 0 �= t ∈
LC(X) \ {1} be minimal. Then AC(X)/tk[h] 
 L(β), where β is the maximal element 
of the gapless (p, q)-chain corresponding to t.

Proof. Let t(h) = (h −(β̂+1))(h −(β̂+2)) · · · (h −β), with β̂ �− β. Then N = AC(X)/tk[h]
has dimension equal to β − β̂. Define w �= 0 to be the class of t(h)/(h − β) in N . A 
straightforward computation using the fact that h − (β̂ + 1) divides p shows that

yw = 0, hxkw = (β − k)xkw, and yxk+1w = (u(β − (k + 1)) − u(β))xkw,

for all k ∈ N. Let k0 be the minimal positive integer such that xk0w = 0. Then we have

0 = yxk0w = (u(β − k0) − u(β))xk0−1w.

As N is simple, it follows that N = spank
{
xkw | k = 0, . . . , k0 − 1

}
, a simple Su-module 

of highest weight β. Thus, N 
 L(β). Since xk0−1w �= 0, this implies that u(β − k0) −
u(β) = 0, and we have β − β̂ = dimkN = k0. �
Remark 3.27. As a converse to the previous result, any simple finite-dimensional Su-
module L(λ) can be seen as a quotient of AC(X) ∈ U1, for some C ∈ k and some 
X ⊆ Ru+C . Indeed, suppose that dimk L(λ) = j � 1 and set C = −u(λ). Then, by The-
orem 3.25, λ, λ − j ∈ Ru+C and AC({λ}) is well defined. Moreover, λ − j + 1 � · · · � λ

forms a (p, q)-chain for X = {λ}, so tλ(h) =
∏j−1

i=0 (h − (λ − i)) ∈ LC({λ}), by 
Lemma 3.17. Finally, the minimality of j given in Theorem 3.25 ensures, by Propo-
sition 3.19, that tλk[h] is a maximal submodule of AC({λ}), isomorphic to AC({λ− j}), 
and AC({λ})/tλk[h] 
 L(λ), by Lemma 3.26.

Now, for every submultiset Z of Ru+C , define the map ϕZ : Ru+C → N by

ϕZ(β) = min
{
|( Ru+C \ Z)�−β |, |Z�β |

}
,

where Z�β = {α ∈ Z | β � α} and Ru+C is the underlying set obtained from Ru+C .
We are ready to describe the composition factors of AC(X) and their multiplicities. 

It turns out that this is best phrased using the Grothendieck group K0(Su), which is the 
free abelian group on the isomorphism classes of finitely generated Su-modules, modulo 
the short exact sequences.

Theorem 3.28. Consider the Grothendieck group K0(Su) = {[M ] | M ∈ Su−mod}. Let 
AC(X) ∈ U1. Then

[AC(X)] = [AC(X�)] +
∑

β∈R
ϕX(β)[L(β)] ∈ K0(Su),
u+C
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where AC(X�) = soc (AC(X)).

Proof. We prove it by induction on �(X).
If �(X) = 0, then clearly ϕX is the constant null map, X = X� and the claim is 

proved. Suppose that �(X) > 0 and assume the claim to be true for any submultiset 
Z ⊆ Ru+C such that �(Z) < �(X). There exists a minimal t ∈ LC(X) \ {1} and t �= 0, 
since �(X) > 0. Let β be the maximal element of the gapless (p, q)-chain corresponding 
to t (see Proposition 3.19). Then, by Lemmas 3.15 and 3.26, we have an exact sequence

0 → AC(X 
 β) → AC(X) → L(β) → 0.

Then [AC(X)] = [AC(X 
 β)] + [L(β)] ∈ K0(Su). Since �(X 
 β) � �(X) − 1, it follows 
by the induction hypothesis that

[AC(X)] = [L(β)] + [AC(X�)] +
∑

α∈Ru+C

ϕX�β(α)[L(α)] ∈ K0(Su),

where AC(X�) = soc (AC(X 
 β)) = soc (AC(X)). So it is sufficient to prove that

ϕX(β) = ϕX�β(β) + 1 and ϕX(α) = ϕX�β(α), for all α �= β. (3.29)

Computing ϕX and ϕX�β , we obtain:

|( Ru+C \X 
 β)�−α| =
{
|( Ru+C \X)�−α|, α �= β;
|( Ru+C \X)�−β | − 1, α = β;

|(X 
 β)�α| =
{
|X�α|, α �= β;
|X�β | − 1, α = β.

Thus, (3.29) is satisfied and the theorem is proved. �
Corollary 3.30. The module AC(X) ∈ U1 has length 1 +

∑
β∈Ru+C

ϕX(β).
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