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All notation as‘well as definitions of the concepts
mentioned in the title will be as in [M]. In that paper can
also be found bibliographical references sustaining the
usefulness of filtered powers and of structures of stable
continudus functions. The author acknowledges helpful
We

conversations, on the methods used here, with A.M. Sette.

recall definiti8ns briefly.

If X is a topological space and M a set, the symbol
C(X,M) will denote the set of all continuous functions from
X to M, where M is given the discrete topology, Whenever it
appears this symbol will have this meaning and the structures
mentioned in the title, in particular, will have as domaim
subsets of sets of this form. The symbol X indicates a

topological space in all that follows.

If L is a first order language with equality, M
an L-=stru =

cture and I a set, let L <{Fi}icI , [Mi}ieI> be a
pair of families of subsets of X and M respectively, such
that each F1 is closed in X and each Mi is a substructure of

M. The symbol C(X,M,I) denotes the substructure of

*
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{X,M), consisting of all continuous £: X > M such that

for all i€I f(Fi) € M.. C(X,M;L) is called a 4iltered power

i
of M by X.

Let G be a group operating by homeomorphisms on X
and by automorphisms on an L-structure M. That is, we have
group homomorphisms geG *+ g,e Hm (X) and g€ G * q*f AutL(M)-
The symbol SCiX,M;G) denotes the substructure of Cc(X,M)
consisting of all continuous x-—i»M such that for all geG
and all xeX fl(g,x) = g*f(x). SC(X,M;G) is called the
structure of stable continuous functions from X to M under

the action of G.

In the rest of this note it will be assumed that
X 1s toolean (compact, with a basis of clopens) and that G

and I are {4ndite.

If X is a boolean space, B(X) denotes the boolean
algebra of clopens in X . To each filtered power C(X,M; L)
we can associate an expansion of M, <M )Ml""Mn>EEM“ and
by Stone duality, the augmented boolean algebra
<B(X) ; Il,...,In> EB# (X)
where Ik
F. ¢ X (see [M] or [MR] for more details). We denote by L

is the ideal in B(X) determined by the closed set

the expansion of L appropriate to structures of type

<M; Ml,..., Mn> . Thus b* is obtained from L by adding n
new unary relation symbols Pl""'Pn' Similarly, to each

structure of stable continuous functions SC(X,M;G) we can
associate anh expansion of M, M <M, {g*)g cg > and an

expansion B, (X) = <B(X) : (g,!} g > of B(X). Here we make

€ G
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no distinction bertween the homeomorphism g, of X and the

*
I, denotes the expansion

*
M

automorphism induced by g, in B(X).
of L , appropriate for structures of type

In all “hat follows X will be an arbitrary but

fixed boolean space, Fl,.;.,Fn a fixed (but again arbitrary)

family of closed subsets of X and G a finite group. If

¥ * a
My and M, are two expansions of L-structures M, an M,

as described above, then Z{ = <(Fyre--

F My ,...Mjy }> i
nl) My 07

1,2. We wish to present proofs of the following~
Theorem 1. If M < # M¥ (M = M) ) then C(X,My;2y) s
Theorem 2. F e W 2 1A
an elementary L-substructure of C(X,M,iI,) (resp.C(X,MyiLy)
L C(X'M2:£2)°

*
Theorem 2. Same as above, with My and SC(X,Mi;G) 1=1,21in
the place of M; and C(X,M;,E;) respectively.

racterization,

For this purpose we will use the ca

due to Fraisse ([Fr]) of elementary equivalence through the

existence of certain families of partial isomorphisms ("back

and forth" tecniques) . All results we need are in [F],

shose notation will be followed closely. In particular if

JL and M2 P(Ml, Mz) will denote the set of

partial isomorphisms from M, to M, .

are structures,

We have the following

Fundamental Lemma : With notational conventions as above ,

. A
ther2 is a natural injection C(X,P(Ml,Mz))——’P(C(X,Ml) ,

C(X,Mz)) = T such that
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i

: R W-
a. 1£ st = P(M‘i‘ , M,), define A: cix,s™ +T by
i . .
A (f) = A(f)ldom A (£) nC(X,Ml:zl)- Then Im < P(C(X,Ml,il),
C(X,My;L,)) 0
* * * . : oo
b. I£f s = P(Ml 7 MZ)' let G operate on it trivially
*

* *
and define A& :SC(X,S ;G) "> T by A (f) =

& L5 dom A(£) n SC(X,M;;G). Then Im A&, ¢ P(SC(X,M;:G)

*
SC(X,MZ;G)) o,

c. Define, for f,ge C(X,P(ML,MZ)), fcg if for all

xeX , £(x) ¢ g(x) (i.e., dom £(x) < dom g(x) and 90 gem £0300”

f(x)). Then, if £ ¢ g, A(f) c A(g).

d. 1If (Sn) S_— has the back and forth property in

P(Ml’Mz) (as in definition 1.4, p. 252 of [(F]), then

(A (C(X,Sn)))nc » has the same property in T.

e. If (Sn)ne i has the back and forth property in
* * * * *
P(My) , My), let s = Shlg|- Then (& (sC(X,8:G))) , has
the same property in T*.
Proof. Given f£: X +~ P(M;,M,) put dom &(f) ={aeC(X,M;):
¥xeX a(x) ¢ dom £(x)} . Then define for a ¢ dom A(f)

A(E) (@) (x) = £(x) (a(x).

For notational simplicity if x—3+ A is constant
on a clopen u ¢ X we will denote by hiu both the restriction

of h to u and its value on u.

Fact 1 : A(f) (m) 48 a continuous:choose, given o ¢ com A(f))

a partition Upieeeritg of X such that both flu. and
3
a|u are congtant. Then for me Mz,[A(f)(a)]-l(m) =

|§{uj : fluj (u|uj) =m }, which is clopen in X.
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It is straightforward to verify that 4 is injective.
Notice now that if f(x) €S for all x ¢ X and(3¢C(x,Ml;zl),
then (f) (a) cc(x,Mz;zz) : Af xeFy, then a(x)e M) and so

*
A(E) (@) (x) = £(x)(a(x)) eM,, . similarly if feC(X,S ,G) and
a € dom  (£) nSC(X,M;;G) then A(f) (@) ¢ SC(X,M,;G) given

geG and xeX

*
. £(g.x) (a(g,x)) = £(x) (a(gx)) = g £0x) alx)).

Thus a and b will be verified , as well as the assertion as

to the range of A in the statement of the Lemma, as soon as

we ascertain that A(f) is a partial isomorphism. IfR 18

a n-ary relation symbol in L and aj,...a, are in dom 8 (£)
then C(X,Ml) E R(ql,,_,an)<===n-ch X My R(al(x),..an(x))

and

Cc===>Yx e X M. |= R(F(x) (a (%)),...rE(x) (o (x)). Function

2 |

constant symbols may be handled analogously. The verifica-

tion of c. is straightforward For d., suppose we are given

artition
f e C(x,Sn ) and aec(x,Mz,Zz). Let ul,...,us be a p

of X such that f| ~ andal, = are constant. For each

J
. Pa d
1sj ss, there is gj€ sn_1 such that gj 3 fluj an

= i : X S such that
Ny, &I gy g4(Be) =af, . Define g +S 1
glu_ e gj lsjss and B : X = Ml by BI uj = Gj' Then, since

3
9 2 £, A(g) 3 Af) and we have ae Im 4(9). The case in

which o € C(X,M Zl) is similarly disposed of. Thus d. is

1
verified. For e. we need

Fact 2 : IfaeSC(X,M;G) we can find a partition Upr--epu

s
of X into invariant clopens (i.e. g, uj = uj ¥g G) such
that a(uj) s [6| = order of G.

Proof : On M we have an equivalence relation where mo TRy

*
iff my =g my for some g€ G. Let [ml],...,[mS] be a



- L -

partition of Im a into disjoint equivalence classes, and
put

uy = {(xeX : a(x)e [ij} ¢ 1gjss.

It is easy to verify that Upresenlg satisfy the conclusions
*x
of Fact 2. Now given f ¢ SC(X,8_ ; G) and «a eSC(X,MZ:G) we

can find a partition VireeesV of into invariant clopens

£

in such a way that f|  is constant and a(vy)s e To
“k
obtain such a partition it is sufficient to consider the

common refinement of the partition obtained in Fact 2 and
that determined by requiring that f be constant on each of

*
its members.Note that since the action of G on S is trhual}

the set of points of X where f is constant is clopen invariant.

*
We can find for each 1l<k<t , hye S ., such that Im hg

(7. ) £ . - i

2 a(v,) . Define h : X ~» S(n-lﬂGl by hIVk hk' Since
*

each V, 1is invariant, he SC{X,s_ _,i G) and h o f.

Define a : X -+ Ml by the following rule : If XeV
l<kst , a(x) = h;l (a{x). Observe that once it is shown that
B is in SC(X.MI:G) the proof is finished : it is obvious

x *
that a eIm A (h), & (h){B) = a. We have for m cM;

87 ) = L«Si

, {ieX t a{x}) = h, (m)} , clearly clopen. Thus
l<kst k

k9 5]

is continuous. On the other hand given x ¢ X, there is

3 . ) ~1 -
Lsikst , such that x¢« Voo Then g(g,x) = hk (a{g,x)) =
L S | * )

7 af{x)) =g h " {a(x) = g g(x). In the above computations
we have usad the fact that Vk is invariant. This completes

the prcof of the Lemma. A

Ona can immediately conclude.

w L

Theorem 1 b 1 If M1 E“MZ , then C(X,Ml;Zl) C(X,MZ:ZZ).

[l

and



Theorem 2 b : If MI i, M; , then SC(X,M;:G) SC(X,My:G ).
The proofs come from the fundamental Lemma plus Theorem
1.13, p.257 of (F] in the case that L i8 04 f4inste type.
In case L is not of finite type, observe that any sentence
in L is a sentence in a finite reduct of L. Thus 1€ diE is
true in C(X,M;;Z;) it will be true in C(X,M,;L, by the
result above. A similar argument may, Of course, be applied
to obcain Theorem 2b ;n full generality. We have,therefone,

Theonems 1b and 2b fon alf Languages L of any Lype.

In th hat M. < # T § My < * M) we

n e case that i ¢ 2 or ¥y “1, 2

hav 3 M = ; = 1lly. To show
ave C(X,Ml, l) El < C(X,MZ,Zz) EZ) cannPnica Yy

that one is an elementary substructure of the other, we

will prove.

fact 3 : For any reduct of L of finite type, L', including

the unary predicate symbols Pj,.../Ps for any t € w and

for any la at} c El' <El,a1,...,at>

Lree B R o s}

<E iy

27 ﬂl,...,ﬂt
t it w

Proof: Let (m,,...,m_} = L_J Im o,. Since M; <¥*M, , we have

e L s ]=1 J p I 4 2

. #* _ N f# —

»Ml,ml,...,m > = <M2 i ml,...,ms-.Let <Mi, m >

i (ml, oo e ,I_Y_\S)
it - ~
denote <M, , ml,...,ms>, i=1,2. Observe that in Fraisse's

i
result we can assume that the constants belong to the domain
of all partial isomorphisms involved in the back and forth
arguments. Observe also that if f cC(X,P(<M;,—$>' M§f7#>))
then Am(f)(aj) = aj 1<j<t. By the fundamental Lemma, we

may conclude (again using Theorem 1.13 in (FJ) that <E, T

| 1T

-
7? *Ez, a > which proves Fact 3. A

()
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i
bis
From Fact 3 comes imediately, that if Ml \L” My

then E1<L Ez. And Theorem 1 is proven in its entirety. Argu-
ments entirely analous to those described above will prove

Theorem 2.

Theorems 1 and 2 generalise the corresponding
statements for bounded boolean powers in [B] (Theorem 6.5(i)
and (ii)), and even in the case of boolean powers provide a

new proof of the aforementioned result. In closing we would

like to point out some related questions :

1) If <B(X), I,...,I >=<B(Y), I;,...I1)> is it

true that C(X,M;IZ)=C(Y,M;L') 2
2) Same as above for structures of stable continuous

functions, that is If B, (X) = B,(Y) is it true that
SC(X,M;G)=sC(Y,M;G) ?
3) Same as 1) and 2) above, for elementary embedding.
1
4) If {MiJiEI

and M = 1im M is its inductive limit, under what

— 4

ci ste < : 3 = < lim M! ?
rscunstances Mi L Mi’ implies lim Mi M e i |

is an inductive system of L-structures

—

When M is finite, questions 1), 2) and 3) have

affirmative answers (see(M]).



[(B]

[F]

[Mr]

[M]

5. Burris, "Boolean Powers", Algebra Universalis 55

1975, 341-360.

"

J. Flum, "First Order Logic and its Extensions ", Proc.
of the Intern. Summer [nstitute and Logic Colloquium ,
G. H. Muller, A. Obershelp, K. potthoff (eds.), Kiel,

1974, Springer Lect. Notes 499 , 249-310.

R.Fraisse, "Sur Quelques Classifications des Systems

de Relations", Publ. Sci. Univ. Alger Ser. A, 5,35-182.

A. Macintyre and J. Rosenstein, " N, -Categoricity for
Rings without Nilpotent Elements and for Boolean
°

Structures" Journal of Algebra, 43, 1976, 129-154.

F. Miraglia, "Relations between Structures of Stable
Continuous Functions and Filtered powers", Proceedings
of the Third Brazilian Conference on Mathematical Logic,
A.I. Arruda, A.M. Sette, N.C.A. da Costa, (eds.) Socie

dade Bras. de Ldgica, 1980, 225-244

Universidade de Sao Paulo
Departamento de Matematica

cC.P. 20,570 - Sao Paulo



