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All notation as well as definitions of the concepts 
• 

mentioned tn the title will be as in (Ml. In that paper can 

also be found bibliographical references sustaining the 

usefulness of filtered powers and of structures of stable 

continuous functions. The author acknowledges helpful 

conversations, on the methods used here, with A.M. Sette. We 

recall definiti~ns briefly. 

If X is a topological space and M a set, the syrrool 

C(X,M) will denote the set of all continuous functions from 

X to M, where M is given the discrete topology,Whenever it 

appears this symbol will have this meaning and the structures 

mentioned in the title, in particular, will have as domaim 

subsets of sets of this form. The symbol X indicates a 

topological space in all that follows. 

If L is a first order language with eguality, M 

an L-structure and I a set, let [=({Fi)icI, [Mili(I) be a 

pair of families of subsets of X and M respectively, such 

that each F1 is closed in X and each M1 is a substructure of 

M. The symbol C(X,M,E) denotes the substructure of 

* Partially supported by CNPq grant 300.214/79. 
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:: (X,M), consisting of all continuous f: X + M such that 

for all i< I f (Fi) ~ Mi. C (X,M; Z) is called a 6,(.t'te/led pou1e11. 

of M by X. 

Let G be a group operating by homeomorphisms on X 

and by automorphisms on an L-structure M. That is, we have 

* group homomorphisms g < G + g* c; Hm (X) and g E G + g E Au~ (M). 

The symbol SC\X,M1G) denotes the substructure of C(X,M) 

consisting of all continuous X ...J.... M such that for all g 0:: G 

• and all x 0:: X f (g.x) = g f (x). sc (X,M;G) is called the 

structure of ~table con~inuou~ 6unctian~ from X to M under 

the action of G. 

In the rest of this rote it will be assumed that 

X is boolean (compact, with a basis of clopens) and that G 

and I are 6i~ite. 

If X is a boolean space, D(X) denotes the boolean 

algebra of clopens in X. To each filtered power C(X,M; E) 

i - M*" d we can assoc ate an expans Lon of M, <M . M1, ... M > = an 
I 0 

by Stone duality, the aUCJ!rented boolean algebra 

<B(X); r1, •.. ,In>: B:#= (X) 

where Ik is the ideal in B(X) detcrmined by the closed set 

Fk = X (see [M] or [MRJ for more details). We denote by L 

the expansion of L appropriate to structures of type 

<M; M1, .•• , M
0
> • Thus Li* is obtained from L by adding n 

new unary relation symbols r
1

, ... ,P
0
• Similarly, to each 

structure of stable continuous functions SC(X,M;G) we can 

• associatc an expansion of M, M = <M, • {g ) > and an g,:: G 

of B(X}. Here we make 
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no distinction ~c~~een the homeomorphism g. of X and the 

* automorphism induced by g* in B(X). L denotes the expa.nsion 

* 
of L, appropriate for structures of type M . 

In all ~hat follows X will be an arbitrary but 

fixed boolean space, F
1
, .•. ,Fn a fixed (but againarbitrary) 

L 

of closed subsets of X and G a finite group. If 

·~ and M
2 

are two expansions of L-structures M1 an? M2 

as des er+bed above, then E
1
• = <{F1, ••• F } {Mi , ... Mi l > i= . nJ 1 n > 

1,2. We wish to present proofs of the following: 

* Theorem 2. Same arl above, with M1 and SC(X,Mi;G) i= 1,2 in 

It­ 
the plac:e of Mi and ClX,M. ,E.) respectively. 

l. l. 

For this purpose we will use the caractcrization, 

ctue to Fraisse ((Fr]) of elementary equivalence through the 

e x is t e nc e of certain famiU.es of partial isomorphisms (''back. 

and forth" tecniques) . All results we need are in [F], 

~hose notation will be followed closely. In particular if 

~l ~nd M
2 

are structures, P(M1, M2) will denote the set of 

partial isomorphisms from M1 to M2. 

1-ie have the following 

Fundamental Lcmma : With notational conventions as above 

t ne r e is ll natural injection C(X,P(M1,M2l)~P(C(X,M1) 

C(X,M
2
)) • T such that 
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a. If s11 = 
11· lf- 

6: C (X,S ) -+ T by 

* b. If S * M2), let G operate on it trivially 

* * and define 6 :SC(X,S ;G) ·+ T by * 6 ( f) 

6 
(fljaom 6(f) n SC(X,Ml;G). Then Im 6* c P(SC(X,Ml;G) 

* SC(X,M2;G)) ~ T. 

c. Define, for f,g E C(X,P(M
1
,M

2
)), f = g if for all 

:X:EX, f(x) = g(x) (i.e., dom f(x) ': dom g(x) and g(x)idanf(x( 

f(x)). 'I'h e n , if f ': g, 6(f) = 6(g). 
d. If (S ) n n E uJ has the back and forth property in 

P(M1,M2) (as in definition 1.4, p. 252 of [FJ), then 

( 6 (C(X,S ) ) ) has the same property in T. n n E (u 

e. If (S ) has the back and forth property in n n E w 
* * * * * P(Ml , M2), let s = s 

nlGI · 
Then ( 6 ( SC (X, S n; G) ) ) n c has n w 

* the same property in T 

Proof. Given f: X-+ P(M
1
,M

2
) put dom 6(f) ={acC(X,M1): 

Vx E X a (x) E dom f (x)} • Then define for n f dom 6 (f) 

6 (f) (o ) (x) = f (x) (a (x). 

For notational simplicity if X___h_ A is constant 

ona clopcn u c X we will denote by h!u 

of h to u and its value on u. 

bo t h the restriction 

l:'act_ l : 6 (6) (~:) -<.,!, a c.on-t,tnuou,!, :chcosc, q iven a r clorn 6 (f) J 

a partiUon u1; ... , u
5 

of X s uch that both f I u. 
J 

-1 aluj are cons t arrt , Then form E M
2

, [6(f) (a) J (m) = 

IJ{u~ : fltlj (ttluj) = m ), which is clopen in X. 

and 
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It is straightforw.~r<l to vcrify that t:. is injective. 

Notice now that if f (x) t: S 

then (f) (o ) f. c(x,M
2
;i:2) if x t: Fk, then u(X)t: Mlk and so 

* 
t.(f)(a) (x)= f(x)(Cl(x)) l!:M

2
k. Similarly if ft:C(X,S ,G) and 

Cl € dan (f) n SC(X,M
1
;G) 1;.hen A (f) (a) t: SC(X,M2;G) : given 

g t: G and x t: X 

* 
~ f (g.x) (c (g.x)) = f (x) (a (g.x)) = g f (x) (a (x)), 

Thus a and b will be verified, as well as the assertion as 

to the range of ti in the statement of the Lemma, as soon as 

we ascertain that t:,(f) is a partial isomorphism. If R is 

a n-ary relation symbol in Land a1, ... an are in dom t.(f) 

then C(X,M
1
) F R(Cl

1
, .. To.n) =Vxt: X M1 R(a1Cx),.,an(x)) 

>l/x( X M
2 

I= R(f(x) (a(x)), •.. ,f(x) (a(x)). Function 

constant symbols may be handled analogously. The vP-rifica- 

tion of !:.· is straightforward For 9.., suppose we are given 

f I!: C(X,Sn) and at:C(x,M
2
,i:
2
). Let u1, ... ,u5 be a partition 

of X such 

1 s j s s, 

that fi 
uj 

there is g.t: S 1 J n- 

g., g. (8.) =0.1 . 
J J J uj 

l s j s s and B : 

0
1 uj " Im 

g I u ... gj 
J 

g ;; f , t:, ( g) 2 t:,( f ) 

and a I 
I U, 

J 
such that g. :, fi J - uj 

Define g: x~ S
0
_1 

are constant. For each 

and 

by 

and we have CL E Im 

and 

such that 

s1· B-. 'Ihen,since 
uj J 

t:,(g). The case in 

which a, C(X,M
1
;i:

1
) is similarly disposed of. Thus ~- is 

verified. For e. we need 

Fact 2; IfatSC(X,M;G) we can find a partition "i: ... ,us 

of X into invariant clopens (i.e. g* u. = u. Yg G) = J J 
that a (uj) s IGI = order of G. 

such 

Proof : On M we have an equivalence relation where rn1 - 
~ ~2 

= 9 be a 
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partition of Im ~ into disjoint equivalence classes, and 

put 

It is easy to verify that u1, ... ,u
5 

satisfy the conclusions 

* of Fact 2. Now given f E SC (X, Sn ; G) and a < SC (X ,M2; G) 

can find a partition v1, ... ,vt of into invariant clopens 

we 

in such a way that f lv. is cous t.an t and a(Vk) s !G I - 
1<. 

obtain such a partltion it is sufficient to consider 

common refinement of tha partition obtained in Fact 2 

that determined by requiring that f be constant on each 

To 

the 

and 

of 

* its members. i'bte that since the action of G on S is trivial) 

the set of points of X where f is constan t is clopen invariant . 

• 
h}: ' We C.3.n find for each lskst , hkE s such that Im 

n-1 

::: a (Vk) Define h : x ... s by h lv = hk. Since 
(n-l)JGJ 

* k 
each vk is invariant, ht: SC(X,Sn-l; GJ and h .:: f. 
Define a : X 

lskst, a(x) 

by the following rule : If 

(a(x). Observe that once it is shown that 

B is in SC(X,M1;G) the proof is finished: it is obvious 

that a €Im * 
!c, (h), 

LJ 
l~kst {x € X 

* 6 (h) (B) a. We have form ~M1 

a(x) = hk(m)} , clearly clopen. Thus 

B t s continuous. On the other hand given x c X, there is 

' ' h I ) I -1 ( , ) . .-,-,-c:, s uc: t.h a t; x" ·.rk. 7h(,n Q(g*x = ,1k u1g*x) 
.-!_,~ *-1 * . ·1,~ .g .l (x)) = g hk (a (x) ""' g r., (x). :tn the above compu t a t i.on s 

~e have used the fact that vk is invariant. This completes 

the prcof of the Lemma. A 

Ona can immediately conclude. 

"*' If' Theorem 1 b I If M1 t~M2, then C(X,M
1
;[
1

) L C(X,M2;[2). 

and 
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• • Theorem 2 b : If Ml ~ • M2 , then SC (X,Ml ;G) ~ SC(X,M2;G ) . 

The proofs come from the fundamental Lemma plus Theorem 

1.13, p.257 of [F) in the case that L i-6 06 6inite type. 

In case L is not of finite type, observe that any sentence 

in L is a sentence in a finite reduct of L. Thus if it is 

true in C(X,M
1
;r

1
) it will be true in C(X,M2;r2: by the 

resul t above. A similar argument may, of course, be applied 

to obcain Xheorern 2b in full generality. We have,,the1te601t.e, 

Tlteo1t.em.6 lb and 2b 0011. a.il la.ngua.ge6 L 06 a.ntj lype. 

we 

have C(X,M
1
;E

1
) = El c C(X,M

2
;E

2
) = E2) cannonically. To sha,,; 

that one is an elementary substructure of the other, we 

will prove. • 

?act J : For any reduct of L of finite type, L', including 

the unary predicate symbols P1, ..• ,Pn' for any t € w and 

Proof: Let (m
1

, •.• ,m
5
} = 

# 
<M1,m1,···,ms> - 

L' (~l' • •. '~S) 

It J 1t '1$" lF L-J Im aJ .• Since M1 <L M2 , we have 
j=l 

# 
denote <M. 

l. 
m
1

, ... ,~
5
>, i=l,2. Observe that in Fraisse's 

result we can assume that the const.:mts belong to the domain 

0f all partial isomorphisms involved in the back and forth 
If-_;:. 

M
2
, m >)) -it~ 

arguments. Obaerve also that if f eC(X,P(<M1, m>, 

~ 
then A (f) (aj) :: aj 1sjst. By the fundamental Lemrna, we 

nay conclude (again using Theorem 1.13 in [F)) 
_::, 

that <E
1

, a > 

_l, = ~ q; , u > ,which proves Fact 3. A 
L' (~) 2 
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» 11 
From Fact J comes iraediately, that if M1 <~1 M2 

then El<L E
2

. And Theorem 1 is proven in its entirety. Argu- 

ments entirely analous to those dcscribed above will 

Theorem 2. 

prove 

Theorems 1 and 2 generalise the corresponding 

statements for bounded boolean powers in [B] (Theorem 6.5(1) 

and (ii)), and even in the cas e of boolean po·wers provide a. 

new proof of the aforementioned result. In closing we would 

like to point out some related questions : 

1) If <B(X), Il, ... ,In>=<B(Y), Ii,···I~> is 

true that C(X,M;Z)= C(Y,M;L') ? 

it 

2) Same as above for structures of stable cont i.nuoua 

functions, that is If B* (X) = B* (Y) 

SC (X,M;G) = SC (Y ,M;G) ? 

is it truc that 

3) Same as 1) and 2) above, for eleirent.ary e:mbedding. 

4) If IM1\EI is an incluctive system of L-structures 

and M m llm M1 is its inductive limit, under what 

cirscunstances Mi<L Mi, implies lim M. = M < lim M'. ? 
l L - l - 

When M is finite, questions l), 2) and J) 

affirmative answers (see[MJ). 

have 
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