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Abstract

The 2-Decomposition Conjecture, equivalent to the 3-Decomposition Conjecture stated in 2011 by Hoffmann-Ostenhof, claims
that every connected graph G with vertices of degree 2 and 3, and satisfying that G — E(C) is disconnected for every cycle C,
admits a decomposition into a spanning tree and a matching. In this work we show that the 2-Decomposition Conjecture holds for
graphs whose vertices of degree 3 induce a collection of cacti in which each vertex belongs to a cycle.
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1. Introduction

The terminology used in this is work is standard and we refer the reader to [4] for missing definitions. All graphs
considered in this work are finite and have no loops (but may contain parallel edges). As usual, we say that a graph is
cubic (resp. subcubic) if all its vertices have degree 3 (resp. at most three).

A Homeomorphically Irreducible Spanning Tree (HIST) is a spanning tree without vertices of degree 2. The prob-
lem of deciding whether a graph contains a HIST [3] is NP-complete, even for subcubic graphs [7]. This topic has
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been studied by many researchers [3, 5, 6, 8, 18], and it is related to the topic addressed in this paper, as we shall
explain. Let G be a cubic graph, T be a spanning tree of G, and G’ = G — E(T). Each component of G’ is either a
path or a cycle, so every cubic graph can be decomposed into a spanning tree, a collection of cycles, and a collection
of paths. Moreover, T is a HIST if and only if G’ is a collection of cycles. Thus the problem of deciding whether a
cubic graph G contains a HIST is equivalent to the problem of deciding whether G can be decomposed into a span-
ning tree and a collection of cycles. Not all cubic graphs can be decomposed into a spanning tree and a collection
of cycles; necessary conditions for the existence of such decomposition have been shown by Hoffmann-Ostenhof,
Noguchi, and Ozeki [12]. However, a related but more relaxed decomposition of cubic graphs has been conjectured
by Hoffmann-Ostenhof [9].

Conjecture 1.1 (Hoffmann-Ostenhof, 2011 [9]). Every connected cubic graph can be decomposed into a spanning
tree, a collection of cycles, and a matching (possibly empty).

Conjecture 1.1 is known as the 3-Decomposition Conjecture. Clearly, if a cubic graph G contains a HIST, then
Conjecture 1.1 holds for G. This conjecture has attracted the attention of many researchers, and although the general
problem remains open, its claim has been proven for some subclasses of graphs. Liu and Li [15] verified it for cubic
traceable graphs. Ozeki and Ye [16] verified it for 3-connected planar cubic graphs and 3-connected cubic graphs
on the projective plane. Later, Hoffmann-Ostenhof, Kaiser and Ozeki [11] extended the result of Ozeki and Ye by
verifying Conjecture 1.1 for all planar cubic graphs. Recently Xie, Zhou and Zhou [17] verified Conjecture 1.1 for
cubic graphs containing a 2-factor of three cycles and, independently, Hong, Liu and Yu [13] and Aboomabhigir,
Ahanjideh and Akbari [1] verified the conjecture for claw-free cubic graphs.

In addition, some weaker forms of Conjecture 1.1 have been verified. Akbari, Jensen, and Siggers [2] proved that
every cubic graph can be decomposed into a spanning forest, a collection of cycles, and a matching. Li and Cui [14]
showed that every cubic graph can be decomposed into a spanning tree, one cycle, and a collection of paths with
length at most 2.

A cycle C in a connected graph G is separating if G — E(C) is disconnected. Let G be the class of connected graphs
in which every cycle is separating and each vertex has degree 2 or 3. It is known that Conjecture 1.1 is equivalent to
the following conjecture, known as the 2-Decomposition Conjecture (see [11, Proposition 14]).

Conjecture 1.2 (Hoffmann-Ostenhof, 2016 [10]). Every graph in G can be decomposed into a spanning tree and a
matching.

Conjecture 1.2 is fairly new. At the best of our knowledge, the only work addressing directly Conjecture 1.2 is the
one conducted by Hoffmann-Ostenhof, Kaiser and Ozeki [11], where the authors verify Conjecture 1.2 for the planar
case.

Throughout this paper, given a graph G, we denote by V;(G) the set of vertices of G with degree k. We recall that
a graph is a cactus if it is connected and every edge is contained in at most one cycle. We say that a cactus G is thick
if every vertex in G belongs to a cycle. In this work, we verify Conjecture 1.2 for the graphs G € G whose subgraph
induced by V3(G) is a collection of thick cacti.

Theorem 1.3. Every graph G € G for which G — V,(G) is a collection of thick cacti can be decomposed into a
spanning tree and a matching.

We observe that Theorem 1.3 is not implied by any of the results regarding Conjecture 1.1. For every subclass S of
cubic graphs where Conjecture 1.1 is known to hold, namely cubic traceable graphs, planar cubic graphs, 3-connected
cubic graphs on the projective plane, cubic graphs containing a 2-factor of three cycles and, claw-free cubic graphs,
one may obtain a cubic graph G ¢ S from a graph in G satisfying the hypothesis of Theorem 1.3 such that the
3-Decomposition Conjecture holds for G.

2. Proof of Theorem 1.3

Let H c G be the set of all simple graphs H in which V,(H) is a stable set and every vertex in V3(H) has precisely
one neighbor in V,(H). Thus, H — V,(H) is 2-regular, as we state in the next remark.
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Remark 2.1. If H is a graph in H, then each component of H — V,(H) is a cycle.

Let H be a graph in H. We refer to the cycles in H — V,(H) as the basic cycles of H. Note that the vertices of basic
cycles of H define a partition of V3(H). Let u € V,(H), and note that the neighbors x and y of u belong to basic cycles,
say C and C’, of H. If C = C’, then we say that the path P = xuy is a 2-chord of C. In this case, x and y are called
the ends of P and u the inner vertex. If C # C’, then we say that u is a connector. In this case, we say that u joins C
and C’. Moreover, we say that two connectors are parallel if they join the same pair of basic cycles; and a collection
of connectors C of H is called simple if it contains no pair of parallel connectors.

We define the basic cycles graph (BC-graph, for short) of H € 9H, which we denote by H, as the graph whose
vertices are the basic cycles of G and in which two vertices C, C’ are adjacent whenever the graph G has a connector
joining C and C’. Note that H is connected because H is connected. Also, note that this definition ignores parallel
connectors in the sense that a pair of parallel connectors yields only one edge in H. Given a collection C of connectors
of H, we define the underlying BC-graph of C, denoted by H¢, as the spanning subgraph of H in which two vertices
C and C’ are adjacent whenever there is a connector in C joining C and C”’.

We refer to a decomposition of a graph G into a spanning forest ' and a matching M as a 2-decomposition of G
and we denote it by the ordered pair (F, M). Note that if a graph G € G admits a 2-decomposition (F, M), then
Conjecture 1.2 holds for G since we can complete F' to a tree using edges of M. Given a 2-decomposition D = (F, M)
of a graph G € G, we say that a vertex u € V(G) is a full vertex in D if every edge of G incident to the vertex u belongs
to F.

The main result of this paper (Theorem 1.3) is a consequence of the following result.

Proposition 2.2. Let C be a simple collection of connectors of a graph H € H. If He is a forest, then H admits a
2-decomposition D = (F, M) such that each u € C either is a full vertex in D or is adjacent to a full vertex in D.

Before we present the proof of Proposition 2.2, we show how it implies Theorem 1.3.

Proof of Theorem 1.3. The proof follows by induction on |E(G)|. Let G € G so that G — V,(G) is a collection of thick
cacti. The statement clearly holds for |E(G)| < 3, so we may assume that |E(G)| > 4.

First, suppose that G is not a simple graph. Then G contains loops or parallel edges. If there is a loop, then it is
a cycle that is not separating, which is a contradiction. If there are three copies of an edge, then the cycle containing
any two of these copies is not a separating cycle, again a contradiction. Thus, we may assume that G has precisely
two copies, say e and ¢’, of an edge xy. If d(x) = d(y) = 2, then ({e}, {€’}) is a decomposition as desired. If d(x) = 2
and d(y) = 3, then y has degree 1 in G — V,(G), and hence G — V,(G) is not a collection of thick cacti, a contradiction.
Thus, by symmetry, we may assume that d(x) = d(y) = 3. Let u (resp. v) be the neighbor of x (resp. y) distinct from
y (resp. x). Since e and ¢’ form a cycle, say C, the graph G — E(C) is disconnected (and thus, u # v). Note that
G' = G—-x—-yUuvisagraph in G and G’ — V,(G) is a collection of thick cacti. Since |E(G’)| < |E(G)|, by the
induction hypothesis G’ admits a decomposition into a spanning tree 7’ and a matching M’. We may assume that
uv € E(T’) because uv is a cut edge of G’. Therefore (T’ — uv) U {ux, e, yv}, M’ U {¢’}) is a 2-decomposition of G, as
desired. Therefore, from now on, we assume that G is a simple graph.

In what follows, we obtain a graph in H and a simple collection of connectors satisfying the hypothesis of the
Proposition 2.2. Let H be the graph obtained from G by the following operations.

(1) replacing every path P; = ux(x; - - - xv for which k > 1, u,v € V3(G), and x; € V»2(G) for 1 <i <k,
by a path uw;v, where w; is a new vertex (if k = 1 we just rename x;); and
(2) subdividing once every edge of G — V»(G) that does not belong to a cycle of G — V»(G).

Let C be the set of vertices added due to the subdivisions in the step (2). It is straightforward that H € H.
Furthermore, since G—V,(G) is a collection of thick cacti, C is a simple collection of connectors of H whose underlying
BC-graph H¢ is a forest. By Proposition 2.2, the graph H admits a 2-decomposition D = (F, M) such that, for every
u € C, the vertex u is a full vertex in D or it is adjacent to a full vertex in D.

Now, from (F, M) we obtain a 2-decomposition (F*, M*) of G. Let xy be an edge in M. If dy(x) = dy(y) = 3, then
we put xy in M*. Thus, we may assume, that dy(x) = 2. If x was added in (1), then, without loss of generality, there
isapath P; = ux;xp---xxy (with k > 1, u,y € V3(G), x; € Vo(G) for 1 < i < k) that was replaced by the path uwy,
where w; = x. In this case, we put xiy in M*. If x was added in (2), then x € C. Since x is not a full vertex in D, the
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vertex x must be adjacent to a full vertex in D, say z, and so we put yz in M*. Since M is a transversal of the cycles
of H, i.e., M contains an edge in each cycle of H, by construction M" is also a transversal of the cycles of G, which
implies that F* = G — E(M") is a forest.

Finally, to obtain a decomposition of G into a spanning tree and a matching from (F*, M*), one may find a minimal
subset S € M* such that F* U § is connected. O

For our next result, we define the following convenient notation to refer to the successor of a vertex in a cycle.
Given a cycle C = wywy---w,w; and a vertex w; € V(C), for every i € {1,...,p}, we define w[ = w;,, where
Wp+1 = wi. Now we prove Proposition 2.2 by proving the following stronger statement.

Proposition 2.3. Let C be a simple collection of connectors of a graph H € H. If He is a forest, then H admits a
2-decomposition D = (F, M) such that the following holds.

1. IM N E(C)| = 1 for every basic cycle C of H; and
2. each u € C is either a full vertex in D or is adjacent to a full vertex in D.

Proof. Let C and H € H be as in the statement. The proof follows by induction on n = |V(H)|. Since H € H,
it follows that V,(H) is a stable set and every vertex in V3(H) has exactly one neighbor in V,(H). Thus, we have
[V3(H)| = 2|Vo(H)|. If [Vo(H)| = 1, then |V3(H)| = 2, and hence H has parallel edges, a contradiction. Therefore, we
may assume |V,(H)| > 2, which implies |V3(H)| > 4. By Remark 2.1, H — V,(H) is a collection of (basic) cycles. First,
suppose that H has exactly one basic cycle, say C. In this case, H has no connectors which implies that C = 0 and that
every vertex in C is the end of a 2-chord. Let x| and x, be two adjacent vertices in C which are the ends of two distinct
2-chords in H. Let x;y;z; and x,y,z» be the 2-chords containing x; and x,, respectively. For each y € Vo(H) — {y1, y2},
let ey, be an arbitrary edge incident to y, and let

M = {xix2,y121, 222} U eyt y € Vo(H) = {y, 2} and F = G - M.

Note that (F, M) is a 2-decomposition of H as desired. Therefore, we may assume that H has at least two basic cycles.

In what follows, we say that a basic cycle C is of type I if no 2-chord has both ends in C; otherwise, we say C is of
type 2. The following claim on basic cycles of type 1 arises naturally. Owing to space limitation, we leave its proof to
the reader.

Claim 2.4. If C is a basic cycle of type 1 in H, then C is a cut vertex of H.

Since H is connected and He C H is a forest, there is a spanning tree T of H such that Az C T. By Claim 2.4,
the leaves of T are basic cycles of type 2. Now, let C* be the collection of connectors so that He- = T. Since
He C T = Hg., we may assume C C C*. In what follows we prove that H admits a 2-decomposition D = (F, M) such
that (a) [M N E(C)| = 1 for every basic cycle C of H; and (b) each u € C* is either a full vertex in D or is adjacent to a
full vertex in D. Note that, since C C C*, (b) implies (ii), and hence the result follows.

Let Vo(H) = {yy1,...,y¢} and, for each y; € V,(H), let x; and z; be the neighbors of y;. Note that V(H) is the disjoint
union of the sets {x;,y;, z;} fori € {1,...,¢}. Let C be a leaf of T = A, and put

I'=Ay; € Vo(H): l{xi, 2 N V(CO)| = 1} and  J = {y; € Vo(H): [{xi, z:} 0 V(O] = 2}.

We may assume, without loss of generality, that x; € V(C) and z; ¢ V(C) for every y; € I. Note that I # @, otherwise
either T is disconnected or T has only one vertex, namely C, which implies that H has only one basic cycle, a
contradiction. Thus, we may assume, without loss of generality, that y; € C* and x; € V(C). Let C = uju, ... uruy,
where u; = x;. Now, we split the proof into two cases depending on whether the vertex x; is adjacent to a vertex with
a neighbor that belongs to J.

Case 1. x; is adjacent to a vertex with a neighbor that belongs to J (see Fig. 1a)).

Suppose, without loss of generality, that u, = x, and y, € J. In what follows, we obtain a graph H’ € H such that
[V(H")| < |[V(H)|. Let H’ be the graph obtained from H — V(C) — J by subdividing, for every y; € I, the edge ziz;r,
obtaining the vertex z;, and adding the edge y;z; (see Fig. 1b)). Note that V,(H") = Vo(H) - J.

Let B # C be a basic cycle of H. Note that if BC ¢ E(H), then B is a (basic) cycle in H’. On the other hand, if
BC € E(H), then B is not a cycle in H but a subdivision B’ of B is a (basic) cycle in H'. Let ¢(B) = B, if BC ¢ E(H),
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Fig. 1: Reduction from a graph H 1a) to the graph H’ 1b) in Case 1. In 1b), we use gray to indicate the elements from
H that we removed to create H'.

and ¢(B) = B’, otherwise. Now we show that ¢ is an isomorphism between H — C and H’. It is not hard to see by the
construction of H’ that ¢ is a bijective function. Now, if XY € E(H — C), then there is a connector, say y, joining the
basic cycles X and Y in H. The only connectors affected by the construction of H’ are those that contain an end in C,
and since X # C and Y # C, it follows that y is a connector joining ¢(X) to ¢(Y) in H’. Thus ¢(X)@(Y) € E(H"). Now,
suppose that ¢(X)@(X) € E(H’). By the construction of H’, no connector is created. This implies that the connector
vertices of H' is a subset of the connector vertices of H. Thus, if ¢(X)¢(Y) € E(H’), then there exist a connector
vertex, say y, joining the basic cycle ¢(X) and ¢(Y). Since y is also a connector in H, X # C, and Y # C, it follows
that XY € E(H — C). Therefore, H — C and H’ are isomorphic.

Let W = V(H)-(IUJUV(C)), and note that V(H) = WUIUJUV(C). Moreover, note that V(H’) = WUIU{z;: y; € I}.
Since J # 0, it follows that |[V(H’)| < |V(H)|. Now we show that H" € H. First, since C is a leaf of the spanning tree T
of H, the graph T — C is connected, and since H’ is isomorphic to A — C, we have T — C is a spanning tree of H’, and
hence H’ is connected. Also, by construction, H’ is simple, each vertex in V3(H’) has exactly one neighbor in V,(H’),
and V,(H’) is a stable set. It remains to prove that every cycle in H’ is a separating cycle. First, note that every basic
cycle C” adjacent to C in H yields a basic cycle of type 2 in H’. Moreover, note that a cycle containing a vertex with
degree 2 or a basic cycle of type 2 is a separating cycle. Thus, we can focus on the basic cycles of type 1 in H’. Let
C’ be one of such cycles. By Claim 2.4 the cycle C” is a cut vertex of H. By the construction of H’, the graph H — C
is isomorphic to A’. Thus, C’ is a cut vertex of H’, which implies that C’ is a separating cycle of H’. Therefore, we
conclude that H" € H.

By induction hypothesis, the graph H’ has a 2-decomposition (F’, M") satisfying (1) and (2) with respect to the
simple collection of connectors C* — {y;}. We now describe in four steps how to obtain the desired 2-decomposition
(F, M) of H from (F’, M’) (see Fig. 2):

(a) We put x;x; in M and all the edges of C — x;x; in F. We put y,x; in F, y,z; in M and, for each y; € J —{y,}, we
put edges x;y;, ¥;z; in distinct sets of {M, F'}.

(b) We put edges x;y; and y;z; in F. In addition, for each y; € I — {y;}, we put the edge x;y; in M and the edge y;z;
in F.

(c) We put each edge

e € E(G) - (E(C) U lyixi,yizi: yi € TUJYUlziz] < yi € TY)

in F if e € F’. Otherwise, we put e in M.
(d) Finally, for each y; € 1, we put the edge z;z7 € E(G) in M if zz7 € M’. Otherwise, we put z;z] in F.
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Fig. 2: Reduction from a graph H 2a) to the graph H’ 2b) in Case 1. In both figures, for a 2-decomposition (F, M),
the edges in F (resp. M) are colored black (resp. red). In 2b), we use gray to indicate the elements from H that we
removed to create H’.

We first note that in the steps (a)-(d), each edge of E(H) has been put either in M or F: in steps (a) and (b) the
edges of the set E(C) U {y;z;, yix;: yi € I U J} are covered, in step (d) the edges of the set {z;z : y; € I} are covered and
all the remaining edges are covered in step (c). We make the following useful claim.

Claim 2.5. Edge z;z; € F' forall y; € L.

Proof. Let B be the basic cycle of H’ that contains z;z;. If z;z; belongs to M’, then due to (1) all the edges in E(B)—{z;z;}
belong to F’. Hence, the cycle {z;y;, yiz;} U (E(B) — {zz/}) belongs to F’, a contradiction. O

It is straightforward from the assignments in the steps (a)-(d) that F is a forest and M is a matching (for the edges
that were subdivided, item (1) with respect to M’ and Claim 2.5 ensure that M is a matching and that F has no cycles).
We now check that items (1) and (2) hold for (F, M). Due to step (a), we have that |[M N E(C)| = 1 and due to steps (c)-
(d), we have that |[M N E(C")| = 1 for every other basic cycle C’ of H with C’ # C. Hence, (1) holds. Due to step (b),
we have that y; is a full vertex in (F, M). Let y € C* — {y;}. Since C is aleaf of T = He-, it follows that y ¢ 1. Thus,
if y is full in (F’, M’), then due to the step (c), it is also full in (F, M). So, suppose that y is not full in (F’, M) and
hence, it has a neighbor x which is a full vertex in (F”, M"). Let C’ be the basic cycle of H that contains x. If x # z;“ for
each y; € I — {y;}, then due to step (c), we have that x is a full vertex in (F, M) as well. Suppose that x = z for some
i € I —{y1}. Since x is a full vertex in (F’, M"), we have that xy, xz; and xx’ belong to F’, where x’ is the neighbor of
x distinct of z/ in the basic cycle C”. Due to step (c), xy and xx’ belong to F, and due to step (d) the edge z;z; belongs
to F (since z/x € F’). Therefore item (2) holds. This finishes the proof of Case 1.

Case 2. x| is not adjacent to a vertex with a neighbor in J.

In this case, both neighbors of x; in C, namely u, and u;, are adjacent to a vertex in I. Let C; be the basic cycle
that contains z; and let £ be the smallest i € {1,.. ., k} for which u;,, is an end of a 2-chord. We may assume, without
loss of generality, that u; = x; and ug,; = x3. Let C, be the basic cycle that contains z; (possibly C; = C3).

In what follows, analogously to Case 1, we obtain a graph H’ € H such that |V(H’)| < |V(H)|. Let H" be the
graph obtained from H — V(C) — J by (i) identifying the vertices y; and y, into a new vertex y, and (ii) for every
yi € I —{y1,2}, subdividing the edge z;z, obtaining the vertex z/, and adding the edge y;z; (see Fig. 3). Now, note that
Va(H') = {} U (Va(H) = (J U {y1,72))). )

Let B # C be a basic cycle of H. Note that if BC ¢ E(H), then B is a (basic) cycle in H’. On the other hand, if
BC e E(FI), then B is not a cycle in H’, but one subdivision B’ of B is. Let ¢(B) = B, if BC ¢ E(H), and ¢o(B)=F,
otherwise. Now we show that, if C; = C», then ¢ is an isomorphism between A’ and H — C; otherwise, we show that ¢
is an isomorphism between A’ and (H - C) U C,C; (here, we only add the edge C,C, to H — C if this action results in
a simple graph). By the construction of H’, it is not hard to check that ¢ is a bijective function. If XY € E(H — C), then
there is a connector, say y’, joining the basic cycles X and Y in H. The only connectors affected by the construction of
H’ are those that contain an end in C and, since X # C and Y # C, it follows that y" is a connector joining ¢(X) to ¢(Y)
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Fig. 3: Reduction from a graph H 3a) to the graph H’ 3b) in Case 2. In 3b), we use gray to indicate the elements from
H that we removed to create H’.

in H'. If C; # C», then, by the construction of H’, the vertex y is a connector in H’ joining the basic cycles ¢(C) and
©(C>) and, as result, o(C)@(C,) € E(H’). Now, suppose that ¢(X)@(Y) € E(H’), and hence there exists a connector y’
in H' joining ¢(X) and ¢(Y). By the construction of H’, the vertex y is the only connector that we can create, so the
set connector vertices of H’ distinct from y is a subset of the connector vertices of H. If |{X, Y} N {C}, C,}| < 2, then
y" # v, and hence y’ is a connector in H joining X and Y, and hence XY € E(H — C). Now, |{X,Y} N {C;,C}| = 2,
then, by construction, XY € (H — C) U C,C,. Therefore, @ is an isomorphism between H and H - C,if C; = Cy, or
between A’ and (H — C) U C,;C,, otherwise.

Let W = V(H)— ({1 U JUV(C)), and hence V(H) = WU I U J U V(C). Moreover, note that V(H") = WU (I —
.2 ULzl yi € 1= {y1,y2}} U {y}. It follows that |V(H")| < |[V(H)|. Now we claim that H" € H. First, since C
is a leaf of a spanning tree T of H, and either H — C or (H — C) U CC, is isomorphic to H’, it follows that T — C
is a spanning tree of H’, and hence H’ is connected. Also, by construction, H’ is simple, each vertex in V3(H") has
exactly one neighbor in V,(H’), and V,(H’) is a stable set. It remains to prove that every cycle in H’ is a separating
cycle. Again, if a cycle C’ C H’ contains a vertex in V,(H’) or has a 2-chord, then C’ is a separating cycle. Thus, we
can assume that V(C’) C V3(H’) and that C’ has no 2-chords. By the construction of H’, C’ must be a basic cycle of
type 1 in H, and so by Claim 2.4, C’ is a cut vertex of H. Now we show that C’ is a cut vertex in H’. Let H, be the
component in H-C containing the vertex C. Note that, if C; € H -’ forie{l1,2}, then C; belongs to H;. Since H
is isomorphic either to H — C or to (H — C) U C;C,, to show that C’ is a cut vertex in A’ it is sufficient to show that C’
has neighbor in V(H; — C) in the graph H’. If C'C ¢ E(H), then clearly C’ has neighbor in V(H; — C). Thus, we may
assume that C’C € E(H). Now, note that C’ € {C, C,} and C; # C,, otherwise, by the construction of H’, the cycle
C’ would be a basic cycle of type 2. Suppose, without loss of generality, that C’ = C;. Therefore, by the construction
of H’, the edge C'C, € E(H’). Hence C’ has a neighbor in V(H; — C) in the graph H’, which implies that C” is a cut
vertex in H’ and, consequently, that C’ is a separation cycle in H’.

By induction hypothesis, the graph H’ admits a 2-decomposition (F’, M) satisfying (1) and (2) with respect to the
simple collection of connectors C* — {y;}. In what follows, we obtain from (F’, M”) a 2-decomposition (F, M) of G as
desired (see Fig. 4).

(a) We put xpx3 in M and all the edges of C — x,x3 in F. We put y3x3 in F, y3z3 in M and, for each y; € J —{y3}, we
put edges x;y;, ¥;z; in distinct elements of {M, F}.

(b) We put edges x;y; and x,y; in F. In addition, for each y; € I — {y;, y»}, we put the edge x;y; in M and the edge
YViZi in F.

(c) We put each edge

e € E(G) - (E(C)U{zizj : yi € I = {y1,y2}} U {yizi, yixi: yi € TU J})
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Fig. 4: Reduction from a graph H 4a) to the graph H’ 4b) in Case 2. In both figures, for a 2-decomposition (F, M),
the edges in F (resp. M) are colored black (resp. red). In 4b), we use gray to indicate the elements from H that we
removed to create H'.

in F if e € F’. Otherwise, we put e in M.
(d) Foreachy; € I —{y,y2}, we put edge z;z] in M if z;z; € M’. Otherwise, we put z;z in F.
(e) Finally, for each y; € {y1,y,}, we put y;z; in F if yz; € F’. Otherwise, we put y;z; in M.

We now show that (F, M) is the 2-decomposition of H desired. It is straightforward that each edge of E(H) is either
in F or M. Analogously to Case 1, the following claim arises (the same proof applies).

Claim 2.6. Edge z;z; € I’ for all y; € I — {y1, y2).

From the assignments in the steps (a)-(e), since item (1) holds for H’, and by Claim 2.6, it is clear that M is a
matching. We now check that F is a forest. Due to the assignments in the steps (a)-(d), it is clear that F is a forest in
the graph G — {y121, y22»}. The assignments in the step (e) ensure that edges y;z;, y»z» are assigned to ' or M without
creating cycles in F: both y;z;, y>z are put in F if yz;, yz, are in F’, and one of them y,z;, or y,7, is in M whenever
its copy in H’, namely yz; or yzp, is in M’. Note that item (1) holds due to the assignments in the steps (a) and (c), and
that item (2) follows from the assignments in the steps (a)-(c) and Claim 2.6. This finishes the proof of Case 2, and
concludes the proof of Proposition 2.3. O

3. Concluding Remarks

In this paper we verified Conjecture 1.2 for subcubic graphs in G whose subgraph induced by vertices of degree 3,
G[V3], is a collection of cacti in which every vertex belongs to a cycle. This is a preliminary result that might lead to
more general ones, as now we can investigate further cases related to cacti, as they seem to be powerful structures to
tackle this conjecture.
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