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1. Introduction

Ordinary and partial differential equations play a key role in modelling for all sciences:
engineering, physics, chemistry, biology, medicine, economics and many others. The right
understanding of the behaviour of solutions (in particular, well-posedness versus blow-
up) means not only to predict the future of trajectories but also to establish strategies for
control (i.e., optimisation). Concerning PDE and economics, it is interesting to cite the nice
survey [1] and the references therein on many different problems dealing with effects such
as aggregation and repulsion, optimal control, mean-field games and so on as applications.

Parabolic PDE models reflect the diffusion phenomena due to local touching of
molecules and dissipation of energy, and when different internal and external factors
come into play, they link naturally to some reaction-diffusion models, such as the growth
versus capacity of the environment in biology or the endogenous growth versus the neo-
classical theories in economics. In particular, capital accumulation distribution in space
and time following spatial extensions of the continuous Ramsey model [2] by Brito [3-5]
and others later use the semilinear parabolic PDE

o — aAu = f(u) —c.

This spatiality introduces important issues about the steady states distribution and the
dynamic evolution, convergence, local interaction among local agents and so on.

Not for the sake of generality but for real modelling purposes, in the last two decades
the increment of nonlocal PDE models that attempt to capture in a more accurate way the
real spreading of the problem (density of population, capital accumulation, consumption
or prices and innovation indexes and so on) has been very important. Firstly we might
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comment about extensions by using some nonlocal operators acting in the right-hand
side of the PDE and/or the boundary conditions as integral operators, leading to integro-
differential equations. Among others, we can cite [6] for a system coupling capital and the
pollution stock model; a population dynamic model in [7]

ot — aAu = u(f(u) — zx/RN g(x —y)u(y,t)dy);

the elliptic (stationary) counterpart in population/physics models of the Fischer-KPP [8];
and a logistic model [9]. Secondly, we wish to point out that the nonlocal extensions have
also been performed on the diffusion operators as well. The literature about fractional
Laplacian is vast nowadays. However, let us concentrate in an intermediate step. Coming
originally from modelling of bacterial populations in biology, the introduction of a non-
local viscosity in front of the Laplacian has become an interesting problem for different
applications and for its mathematical study, as for example occurs in the equation

ue—a( [ g()ult,y)ay)su = £(1).

In this way, the spreading (or aggregating/concentrating) effects are given by the increasing

(resp. non-increasing) function a as a viscosity nonlocal coefficient. One should cite Prof.

Chipot and his collaborators [10-16] among others for a detailed analysis, including

existence, uniqueness, steady states and convergence of evolutionary solutions to equilibria.
When the reaction term f depends on the unknown u

up —a(Pq(u(t))Au = f(t,u) 1)

(here the functional & may represent a general nonlocal functional acting over the whole
domain (), for instance, ||u(t)||%,, or [ &(y)u(t,y)dy), equilibria are difficult to analyse.

Oppositely to ordinary differentlal equatlons the analysis of the existence of stationary
states for the above problem is much more involved. Additionally, comparing the reaction-
diffusion equations with local diffusion, another difficulty is that in general a Lyapunov
functional is not known to exist in most cases.

The dynamical analysis of problem (1) and in particular the existence of global at-
tractors has been established till now in several papers (cf. [17-21]). Other differential
operators such as the p-Laplacian coupled with nonlocal viscosity has also been considered
(cf. [21-23]). However, in general little is known about the internal structure of the attractor,
which is very important as it gives us a deep insight into the long-term dynamics of the
problem. When we manage to obtain a Lyapunov functional some insights can be obtained.

If we consider the non-local equation

X a2 2% = Af(w) @

with Dirichlet boundary conditions, then it is possible to define a suitable Lypaunov func-
tional. In [18] it is shown that regular and strong solutions generate (possibly) multivalued
semiflows having a global attractor which is described by the unstable set of the stationary
points. Although this is already a good piece of information, our goal is to describe the
structure of the attractor as accurately as possible. For this aim we need to study the
particular situation where the domain is one-dimensional and the function f is of the type
of the standard Chafee-Infante problem, for which the dynamics inside the attractor has
been completely understood [24].

The first step when studying the structure of the attractor consists of analysing the
stationary points. In the case where the function f is odd and Equation (2) generates a
continuous semigroup, the existence of fixed points of the type given in the Chafee-Infante
problem was established in [25]. Moreover, if a is non-decreasing, then they coincide
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with the ones in the Chafee-Infante problem, and moreover, in [26] the stability and
hyperbolicity of the fixed points was studied. In this paper we extend these results for a
more general function f (not necessarily odd and for which we do not known whether the
Cauchy problem has a unique solution or not), showing that Equation (2) undergoes the
same cascade of bifurcations as the Chafee-Infante equation. Moreover, when we allow the
function a to decrease, though the problem possesses at least the same fixed point as in the
Chafee-Infante problem, we show that more equilibria can appear. For a non-decreasing
function 4 and an odd function f we prove also that even when uniqueness fails, the
stability of the fixed points is the same as for the corresponding ones in the Chafee-Infante
problem. Finally, we are able to prove that in this last case we have a dynamically gradient
semiflow with respect to the disjoint family of isolated weakly invariant sets generated
by the equilibria, which is ordered by the number of zeros of the fixed points. More
precisely, the attractor consists of the set of equilibria and their heteroclinic connections
and a connection from a fixed point to another is allowed only if the number of zeros of the
first one is greater.

In Section 3 we study the existence of strong solutions of the Cauchy problem in the
space H}. In Section 4 we prove that strong solutions generate a multivalued semiflow
in H} having a global attractor which is equal to the unstable set of the stationary points.
In Section 5 we study the existence and properties of equilibria. In Section 6 we analyse the
stability of the fixed points and establish that the semiflow is dynamically gradient.

2. Setting of the Problem

Let us consider the following problem:

2
W 2 ZE = Af) 4 (), t>0xeQ,
ot Hj’ 9x 3)
u(t,0) = u(t,1) ~ 0,

u(0,x) = up(x),

where Q) = (0,1) and A > 0. Throughout the paper we will use the following conditions
(but not all of them at the same time):

(A1)  feC(R).

(A2)  f(0)=0.
(A3)  f'(0) exists and f'(0) = 1.
(A4)  fisstrictly concave if # > 0 and strictly convex if u < 0.
(A5)  Growth and dissipation conditions: for p > 2, C; > 0, i =1,..,4, we have
[f(w)] < C1+ColulP™t, )
fuw)u < C3— Cyful?,if p > 2, @)
lim sup M <0,if p=2. (6)
u—too U

(A6) The function a € C(R™) satisfies:
a(s) >m > 0.
(A7)  The function a € C(R™") satisfies:
a(s) < M;, Vs>0,

where M > 0.
(A8)  The functiona € C(R™) is non-decreasing.
(A9)  he L2 (0,+00;L2(Q2)).

(A10) h does not depend on time and h € L?(Q).
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We define the function F (1) = [ f(s)ds. We observe that from (4) we have
|F(s)| <C(1+s|]P) VseR, @)
whereas (5) implies
F(s) <& —lsP. ®)

Additionally, from condition (6) it follows that for all € > 0, there exists a constant M > 0
such that @ < ¢, for all |u| > M. Hence, there exists m, > 0 such that

flu)yu < me+eu?, VucR. )

In addition, it follows that
F(u) < eu® +C, (10)

where C; > 0. These two inequaities are also true under condition (5).

The main aim of this paper consists of describing in as much detail as possible
the internal structure of the global attractor in a similar way as for the classical Chafee-
Infante equation.

Some of these conditions will be used all the time, whereas other ones will be used
only in certain results. In particular, the function / will be considered as a time-dependent
function satisfying (A9) only for establishing the existence of solution for problem (3).
However, since we will study the asymptotic behaviour of solutions in the autonomous
situation, for the second part concerning the existence and properties of global attractors,
the function k will be time-independent, so assumption (A10) will be used instead. Finally,
in order to study the structure of the global attractors in terms of the stationary points and
their possible heteroclinic connections, we will assume that & = 0.

Throughout the paper, ||-||x will denote the norm in the Banach space X.

3. Existence of Solutions

In this section we will establish the existence of strong solutions for problem (3) with
an initial condition in the phase space H}(Q2). Although we will follow along the same
lines as a similar result given in [18], we would like to point out that in the present case,
as we are working in a one-dimensional problem, the assumptions for the function f are
much weaker. In particular, we do not need to impose a growth assumption of any kind.

Definition 1. For uy € L*(Q), a weak solution to (3) is an element u € L*(0,T;L>(Q)) N
L?(0,T; H3(Q)), for any T > 0, such that

%(u,v) + ﬂ(\lulléa)(Vu,Vv) = A(f(u),0) + (h(t),0) Vo € Hy(QQ), (11)

where the equation is understood in the sense of distributions.

42
Asusual, let A : D(A) — H, D(A) = H?(Q) N H}(Q), be the operator A = —o2

with Dirichlet boundary conditions. This operator is the generator of a Cy-semigroup

T(t) = e AL

Definition 2. Forug € H}(Q), a strong solution to (3) is a weak solution with the extra regularity

u € L®(0,T; H}(Q)), u € L2(0, T; D(A)) and ‘ZT’: € L2(0,T; L?(Q)) forany T > 0.

Remark 1. We observe that if u is a strong solution, then u € C([0, T]; H} (Q)) (see [27] p.102).
This way, the initial condition makes sense.
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.od o . .
Remark 2. Since d—? € L?(0,T; L*(QY)) for any strong solution, in this case equality (11) is
equivalent to the following one:

T d , az
/0 /Q ufittx)g(t’x)dxm_/o (”“()H ) Qafxl;é‘dxdt (12)

:/()T/Q}\f(u(t,x))(;"(t,x)dxdt—l—/0 /Qh(t,x)é'(t,x)dxdt,

forall & € L*(0, T; L?(QY)).

Theorem 1. Assume conditions (A1), (A6) and (A9). Assume also the existence of constants
B,y > 0such that
Ff(u)u < v+ Bu? forall u € R. (13)

Then, for any ug € HE(QY), problem (3) has at least one strong solution.

Remark 3. Assumption (13) is weaker than the dissipative property (9) as the constant € is
arbitrarily small. Due to the fact that we are working in a one-dimensional domain, no growth
condition of the type given in (A5) is necessary in order to prove existence of solutions. Additionally,
(13) implies that

F(u) <5+ pu? (14)

for some constants 7, B > .

Proof. Consider a fixed value T > 0. In order to use the Faedo—-Galerkin method, let
{w;};>1 be the sequence of eigenfunctions of —A in Hj () with homogeneous Dirichlet
boundary conditions, which forms a special basis of L?(Q}). Since Q) is a bounded regular
domain, it is known that {w;} C Hj(Q) and that U,cnV;, is dense in the spaces L2(Q))
and Hé (Q), where V,, = span[wy, ..., wy]. As usual, P, will be the orthogonal projection in
L%(Q), that is,

n
zn = Puz =) _(z,w))wj,
=1

and A; will be the eigenvalues associated with the eigenfunctions w;. For each integer
n> 1 we consider the Galerkin approximations

=3 (0w
j=1

which are given by the following nonlinear ODE system:

d )
{ dt(un,wl) —|—a(||un|] )(Vun,Vwi) = A(f(un),w;) + (h,w;)) Vi=1,...,n, (15)
Mn(O) = Pnu().

We observe that P,ug — 1 in H}(Q). This Cauchy problem possesses a solution on some
interval [0, t,) and by the estimates in the space L?(Q) of the sequence {u,} given below
for any T > 0, such a solution can be extended to the whole interval [0, T].

Firstly, multiplying the equation in (15) by 7,;(t) and summing from i = 1 to n,
we obtain

%Hun(t)llﬁz+a(llun||2Ha)Hun( Dllfn = AU (un(8),un(t)) + (n(t),un(t))  forae.t € (0,t4). (16)

N —
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By using the Young and Poincaré inequalities we deduce that

(1(8), (1) < G Oy + 5 O

where m is the constant from (A6). Hence, from (A6), (13) and (16) it follows that

Zdtll w2+ 5 Hun(f)llf{é < AYIO]+ A Jun (B2 + 57— (D)2

We infer that

t 1
a1 < o @[22 + [ @0 (20910 + 51 () I ) s
< [lun (0) 72627 + Ky (T).
Therefore, the solution exists on any given interval [0, T] and

{uy,} is bounded in L*(0, T; L*(Q2)).

Now, we multiply Equation (3) by ddL: to obtain

duy, duy,

[ ),

1d d
O+ a(lual2)5 3 By = 5 [ AF (wad+ (o),

Introducing
S
A(s) :/ a(r)dr
J0

we have

1 duy, o d[1 ) 1 )
et el et _ < Z
SISO+ 5 (AU ~ [ AFdx) < J1bo)1%

Integrating the previous expression between 0 and t we get
fA(Hun +A/ (un(0 dx—|—2/ |+ 12, ds
< A(||un +A/ (it (£))dx + = / 1(s) | 2.ds.
By (A6), (14) and (17) it follows that

m 2 1t d 2
Sl 2 + A [ Flun(@)dx+ 5 [ n(s) Fads
<

Allun(0)130) + ABlln($)lI72 + AFIO| + Ka(T)

NI~ N~

< 5 Al (0)[15) + AP || (0) 172 + Ka(T).

(17)

(18)

(19)

(20)

(21)

Since dim(Q)) = 1, H}(Q) C L*(Q), so u,(0) is bounded in L®(Q)). Thus, as f maps
bounded sets of R into bounded ones, F (u,(0)) is bounded in L* () as well. Therefore,

we deduce that
{uy,} is bounded in L®(0, T; H} (Q?))
and

dst” is bounded in L2(0, T; L>(Q)).

(22)



Mathematics 2021, 9, 353

7 of 36

By using again the embedding H}(Q) C L®(Q) we obtain that u, is bounded in the space
L*(0,T; L*(Q2)). Thus,

f(uy) is bounded in L*(0, T; L*(Q))). (23)
Additionally, we deduce that ||u,(t) ”?}1 is uniformly bounded in [0, T|, and then by the
0

continuity of the function a(-) we get that the sequence a (||un (1) H?{é) is also uniformly

bounded in [0, T].
Finally, multiplying (15) by A;y,;(t) and summing from i = 1 to n we obtain

1d

o el w22 < AP Gn), —Bitn) + (1(), ).
By (23) and applying the Young inequality, we get

1d

A2 m 1 m
2 2 2 2 2 2
L 2y Al < ) 22+ 2 B+ () e+ 2 sl

Integrating the previous expression between 0 and ¢, it follows that

2 t
Jatn(6) 2 -+ m / 30 (5) s < len (0) 2 + 22 / £ en() s+ [ 1n(s)]Fads
Taking into account (23), the last inequality implies that
uy is bounded in L2(0, T; D(A)), (24)

so {—Auy} and {a(||un|\i[1)Aun} are bounded in L?(0, T; L?(Q))).
0
As a consequence, there exist u € L®(0, T; H}(Q)) and a subsequence u,, (relabelled
the same) such that
Uy — uin L*(0, T; H3 (Q)),
up, — uin L2(0, T; D(A)),
flun) = xin L®(0, T; L*(QQ)),
a(|lunllF) = bin L=(0,T),
0

(25)

where — (=) stands for the weak (weak star) convergence. By (22) and (24) the Aubin—
Lions compactness lemma gives that u, — uin L2(0, T; H}(Q)), so u,(t) — u(t) in H (Q)
a.e. on (0, T). Consequently, there exists a subsequence u,, relabelled the same, such that
un(t,x) — u(t,x)a.e.inQ x (0, T).

Moreover, thanks to the inequality

2

th d
in(t2) — un(tr)||72 = H/ pin(s)ds
y, dt 12

d
S ”ﬁunH%Z(O,T;LZ(Q)) |t2 - t1| thrtz S [0/ T]/

(21), (22) and H}(Q) CC L?(Q), the Ascoli-Arzela theorem implies that {u, } converges
strongly in C([0, T]; L>(Q)) for all T > 0. Therefore, we obtain from (21) that u,(t) —
u(t) in H}(Q), for any t > 0.

Additionally, by (25) we have that P, f (1,)) — x in L7(0, T; L7(Q}) ) for any q > 1 (see
[28] p.224). Since f is continuous, it follows that f(u,(t,x)) — f(u(t,x)) a.e. in Q x (0, T).
Therefore, in view of (25), by ([29] Lemma 1.3) we have that x = f(u).

As a consequence, by the continuity of 2 we get that

a(fun(®)lly) = allu(®)Fy) ae on(0,T).
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Since the sequence is uniformly bounded, by Lebesgue’s theorem this convergence takes
placein L2(0,T),so b = a(||u||%{1). Thus,
0

a2 ) A1tn = ([l 3y) 8, in 130, T513(Q0).

Therefore, we can pass to the limit to conclude that u is a strong solution.

It remains to show that #(0) = 1y which makes sense since u € C([0, T]; H}(Q))) (see
Remark 4). Indeed, let be ¢ € C1([0, T]; H}(Q2)) with ¢(T) = 0, ¢(0) # 0. We multiply the
equation in (3) and (15) by ¢ and integrate by parts in the ¢ variable to obtain that

[ (= 0,90 = all(0) By (Ao, 6 ) 26
= [ Af0) + 10, 60t + (w(0),6(0))

[ (00,4 0)) — alun () 3 (0, 96 ) @)
= [ o (0) + 100, 90 + (10 0),00)),

In view of the previous convergences, we can pass to the limit in (27). Taking into
account (26) and bearing in mind u,(0) = P,ug — uo, since ¢(0) € HL(Q) is arbitrary, we
infer that u(0) = up. O

4. The Existence and Structure of Attractors

In this section, we will prove the existence of a global attractor for the semiflow
generated by strong solutions in the autonomous case. Thus, the function h will be an
independent of time function satisfying (A10) instead of (A9). Additionally, we will
establish that the attractor is equal to the unstable set of the stationary points (see the
definition in (45)).

Throughout this section, for a metric space X with metric d we will denote by
distx(C, D) the Hausdorff semidistance from C to D, that is,

distx(C,D) = sup inlgp(c,d).

ceC de
Let us consider the phase space X = H}(Q) and the sets
K(up) = {u(-) : uis a strong solution of (3) such that u(0) = 1},

R = UuoexK(uo).

Denote by P(X) the class of nonempty subsets of X. We define the (possibly multivalued)
map G : Rt x X — P(X) by

G(t,up) = {u(t) : u € Rand u(0) = up}. (28)

In order to study the map G let us consider the following axiomatic properties of the
set R:

(K1) For every x € X thereis ¢ € R satisfying ¢(0) = x.
(K2) ¢ () == ¢(- +7) € R forevery T > 0 and ¢ € R (translation property).
(K3) Let ¢1,¢2 € R be such that ¢,(0) = ¢;(s) for some s > 0. Then, the function ¢
defined by
[t 0<t<s,
o0 ={ 5% 2t
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belongs to R (concatenation property).
(K4) For every sequence {¢"} C R satisfying ¢"(0) — xp in X, there is a subsequence
{¢" } and ¢ € R such that ¢"x(t) — ¢(t) for every t > 0.

Assuming conditions (A1), (A6), (A10) and (13), property (K1) follows from Theorem
1, whereas (K2) and (K3) can be proved easily using equality (12). By ([30] Proposition
2) or ([31] Lemma 9) we know that R fulfilling (K1) and (K2) gives rise to a multivalued
semiflow G through (28) (m-semiflow for short), which means that:

G(0,x) =xforallx € X;
e  G(t+s,x) C G(tG(s,x)) forallt,s > 0and x € X.

Moreover, (K3) implies that the m-semiflow is strict, thatis, G(t +s,x) = G(t, G(s, x))
forallt,s > 0and x € X.

We will show first that the m-semiflow G possesses a bounded absorbing set in the
space L?(Q) and that property (K4) is satisfied.

Lemma 1. Assume conditions (A1), (A6), (A10) and (13). Given {u"} C R, u™(0) — ug weakly
in H}(QY), there exists a subsequence of {u"} (relabelled the same) and u € K(ug) such that

u(t) — u(t) in Hy(Q), Vt > 0.

Additionally, if u™ (0) — ug strongly in H}(Q), then for t,, — 0 we get u" (t,) — ug strongly in
H}(Q).

n
Proof. Since d;t € L?(0, T; L*(Q2)) and u" € L%(0, T; H}(Q))), we have by ([27] p. 102) that
d n2 n on
a”u ”Hé =2(—Au",uy) fora.a.t (29)

and u" € C([0,T]; H{(Q2)). Additionally, as f(u") € L*(0, T; L*(Q)), by regularization
one can show that (F(u"(t)),1) is an absolutely continuous function on [0, T] and

d " " du”

E(F(u (t),1) = (f(u (t))’ﬂ) fora.a. t > 0. (30)

By a similar argument as in Theorem 1, there is a subsequence of u” such that

u" is bounded in L= (0, T; L*(Q))),

u" is bounded in L*(0, T; H} (Q)),
f(u") is bounded in L*(0, T; L*(Q})),

u" is bounded in L2(0, T; D(A)).

(31)
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Therefore, arguing as in the proof of Theorem 1, there exist u € K(ug) and a subse-
quence u", relabelled the same, such that

u™ = in L°(0, T; HY (Q))
uy — uin L?(0, T; D(A))
F@") = f(u) in L¥(0, T; L®(Q))
du” N du

. 2 .72
g in 20, T;LA(Q)) (32)

a(Ilu"Hﬁ&)Au” - ﬂ(IIuHﬁé)Au in L2(0, T; L*(Q)),
u" — uin L2(0, T; H(QY)),
u" — uin C([0,T], L2(Q)),
u(t) — u(t) in HY(Q) vt € (0,T).

We also need to prove that u" (t) — u(t) in H}(Q) for all t € (0, T]. To that end, we
multiply (3) by u}, and using (A10), (29) and (31) we have

1

du > d (1 b
- —(Z <
2‘ 2+dt<2A(||u (t)||H(1))) <C.

R

Thus, we obtain

A(lu"®)lIF) < A" (5)1F) +2C(t=5), t>5>0.

2,

Since this inequality is also true for u(-), the functions Qy(t) = A(||u”(t)\|§_ll) — 2Ct,
0
Q(t) = A(||u(t) H?p) — 2Ct are continuous and non-increasing in [0, T]. Moreover, from (32)
0

we deduce that
Qu(t) = Q(t) forae. te(0,T).

Take0 <t < T and 0 < t; < t such that t; — t and Qx(t;) — Q(¢;) for all j. Then

Qu(t) = Q1) < Qu(tj) — Q) < [Qu(t) — QE)I +[Q(t) — Q)]

For any & > 0 there exist j(6) and N(j(d)) such that Q,(t) — Q(t) < éif n > N. Then

limsup Q,(t) < Q(t), so limsup ||u" () ||i,1 < ||u(t) ||%{1, which follows by contradiction
0 0

using the continuity of the function A(s). As u"(t) — u(t) weakly in H}(Q2) implies that

liminf [[u” (£)||, > u(t)||%,, we obtain
0 0

" ()12 = lu(t) 2,

so that u" (t) — u(t) strongly in H}(Q).
Finally, if u"(0) — ug strongly in H}(Q2) and we take t, — 0, then

Qu(tn) —Q(0) < Qu(0) —Q(0) = A(||u"(0)\|i15) - A(IIUoIIi%) =0,

so limsup Qu(t,) < Q(0). Repeating the above argument, we infer that u"(t,) — u
strongly in H}(Q). O

Corollary 1. Assume the conditions of Lemma 1. Then the set R satisfies condition (K4).
The map t — G(t, x) is said to be upper semicontinuous if for every x € X and for an

arbitrary neighbourhood O(G(t, x)) in X there is 6 > 0 such that as soon as d(y, x) < 6, we
have G(t,y) C O.
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Proposition 1. Assume the conditions of Lemma 1. The multivalued semiflow G is upper semicon-
tinuous for all t > 0. Additionally, it has compact values.

Proof. By contradiction let us assume that there exist t > 0, ug € Hé (Q)), a neighbourhood
O(G(t,ug)) and sequences {y, }, {ug} such that y, € G(t,ufj), uj converges strongly to
up in H}(Q) and y, ¢ O(G(t, uy)) for all n € N. Thus, there exists u" € K(ul}) such that
yn = u"(t). From Lemma 1 there exists a subsequence of y, which converges to some
y € G(t,up). This contradicts y, ¢ O(G(t,up)) foranyn € N. O

In order to prove the existence of an absorbing set in the space L?(Q)) we need to use
the stronger condition (A5) instead of (13).

Proposition 2. Assume that conditions (A1), (A5), (A6) and (A10) hold. Then the m-semiflow
G has a bounded absorbing set in L?(Q)); that is, there exists a constant K > 0 such that for any
R > 0 there is a time ty = to(R) such that

lylll2 <K forall t>ty, ye G(tu), (33)

where ||ug||;2 < R. Moreover, there is L > 0 such that
t
/ ||u(s )H 1ds <L forall t>ty, ue K(up). (34)
t

Proof. By multiplying Equation (3) by u and using (A6) and (9), we get

1d
5 2O, + mll(e) |2, < (F0),u)+ (0) 35)
1 Aqm
2 2 1
< mel O +ellu(t) 72 + oIl + == u ul[72.
By using the Poincaré inequality it follows that
d 2 m
Flullfz < 2meQf +2(e = SA) [u(D) 12 + — HhIILz = —0llu()]fz +x,

where § = mAy — 2¢, Kk = 2mg|Q)| + A [[1]|%,. We take a small enough € > 0 so that § > 0.
Then Gronwall’s lemma gives

Iz < lu(0)|F2e " + 5. (36)

1. (6R?
t>t)==In
"o <K>
we get (33) for K = 1/%".
On the other hand, using again the Poincaré inequality from (35) we get

mA
SO+ ("M ) )y <

and integrating from ¢ to t 4+ 1 we obtain

m)Ll —2¢ t+1 2
("5 [ I Bgds < B+

Therefore, applying (33) and (34) follows. O

Hence, taking
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Further, in order to obtain an absorbing set in H} (Q2) we need to assume additionally
that either the function a(-) is bounded above or that it is non-decreasing.

Proposition 3. Assume the conditions in Proposition 2 and that either (A7) or (A8) holds true.
Then there exists an absorbing set By for G, which is compact in H}(Q).

Proof. In view of Proposition 2 we have an absorbing set By in L2(Q)). Let K > 0 be such
that ||y|| < K for all y € By.
Through multiplying (3) by u and using (9) and (36) we get

d 1
SO+ a(l0) By ) (DI, < 2000+ 2600 3 + 1
< Ky + Ko[[u(0) 1%,
Thus, integrating between t and t +r, 0 < r < 1, we deduce by using (36) again that

e+ )2+ [ ()2 ) ) 2y s
S&+Kﬂwﬂm+H(NUSKﬁwﬂm+K4

(37)

Additionally, if p > 2 in (A5), we multiply again by (3) by u and use (5) and (A6) to obtain

1d

m
3 g0 B+ 5 (6 + Calla(®) I < Ca 57—l

Integrating over (¢,t + r) we have
5 t+r p 5 5
Ju(t+7)72 +2C4/t [[u(s)[|Lpds < Ks + [lu(t)[|72 < Ko + [[u(0) |72 (38)
If we assume (A7), by (37) and (A6) we have that

t+r ’ t+r ) ’
| AR ds < [ Milu(s)2ds < K0+ [O)R). (39)

If we assume (A8), by (37) we obtain

t+r t+r pllu(s)|?
/ A(|lu(s) ds = / / " g r)drds
t

+
</ (W)HNMHQ%SQW@%+M-(M

On the other hand, by (7) we get

—/QF(u(t))dx > —6/0(1+ lu(£)|P)dx. 41)

By using (29) and (30) we can argue as in Theorem 1 to obtain

d : 1
gl + 5 (GAUOR, — [ AF s ) < 31013

Since (38)—(41) imply that

t+r /1
/ (2 (@) = [ AF(u(s dx)ds<1<8+1<9| u(0)[12,
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we can apply the uniform Gronwall lemma to get

Ks + Ko|[1(0)]|?
3 9l ()”Lz—i—Kloz forallt >0,

1 2
SA(lu(t+7)3) - /Q AF(u(t+r))dx <
so by condition (A6), (10) and (36) it follows that

lu(t + D3 < Ki + Kz [[u(0)[17,

12,
forall t > 0. In particular,

||u(1)\|f{5 < K1 + Kz [[u(0) |72,

for any strong solution u(-) with initial condition u(0).
For any ug € H}(Q) with H“OHHé < Rand any u € R such that u(0) = u, the semi-

flow property G(t +1,up) C G(1,G(t,up)) and G(t,ug) C By, if t > to(R), imply that

|\§5 < C(1+K?) Vt > ty(R).

llu(t+1)
Then there exists M > 0 such that the closed ball By in H} (Q) centred at 0 with radius M
is absorbing for G.

By Lemma 1 the set By = G(1, By) is an absorbing set which is compact in H} (Q0). O

Given an m-semiflow G, a set B C X is said to be negatively (positively) invariant if
B C G(t,B) (G(t,B) C B) for all t > 0, and strictly invariant (or, simply, invariant) if it is
both negatively and positively invariant.

We recall that a set A C X is called a global attractor for the m-semiflow G if it
is negatively invariant and attracts all bounded subsets; i.e., distx(G(t,B), A) — 0 as
t — 4-o00. When A is compact, it is the minimal closed attracting set ([32] Remark 5).

Theorem 2. Assume the conditions of Proposition 3. Then the multivalued semiflow G possesses a
global compact invariant attractor A.

Proof. From Propositions 1 and 3 we deduce that the multivalued semiflow G is upper
semicontinuous with closed values and the existence of an absorbing which is compact in
H}(QY). Therefore, by ([32] Theorem 4 and Remark 8) the existence of the global invariant
attractor and its compactness in H} (Q2) follow. [

We recall some concepts which are necessary to study the structure of the global at-
tractor.

Definition 3. Amap ¢ : R — Xis a complete trajectory of R if ¢(- +5) |j0,c0)€ R forall s € R.
It is a complete trajectory of G if p(t +s) € G(t,¢(s)) for everys € R, t > 0.
An element z € X is a fixed point of R if ¢(-) = z € R. We denote the set of all fixed points
An element z € X is a fixed point of G if z € G(t,z) for every t > 0.

Several properties concerning fixed points, complete trajectories and global attractors
are summarised in the following results [33].

Lemma 2. Let (K1)-(K2) hold. Then each fixed point (complete trajectory) of R is also a fixed point
(complete trajectory) of G.

Let (K1)-(K4) hold. Then the fixed points of R and G are the same. In addition, a map
¢ : R — X is a complete trajectory of R if and only if it is continuous and a complete trajectory
of G.
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The standard well-known result in the single-valued case for describing the attractor
as the union of bounded complete trajectories reads in the multivalued case as follows.

Theorem 3. Suppose that (K1) and (K2) are satisfied and that either (K3) or (K4) holds true.
The semiflow G is assumed to have a compact global attractor A. Then

A={7(0): 7 € K} = Uer{r(t) : v €K}, (42)

where K stands for the set of all bounded complete trajectories in R.

In view of Theorem 3, as ‘R satisfies (K3) and (K4) (by Corollary 1), the global attractor
is characterised in terms of bounded complete trajectories, so (42) follows.

The set B is said to be weakly invariant if for any x € B there exists a complete
trajectory 7y of R contained in B such that v(0) = x. Characterisation (42) implies that the
attractor A is weakly invariant.

The set of fixed points iy, is characterised as follows.

Lemma 3. Assume the conditions of Lemma 1. Let R be the set of z € H*(Q) N H} (Q) such that

WHmMZ—M() in L*(Q). (43)
Then Rp, = K.

Proof. If z € Ry, then u(t) = z € R. Thus, u(-) satisfies (12) and % =0in L2(0, T; L?(Q)),
s0 (43) is satisfied. Let z € . Then the map u(t) = z satisfies (43) for any t > 0 and d” =0
in L2(0, T; L2(QY)), so (12) holds true. [

Finally, we shall obtain the characterisation of the global attractor in terms of the
unstable and stable sets of the stationary points.

Theorem 4. Assume the conditions of Proposition 3. Then it holds that
A=M"(R) =M (R),

where
MT(R) ={z:I(:) €K, v(0) = z, dist H(l)('y(t),%) — 0, t = +oo}, (44)

M~ (R) ={z:3y(-) €F, ¥(0) =z, dist H] (y(t),R) =0, t > —oco}, (45)
and IF denotes the set of all complete trajectories of R (see Definition 3).

Remark 4. In (45) it is equivalent to use K instead of IF because all the solutions are bounded
forward in time.

Proof. We consider the functionE : A — R
EW) = ARy ~ A [ Fo)dx = [ hyods, (46)

Note that E(y) is continuous in H}(Q). Indeed, the maps y %A(||y||12ql) and y —
0

Jah x)dx are obviously continuous in H} (Q2). On the other hand, by the embedding
Hl(Q) C L°°( ) and using Lebesgue’s theorem, the continuity of y — [, F(y(x))dx
follows.
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By using (29)—(30) and multiplying Equation (3) by du for any u € R, we can obtain
the following energy equality:

/II |2,dr + E(u(t)) = E(u(s)) forallt >s > 0.

Hence, E(u(t)) is non-increasing, and by (A6), (10) and the boundedness of A, it is bounded
from below. Thus E(u(t)) — I, and t — +oo, for some ! € R.

Letz € Aand u € Kbe such that #(0) = z. By contradiction, suppose the existence
of ¢ > 0 and u(t,), where t, — oo, for which distHé (u(ty), M) > e. Since A is compact in

H}(€)), we can take a converging subsequence (relabelled the same) such that u(t,) — y
in H}(Q)), where t, — co. By the continuity of the function E, it follows that E(y) = I. We
will obtain a contradiction by proving that y € fR. Define v,,(-) = u(- +t,). By Lemma 1,
there exist v € R and a subsequence satisfying v(0) = y and v,,(t) — v(t) in H}(Q) for
t > 0. Thus, from E(v,(t)) — E(v(t)) we infer that E(v(t)) = I. Additionally, v(-) satisfies
the energy equality, so that

i [ ol = E(o(e) + [ lorladr = E(o(0)) = E(y) =L

Therefore, %(s) = 0 for a.a. s, and then by Lemma 3 we have y € Rz = R. Asa

consequence, A C M1 (R). The converse inclusion follows from (42).

As before, take arbitrary z € A and u € K satisfying u(0) = z. Since by the embedding
H}(Q) € C([0,1]) the energy function is bounded from above in A, E(u(t)) — I, as t —
—oo, for some | € R. Suppose that there are ¢ > 0 and u(t,), where t, — 400, such that
distHé (u(—ty), M) > e. Up to a subsequence we have that u(—t,) — y in H{(Q), E(y) = L.
Moreover, for v, (-) = u(- — t,) there are v € R and a subsequence such that v(0) = y and
va(t) — o(t) in H}(Q) for t > 0. Therefore, E(v,(t)) — E(v(t)) gives E(v(t)) = I and
then by the above arguments we get a contradiction because y € . Hence, A C M~ (R)
and we deduce the converse inclusion from (42). [

Finally, we are able to obtain that the global attractor is compact in the space C! ([0, 1]).
This property will be important in order to study a more precise structure of the global
attractor in terms of the stationary points and their heteroclinic connections

We define the function w(t) = u(a~1(t)), where a(t) = [ a(||u(s)||?,)ds, which

is under the conditions of Proposition 3 (see [18] for more detalls) a strong solutlon to
the problem
2
dw 0w _ fW) th 0,000 x 0,
ot ox a(||w]|Hé)
w=0 on(0,00) x 30,
w(0,x) = up(x) in QL

(47)

Let V" = D(A"), r > 0. We will prove first that the attractor is compact in any space
V2 with 0 < r < 1. For this aim we will need the concept of mild solution. We consider
the auxiliary problem

k)
{ It + Av(t) = g(t), t >0, 48)
0(0) = uy,

where ¢ € L7 (0,+00;L?(Q))). The function u € C([0,+o0), L?(Q2)) is called a mild
solution to problem (48) if

o(t) =e” uo+/ s)ds, vt > 0. (49)
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In the same way as in Lemma 2 in [34] we obtain that a strong solution to problem (47) is a
mild solution to problem (48) with g(t) = (f(w(t)) + h)/a(||w(t) Hill ).
0

Lemma 4. Assume the conditions of Proposition 3. Then the global attractor A is compact in V"
forevery0 <r < 1.

Proof. Letz € A be arbitrary. Since A is invariant, there exist 119 € A and u € R such that
z=u(l) and u(t) € Aforallt > 0. Since w(t) = u(a~"1(t)) is a mild solution of (48) with
g(t) = (f(w(t)) +h)/a(]|w(t) ”%13 ), the variation of constants formula (49) gives

a(1)
z = w(a(1)) = e AWy + / e~ AW =5) o(5)ds.
0

As A is bounded in H}(Q) (and then in L®((})), condition (A6) and the continuity of f
imply that
uollr2 < C, 118l L= (0mr)iz2y) < C

IN

where C > 0 does not depend on z. The standard estimate ||e_AtH£(L2(Q) D(Ar)
Myt~ "e= ™, M,,a > 0 ([27] Theorem 37.5), implies that

Wy,
r,—A(x(1)—s)
LA 50s)

e
S Mrefak(l)a(l)—rc_’_MrC/Oa (0((1) —S)_rds,

|Az]|;2 < HAre_A"‘(l)uo

ds
12

so A is bounded in V% for every 0 < r < 1.
From the compact embedding V* C VB, fora > B, and the fact that A is closed in any
V2 we obtain the result. [

Corollary 2. Assume the conditions of Proposition 3. Then the global attractor A is compact in
Cl(lo, 1]).

Proof. We obtain by Lemma 37.8 in [27] the continuous embedding

V”cc%muﬁh>2.

Hence, the statement follows from Lemma 4. O

5. Fixed Points

In this section we are interested in studying the fixed points of problem (3) when
h = 0, that is, the solutions of the boundary-value problem

d2
{ a2 Th = afw), 0 <x <1, .
u(0) =u(l) =0.

For this aim we will use the properties of the fixed points of the standard Chafee-Infante
equation. In order to do that, for any d > 0 we will study the )—(Aollowing boundary-
value problem.

2
{ —a(d)% =Af(u), 0<x<1, (51)
u(0) =u(1) =0,

as it is obvious that u(-) is solution to problem (50) if and only if u(-) is a solution to
problem (51) with d = ||u]|il1
0
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5.1. Dependence on the Parameters of the Fixed Points for the Chafee-Infante Equation
Denoting A = a(d) problem (51) becomes
Pu ~
u(0) =u(l) =0.

Assuming conditions (A1)~(A5), it is known [35] that if n? 7% < A< (n+ 1)27'[2, then this
problem has exactly 21 + 1 solutions, denoted by vy = 0, vf, . v,f. The function vf has
k + 1 simple zeros in [0, 1].

We need to study the dependence of the norm of these fixed points on the parameter A.
First, we will show that the H!-norm of the fixed points of problem (52) is strictly increasing
with respect to the parameter A.

Lemma 5. Assume conditions (A1)—(A5). Let v; = v;rAl, vy = v;’Az with kK2m? < A < Ajp.
Then [[or[| gy < o2 -

Proof. We consider the equivalent norm in H}(Q) given by ||0/||,2. The fixed points are
the solutions of the initial value problem

2y~
T Af() =0, 53
u(0) =0, u'(0) = vy

such that #(1) = 0. The solutions of (53) satisfy the relation

(M'(Zx))2 FAF(u(x)) = AE, 0<x <1, (54)

for some constant E > 0. Denote u; = v;l. By Theorem 7 in [35] we have that uj is

A
associated with a unique value E = E,:r (7\) > 0. Moreover, Ek+ (A) is a solution of one of
the following equations:

mt}(E) + (m —1)T*(E) = \2
me(E) + (m— 1)eL(E) = -,
mt) (E) + mt (E) = \2 (55)
where either k = 2m — 1 or k = 2m and
THE) = A1/2 /(]u+(E)(E ~ F(u))" V2 du, (56)
~ - 0
THE) = A1/ /LL(E)(E ~ F(u))"V2 du, (57)

being U, (E) (U-(E)) the positive (negative) inverse of F at E. It is obvious that for E
fixed the functions 7} (E), T} (E) are strictly decreasing with respect to A. Then from (55)

we deduce that the root E;" (A) is strictly increasing with respect to A. Thus, If A; < Ay,
we have

V2M(ES (M) — F(w)) < \/20(Ef (R2) — F(w),  U™(Ef (A1) < u < UH(EF (M), (58)
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We will prove now that [|u’ || is strictly increasing in A.

The function u5 has k + 1 simple zeros in [0, 1] and uj is positive in the first subin-
terval. Let T, (E; (1)) be the x-time necessary to go from the initial condition u, (0) = 0
to the point where 1) (T, (E(A))) = 0. Then the length of the first subinterval is
2T, (Ef (M) [35]. By (54),

= \/ﬁ\/E;(X) — F(ug (x))uk (x),

so we have

/(;T+(E;(X))(ui(x))2dx _ '/O.ME;(X)) \/ﬁ\/E;(X) — Fuz (x))u (x)dx.

A

By the change of variable v = u5 (x) we obtain

Ty (EF (A)) ut(Ef (A
/O ¢ (u’x(x))zdx:/ f,/ﬁ

Since A — U™ (E/ (A)) is strictly increasing and by using (58), we conclude that the function
g(A) is strictly increasing. Hence, by putting x1(A) = 2T (Ef (1)) we obtain that the norm

of uy i -, is strictly increasing. By arguing in the same

/
uk
‘ MIL2(0,21(A))
way as for the other subintervals, we obtain that A — ||u ||;2 is strictly increasing. [

Let us prove the same result but with respect to the norm H Uy H L Withp > 1.

Lemma 6. Assume conditions (A1)—(A5) and let f be odd. Let vy = v,j/\l, vy = v,j/\z with
K22 < Ay < Ag. Then ||v1|p < |[vall}p forany p > 1.

Proof. As in the previous lemma, denote uy = v 5 . The function uz has k + 1 zeros in
[0,1] at the points 0 < x7 < xp < ... < Xj_1 < 1 When [ is odd, by symmetry, the length

of all subintervals has to be the same, so x; = ¢ I regardless the value of A.
We shall prove that in the first subinterval we have that u, (x) < uy,(x), for all

x € (0 ) By (54) for x € [0, 5] we have

u5 (x)
x—/ ds = / du ,
"

24 15+ (u))
so (58) yields
o /% du B /umx) du
0 \/2)\2 Ef(Ay) — 0 \/2A1 E} (A1) — F(u))
ll/\l d
/ ifx € (0, =),
0 \/2)\2 Ef(A2) — F(u)) "2k

Thus, uy, (x) < uy,(x), forall x € (0, Zk] By symmetry we obtain that the inequality is
true in (O, %)
Repeating the same argument in the other subintervals we get that

lup, (x)| < |up, (x)| forall x € (0,1), x # %, j=1,.k—1
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This implies that H”MHLP < H”?\zHLP foranyp > 1. O

Remark 5. The statements in Lemmas 5 and 6 are also true for v, because v, ~ (x) = v;’X (1—x),

so the H} and LP norms of 5 and vk+7\ are the same.

5.2. Nonlocal Fixed Points

Although in this paper we are mainly interested in problem (3), we will study the
existence of stationary points for an elliptic problem with a more general nonlocal term
than in (50). Namely, let us consider the following problem:

—a(l(u))uxx = Af(u), 0 <x <1, (59)
u(0) =u(l) =0,
where
1(u) = [[ulljy or l[ullzr, p =1, >0.
Let

@:mmw:A>4@n%%ﬁgd}

Then for any d < dj there exists the fixed point u,”(l of (51), where uf is either equal to ;"
or U .

It is obvious that any solution of (59) is a solution of (51) with d = I(u). Therefore, all
the solutions to problem (59) have to be solutions ui to problem (51) for a suitable d.

Theorem 5. Assume conditions (A1)—(A6) and, additionally, that
a(0) T2k < A. (60)

Then:

5

e Forany1 < j < k there exists d]’f < dy such that ujj is a fixed point of problem (59).

o IfA <a(0)m?(k+ 1) and a(0) = ming=o{a(s)}, there are no fixed points for j > k.

o IfN > kis the first integer such that A < infy=o{a(s)7t2(N + 1)*}, there are no fixed points
forj > N.

o Ifl(u) = ||u|\§{é, A < a(0)m2(k +1)% and a is non-decreasing, there are exactly 2k + 1
solutions to problem (59): 0, ufdiﬁ, ey ”Ifd;;'

o Ifl(u) = ||ullfp, A < a(0)?(k+ 1)%, f is odd and a is non-decreasing, there are exactly
2k + 1 solutions to problem (59): 0, ude, .y ”kid;'

Proof. For the first statement, it is enough to prove the result for j = k. By condition (60)
we have that dj € (0, +o0].
Consider first the case where dj is finite. We need to obtain the existence of dj < di

such that ! (uZ’t ) = df. When d = 0 it is clear that l(ug) > 0. Additionally, we know that

l (uzk) = 0. Through multiplying (51) by uz and using (9), (A6) and the Poincaré inequality
we obtain

()| < ooy (o)) < 2 (st (ud)

so, by using the embedding H}(Q) C L¥(Q), I (ug) is bounded in d. This implies that the

2

7

L2

2 < K 1
Lz>— 1*2‘

function g(d) =1 (ug) has to intersect the line y(d) = d at some point dj. It remains to
check that d; < d. For this aim we prove first that ug d—; 0 strongly in H}(Q2). Indeed,
ek
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as 1 is bounded in H} (Q2), there exist v and a sequence {u;jj } such that u;jj — vin L2(Q).
The embedding H}(Q2) C C([0,1]) and the continuity of the function f(u) imply that

{f(uij)} is bounded in C([0, 1]), so from

|, = s G = )

we deduce that {qu} is bounded in H?(Q)). Hence, u:j — vin H}(Q) and C'([0,1]).
Additionally, f (uii ) = f(v) in C([0,1]). Therefore, for any 3 € H}(Q) we have that

(()'w) = oy (r(wd)v)
+ +
i (f0),¥),

<C
2 -

@ ¢)

which implies that v is a solution to problem (51) with d = d;. However, from u:j — v
in C1([0,1]) it follows that v cannot be a point with less than k + 1 simple zeros in [0, 1]
and then A/a(dy) = k?>7% implies that v = 0. As the limit is the same for every converging

subsequence, uz djd ) 0 strongly in H} (Q2). Thus, d; > 0 and limg 4, (u,‘f)/
that d;; < dj.

Second, let d; = +o0. Then the existence of d; < +oo follows by the same argument
as before.

The second and third statements are a consequence of

’ = 0 imply
L2

A < a(0)?(k+1)* < a(d)7?(k+1)* forany d > 0

and
A< ig(f){a(s)}nz(N+ 1)2 < a(d)m®(N +1)* forany d > 0,
5>

respectively, because in such a case for problem (51) the fixed points vji, j > k (respectively
j > N), do not exist.
The last two statements are a consequence of the first two statements and of the fact

that the points of intersection of the functions g(d) = I (uz) and y(d) = d has to be unique,

because if a is non-decreasing, then g(d) is non-increasing by Lemmas 5 and 6. [

In view of this theorem, we have exactly the same equilibria and bifurcations as in the
classical Chafee-Infante equation (see [24,35]) when the function a(d) is non-decreasing,
because in this case in view of the monotone dependence between the functions a(d) and
g(d), there is only one intersection point of the function g(d) with the bisector, as it is
shown in Figure 1. This follows from the fact that g(d) — d is strictly decreasing, but there
may be weaker conditions on a(-) that would lead g(d) — d to be strictly decreasing.

When the function a(-) is not assumed to be monotone, an interesting situation appears.
More precisely, it is possible to have more than two equilibria with the same number of
zeros. If I(u) = ||u||%{3, for the equilibria with k + 1 zeros in [0, 1] this happens when

1
/
0

has more than one solution. For instance, if a(0) = a(d) for some 0 < d < g(0), then
¢(0) = g(d). Assuming that there are 0 < d} < d2 < d such that a(d?) = a(d}) = #,

there must exist 0 < d} < d} < d2 < d} < dsuch that g(d}) = d}. Now, by the argument in
Theorem 5, there must exist a d} > d such that g(d}) = d3, obtaining six fixed points with

the equation
du,‘iZ (x)

2
| =8 (61)
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k 41 zeros in [0, 1]. This situation is shown in Figure 2, where d;, d; and d} are solutions
of (61), that is, there are three intersection points with the bisector. We notice that when
a(d) > A/(7%k?), the function g(d) is not defined since the condition for such equilibria
to exist is not satisfied, but we can make this function continuous by putting ¢(d) = 0
whenever a(d) > A/ (7?k?). This procedure establishes that, having fixed a natural number
k, for any j € N we may construct a(-) in such a way that we have 2(2j + 1) equilibria with
k+1 zeros in [0, 1].

At least there is always one intersection point with the bisector, but the function g(d)
could be even tangent to the bisector at some point or not cut it again.

T2 k2

|
9(d) = i3,

1
1
1
1

d* dy.

Figure 1. a(d) non-decreasing.

dr dj i &y & d
Figure 2. a(d) whatever.

5.3. Lap Number and Some Forbidden Connections

With Theorem 5 at hand we can improve the description of the global attractor given
in Theorem 4.
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Under conditions (A1)-(A6), (A8) and h = 0, if

a(0)7*n® < A < a(0)m?(n+1)* (62)

then problem (3) possesses exactly 2n + 1 fixed points: vy = 0, uli I uf g
M1 M

Let ¢ be a bounded complete trajectory. We know by Theorem 4 that
distHé (p(t),R) — 0,ast — too.

As the number of fixed points is finite, we will prove that in fact the solution has to converge
to one fixed point forwards and backwards. We recall the omega and alpha limit sets of ¢,
given by

w(¢) = {y : 3t, — +oosuch that ¢(t,) — y},
a(¢) = {y: 3t, = —oosuch that ¢(t,) — v},

are non-empty, compact and connected ([36] Lemma 3.4 and Proposition 4.1). Additionally,
distH(l) (p(t), w(¢)) 2 0, distHa (p(t), a(¢p)) L 0. Since w(¢),a(¢) C R and R is
—+0o ——®
finite, the only possibility is that w(¢) = z; € R, a(¢p) = zp € R.
Thus, we have established the following result.

Theorem 6. Let us assume conditions (A1)—(A6), (A8), (62) and h = 0. Then
A= UM T () = UM (vy),

where n is given in (62) and vy = 0, v] = ufd*, V2 = U iy
1 1
In other words, the global attractor A consists of the set of stationary points SR (which has 2n +
1 elements) and the bounded complete trajectories that connect them (the heteroclinic connections).

Remark 6. As the Lyapunov function (46) is strictly decreasing along a trajectory ¢ which is not
a fixed point, then there cannot exist homoclinic connections for any fixed point. This implies in
particular that if n = 0, then A = {0}.

Remark 7. If we use condition (A7) instead of (A8), then we cannot guarantee that the number
of fixed points is finite. However, if we suppose that this is the case, then the result remains valid.
In this situation, there could be more than two fixed points with the same number of zeros.

Lemma 7. Let us assume conditions (A1)—(A6), h = 0 and either (A7) or (A8). Let ”de;' U g
4 A

be a pair of fixed points corresponding to the same value dj. Then there cannot be an heteroclinic
connection between them.

Proof. The function v(x) = u,jd;: (1 — x) is a fixed point corresponding to d; as

0% azulj,d; A
~ ) = —— (1—x>=@f(u,¢d;<1—x>) =@

SO Uy e (x) = o(x) = ”ltd; (1 — x). The equalities
2 » )
1 auk‘d* 1 aulj_d* 1 auljd*
- - _k - = _ "k
/0 ( ox (x)) dx = /0 ( ox (1—-x) ) dx /0 Py (y) | dy,

1 pug,(x) 1 puf(1-x) T pub(y)
k — k — k
/0 /0 f(s)dsdx /0 /0 f(s)dsdx /0 /0 f(s)dsdy




Mathematics 2021, 9, 353

23 of 36

imply that E(u,_;.) = E (uk+ d*), where E is the Lyapunov function (46). Since this function
"~k "k

is strictly decreasing along a trajectory ¢ which is not a fixed point, there cannot exist a

heteroclinic connection between these two points. [

Remark 8. In the case where condition (A7) is assumed, there could be more than two equilibria
with k41 zeros in [0,1]. In this case there could exist connections between fixed points with
different values of the constant d.

By using the concept of lap number of the solutions we can discard some more
heteroclinic connections.
We consider the function w(t) = u(a~1(t)), which is a strong solution to problem (47).
For any strong solution u(-) conditions (A1), (A3), (A6) and u € C([0, +0), H}(Q)) imply
that the function
A flw(tx))
t

") = e, w

is continuous and w(-) is a solution of the linear equation

ow w

T r(t, x)w. (63)

Thus, by Theorem A3 in the Appendix A (see also Theorem C in [37]) the number of
zeros of w(t) in [0, 1] is a nonincreasing function of ¢. Since a~!(¢) is an increasing function
of time, the result is also true for the solution u(-). Making use of this property we will
prove the following result.

Lemma 8. Let us assume conditions (A1)—(A6), h = 0 and either (A7) or (A8). Then if n > k,
there cannot exist a connection from the fixed point ukid* to the fixed point ”:d*' that is, there
e “n

cannot exist a bounded complete trajectory ¢ such that

o(t) — ”;;_L,d;*, as t — 4oo, ¢(t) — ulfd; as t — —oo.

Proof. By contradiction assume that such complete trajectory exists. Denote by /(z) the
number of zeros of z in [0, 1]. By using the compactness of the attractor in C*([0, 1]) (see
Corollary 2) we obtain that

¢(t) = uy 4. in C'([0,1]) as t — 400,

p(t) — ”ki,d; in C1([0,1]) as t — —c0.

Then, as the zeros are simple, we can choose t; > 0 large enough such that I(¢(—t1)) =
l(ufdz) = k+ 1. Putu(t) = ¢(t — t1), which is a strong solution of (3). Now we choose

tp > 0 such that I(u(tp)) = l(ujd;;) =n+1 Thenl(u(0)) =k+1and [(u(tz)) =n+1>

k + 1. This contradicts the fact that the number of zeros of u(t) is non-increasing. [J

6. Morse Decomposition

In this section we study in more detail the structure of the global attactor in the case
where the function f is odd. More precisely, we obtain a dynamically gradient m-semiflow
G, which is equivalent to saying that there is a Morse decomposition of the attractor [38],
and we study the stability of the fixed points.

6.1. Approximations

We consider now the situation when conditions (A1)-(A6), h = 0 and either (A7) or
(A8) are satisfied, and moreover, the function f is odd.
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In this section we consider the following problems:
ou , Pu
3~ llf) 57 = Afe,(w), £>0,x€(0,1),
u(t,0) =0, u(t,1) =0,
u(0,x) = up(x),

(64)

where the function f;, is defined below and €, — 0, as n — oo.
Let pe, () be a mollifier in R. We define the function f* (u) = [ pe,(s)f(u — s)ds.
It is well known that f(-) € C®(R) and that for any compact subset A C R we have
ff — f uniformly on A. It is clear that for u > €, the function f* (u) is strictly concave.
We need the approximation to fulfil (A2) and (A3). To that end, we consider the
approximation except on the interval [—¢,, €,], for any ¢, > 0. There exists a polynomial
of sixth degree p(x) such that

p(0) =0, p(en) = h(en),
p'(0) =1, p'(en) = H (en),
p"(0) =0, p"(en) = h"(en),
p"(0) =-1

We choose 7y > 0 such that p”’(s) < 0 for all s € (0,y]. We can assume that ¢, < <y for all n.
Thus, by construction the function

—fr(-x) if x< e,
fou (%) = ;(’;()"‘) ﬁf ‘(f;féff’ (65)

fer(x) if X > ey

approximates the function f uniformly in compact sets, that is, for any [-M, M] and 6 > 0
there exists 19(M, 6) € N such that

f(x) = fo, (x)| <8, foralln > ng, x € [~M, M]. (66)

Additionally, it satisfies the following properties:

(B1) fe, € C3(R);

(B3) f,(0) =1,

(B4) f., is strictly concave if u > 0 and strictly convex if u < 0;
(B5) fe, is odd.

Lemma 9. Let f satisfy (A5). Then the functions f, satisfy condition (A5) and (9) with indepen-
dent constants of e,,.

Proof. We assume without loss of generality that ¢, < 1. In order to check (4) and (5)
we only need to consider u outside the interval [—1, 1], because the sequence {f;,} is
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uniformly bounded in any compact set of R. Then for u ¢ [—1,1] the Holder inequality
and [p pe, (s)ds = 1 give

)l = | [ £ = o 51| < [ 1F=9)lpu, (51
§/R<C1+C2|u—s|”*1)p5n(s)ds

"En
<o ca2 ([ (s o))

< 61 + 62|u\”_1.

If f satisfies (5), then

fealyu = [ Flu=5)( = 5)pe, (5)ds + [ f(u=5)spe, (5)ds
< [ (Co—Culu=sl?)pe, (s)ds + [ (Co+Calu =] )spe, (5)ds
<K —Cy [ (27l = [s]P )pe, (s)ds
+Co2 7 [ (julP !+ Il )spe, (s)ds
< Cs— Calul?,

where we have used |u|’ < 2P~1(|s?| 4 |u — s|’) and the Young inequality.
For (9) we put in the above inequality p = 2, C3 = m,, C4 = —¢e and obtain

feu(Wyu < iite + eu?,
which obviously implies (6). O
Our next aim is to focus on the convergence of solutions of the approximations.
Theorem 7. Let conditions (A1)-(A6), h = 0 and either (A7) or (A8) be satisfied and let, moreover,
the function f be odd. If ug, o — ug in H}(Q) as ¢, — 0, then for any sequence of solutions of

(64) ue, (+) with ue, (0) = u,, o there exists a subsequence of €, such that u,, converges to some
strong solution u(-) of (3) in the space C([0, T], H}(Q2)), for any T > 0.

Proof. By using (29) and (30) we can repeat the same lines of the proof of Theorem 1 and
obtain the existence of a function u(-) and a subsequence of 1, such that

Ue, — uin L®(0, T; HY(Q))),

ue, — uin L2(0,T; D(A)),

dug, du . 2
T pr in L*(0, T; L7(Q))),

ue, — uin C([0, T]; L*(QY)),
ue, — win L2(0, T; H}(Q)),
feu (i) = f(u) in L®(0, T; L% (Q)),
ﬂ(lluen\lﬁé)ﬁusn - ﬂ(HMlI?{é)AM in L*(0, T; L*(€2)).

Additionally, in the same way we prove that u(-) is a strong solution to problem (3) such
that u(0) = uo.
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The uniform estimate in the space H} (Q) implies also that if t, — to, then ug, (t,) —
u(tp) in H}(Q)). We need to prove that this convergence is in fact strong, proving then the
convergence in C([0, T], H}(Q)) for any T > 0.

In the same way as in the proof of Lemma 1 we deduce that for some C > 0 the
functions Q,(t) = A(Huen(t)H%Il) —2Ct, Q(t) = A(||u(t)|\?{1) — 2Ct are continuous and

0 0

non-increasing in [0, T]. Moreover, Q,,(t) — Q(t) fora.e. t € (0, T). Let first ty > 0. Then
we take 0 < t; < tg such that t; — tg and Qy(t;) — Q(t;) for all j. Then

Qu(tn) — Q(to) < Qultj) — Qto) < |Qu(t;) — Q(t)] + [Q(t) — Q(to)| for t, > t;.

For any 6 > 0 there exist j(J) and N(j(d)) such that Q,(t,) — Q(tp) < dif n > N, so

limsup Qn(tx) < Q(tp). Hence, a contradiction argument using the continuity of A(s)

shows that limsup ||ue, (tx) ||?{1 < lu(to) ||1%1,1 This, together with liminf ||u,, (¢t,) Hil >
0 0 0

Hu(to)H?{é, implies that ||ue,(tn)|5: — |lu(to)||5,1, so that ue,(t,) — u(ty) strongly in

2 2
1% 12,
H}(Q). For the case when ty = 0 we use the same argument as in Lemma 1. [

We denote by A, the global attractor for the semiflow G, corresponding to problem (64).

Lemma 10. Assume the condition of Theorem 7. Then U, _ Ay, is bounded in H}(QY). Hence,

the set UpenAe, is compact in L2(Q)).

neN

Proof. By Lemma 9 inequality (9) is satisfied for any n with constants which are indepen-
dent of ¢, so inequality (36) holds true with constants independent of ¢,. Thus, there
a exists a common absorbing ball By in LZ(Q) (with radius K > 0) for problems (64).
Further, by repeating the same steps as in Proposition 3 we obtain a common absorbing
ball in H}(Q) (with radius K > 0), as by Lemma 9 the constants which are involved are
independent of ¢,,. Thus, ||y||H3 < Kforanyy € U,y Ae,. O

Lemma 11. Assume the condition of Theorem 7. Then U,_ A., is bounded in V* for any

0 <r < 1. Hence, U,_ A, is compact in V¥ and C1([0,1)).

Proof. By using Lemma 10 we obtain the boundedness of U, A, in V" by repeating
the same lines in Lemma 4. The rest of the proof follows from the compact embedding
V& C VP, a > B, and the continuous embedding V*" € C1([0,1]) ifr > 3. O

Corollary 3. Assume the condition of Theorem 7. Then any sequence &, € A,, with e, — 0 s
relatively compact in C1([0,1]).

Lemma 12. Assume the condition of Theorem 7. Then up to a subsequence any bounded complete
trajectory ue,, of (64) converges to a bounded complete trajectory u of (3) in C([—T, T], Hi(QY))
forany T > 0. On top of that, if y, € Ae,, then passing to a subsequence y, — y € Ain
H{(Q). Hence,

distHé(Agn,A) — 0asn — oo. (67)

Proof. Let us fix T > 0. By Corollary 3 u,,(—T) — y in H}(Q) up to a subsequence.
Theorem 7 implies that u,, converges in C([—T, T], H}(Q)) to some solution u of (3).
If we choose successive subsequences for —2T, —3T ... and apply the standard diagonal
procedure, we obtain that a subsequence u,, converges to a complete trajectory u of (3) in
C([-T, T],H{(Q)) for any T > 0. Finally, from Lemma 10 this trajectory is bounded.

If y, € Ag,, by Corollary 3 we can extract a subsequence converging to some y. If we
take a sequence of bounded complete trajectories ¢, (-) of (64) such that ¢, (0) = y,, then by
the previous result it converges in C([—T, T], H} (Q)) to some bounded complete trajectory

¢(-)of (3),s0y € A.
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Finally, if (67) was not true, there would exist 6 > 0 and a sequence y, € A, such
that distHé (y, A) > 6. However, passing to a subsequence y, — y € A, which is a

contradiction. [

Lemma 13. Assume the conditions of Theorem 7. Let T. d” 1 e the functions (56)—(57) for problem
(51) but replacing f by fe, and d by dy,. Let d,, E, — 0 asn — oo. Then

lim Td” 1 (Ey) = ~ )7
n—o0 A /2/\

Proof. Letus consider f; . (1) = Af E"()) In view of property (B4) and (66), since f/ (0) =
f'(0) =1and f,,(0) = f(0) = 0, given v € (0,1) there exists § > 0 (independent of ¢,,)

such that
1—yu<fe,(u) <(1+v)u, foranyuc (0,9).

<
%«y < 5y < =, foranyu € (0,0).

The sequence F;, (-) converges uniformly to F (-) in compact sets. Moreover, as U (E)
is continuous and using ([39] p. 60), given § > 0, there exists 7 > 0 such that U" (E) < ¢ for
any 0 < E < 5. Now, if we integrate the first inequality in (68) between 0 and u we obtain

(68)

(14 9)u?, forany0 < u <.

N\*—‘

20— < Foy ) <

By using the change of variable E,y? = F¢,(u), we have

N

(51) Fusys (5) " u so<msposyst

Dividing the previous expression by , /- fdn ¢, (1) and using (68) we obtain

(dn)(1=1) /2 a(dn)y (dn) (1+7) 12
(gt )™ < N < (;}En(l,gz) FO<E, <y, 0<y<l.

Now if we multiply by 2¢/E, (1 — y?) ~and integrate from 0 to 1, we get

a(d)(1-m\ Y2 o(d, 172
n(%) =T (En) < ﬂ(%) , if0<E, <.

Then the theorem follows as a(d,) — a(0) when n — oo. The proof for T°" is analogous. [

Under the conditions of Theorem 7, if (A8) is satisfied and
a(0)%k> < A < a(0)(k+1)%, k€ Z, k>0, (69)

holds then by Theorem 5 problem (64) has exactly 2k + 1 fixed points (denoted by vy =

0, vl e kidgn) and v T has m + 1 zeros in [0, 1] for each 1 < m < k. The same is valid
M m

for problem (3) and we denote the 2k + 1 fixed points by vy = 0, uli dir ufd;.

Lemma 14. Assume the conditions of Theorem 7, (A8) and (69). Let m € N, 1 < m < k, be fixed.

Then v ., (resp. v ., ) do not converge to 0 in H} (Q)) as e, — 0.

m,dy m,ds)

Proof. Assume thato™
ity

s = 0in H}(0,1). Then it converges to 0 in C([0, 1]) and the equal-

2
POy R ACIC)
dx? B a(dy)
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+ 2 4o, ¢ + P
o . . , .
implies thatv g = 0inC ([0,1]). In particular, I (0) = 0and dy; = va, £l
+ a (df#) dv; dEn
0. The value E; corresponding to the fixed point U, den 1 equal to Tm(o), SO

E,;, — 0. We will show that this is not possible. We know by Lemma 13 that

lim 79 (E,) =

n—00 A /2)\

Additionally, since v; g isa fixed point with d = dj} one of the following conditions has

to be satisfied (see (55)):

1
A5 e - a5t e _(1)?
JT M (En) + (G — )T (En) = 5] - (70)
A5 e , A5 e (1N
JTm M (En) 4 (j— 1)ty (Ep) = 5) ifm=2j—-1 (71)
1
H d%/sn . dinnzgn _ 1)2 : 9
JT N (En) 4 jtim " (Eg) = 5) if m = 2j. (72)

Since E, — 0 and A > k*7%a(0) > m272a(0), there exists ¢,,, such that

din 0/5710 1

Ty (Eng) < N

Hence, neither of (70)—(72) is possible. [

Lemma 15. Assume the conditions of Theorem 7, (A8) and (69). Let m € N, 1 < m < k, be fixed.

+ + oyl -
Then U (resp. v ., ) converges to WUy gz 111 Hy(Q)) (resp. Uy g2 ) 05 €1 — 0.

En
m,dy;

+
€n
m,dy;

Proof. We consider v is relatively compact in C'([0,1]),

g In view of Corollary 3, v
m,dy

so up to a subsequence v — v strongly in C!([0,1]) and dyj — d* = ||v||%{[1) The proof

+

m,ds?

will be finished if we prove that v = 1 ... We observe that since in such a case every
“m

subsequence would have the same limit, the whole sequence would converge to | ,

In view of (66) fe, (v .,) converges to f(v) in C([0,1]). It follows that
7Dy 4 8

% .
m

0% Af(v)

22 a(o]2)

and v is a solution of (50), so v is a fixed point of (3). We need to prove that v = u; &
By Lemma 14 v # 0, and then v = ”?,[d;f for some 1 < j < k. Since ufd; has j + 1 simple

+

zeros, the convergence U

€n
m,dy;

— ujid* in C1([0,1]) implies that v ., has j + 1 zeros for
-l

n > N. However, v possesses m + 1 zeros in [0, 1]. Thus, m = j.

+
mdy!
For the sequence v

o gen the proof is analogous. [

6.2. Instability
We will prove that the fixed points 0 and u,f dis k > 2, are unstable under some addi-

tional assumptions on the functions f and a. For that aim we need to use the approximative
problems (64).
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Theorem 8. Assume that the conditions (A1)-(A8), h = 0 and (69) with k > 1 are satisfied; and
let the function f(-) be odd and a(-) be globally Lipschitz continuous. Then the equilibria vy = 0
and u]id*, 2 <j<k(ifk > 2), are unstable.

i

Remark 9. The condition that a(-) is globally Lipschitz continuous could be dropped, as we can
replace a(-) in (64) by a sequence ag, () of globally Lipschitz continuous functions.

Proof. Problem (64) generates a single-valued semigroup {T, (t);t > 0} with a finite

number of fixed points: vg = 0, vf gen e Uf gon [26]. We know by Theorems 3.5 and 3.6
A A
+

in [26] that for any G with j > 2 and vy there exists a bounded complete trajectory u®"
i

such that
&n + _
utn(t) — vj,d;n ast — —oo, fork > 2,

S0 vg, v;rdsﬂ are unstable. The same is valid for v]fdg,,. On the other hand, by Lemma 15
" )
we have

+ +
v, g — U a7 (73)

where u}fd; is a fixed point of problem (3) with j + 1 zeros in [0, 1]. We prove the result for
u;'df. For Wj g and vy the proof is the same.
i i
By Lemma 12 we obtain that up to a subsequence u*" converges to a bounded complete

trajectory u of problem (3) in the space C([—T, T], H}(Q))) for every T > 0. Thus, either u(-)
is a fixed point v_; or by Theorem 4 there exists a fixed point v_; of problem (3) such that

u(t) »v_; ast— —ocoin H}(Q).

In the second case, if v_1 = u;“d*, the proof would be finished, so let assume the opposite.
-
Assume first that either u(-) is not a fixed point or it is a fixed point but v_; # ”fd*'
@i

We consider ry > 0 such that the neighbourhood Oy,,(v_1) does not contain any other
fixed point of problem (3). For any r < ry we can choose t, — —oco and n, such that

un (t;) € Oy(v_q) for all n > n,. On the other hand, since u®"(t) — vfdg,,, ast — —oo, and
"

v;rden — u;“d* & By, (v_1), there exists t} < t, such that
7 / 4 ]

utrr (t) € Opy(v_q) for t € (), 4],

()~ 4l =m0

Let first t; — t, — +co. We define the sequence " (t) = u® (t + t,), which passing to a
subsequence converges to a bounded complete trajectory ¢(t) such that ¢(t) € O, (v_1)
for all t > 0. As there is no other fixed point in Oy, (v_1), ¢(t) — v_j ast — +oo.
However, ||¢(0) —v_1|| = ro, so ¢(-) is not a fixed point. Then ¢(t) — v_p ast — —oo,
where v_j is a fixed point different from v_;. Second, let |t; — #,| < C. Then put ui"’ (t) =
utnr (t +t,). Passing to a subsequence we have that

ui”’ (0) = v_q,
ty—t. — ty, asr — 0.

Additionally, u]" (-) converges to a bounded complete trajectory u!(-) of problem (3) such
that ' (0) = v_;. Let

[ ul(t)ift <o,
() = { v 1ift > 0.
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We note that ||u'(—tg) —v_1||;n = ro implies that u!(-) is not a fixed point. Then 1 is
0
a bounded complete trajectory of problem (3) such that ¢;(t) = v_» # v_q ast — —oo.
Ifv_ = u,., the proof is finished.
"
Ifv_p # ufdﬁ we continue constructing by the same procedure a chain of connections
@i

in which the new fixed point is always different from the previous ones, because the
existence of the Lyapunov function (46) avoids the existence of a cyclic chain of connections.
Since the number of fixed points is finite, at some moment we obtain a bounded complete
trajectory ¢(-) such that ¢(t) — u;’rd;ﬁ as t — —oo, proving that u;’rd;f is unstable.

Now let u(-) =v_q = u;,“ ar Defining the neighbourhood O, (v_1) as before, for any

r < ro we can choose n, such that uE"( ) € Oy(v_q) for all n > n,. Additionally, since
un(t) — zl, ast — +oo, where zl} # v, is a fixed point of (64), there exists t, > 0 such

that

dg“

um (t) € Oy (v_q) fort € [0, ),
||M£”r(tr) — U,1||Hé =T19.
The sequence {t,} cannot be bounded. Indeed, if t, — t, then u®v (t,) — u(ty) = v_q,
which is a contradiction with |[u (t)) —v_1|| H} = To- Then t, — +co. We define the

functions u}" (t) = u® (t + t,), which satisfy that u}" () € Oy (v_1) forall t € [—t,,0).
Passing to a subsequence it converges to a bounded complete trajectory ¢(-) such that
¢(t) € Opy(v_q) forall t < 0. This trajectory is not a fixed point as ||¢(0) — U—lHH(} =1

and ¢(t) — u;rd* ast — —oo, s0 u;rd* is unstable. [J
i i
Further, we will prove that there is also a connection from 0 to the point uki e
"k

Theorem 9. Assume the conditions of Theorem 8. Then there exists a bounded complete trajectory
¢(-) such that ¢(t) L 0, ¢(t) M u,':d; (and the same is valid for ”k_d;)' Thus, E(0) =0 >
——0c0 —+oo K ’

E(u,fdz).

Proof. We start with the case where k = 1. We have three fixed points: 0, ul+ ger Uq g
1 1
By Theorem 8 there exists a bounded complete trajectory ¢(-) such that ¢(t) 7 0,
——00
whereas Theorem 4 and Remark 6 imply that it has to converge forward to a fixed point
different from 0, that is, to either u" . or uy ... If, for example, ¢(t) — u; .., then as the
Aq Aq t— 400 1

function f is odd, (t) = —¢(t) is another bounded complete trajectory and ¢(t) —

t—+-00
+ _ —
“Hiar = My
Further we consider the problem

*—ﬂ(ll ”Hl)a 5 =Afi(u), t>0,0<x<y,
(i 0) = (tl) 0,
u(0,x) = up(x),

where fi(u) = vk kf (u/ vk ) satisfies (A1)—(A5). In this problem, condition (69) implies

that there are again three fixed points: 0, u

(74)

11,1 Sl dfrk . By the above argument there is a
connection 4)1 (+) from 0 to u L1 (also to u Lt ). Since the function f is odd, u;’ d*( ) is
17k

equal to f 1d1'k L (x)on [0, 1], to — \[ ) dl’k (x - %) n [1, 2], etc. Then the function ¢(-)
such that ¢(t,x) =

(?flk)j(pl (t X — %) on [j ]H} ] =0,1,..,k—1, is abounded complete

trajectory of problem (3) which goes from 0 to u;" K O
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Remark 10. When k = 1 the structure of the global attractor is the same as in the Chafee-
Infante equation.

6.3. Gradient Structure

We will obtain that the m-semiflow G is dynamically gradient. Let us recall this con-
cept.

A weakly invariant set M of X is isolated if there is a neighbourhood O of M such that
M is the maximal weakly invariant subset on O. If M belongs to the global attractor A,
then it is compact ([38] Lemma 19). In this case, it is equivalent to use a -neighbourhood
Os(M) = {y € X : dist(y, M) < 6}.

Suppose that there is a finite disjoint family of isolated weakly invariant sets M =
{My,..., My} in A, thatis, for every j € {1,...,n} there is €j > 0 such that M; C A'is the
maximal weakly invariant set on O¢;(M;), and suppose that there exists J > 0 such that
Os(M;) NOs(M;) = @, if i # j.

Definition 4. We say the m-semiflow G: R™ x X — P(X) is dynamically gradient with respect to
the disjoint family of isolated weakly invariant sets M = {My, ..., My, } if for every complete and
bounded trajectory Y of R we have that either (R) C M;, forsome j € {1,...,m}, or a(y) C M;
and w(y) C Mjwith1 <j<i<m.

Let us consider the case when the conditions of Theorem 8 hold. Then (3) possesses
exactly 2k 4 1 fixed points: vg = 0, uf g7 uki g Additionally, as f is odd, u;“d,f = fuj_d*
’ ’ " )

for any j. We define the following sets:
M; = {ufdf,ul_/df},..., M = {u,‘gd;,uk_’dz}, M1 = {0}. (75)

They are weakly invariant and using Lemma 7 we deduce easily that they are isolated. Then
the family M = {My, ..., My} is a finite disjoint family of isolated weakly invariant sets.

Proposition 4. Assume the conditions of Theorem 8. Then G is a dynamically gradient semiflow
with respect to the family (75) after (possibly) reordering them.

Proof. We reorder the family (75) in such a way that if the value of the Lyapunov function
E given in (46) is equal to L; for the set M;, then L; < L, for j < n. Then Theorem 25 in [38]
implies that G is dynamically gradient with respect to this family. [

We will obtain then that the fixed points u;",., u; ;. are asymptotically stable. The com-
1 1

pact set M C A is a local attractor for G in X if there is ¢ > 0 such that w(O,(M)) =
M, where
w(B) ={y: 3ty — 40, y, € G(ty, B) such thaty, — y}

is the w-limit set of B. By Lemma 14 in [38] if M is a local attractor in X, then it is stable.
Thus, a local attractor is asymptotically stable.

Theorem 10. Assume the conditions of Theorem 8. Then the stationary points uy ;.,uy 4. are
1 1
asymptotically stable.

Proof. By ([38] Theorem 23 and Lemma 15) M; is a local attractor in X, so it is asymptoti-
cally stable. By Theorem 8 the sets M;, j > 2, are unstable. Thus, M; = M;. As M; consists
of the two elements uf Y Uy g which are obviously disjoint, they are asymptotically stable
aswell. O

We will prove that there is a connection from 0 to any other fixed point ujid*.
7
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Theorem 11. Assume the conditions of Theorem 8. Then there exists a bounded complete trajectory
¢(-) such that ¢(t) 2 0, ¢(t) 2 u;rd* forall 1 < j < k (and the same is valid for u].*d*).
——00 —too T4 vl

Proof. Let us consider problem (74) with k = j. The function u;“ 1 (x) = \ﬂu;“d,f (x),
4505 &
x € [0, %], is the unique positive fixed point of problem (74). Let X;r = {u € H} (0, %) :

u(x) >0vx €0, %]} be the positive cone of H} (0, %) . If we consider the restriction of the

semigroup Tf" (+) of problem (64) in the interval (0, }) to Xj*, denoted by Tjg"'+ (-), then
there exists a global attractor A: i [25]. Since 0 and ZJI“ 1= \/jv;rdg,, |[0 1) are the unique
’ AT A g

fixed points of T;’”*, Af ; is connected, vl+ Len 1 s stable [26] and Af ; consists of the fixed
, A ,

points and their heteroclinic connections, there must exist a bounded complete trajectory

<p]?" (+) of T].g”’+ which goes from 0 to v;r gen 1- By Lemma 12 up toa subsequence it converges

to a bounded complete trajectory ¢;(-) of problem (74) with k = j such that ¢;(t) > 0
forall t € R. Since by Theorem 10 the fixed point u;“ g1 s stable, the only possibility is
A5

that ¢;(t) — 0,ast — —oo, ¢;(t) — u as t — 4o00. Then the function ¢(-) such that

N 1
145,17
: i
o(t,x) = (;\214’1‘ (t, X — ;) on [;, %], i=0,1,..,j—1,is abounded complete trajectory of

problem (3) which goes from 0 to ”]+d]*

For u; ;., noting that Uj g = —u;rd*, the result follows by choosing the bounded
Aj © A Aj
complete trajectory ¢(t) = —¢(t). O

As a consequence we obtain that the order of the family M has to be the one given
in (75).

Theorem 12. The semiflow G is dynamically gradient with respect to the family M in the order
given in (75), that is, M; = M,; for any i.

Proof. As by Theorem 11 there is a connection from 0 to u]id*, 1 <j <k, we have proved
"

that 1\7Ik+1 = {0} = My 1. The fact that the order of the other sets is the one given in (75)
follows from Lemma 8. [
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Appendix A

In this appendix we generalise the lap number property of solutions of linear equations
proved in [24] to the case when we do not have classical solutions. For this we will use a
maximum principle for non-smooth functions from [40].

Let O be a region in R? and let (fo, x9) € O and p,c > 0. We denote

Qp,a = {(t/x) 1te (tO —O’,to),‘x—xol < P}/

where we assume that ¢y, xg, p, o are such that épﬂ c 0.
We denote by W the space of all functions from L?(O) such that

/, <|u<t,x>|2 +|S)

As a particular case of Theorem 6.4 in [40] we obtain the following maximum and
minimum principles.

2
)d}l < +o0.

Theorem Al. (Maximum principle) Let u € W be such that

ou 0%u
ot a2 =V (A1)

in the sense of distributions. If

sup ess(t,x)erwlu(t,x) =M,
for somev, 0 < v < 1,and any oy, where 0 < 01 < o, then u(t,x) = M for a.a. (t,x) € Qpe.
Theorem A2. (Minimum principle) Let u € W be such that

ou d%u

o_drs
ot  ox2 — (A2)

in the sense of distributions. If
inf ess(t,x)erwlu(t, x) =M,
for somev, 0 <v <1, and any o1, where 0 < 01 < 0, then u(t,x) = M for a.a. (t,x) € Qp -

We are ready to prove the lap-number property, saying that the number of zeros is a
non-increasing function of time.
Theorem A3. Let r(t, x) bea continuous functionand u € C([to, t1], H§ (Q0)) N L2 (o, t1; H*(QY))
d
be such that d%‘l € L?(to, t1; L*(QY)) and satisfies the equation

ou d*u

g—ﬁ:r(t,x)u,0<x<1, to <t <H. (A3)
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Then the number of components of
{x:0<x<1, u(t,x) #0}
is a non-increasing function of t.

Proof. We follow similar lines as in ([24] Theorem 6).

Denote Q(t) = {x € (0,1) : u(t,x) # 0}. We need to show that there is an injective
map from the components of Q(#;) to the components of Q(ty) if t; > t. If we denote by
C a component of Q(t1) and by S¢ the component of [tg, t1] % (0,1) N {u(t, x) # 0)} which
contains C, then in order to obtain the injective map it is necessary to prove two facts:

1. ScnQlty) # 2;
2. If Cy, C; are two components of Q(t1), then S¢, NS¢, = @.

Let us prove the first statement by contradiction, so assume that Sc N Q(ty) = &. We
can assume without loss of generality that r(t,x) < 0, because this property is satisfied
for the function W(t,x) = u(t, x)e~* with A > 0 large enough and the components of
these two functions coincide. Consider, for example, that u(¢,x) > 0in Sc. Let M =
max; y)es. 4(t, x). By hypothesis and the Dirichlet boundary conditions this maximum
has to be attained at a point (#, x’) such that tp < t' < t;,0 < ¥’ < 1. Additionally, there
has to be an ¢ > O such thatif (t,x) € Scand ty < t < tp+¢, thenu(t, x) < M, as otherwise
there would be a sequence (t,,x,) € Sc, tn > to, such that t, — tp and u(t,, x,) = M.
By the continuity of u this would imply that u(to, xg) = M for some (tp, xo) € Sc, which is
a contradiction. Then we can choose t' as the first time when the maximum is attained, so
u(t,x) < Mforall (t,x) € Sc, tp < t < t'. By the continuity of u there exists a rectangle
R=[t'=6,t'] x [x' —v,x" + 7] such that R belongs to Sc. In order to apply Theorem A1l
we put O = R and

Qs ={(tx):te(f' =51,

x—x'| <~}

We have that
sup u(t,x) =M,
(t,x)eQU%al

forsome 0 < v < 1 and any 0 < oy < J. Since u satisfies (A1), we conclude from
Theorem Al that u(t, x) = M for all (t,x) € Qp,s, which is a contradiction.

For the second statement suppose the existence of two disjoints components Cy, Cy
of Q(t1) such that S¢, NS¢, # @, which implies in fact that Sc; = Sc,. In this case we
can assume that r(t,x) > 0, being this justified by the function W(t, x) = u(t, x)e! with
A > 0 large enough. Let, for example, u(t,x) > 0 in Sc, and assume that the interval
C1 has lesser values than the interval C,. Additionally, it is clear that between C; and
C; there must exist a point (t1,xp) such that u(t;,x9) = 0. On the other hand, the set
Sc, N (to, t1) x [0,1] is path connected. Thus, there exists a simple path ¢ such that one
end point is in {#; } x C; and the other one is in {t;} x C,. Let us consider the set L of all
points which are above the curve ¢ and such that the function u vanishes at them. This set
is non-empty because (1, x9) € L. Since L is compact, the function g : L — [t, ;] given by
g(t,x) = t attains it minimum at a certain point (#',x’) € L such that tp < t’. Then there
existsaset R = [t' —§,t') x [x' — v, x" + 7] which belongs to S¢,. Let O = R and

Qs ={(tx):te (' —51),

x—x'| <~}

We have that
inf  u(t,x)=0,
(t/x)EQV'y,zr]
forsome 0 < v < 1l and any 0 < oy < J. Since u satisfies (A2), we conclude from
Theorem A2 that u(t, x) = 0 for all (¢, x) € Qp, which is a contradiction. [
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