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ABSTRACT

Obtaining accurate distributions of galaxy redshifts is a critical aspect of weak lensing cosmology experiments. One of the
methods used to estimate and validate redshift distributions is to apply weights to a spectroscopic sample, so that their weighted
photometry distribution matches the target sample. In this work, we estimate the selection bias in redshift that is introduced in this
procedure. We do so by simulating the process of assembling a spectroscopic sample (including observer-assigned confidence
flags) and highlight the impacts of spectroscopic target selection and redshift failures. We use the first year (Y1) weak lensing
analysis in Dark Energy Survey (DES) as an example data set but the implications generalize to all similar weak lensing surveys.
We find that using colour cuts that are not available to the weak lensing galaxies can introduce biases of up to Az ~ 0.04 in
the weighted mean redshift of different redshift intervals (Az ~ 0.015 in the case most relevant to DES). To assess the impact
of incompleteness in spectroscopic samples, we select only objects with high observer-defined confidence flags and compare
the weighted mean redshift with the true mean. We find that the mean redshift of the DES Y1 weak lensing sample is typically
biased at the Az = 0.005—0.05 level after the weighting is applied. The bias we uncover can have either sign, depending on the
samples and redshift interval considered. For the highest redshift bin, the bias is larger than the uncertainties in the other DES
Y1 redshift calibration methods, justifying the decision of not using this method for the redshift estimations. We discuss several
methods to mitigate this bias.

Key words: gravitational lensing: weak — galaxies: distances and redshifts — galaxies: statistics —distance scale—large-scale
structure of Universe.

1 INTRODUCTION

Over the last decade, a number of new deep imaging surveys
have been developed to take advantage of the cosmological in-
formation contained within the distortion of galaxy shapes by
weak gravitational lensing. One of the quantities required to be
known to unlock this information is the distribution in redshift of
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the galaxies whose light is being distorted. The first of the so-
called stage III programmes (Albrecht et al. 2006) designed to
measure weak lensing have now been completed (Heymans et al.
2013; Joudaki et al. 2017). Current state-of-the-art surveys, such
as the Kilo-Degree Survey (KiDS; de Jong et al. 2015), the Hyper
SuprimeCam Survey (HSC, Aihara et al. 2017) and the Dark Energy
Survey (DES; Flaugher et al. 2015) can now achieve levels of
cosmological parameter constraints competitive with those from
cosmic microwave background observations (DES Collaboration
2019).
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To reach such precision, the redshift distribution of the weak
lensing source galaxies, and in particular the mean redshift of any
tomographic redshift interval, must be very precisely constrained.
In Hoyle et al. (2018, hereafter H18), we estimated that, in the four
tomographic bins chosen for the weak lensing cosmology analysis
with the first year of DES survey data (redshift binning 0.2 < z <
043,043 <z <0.63,0.63 <z <09, and 09 < z < 1.3), the
mean redshifts are known to Gaussian uncertainties of 0.016, 0.013,
0.011, and 0.022, respectively. The anticipated scale of the full DES
survey data implies that these uncertainties need to be reduced by
roughly a factor of 5, else they will overwhelm the statistical errors.
Forthcoming experiments (LSST,' Euclid? and WFIRST®) require
yet more stringent precision and accuracy.

In this context, a long literature has developed, describing ap-
proaches to derive redshift distributions (Mandelbaum et al. 2008;
Hildebrandt et al. 2012; Benjamin et al. 2013; Schmidt & Thorman
2013; Rau et al. 2015), validate them (Sanchez et al. 2014; Bonnett
et al. 2016; Choi et al. 2016; Hildebrandt et al. 2018; Hoyle et al.
2018; Tanaka et al. 2018; Wright et al. 2018), and overcome some of
the expected challenges in doing so (Newman 2008; Rau et al. 2017;
Buchs et al. 2019; Sanchez & Bernstein 2019). A natural approach
to validation is to use the very precise redshifts that can be obtained
from spectroscopic observations of some of the science-sample
galaxies, and almost all methods for deriving photometric redshift
distributions are tested in this way. The principal challenges in
validating with spectroscopy are misassigned spectroscopic redshifts
(Cunha et al. 2014; Newman et al. 2015), colour- and magnitude-
dependent differences in sampling rate (Lima et al. 2008) and sample
variance arising from the fact that the spectroscopic objects tend to
be located in small calibration fields — often referred to as ‘field-
to-field variance’, or sometimes ‘cosmic variance’ (Cunha et al.
2012). The first challenge is effectively solved using only the highest
confidence redshift determinations, transferring the problem to a
greater imbalance in sampling rate.

Lima et al. (2008) presented an algorithm for estimating the red-
shift distribution of a target photometric sample from a spectroscopic
data set directly, by accounting for the differences in sampling.
It amounts to estimating the density of objects in the locale (in
data space — e.g. colour—magnitude space, including scatter due
to photometric errors) of each spectroscopic data point, in both
the spectroscopic sample itself and in the target data. The ratio of
these densities is then given as a weight to the spectroscopic object.
Finally, the redshift distribution is recovered by creating a weighted
histogram of the spectroscopic sample. In addition to accounting
for differences in sampling rate, weighting in this way also reduces
the impact of field-to-field variance (e.g. H18). See also Sanchez
et al. (2020) for a principled method to estimate and propagate the
remaining sample variance in the resulting redshift distributions.

In recent applications to weak lensing cosmology, this approach
of weighting a spectroscopic sample has been used as either an
independent measure of the redshift distribution (Bonnett et al.
2016), or as the leading redshift solution (the so-called ‘direct
calibration’, or DIR method, Hildebrandt et al. 2018; Asgari et al.
2019; Joudaki et al. 2019). Insofar as a full and direct validation
of photometric redshifts with spectroscopy goes, this weighting
scheme is the only technique employed in weak lensing analyses
to date. One of the main requirements for using direct weighting of
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spectroscopic samples is that the spectroscopic data set must cover
the same colour—magnitude space as the target sample (weak lensing
sources, for example). However, there is the further assumption
being made when taking such an approach, that within any given
region of the colour—-magnitude space the spectroscopic redshifts are
representative of the local true redshift distribution of the lensing
source sample. In general, there is no reason for this assumption
to hold true. In any region of colour—magnitude space there will
be some width to the redshift distribution — perhaps due to pho-
tometric errors or insufficient dimensionality to the data. It is not
difficult to conceive of situations in which low and high confidence
redshift determinations in that region have systematically different
redshifts.

In Bonnett et al. (2016), we used existing spectroscopic and
photometric data sets, similar to those considered in this paper,
and showed that regions of colour-magnitude space that have
poor spectroscopic success rates (<65 per cent) are on average
biased by Az ~ 0.03 with respect to the COSMOS photometric
redshifts of a weak-lensing-like selection. This bias drops to Az ~
0.01 for regions with higher completeness. Similarly, work from
Gruen & Brimioulle (2017) found that there exist significant biases
(up to Az = 0.1) in terms of the mean redshift, with the worst
cases occurring at greatest depth. In this work, we take one step
further and investigate the origin of this bias. We assess, via
spectroscopic simulations, the magnitude of the bias in terms of
the mean redshift of the inferred redshift distributions for a target
photometric sample (designed to mimic a weak lensing survey). We
use DES as an example but the principle can be applied to other
experiments.

The paper is structured as follows. In Section 2, we describe
the full procedure in constructing redshift distributions from a
simulated spectroscopic sample. The target sample for which we
wish to construct redshift distributions is the weak lensing sam-
ple for the first year of DES data (DES Y1). We describe the
simulated spectra constructed from a full N-body simulation, the
process of redshifting the spectra and determine the confidence
level, enlarging the sample with a RF approach, and ultimately
reweighting the spectroscopic sample to match the photometry of
the target sample. In Section 3, we present our findings in terms
of the bias in the mean redshift in tomographic bins introduced via
the incompleteness in the spectroscopic sample. We demonstrate
first with VIMOS Public Extragalactic Survey (VIPERS) as an
example of how targeting strategies introduce incompleteness, and
then with a spectroscopic sample similar to that in DES Y1. In
Section 4, we discuss three potential mitigation approaches of
this bias and estimate their performances. We conclude in Sec-
tion 5.

2 RECONSTRUCTING THE REDSHIFT
DISTRIBUTIONS VIA A SIMULATED
SPECTROSCOPIC SAMPLE

In this section, we simulate the full process involved in constructing
the principal spectroscopic samples that overlap the DES Y1 footprint
and that would be used to obtain redshift distributions in a DIR-
like method. Next, we first describe the spectroscopic data we aim
to simulate (Section 2.1). Then, we introduce the set of galaxy
simulations that our work is built upon (Section 2.2). Next, we
describe how we simulate the observed spectra (Section 2.3) as
well as the process of having human ‘redshifters’ visually inspect
the simulated spectra and assign them quality flags (Section 2.4).
Next, we train a random forest (RF) on these simulated spectra and
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Table 1. Characteristics of the main spectroscopic samples used in the DES
Y1 analysis.

Survey Number of spectra Mean redshift Total weight
VVDS 11121 0.60 0.15
VIPERS 9455 0.58 0.13
DEEP2 7167 0.96 0.13
zCOSMOS 11751 0.54 0.13
WiggleZ 13496 0.57 0.10
3D-HST 7011 0.86 0.10
ACES 4244 0.58 0.08
0OzDES 12436 0.61 0.06
eBOSSELG 4322 0.96 0.03

assign quality flags to generate a larger data set (Section 2.5). The
RF sample is then reweighted so that the photometry is matched
to the target sample (Section 2.6), where we could compare the
redshift distribution with the truth. Finally, we discuss the various
simplifications in this procedure and how they might affect our main
results (Section 2.7).

2.1 Overview of spectroscopic data in DES

We use DES Y1 as an example survey to study in this paper, though
the principle that we explore is applicable to any similar experiment.
The DES Y1 weak lensing analysis carried out in DES Collaboration
(2019) and Troxel et al. (2018) used 26 million source galaxies to
place unprecedented constraints on cosmological parameters. The
basis of the redshift distribution of these source galaxies used in that
analysis is detailed in H18.

Table 1 and appendix A in Bonnett et al. (2016) summarize
the spectroscopic samples covered by the deep supernova fields in
DES, which serve as calibration fields for the main-survey redshift
distributions. As detailed in Sanchez et al. (2014) and Bonnett
et al. (2016), these photo-z calibration fields were chosen to overlap
with a number of key deep spectroscopic samples. In particular,
three of the fields, SN-X1, SN-X3, and SN-C3, are well-studied
extra-galactic fields containing VVDS Deep (Le Fevre et al. 2005),
ACES (Cooper et al. 2012) and the rich spectroscopy built up in
the SXDS / UKIDSS Ultra-Deep Survey (e.g. Hartley et al. 2013).
The other two calibration fields were chosen to overlap with the
VVDS Wide F14 field (Garilli et al. 2008) and COSMOS (Scoville
et al. 2007), which again provides a large number of spectroscopic
samples for training. Overall, the dominant spectroscopic samples
used in Bonnett et al. (2016) and H18 are VVDS, VIPERS (Guzzo
et al. 2014), DEEP2 (Newman et al. 2013), zCOSMOS* (Lilly
et al. 2009), WiggleZ (Parkinson et al. 2012), 3D-HST (Brammer
et al. 2012), ACES, OzDES (Childress et al. 2017), and eBOSS
(Dawson et al. 2016). Table 1 lists the major characteristics of
these samples. This table motivates the choices of spectroscopic
samples we simulate later in this paper. That is, although these
samples were not used as the primary redshift calibration method
in H18, if DES Y1 were to use a direct redshift calibration method
(or, the DNF algorithm, De Vicente, Sdnchez & Sevilla-Noarbe
2016), these would form the basis of the spectroscopic sample of
choice.

In this paper, we choose to focus on VVDS, VIPERS, and
zCOSMOS. The data for these three spectroscopic samples were

4We use ‘ZzCOSMOS’ to refer to the publicly available zZCOSMOS-bright
sample at 15 < i < 22.5.
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all taken by the same instrument, VIMOS (Le Fevre et al. 2003),
and are three of the four surveys that carry the greatest weight in our
DIR-like algorithm.> VVDS is further split into ‘Wide’ and ‘Deep’
fields. We note that due to limitations in our simulations, we will
not perform this study with the DEEP2 sample. The DEEP2 sample
was taken via the DEIMOS spectrograph (Faber et al. 2003), and has
the particular strength of high enough spectral resolution to split the
[OII] doublet. The k-correct templates used for this work are at
lower resolution, cannot replicate that strength, and thus would not
allow meaningful results to be obtained from our simulations.

2.2 Mock galaxy catalogue

The simulated spectroscopic surveys that we produce for our
analysis are based on an initial selection from the Buzzard (v1.1)
mock galaxy catalogue (DeRose et al. 2019; Wechsler et al., in
preparation). In this set of simulations, three flat ACDM dark-
matter-only N-body simulations were used, with 10503, 26003,
and 4000° Mpc® h=3 boxes and 1400°, 20483, and 2048° particles,
respectively. These boxes were run using LGADGET-2 (Springel
2005) with 2LPTIC initial conditions from Crocce, Pueblas &
Scoccimarro (2006) and CAMB. The cosmology assumed was €2, =
0.286, Q, = 0.047, 05 = 0.82, h = 0.7, nyg = 0.96, and w =
—1. Particle light-cones were created from these boxes on the fly.
Galaxies were then placed into the simulations and grizY magnitudes
and shapes assigned to each galaxy using the algorithm Adding
Density Determined Galaxies to Light-cone Simulations (Wechsler
et al., in preparation). Each galaxy is assigned a Spectral Energy
Distribution (SED) from SDSS DR6 (Cooper 2006) by finding
neighbours in the space of M, — X5, where X5 is the projected
distance to the fifth nearest neighbour in redshift slices of width
Az = 0.02. These SEDs are k-corrected and represented by five
coefficients that correspond to five k-correct templates. The
spectra are then integrated over the appropriate bandpasses to
generate the DES grizY photometric magnitudes. A further post-
processing step is used to add appropriate photometric errors to
the magnitudes according to what is measured in the DES Y1
data.

2.3 Simulated spectroscopic training set

We now wish to construct simulated spectroscopic surveys from the
mock galaxy catalogue described above. Specifically, this includes
simulating the target selection function and the spectra of those
targets with the expected signal-to-noise ratio (S/N).

As described in Section 2.1, the four data sets of interest are VVDS
Deep, VVDS Wide, VIPERS, and zCOSMOS. Simple magnitude
and colour cuts form the target selection in each of these surveys
(see Table 2 for the magnitude and colour cuts used in each
sample). Our simulated data contain both noiseless, true photometry,
and simulated observed photometry, as described in Section 2.2.
Spectroscopic targeting was performed with the true magnitudes to
reflect the fact that typically deeper data were used during the real
target selection, and to avoid a one-to-one correspondence with the
simulated DES photometry (again, to better reflect the real situation).
The selections were sampled from areas of sky that are similar to
the real survey data, and placed with similar angular separations as

SHere, ‘weight’ refers to the fraction of the photometric sample that is
represented by galaxies in the survey after adjusting for representativeness,
following Lima et al. (2008).
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Table 2. Observational parameters used to generate the simulated spectra.

Survey VVDS Wide VVDS Deep VIPERS zCOSMOS

Selection criteria 175 <i<?225 175<i<?24 175 <i < 22.5; 15<i<?225
r—i>05wu—gorr—i>07

Exposure time (s) 45 270 45 60

Number of spectra 21550 12932 20452 20689

Sky emission model ESO VIMOS Exposure Time Calculator Noll et al. (2013)

Instrument transmission ESO VIMOS Exposure Time Calculator Le Fevre et al. (2003)

Slit loss 30 per cent

Mirror area (m?) 51.86

Star fraction 0.0 0.0 0.0488 0.0633

the real surveys, to capture the appropriate field-to-field variance
uncertainties. However, note that this simple selection does not take
into account other complexities in a real target selection scenario
where, e.g. slit mask constraints are an issue.

Next, observational parameters of the different surveys need to be
defined. We use the parameters listed in Table 2. These are based on
outputs from the ESO exposure time calculator for VIMOS, which
uses sky illumination and transmission function defined in Noll et al.
(2013) and Le Fevre et al. (2003), respectively. We choose to apply
average values for moon phase (grey) and slit losses (30 per cent) to
all objects for simplicity.

To generate a simulated spectrum that mimics the noisy spectra of
the real surveys after sky-subtraction and calibration, we start from
the mock target list described above and carry through the following
steps:

(1) Multiply k-correct templates with coefficients provided in
the mock galaxy catalogue to get a rest-frame spectrum.

(ii) Redshift the rest-frame spectrum to the galaxy’s redshift z so
that the spectral flux density at X is shifted to (1 4+ z)X.

(iii) Re-bin the spectrum to the required instrument resolution.

(iv) Convert the flux density into units of photon counts per
wavelength bin.

(v) Apply slit-loss factor and transmission.

(vi) Add sky background (which already includes the transmission
efficiency).

(vii) Poisson sample the noisy spectrum (including sky).

(viii) Subtract an estimated sky background. In practice, the
number of sky pixels in each slit means that this value is close
to the true value.

(ix) Divide by the transmission and slit-loss factor to correct for
instrument response and flux-calibrate the spectrum.

This process is done for all the objects in all the surveys and packaged
into FITS files that could be easily loaded into the redshifting program
for the next step. See also Fagioli et al. (2018) for a similar process
applied to simulate SDSS spectra.

In Fig. 1, we show two examples of simulated spectra from our
simulated VVDS Wide data set. The top panels of Fig. 1 show the
noiseless rest-frame spectra. These example objects were chosen to
be intrinsically fairly similar galaxies, but with different redshifts and
confidence flags (explained in the next section). The middle panels
show the ‘observed’ spectra with noise and sky background. It is
clear that the sky dominates the signal. The bottom panels show the
calibrated spectra following corrections due to the transmission and
estimated sky (yellow) and the true spectra (black). We see that the
simulated spectra recover the shape of their respective input spectra
very well in the range 5500-9900 A;. The galaxy in example 1 is

MNRAS 496, 4769-4786 (2020)

slightly brighter than that in example 2, which results in a higher S/N
spectrum.

‘We note that for practical reasons, we have made several simplifi-
cations in the above procedure (see a list of simplifications discussed
in Section 2.7). As a result, we expect the estimation from this
analysis to be conservative — further complications of the data should
introduce higher redshift biases.

2.4 Redshifting and quality flags

The spectroscopic surveys that we aimed to reproduce had redshifts
determined by a combination of template cross-correlation, emission
line detection, and a human inspection to confirm or replace those
determinations. Importantly, the flags that represent the confidence
that a given spectroscopic redshift is correct were all assigned by
human observers. To be able to estimate the impact of any selection
biases introduced, we must follow as close an approach as is practical
and therefore also use human redshift and quality flag determinations.

Redshifting of the simulated spectra was performed by a team of
eight observers with mixed levels of experience. Most were familiar
either with redshifting optical spectra from AAOmega or VIMOS.
Two of the eight had not performed such a task before and of our
observers, two performed around 50 per cent of the redshifting. We
use the software package MARZ® (Manual and Automatic Redshifting
Software, Hinton et al. 2016), which is a web-based semi-automated
template-fitting application, similar in essence to the commonly used
EZ program for VIMOS (Garilli et al. 2010). MARZ uses a cross-
correlation algorithm to match input spectra against a variety of
stellar and galaxy templates to solve for the redshift.

We generated a total of 75623 simulated spectra (the sum of the
number of spectra in all the samples in Table 2), and randomly
selected 12000 for the redshifting procedure. These spectra were
split into 40 subsamples, and each redshifter examined one or more
of these subsamples and returned their results. We did not attempt
to redshift all the spectra, as it was impractical to replicate the
redshifting of three full VIMOS surveys, but instead choose to train
a RF using these 12000 spectra and generate the full data set in
Section 2.5.

The task for these redshifters is to assign a best redshift and an
estimate of how secure they believe that redshift to be in the form
of a redshift quality flag. Each flag value corresponds to a different
confidence level of the determined redshift:

(1) Flag = 4: essentially 100 per cent certain
(ii) Flag = 3: 95-99 per cent certain
(iii) Flag = 2: 90 per cent certain

Ohttps://samreay.github.io/Marz/
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Example 2 (i=22.3,z=1.19, flag = 2)
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Figure 1. Example spectra from the simulated VVDS Deep survey. Top panels: Original rest-frame linear combination of k-correct components. Middle
panels: Poisson-sampled spectrum including sky emission. Note that the apparent shape of the spectrum is dominated by the sky emission. Bottom panels:
Final sky-subtracted and calibrated simulated spectrum (yellow) overlaid with the true spectrum (black). The former is what is passed on to the next stage for
redshifting. The i-band magnitudes as well as the true redshifts for the two galaxies are listed at the top of the figure. The spectra on the left represents an
example of a good spectrum (Flag = 4), while the spectra on the right represent a spectrum of relatively poor quality (Flag = 2).

(iv) Flag = 1: 50 per cent certain
(v) Flag = 0: a guess

In addition, there is a special flag 6 (9 in the VVDS scale), which
is for cases where there is a clear emission line, but insufficient
supporting information to be able to tell which line it is — i.e. there
are a small number of possible redshifts, but the values can be quite
different from one another. For most of this work, we later re-assign
these flags as 2.5 because they effectively sit in between Flags 2 and
3 in confidence for the purposes of weak lensing experiments. In
practice, almost all flag 6 objects were given the correct redshift, but
because even a small fraction of wrong redshifts can cause biases,
such objects are typically not used in analyses on real data.

In the spectra shown in Fig. 1, example 1 has been given the highest
confidence flag. The strong and clear emission line is in a clean part of
the spectral range, relatively unaffected by bright sky lines, and easily
identified as [O11] based on the abundant supporting information: a
break in the continuum, multiple Balmer absorption lines and weak
but present [O 111] + H 8 lines. In contrast, the ambiguity over whether
the [O11] line is real or a sky subtraction residual in Example 2,
together with the lack of convincing supporting evidence (lower S/N
Balmer lines), results in a Flag = 2 determination. Had the object
been at significantly lower redshift a higher confidence would almost
certainly have been assigned. This is a fairly common mode of failure
in attempting to obtain a secure redshift. Other typical failure modes
include key emission lines in blue galaxies lying entirely outside

the spectral range, the 4000 A; break of red galaxies lying outside
the range (which occurs at both high and very low redshift in the
MR and LR-red grisms) and dust extinction reducing the S/N of
emission lines and/or the 4000 A break. Spectra of very low S/N
can be problematic too, if they do not happen to have multiple clear
emission lines within the spectral window. Finally, observers can
occasionally find it difficult to assign confident redshifts if a spectrum
presents unexpected features (e.g. those associated with the presence
of an AGN), or if it is a blend of two objects at different redshifts.
These factors result in a highly complex selection function in the
joint space of galaxy type, redshift, and luminosity.

The above procedure is clearly not objective. Different redshifters
may have different scales in mind when assigning confidence flags to
the spectra they inspect. In fact, depending on external environmental
conditions, a single observer can change the confidence scale for the
same object from one sitting to the next. In the real surveys that our
simulations are based on, each spectrum was inspected by more than
one observer and an arbitration procedure was followed in the case
of conflicts in redshift and/or quality flags. While it cannot guarantee
uniformity across a large data set, this process at least helps to reduce
the subjective variance between observers. To achieve the same goal,
we introduced an overlap into the subsamples that are selected: we
ensure that at least 10 per cent of each subsample is also present
in another subsample. In this way, a fraction of the human-viewed
spectra is redshifted by two or more observers, or even by the same
observer twice or more.

MNRAS 496, 4769-4786 (2020)
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Using these multiply-viewed spectra, we standardize the observer
flags in the following way:

(i) For each redshifter, we examine the internal consistency of
their flags. That is, if they always gave consistent flags for the same
object, they will have a higher rank.

(ii) This ranking for the redshifters will dictate which solution is
accepted in the case of multiply observed spectra.

(iii) In addition, each observer, in order of rank, is given a shift to
all flag values equal to the mean of their difference with the highest
rank observer that they share >20 objects with.

(iv) The result of this procedure is a set of new (decimal value)
flags for each object, which extends beyond 4.

In Section 3.2, we examine how the main results of this work change
if we do not standardize the flags.

2.5 Generating the full spectroscopic sample through random
forest

We use the standardized set of redshifter flags (which we will refer
to as ‘human flags’) obtained from the previous section as a training
set to expand our sample to the full spectroscopic data set generated
in Section 2.3. Specifically, we use an RF in regression mode, with
features computed from the simulated spectra and a single output
(the redshift confidence flag).

For the training, the whole sample is used, irrespective of survey
origin. The features that are used for the training are the S/N of
emission and absorption lines, and the strength of the 4000 A break.
In particular, we calculate the S/N of the spectra in the rest-frame
wavelength window AX = 100 A; around the absorption lines listed
in Table Al in Appendix A.

Our approach implicitly assumes that these are the features that
humans use and ignores additional information such as shape of
the continuum. In practice, continuum shape is sometimes used as
supporting information in a redshift determination, but it is unlikely
that it is sufficient to change a moderate confidence redshift into one
of high confidence.

In Fig. 2, we show RF flags for the sample where human flags
are also available. We note that they are strongly correlated, but
with a scatter width ~1 and a mean slope of the distribution that is
smaller than 1. The inset panel shows a partial receiver operating
characteristic (ROC) curve of the RF-predicted flags, showing the
completeness versus contamination of the RF sample for different
threshold values of the predicted flag (Flag = 2, 2.5, 3 is marked
on the curve). In Section 3.2, we show that our results are largely
insensitive to whether we use human or RF flags.

In Fig. 3, we compare the distribution of the quality flags from our
simulated data set with real distributions from VVDS, zCOSMOS,
and VIPERS. It is clear that our determinations are on average of
higher confidence class. This is due to (1) the fact that the simulated
spectra are somewhat idealized and (2) differences between the
confidence indicated by a given class between surveys — for instance,
our Flag = 3 corresponds more closely to Flag = 2 in VIPERS. In
the later analyses, we investigate the redshift bias as a function of the
flag threshold — one could adopt a higher flag threshold to account
for the idealistic aspects of the simulations and any variance in the
meaning of the confidence flags.

2.6 Re-weighting and the target sample

As we mentioned in Section 1, when using spectroscopic redshifts
directly to infer the redshift distribution in weak lensing surveys,
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Figure 2. Random forest (RF) prediction of redshift quality flag against
those determined by human observers. The mean predicted flags span a
smaller range of values than the true flags, while the overall dispersion is
of order 1. The bottom right inset shows a receiver operating characteristic
(ROC) curve of how well the RF performs in selecting objects to be retained
or cut as the flag threshold value is changed. At the canonical threshold value
of 3 the contamination by less secure objects and RF-induced loss of high-
confidence objects are both fairly well contained, at the ~5 per cent level.
Samples cut with higher flag values are pure, but suffer a greater level of RF-
induced incompleteness, resulting in a sample that is smaller than it should be.
Conversely, at lower flag numbers the selected sample will be larger and more
complete than it should be due to contamination by objects of intrinsically
lower confidence. In Section 3.2, this ROC curve translates into a slightly
overestimated bias at the highest flag thresholds, and underestimated bias at
lower flag thresholds.

common practice is to re-weight the sample, following, e.g. Lima
et al. (2008), to account for any mismatch in the distributions of
photometry between the spectroscopic and weak lensing data sets.
We implement such a procedure, re-weighting the spectroscopic
sample in our simulations (constructed by applying a given quality
flag cut on the spectroscopic sample described in previous sections)
to a target weak lensing sample. Weighting is performed with a k-
nearest neighbours algorithm in four-dimensional colour—-magnitude
space (g — r, r — i, i — z, i-band magnitude), reflecting the DES
survey observing strategy.

Throughout the paper, we assume four target samples — matching
the four tomographic weak lensing source samples used in H18. We
assign all the galaxies to four tomographic redshift bins (0.2 < z <
0.43,0.43 <7 <0.63,0.63 <z <0.9,and 0.9 < z < 1.3) via the mean
redshift of the p(z) output by the Bayesian photometric redshifts code
(BPZ; Benitez 2000), which is run on the simulated ‘observed’ fluxes.
The BPZ set-up and binning scheme above follows the one used for
the DES Y1 cosmology analysis H18. An i < 23.4 cut is also applied
to all the four samples — this roughly mimics the weak lensing source
galaxy selection, and is the target sample used throughout the paper,
though real source catalogues have a softer magnitude cut due to the
complexities of morphology and brightness in the selection cuts. In
Table 3, we list the characteristics of this target sample compared
to the DES Y1 weak lensing sample. Our target sample is slightly
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Figure 3. Distribution of human-determined redshift quality flags for our
simulated data sets (the dotted), compared with those from the real survey
data (the filled grey). We also overlay the calibrated flags in red.

fainter on average than the DES Y1 sample. However, there is a tail
that extends to fainter magnitudes in DES Y1 that our target sample
does not include. These two contrasting differences mean that our
target sample is fairly consistent with the DES Y1 sample in the
mean redshift. Also, note that the spectroscopic sample described
previously is selected from a subregion of this target sample.

2.7 Simplifications in our approach

Our simulations and analysis approach are idealized in several
aspects. We discuss the simplifications in this section, but note that the
purpose of this study is not to simulate a high-fidelity spectroscopic
sample and estimate the exact value of the bias due to spectroscopic
incompleteness (nor is it practical to do so). Rather, we use reasonable
assumptions to illustrate the point that spectroscopic samples used
to calibrate weak lensing surveys can in principle be biased due
to selection effects in constructing the spectroscopic sample itself,
even after re-weighting is applied. With the simulations, we can also
estimate the order of magnitude of this effect and compare with
other systematic uncertainties in the redshift distributions. We also
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note that the simplification of the simulated spectra generally leads
to a conservative estimate of the bias (i.e. the true bias in the data is
likely to be higher).

The first class of simplifications are those associated with simu-
lating the spectra:

(1) We do not include the particularly severe red fringing that is
seen in early VIMOS surveys.

(i) We assume fixed sky spectra and perfect knowledge of the
transmission curve.

(iii) We ignore instrument flexure, misaligned slit masks, and poor
flux calibration.

(iv) The spectra are based on k-correct templates, which only
produce a limited range of unique spectra.

(v) The Buzzard simulations themselves do not include all galaxy
types as they are matched to a limited population and redshift of
galaxies in SDSS.

(vi) We specify each survey with only the parameters listed in
Table 2.

The second set of simplifications and approximations are those
made in the process of generating the quality flags for the full
spectroscopic sample:

(1) We use the RF flags, which differ slightly from the flags that
would be determined by a human redshifter.

(i) We account for the observer—observer scatter by the simple
priority and standardization scheme described in Section 2.4

Finally, to cleanly isolate the effect of the spectroscopic selection
effects from the photometric redshift estimation algorithm we use
the true redshift instead of the estimated redshift when evaluating the
bias in the mean redshift. Implicitly this choice also avoids the need
to simulated complex survey-dependent effects such as blending,
which can result in an incorrect, but confident, redshift assignment
based on the wrong spectral features (e.g. Masters et al. 2019).

Some of the effects we neglect, e.g. poorly aligned slit masks,
will produce redshift failures that are essentially random as to
which objects they impact. In such cases our estimated redshift
biases would not change, simply the level of shot noise in the
analysis would increase if we were able to model those effects
correctly. Other simplifications will have the effect of making the
human redshifter’s job easier, and hence result in a more confident
flag assignment. Using the canonical flag threshold of Flag >3 to
determine the high-confidence sample (where appropriate) we are
therefore being overinclusive as to which objects are retained and
thus underestimating the magnitude of any redshift bias.

3 QUANTIFYING SPECTROSCOPIC
INCOMPLETENESS BIAS

3.1 VIPERS: survey-constructed incompleteness

Before examining the impact of incompleteness in our simulated
data, we briefly revisit sample selection effects in spectroscopic
surveys. In Bonnett et al. (2016), we showed that the artificial upper
redshift limit that was used for determining spectroscopic redshift
solutions in the PRIMUS data set (Cool et al. 2013) is propagated by
machine learning algorithms to the redshift distribution estimation
of the science sample. As a result, PRIMUS redshifts were not used
in determining the redshift distributions of the weak lensing samples
in DES Collaboration (2016). Because of the size of the PRIMUS
sample (88040 galaxies) and the fact that this bias was imposed
during redshift determination, the effect was rather clear and could
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Table 3. Characteristics of the weak lensing sample in DES Y1 compared to that used in this paper
with a simple magnitude cut i < 23.4. In this table, the first number is for the DES Y1 sample and
the second number the target sample used in this paper.

Survey 02<z<043

043 <z<0.63

0.63<z<09 09<z<13

Mean magnitude
Mean redshift

21.4;21.7
0.38;0.35

21.7;22.1
0.51;0.45

22.0;22.3
0.74; 0.74

22.5;22.8
0.96; 0.99

not be compensated for by applying weights (e.g. Lima et al. 2008).
However, spectroscopic samples are frequently selected for specific
science purposes and many of the remaining samples contain biases
of their own, for instance, because of using colour cuts to isolate
particular redshift intervals. If an employed colour cut is not available
to a particular weak lensing experiment, then it is possible for small
biases in redshift to be introduced during re-weighting, purely due to
the projection in colour space. We demonstrate this issue using the
simulated VIPERS spectroscopic sample described in Section 2.3 as
an example. We will also for illustration purpose use a target sample
that is different from what we use in the main analysis.

The VIPERS team used a pair of selection criteria in colour
space to broadly separate objects at z > 0.5 from the lower redshift
population based on an initial i-band-selected catalogue. Identifying
objects in this way enabled a very efficient survey strategy, due
to strong spectral features falling within the spectral window of
the LRred grism on VIMOS. The final data set is large with high
completeness (90.6 per cent at redshift confidence >96 per cent,’
Guzzo & Vipers Team 2017) with just 45 min of exposure time per
target. In the DES final redshift catalogue (Gschwend et al. 2018),
there are similar numbers of objects from the VIPERS data set and
from the pure i-band-selected sample of VVDS wide (17.5 < i <
22.5).

To illustrate the issue, we first apply the i-band selection criterion,
17.5 < i < 22.5, to the Buzzard galaxy catalogue. This sample will
be used as the target sample here, note that the selection criteria is
identical to that of VVDS wide (see Table 2). The distribution of this
sample in (r — i) versus (u — g) colour space is shown in the inset
of Fig. 4, together with the VIPERS selection criteria [blue outline,
(r—1) > 0.5(u — g) or (r — i) > 0.7] and two other colour-defined
subsamples (the black and red outlines). The redshift distributions of
the galaxies in these three samples are shown in the main panel of
Fig. 4. As expected, the vast majority of z > 0.5 galaxies in the red
selection region are contained within the black selection box (and
hence within VIPERS), and the black region contains almost zero
low-redshift galaxies. We assign all the galaxies to four tomographic
redshift bins as described in Section 2.6.

Next, we calculate the redshift bias for a sample of galaxies that
contain a mix of VIPERS and VVDS wide galaxies. The redshift
bias is defined as the difference in mean redshift of the weighted
spectroscopic sample and the target sample. The weighting accounts
for the difference in the colour—-magnitude distribution in the sample
compared to the target sample, but only in the colour-magnitude
space that is available to DES photometry (griz). Negative redshift
bias values indicate the spectroscopic sample is biased towards low
redshift. Fig. 5 gives the bias in each tomographic bin where the
target sample is always the full sample with the 17.5 < i < 22.5
magnitude selection. The x-axis corresponds to different ratios in the
number of VIPERS sources to VVDS wide sources. The samples are

"This estimate includes slightly lower confidence flags than typically used
for weak lensing analyses.
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Figure 4. Redshift distribution of galaxies matching the VIPERS colour
selection: (r — i) > 0.5(u — g) or (r — i) > 0.7 (solid), an (r — i) < 0.7
sample, and a sample selecting just where VIPERS overlaps at (r — i) <
0.7. These latter two samples have different redshift distributions, and so
re-weighting without (u — g) colour information will result in biases. Inset:
these three samples in (u — g) versus (r — i) colour space.
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Figure 5. Bias in the mean of the redshift distribution for four tomographic
bins between a galaxy sample consisting a mix of VIPERS and VVDS
wide galaxies and our target sample selected through a simple 17.5 < i
< 22.5 selection. A weighting scheme is applied to the redshift distribution
of the galaxy sample to account for the difference in the colour—-magnitude
distribution in the VIPERS/VVDS sample and the target sample. From left
to right, we vary the relative fraction of VIPERS and VVDS galaxies. The
mean redshift is biased high in the two lower redshift bins when a significant
fraction of the sample comes from VIPERS.

assumed 100 per cent complete and occupy the same region of sky
— hence the bias is due purely to the imprint of the VIPERS colour
selection function.

We note here that when only VVDS wide galaxies are used
(Nvipers/Nvvps = 0), the spectroscopic sample is just a subset of
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the target sample therefore the reweighting is perfect and the bias is
essentially zero.

However, as we move to the right on the x-axis in Fig. 5, we see
that the two low redshift bins become more biased as the fraction of
VIPERS galaxies increase in the sample — the bias is around a couple
of per cent and increases the mean redshift of the bin. This is due to
the lack of low redshift VIPERS galaxies that did not get properly
compensated with the weighting scheme. On the other hand, the
biases in the high-redshift bins are much smaller and consistent with
being simple noise fluctuations. In DES Y1 data, Nyipgrs/Nvvps ~
1, suggesting a ~0.015 bias in the mean redshift in the low-redshift
bins. One way to think of this selection function is that relative
to a complete 17.5 < i < 22.5 sample, the spectroscopic data set is
systematically incomplete at red # — g colours and blue r — i colours.
The crucial point here is that information is used to select objects
that is not accessible to the survey, and hence the selection cannot be
compensated for.

There is similar potential for a selection-induced bias in relying
heavily on the DEEP2 data set. The DEEP2 team used a set of
softened colour cuts to pre-select galaxies at z > 0.75 in three of their
four fields, including the one covered by DES data. The one control
field with a purely magnitude-limited selection is in the extended
Groth strip, and therefore too far North for DES, KiDS, or LSST.
The DEEP2 colour cuts used B-, R- and /-band data, and therefore
cannot be reproduced in the DES photometry. We might anticipate a
smaller bias than shown for VIPERS, on account of the fact that the
missing band (B band) is closer in effective wavelength the bluest
DES band (the g band) than in the case of VIPERS, where it is
the U band that is missing. However, it will also depend on the
relative number of spectroscopic objects used and thus a reliable
estimate would require that a realization of the selection strategy be
performed.

We can draw a direct analogy from the VIPERS example above
to generic selections of spectroscopic samples — it is the strength of
the available spectral features that determine whether a galaxy can
be used for redshift validation. These spectral features are similarly
information used for the selection that cannot be accessed with the
photometric survey data. We will now examine the impact of making
selections on spectroscopic information.

3.2 Impact of incompleteness

Having examined the simple case in Section 3.1, we now move
on to the full spectroscopic sample constructed in Section 2. We
combine the four simulated surveys as is typically done with real
data: naively concatenating the data sets, cutting galaxies below some
redshift flag criterion and then giving each object a weight such
that the overall sample mimics the colour-magnitude distribution
of the target sample (here, we weight in griz, as done in DES
Y1). We then compute the difference in mean redshift between
this sample (constructed to be incomplete due to the imposed
flag cut) and the target sample [four i < 23.4 magnitude-limited
tomographic bins at 0.2 < z < 0.43,043 <z < 0.63,0.63 < z <
0.9, and 0.9 < z < 1.3], using the true redshifts of the simulated
galaxies — i.e. we assume that human redshift determinations are
infallible. In our data, this was indeed the case for the higher quality
redshifts (Flag >3), but is in general not the case, even for the
highest confidence objects. For instance, blends of multiple objects
at different redshifts lead to ambiguities, or even assiging a fairly
bright galaxy the redshift of a much fainter one due to only one of
the galaxies exhibiting emission lines (Masters et al. 2019). The
spectroscopic sample is re-weighted as described in Section 2.6
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Figure 6. Upper panel: Survey completeness as a function of flag threshold
in each tomographic redshift interval, split using the mean redshift derived
by BPZ, as performed in the main DES analysis. Lower panel: Bias in
mean weighted redshift as a function of flag threshold, using the galaxies’
true redshifts. The spectroscopic sample is weighted to match the colour—
magnitude space of a sample complete to i < 23.4 in the same simulation
fields. The bias in the mean redshift comes from systematic incompleteness
in the spectroscopic sample. The diamond markers show the same results
using unstandardized flags. We also highlight the region |[Az| < 0.015, which
is the approximate uncertainty in the DES Y1 photo-z from COSMOSI15
calibration.

and an estimate of the redshift distribution for the target sample is
derived.

Fig. 6 shows the completeness and (Zspec) — (Zuue) as a function
of the flag threshold. Here, (zsec) is the mean redshift for the
unweighted and weighted spectroscopic sample after some flag
threshold selection and (zyy.) is the mean redshift of the target
sample. We use a simple i < 23.4 target sample and the tomographic
redshift bins as described in Section 2.6. The target sample in Fig. 6
covers the same fields as the spectroscopic survey. This is not to
say that it is entirely free from sample variance effects, and in fact
(Zspec) — (Zirue) 18 NON-zero even when objects with very poor flags
are included in the spectroscopic sample (Flag ~1). After weighting,
however, (Zspec) — (Zirue) is reduced to <0.01 across all tomographic
bins. Raising the flag threshold, we begin to see a degradation in mean
redshift recovery with respect to the complete sample case, even after
weighting. At a nominal high-confidence cut, Flag >3, the bias is still
small (<0.01—0.02) in the three lower redshift bins; though we note
that this level of error is already barely within the target accuracy.
The highest redshift bin suffers a substantial bias of ~0.05. An error
of this size means that incomplete spectroscopic samples such as
those considered here are a poor choice for validating high-redshift
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Figure 7. Redshift histograms for complete (black), incomplete at Flag
<3 (blue shaded) and weighted (red) samples. The weighting matches the
incomplete sample to the complete one in colour—magnitude space, but results
in residual mismatches in the redshift distribution. The bars on the top of each
panel mark the mean redshift for each of the distributions.

samples. We show in Fig. 7 redshift histograms for the samples cut
at confidence Flag >3. Visually, we see that the reweighting scheme
performs well in recovering the shape of the redshift distributions
in all bins, correcting differences in the tails as well as the shape
of the core distribution. However, there are some small differences
remaining, resulting in the overall error in the mean redshift.

The fact that the effect of spectroscopic incompleteness is most
severe in the high-redshift tomographic interval is hardly a surprise.
The range 0.9 < z < 1.3 includes galaxies with important strong
spectral features — the 4000 A; break and [O 11] emission line doublet
— buried in bright sky lines or even falling outside the useful spectral
window of the red VIMOS grisms. Galaxies at these redshifts are also
fainter on average than those in the lower redshift subsamples, and the
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increased photometric errors act to broaden the redshift distribution
at any given location in colour space. The combination of redshift-
dependent incompleteness at fixed colour and reduced ability to
localize objects in colour—magnitude space results in weighting being
ineffective.

As noted above, the y-axis in the bottom panel of Fig. 6 (lower
panel) contains both the effect from the flag threshold cut and the
fact that there is field-to-field variance between the four spectroscopic
surveys we are simulating. In Appendix B, we isolate the two effects
and show that our main conclusions remain the same.

We have also tested the full analysis using unstandardized (integer)
flags and show the results as the diamond markers in Figs 6 and B1.
Overall, the predicted biases are lower with unstandardised flags
and look visually more similar to the human flags described later in
Section 3.3. However, we decide to use the RF flag in our fiducial
analysis because (1) the flags in real data are not always integers
and (2) the flag assignment (and therefore the exact structure in
the curves in Fig. 6) is arbitrary and survey dependent. In addition,
since the bias in the highest redshift bin with the unstandardized
flags still exceeds the requirement, our main conclusion does
not change qualitatively. Essentially, we can view the standard-
ized and unstandardized flags to bracket the range of biases we
expect.

3.3 Dependence of target and comparison with human flags

Previously, we have assumed that our weak lensing source sample,
or the target sample, is a i < 23.4 magnitude-limited sample. We
also noted in Table 3 that this target sample is slightly deeper
than the DES Y1 weak lensing sample. Here, we explore a more
general situation and ask how our results change when we vary
the magnitude limit of the sample. Effectively this shows, with the
same spectroscopic sample, the change in the redshift bias from
spectroscopic incompleteness as a function of the survey depth. The
left-hand panels of Fig. 8 show the redshift biases for the raw and
weighted samples at different depths, for the highest source bin in
Fig. 6. As expected, the bias becomes greater as we go to deeper
target samples. While the reweighting can correct for some of the
incompleteness, once the target sample is deeper than i ~ 23, the
limitation of the reweighting becomes apparent, as the number of
spectra at those depths become relatively sparse as well.

We also show, in the right-hand panels of Fig. 8, the same plot
as the left-hand panels, but using human redshift flags instead of
the RF flags. There are several characteristics of this plot which are
different from the left-hand panels that come from the construction
of two sets of flags: First, the human flags are much fewer in number
and therefore noisier. Secondly, the human flags are more quantized,
which is expected since the human flags cluster more around integers
and the RF flags smooth out this behaviour. Thirdly, the roll-off of the
curves going from Flags 3 to 4 in the RF flags seem a lot faster than
the human flags. This could be the RF interpolating over regions
without a lot of data. Fourth, there is one curve (i ~ 23.2) in the
human flags that appears qualitatively different from the others; this
is likely due to noise.

We note that, despite these differences, our main conclusion holds
for both human and RF flags: at the relevant flag thresholds of
3-3.5, the redshift bias in a DES Y1-like weak lensing sample at
redshift >0.9 exceeds the uncertainty in other calibration methods.
These results are consistent with that shown in Bonnett et al. (2016)
and Gruen & Brimioulle (2017). The former estimated a bias of
0.05 for the DES Science Verification data set, while the latter
measured the bias in the mean redshift introduced from spectroscopic
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Figure 8. Left-hand panels: Redshift bias from spectroscopic incompleteness as a function of flag thresholds for target samples of different depth, at 0.9 < z <
1.3. The upper panel shows the bias from the raw sample, while the lower panel shows the bias in the reweighted sample. We highlight the region |Az| < 0.015,
which is the approximate uncertainty in the DES Y1 photo-z from COSMOS15 calibration. We also mark flag threshold = 3, which is the typical flag adopted
to construct spectroscopic samples. Right-hand panels: Same as the left-hand panel but only using human redshift flags and not RF flags. In both panels, the

thick lines mark the fiducial target sample used in this work.

incompleteness in existing data to be at the level of ~0.1 with a much
deeper sample i < 25. In Appendix C, we compare our results with
those estimated by Gruen & Brimioulle (2017) for a sample matched
in limiting i-band magnitude.

3.4 Discussion

The effect that we have investigated can be summarized as a deficit
in our knowledge of p(z, T, flux). Here, flux represents the vector
of photometry measurements to be used, and clearly correlates with
redshift, z, and galaxy SED type, T. Through spectroscopy, we have
access to only a limited region of this joint probability space of
redshift, galaxy SED, and flux, while in our target sample we know
just the marginal distribution, p(flux). Even in the best cases, e.g.
upon completion of the C3R2 programme (Masters et al. 2017),
we will still have a selection function in flux with respect to the
target sample, i.e. there is a co-variate shift. In the samples used in
this work, this selection function is in both brightness and colour,
while in a completed C3R2 it would be in brightness alone. Because
p(flux) correlates with z and T in a way that is currently unknow-
able accurately, matching the marginal distributions in p(flux) of

the spectroscopic and target samples cannot guarantee the correct
recovery of p(z, T, flux), or the marginal p(z). In other words, multiple
different distributions in p(z, 7, flux) can result in the same marginal
distribution, p(flux), and without full knowledge of p(z, T) we are
blind to which of them is correct. In practice, the situation is likely
to be worse than this, and even the eventual C3R2 will likely suffer
some degree of (unknown) selection in z and T in addition to flux. To
use a simple weighted spectroscopic sample as an estimator of the
redshift distribution of a weak lensing sample, we therefore require
a sample complete in both colour and amplitude (i.e. flux), with very
low incompleteness of targeted objects.

In the case that the spectroscopic samples are not complete (or
at least very close to complete) and that failures are not random in
redshift, then the fundamental problem that we demonstrate in this
paper is formally undefined and therefore cannot be solved. There
is no solution that is identifiable in a statistical sense, in that we
cannot use the data available to correct for the missing objects. To be
clear, we do not know a priori that a given incomplete spectroscopic
sample is inadequate and will introduce a bias, but without filling
in the missing data neither can we be confident that we are free of
important biases. The approach taken in H18 was to side-step this
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difficulty through using a calibration sample that was by construction
100 per cent complete, and therefore not subject the sort of selection
biases that arise from non-random incompleteness. In doing so, the
authors made a trade-off, exchanging a possible source of bias for
less precise and less accurate redshifts in the form of high-quality
photometric redshifts. However, the systematic errors arising from
using such high-quality photo-z are more feasibly determined from
data than are the effects we have been concerned with in this work.

While we have explored a very simple algorithm for estimating
weak lensing redshift distributions from a spectroscopic sample,
the issue of non-identifiability extends to almost all approaches of
inferring redshift distributions (one notable exception perhaps being
the use of cross-correlation with a reference redshift sample, e.g.
Newman 2008). For instance, in deriving redshift probabilities via
model fitting, we cannot be confident that our SED set is complete
if we do not have a complete spectroscopic sample to test them
against. Similarly, more sophisticated algorithms that attempt to
separate the colour-redshift likelihood from the population density,
such as self organizing maps (SOMs), may have greater robustness
to incompleteness but cannot solve the underlying issue entirely. All
we can hope to achieve is to reduce the uncertainties introduced to
an acceptable level for a given cosmological analysis. In the next
section, we introduce a number of possible ways to approach that
task.

4 MITIGATION APPROACHES

We established in the previous section that spectroscopic incomplete-
ness could introduce a bias in the mean redshift for tomographic
weak lensing samples. Here, we discuss three potential approaches
to mitigate such biases. First, we consider using lower confidence
flags for selection of spectroscopic samples (Section 4.1). Secondly,
we consider removing particular regions in colour—-magnitude space
where the spectra are affected seriously by incompleteness (Sec-
tion 4.2). Thirdly, we consider correcting such biases via simulations
(Section 4.3).

4.1 Using lower confidence redshifts

Incompleteness in spectroscopic samples is not only a challenge for
cosmology experiments. The key surveys we have been simulating
were originally designed to answer questions about the evolution of
galaxies and incompleteness can bias those answers just as it can
bias cosmological parameter estimation. In Lilly et al. (2009), it was
suggested that the confidence in a spectroscopic redshift could be
increased if it is later found to agree with a precise photometric
redshift (such as are available in the COSMOS field) because the
photometric redshift uses complementary information. In this way,
they proposed a statistically complete sample that supplemented
the high-confidence redshifts with objects that showed just such
agreement.

From Fig. 6, it is clear that using objects with confidence flags as
low as 2 would achieve a level of bias close to the precision quoted
in H18, but would be insufficient for the highest tomographic bin in
any future analysis. We would need to use essentially all galaxies in
the sample for spectroscopy to be a useful addition to the validation
process. It is not obvious that all low-confidence objects will match
their respective high-quality photo-z, and the worry that some of
these are nevertheless wrong is a concern. Cunha et al. (2014) show
that even just 2 per cent of galaxies having wrong redshifts will
bias the Dark Energy equation of state parameter, w, by more than
10 per cent. Our simulations are not realistic enough to assess this
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point in detail, as the fraction of wrong redshift assignments is lower
than estimated in real spectroscopic data sets. We leave it to future
work, using more sophisticated simulations, to explore this avenue.

4.2 Removing troublesome regions of colour-magnitude space

When probing the large-scale structure, one of the main differences
between using weak lensing and using galaxy densities is that for
weak lensing the galaxy sample used for shear measurements does
not need to be complete, since they are merely probes of the lensing
field. That is, we could attempt to trade statistical precision (i.e.
use fewer galaxies) to reduce biases caused by systematic errors
in the galaxy sample, such as the effect studied in this paper —
incompleteness of the spectroscopic samples. A natural approach is to
use galaxy photometry to isolate subsets of our sample that are likely
to be impacted by biases due to incompleteness and exclude them
from the weak lensing sample. We investigate here one approach
for doing this — using SOMs (Kohonen 1982). An SOM maps a
high-dimensional space into lower dimensionality (typically 2D)
via an artificial neural network; SOMs were introduced as a tool
for exploring colour—space coverage of spectroscopic data sets in
cosmology by Masters et al. (2015). An SOM enables one to cleanly
assign each galaxy to a subsample in the quantized photometric
space.

We construct our SOM using ¢ — r, r — i, i — z, and i-band
magnitude from the i < 23.4 simulated photometric data. We choose
a 28 x 28 square map, with sigma = 3, learning rate = 0.4, and
periodic boundaries, using the PYTHON package MiniSom.® We have
confirmed that our conclusions are insensitive to reducing the map
size and to the precise values of the hyperparameters. However, for
this simple exploration we have not attempted to optimize the SOM
parameters. For each cell in the SOM, we collect the spectroscopic
redshifts of the galaxies that belong to that cell and determine whether
to retain or discard that cell based on a simple metric. We perform
two runs, once with each of the following criteria:

(1) If the spectroscopic failure rate is above f; (we use Flag <3
as a criteria for a failed redshift).

(i) If the intrinsic true redshift dispersion in the cell is greater
than o gpec.

After discarding certain SOM cells in both the spectroscopic
sample and the weak lensing sample, we reweight the spectroscopic
galaxies to match the weak lensing sample in the same way as
described in Section 2.6. We then explore how the bias due to
spectroscopic incompleteness changes as we removed progressively
more cells from the analysis.

Fig. 9 shows the bias in each redshift bin as a function of the
fraction of the i < 23.4 photometric sample that is retained for the
case where the two different criteria were used to discard SOM cells.
We have also explored the extreme case of the effect, using the i <
24 sample, to determine whether it is a suitable approach that could
be used for the final DES data set. Our conclusions are unaltered
with respect to the i < 23.4 sample, but reflect the larger bias seen in
Fig. 8. The uncertainties were derived by 50 realizations of the SOM
random seed, and therefore represent the uncertainty in the SOM
method only.

It is clear from Fig. 9 that redshift dispersion is the more effective
indicator to use for overcoming biases from spectroscopic incom-
pleteness. However, to reduce the impact to a similar level of uncer-

Shttps://github.com/JustGlowing/minisom
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Figure 9. Redshift bias from spectroscopic incompleteness in the four weak
lensing tomographic bins as a function of the fraction of source galaxies
used. All values here are after reweighting has been applied. From right to
left, we remove increasingly more cells from an SOM quantization of the
colour—magnitude space. The removal of cells for the upper (lower) panel is
based on the intrinsic spectroscopic redshift scatter o gpec (fraction of galaxies
where we failed to get a high-confidence redshfit fi,i;). The large open circles
mark o gpec = 0.2 (upper panel) and fgii = 0.5 (lower panel), the mid-points
of the ranges we consider.

tainty as H18 we must remove on the order of two thirds of our highest
redshift bin. Therefore, while it is a possible mitigation strategy, this
seems impractical for use in DES — the degradation of statistical
power will have a much larger impact than simply marginalizing over
a few percent of redshift biases from the spectroscopic incomplete-
ness. Note, however, that as we reduce statistical precision, the impact
of photo-z biases in the final parameter constraints will become less
important. With poorer statistical power, we would be able to allow a
greater error budget in the redshift distributions and could therefore
optimize the sample with somewhat greater numbers than Fig. 9
suggests.

This is not to say that approaches aiming to reduce incompleteness-
related biases with SOMs are necessarily futile. At higher di-
mensionality (e.g. KiDS 4 VIKING, Euclid + EXT, DES +
VIDEO), they may see greater success, as the SOM cells will
have narrower intrinsic redshift dispersion (provided photometric
uncertainties are not large). Moreover, implementations with greater
sophistication than the fairly naive one used in this work (e.g.
Alarcon et al. 2019; Buchs et al. 2019; Sanchez & Bernstein
2019; Wright et al. 2019) could be capable of more promising
results. Most of these methods seek to gain an advantage by
also utilising higher dimensional data. However, these are clearly
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areas of development work that are beyond the scope of this
paper.

4.3 Using simulation results to correct biases in real samples

It is tempting to ask whether we could simply use the bias computed
from our simulations (or a more sophisticated version of them) to
correct the mean redshift of real spectroscopic data sets, and thereby
be able to use spectroscopy to validate the redshift distributions in
weak lensing experiments. It could be worth further investigation, but
it would be extremely challenging in the the short term. To accurately
simulate the bias directly, we would need to know the true galaxy
distribution in redshift and SED type, have accurate galaxy SEDs and
be able to select a target weak lensing sample from the simulations
that represents the true target sample. Clearly, if we were confident
that we had all of this information then our problem is already solved
and we would have no need to perform these simulations.

One could instead imagine deriving galaxy type and redshift-
dependent incompleteness factors, which removes the need for an
a priori correct redshift distribution or mix of galaxy types. As the
redshift confidence flag depends on feature strength in the spectra, we
would still need to be confident that the equivalent widths of emission
and absorption lines in our simulations are appropriate at any given
redshift. Though our knowledge of high-redshift galaxy spectra and
SEDs has increased greatly over recent years (e.g. Maltby et al. 2016;
Wauyts et al. 2016; Kashino et al. 2017; Forrest et al. 2018), we are
still not quite at that stage.

5 SUMMARY

One of the crucial components for weak lensing as a cosmological
probe is the redshift distribution of the source galaxy sample. Even
small biases in the estimated redshift distributions can lead to
important biases in the final cosmological parameter estimates. These
potential biases in redshift, and the methods to overcome them or
incorporate them in analyses via nuisance parameters, have been
the focus of a growing literature (e.g. Cunha et al. 2012; Masters
et al. 2015; Bonnett et al. 2016; Gruen & Brimioulle 2017; Hoyle
et al. 2018; Joudaki et al. 2019). In this work, we examine one
particular method in which the redshift distributions are obtained —
by directly weighting the redshifts of a spectroscopic sample based
on the photometric properties of the spectroscopic sample and the
weak lensing source galaxies. In an idealized situation where the
following is true, this method results in an unbiased estimate of the
redshift distribution up to the limit of sample variance:

(1) The spectroscopic redshifts of the sample being weighted are
all correct.

(ii) The uncertainties in the photometry of the spectroscopic
sample are representative of the target sample.

(iii) At any given locale in photometric space, the available
spectroscopic redshifts are equivalent to a random draw from the
true redshift distribution of the target sample in that same locale.

We examine the validity of the last assumption here through
the use of simulated spectroscopic surveys, ensuring the other two
conditions are met by construction. In particular, we investigate how
the spectroscopic samples that are assembled for this purpose are
typically incomplete, either due to the imposed survey selection
function or due to the ‘redshifting’ procedure — human observers
inspecting each spectrum and assigning confidence flags to indicate
how secure the determined redshift is. We show that targeting
strategies that include a band or bands unavailable to the weak lensing
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source galaxies, such as the one employed for the VIPERS data set,
can introduce biases of up to A z ~ 0.04 (A z ~ 0.015 for the case
most closely reflecting the spectroscopy available to DES). While this
result is specific to the case of combining VIPERS and VVDS Wide
in varying amounts, any spectroscopic survey using a target selection
function outside the source galaxy photometric space could result in
a non-negligible bias.

As only highly confident redshifts can be used to construct
or validate the desired source galaxy redshift distributions, the
redshifting process introduces a subtle selection effect that is
analogous to that caused by the aforementioned targeting strate-
gies. Spectra of certain types and redshifts are preferentially
given a lower flag values due to having fewer or less promi-
nent features such as spectral lines or breaks. These features are
not uniquely determinable from the broad-band photometry avail-
able to weak lensing experiments, and could lead to a redshift-
dependent success rate in determining a confident redshift at
fixed locale in colour-magnitude space. In this way, an incom-
pleteness in the spectroscopic sample could lead to a different
inferred mean redshift of the target sample compared to the case
of having a complete spectroscopic sample. This incompleteness-
related bias from the spectroscopic sample cannot be removed with
the commonly employed re-weighting procedure of Lima et al.
(2008).

We carry out a simulated analysis to estimate the order of
magnitude of this source of bias for a data set similar to the first
year weak lensing analysis from the DES. Simulated spectra (which
include simple noise and sky models) are constructed to match three
of the four key spectroscopic surveys covered by DES and passed
to experienced observers, or ‘redshifters’, to assign quality flags.
Using these human-redshifted spectra as a training set, we use an RF
approach to enlarge the sample of spectra to a similar sample size as
that available to be used in DES Y1. Next, we derive the re-weighted
redshift distributions for the DES Y 1-like weak lensing sample and
compare the mean redshift of these distributions to that of the true
redshift distribution. We find that at a conservative redshift flag
threshold, Flag >3, the incompleteness-induced biases, Zspec—Zirues
in mean redshift are 0.004, 0.020, —0.002, and —0.057 for our four
tomographic bins (0.2 < z < 0.43,0.43 <z < 0.63,0.63 <z < 0.9,
and 0.9 < z < 1.3, respectively). Using only human-redshifted ob-
jects, these become 0.005, 0.018, —0.003, and —0.045, respectively.

We further explore how the bias in the highest tomographic
bin depends on the magnitude limit of the target sample, finding
that it becomes rapidly and progressively worse at depths greater
than DES-Y1. In two of our bins, these biases are at a similar
or larger level than the uncertainties of the photometric redshift
derived from COSMOS15, suggesting that direct re-weighting of the
spectroscopic redshifts is not an appropriate approach for DES Y1,
nor for the future DES analyses that will require still greater accuracy.

The impact of incompleteness is likely to be most severe for
surveys in which the intrinsic redshift distribution is broad in at
least part of the photometric space (either due to low dimensionality
or significant photometric errors), and where the target sample
extends to redshifts that are challenging to recover with current high-
multiplex spectrographs — the so-called ‘redshift desert’. Stage IV
weak lensing experiments such as Euclid and LSST are therefore
likely to face great difficulties in using spectroscopic redshifts for
direct validation, not withstanding tremendous efforts such as the
C3R2 programme (Masters et al. 2017, 2019).

It is worth noting that spectroscopic incompleteness is not only
problematic for direct calibration of photometric redshift distribu-
tions. Template SEDs used in deriving individual galaxy PDFs are
either drawn from low-redshift data, where obtaining a representative
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sample to low luminosity is possible, or synthetic composite SEDs
build-up from stellar isochrones. To be useful at the accuracy required
from cosmology analyses, these SEDs and their associated prior
probabilities need to be calibrated across the redshift range that
will be used or, perhaps, jointly estimated along with photometric
redshifts (Leistedt et al. 2019). Spectroscopic redshifts are frequently
used for this purpose (though low dispersion spectra or precise
photometric redshift might also be used; Hoyle et al. 2018; Forrest
et al. 2018). Redshift-dependent selection effects may therefore
subtly distort the calibrations applied, with the risk that these
distortions too introduce redshift biases.

There are, however, potential ways one could remove the
redshift biases introduced in a DIR-like method by incomplete
spectroscopic samples. We showed in Section 4.2 that the bias due to
incompleteness could be substantially reduced by excluding regions
of photometric space from a weak lensing analysis, but at the cost of
removing 60—70 per cent of the target sample in the highest redshift
interval. The situation could greatly improve if a larger number of
bands were available. Amongst the current methods being developed
to deliver robust redshift distributions, perhaps the most encouraging
are the combination of photometric and clustering information
(Alarcon et al. 2019; Rau, Wilson & Mandelbaum 2019) or methods
of inferring the intrinsic galaxy population by forward modelling
the entire survey transfer function on to simulated observed skies
(Herbel et al. 2017; Fagioli et al. 2018).

Finally, we note that there are a number of simplifications that were
used in this analysis (as summarized in Section 2.7) as accounting for
all the details of the different spectroscopic samples in the simulations
is prohibitively impractical. Our approach likely produces more
idealized spectra and thus a conservative estimate of the bias in
redshift. We expect the true incompleteness in spectroscopic samples
is equal to or worse than that which we have found, which implies
a systematic uncertainty larger than what can be tolerated in present
and future lensing surveys.
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Table Al. Features used for the RF training.

Wavelength A) Feature
1215.7 Ly«
240.0 NV
1303.0 o1
1334.5 Cu
1397.0 Si1v13934+-01v1402
1549.0 C1v1548
1640.0 Henr
1909.0 C]
2142.0 N1
2626.0 Fen
2799.0 Mg
2852.0 Mg1
2964.0 Fenl
3727.5 [O1]
3933.7 CaK
3968.5 CaH
4101.7 HS
4304.4 G band
4340.4 Hy
4861.3 Hp
4958.9 [O1ma]
5006.8 [O 1mb]
5175.0 Mgl
5269.0 CaFe
5711.0 Mgl
6562.8 Ha
6725.0 [S1]6717.0+6731.3

APPENDIX A: FEATURES USED FOR THE RF
TRAINING

In Table A1, we list the spectroscopic features used in the RF training
described in Section 2.4.

APPENDIX B: EFFECT OF FIELD-TO-FIELD
VARIANCE: TEST ON VVDS DEEP

To remove the impact of field-to-field variance seen in Section 3.2
and isolate the bias in the mean redshift purely due to spectroscopic
incompleteness, we repeat the analysis using only the main VVDS
Deep field (containing 12 932 objects) and a target sample co-located
on the sky. The results are shown in Fig. B1, where the lines and
the symbols have the same meanings as the upper two panels in
Fig. 6.

We note that the general shape of the curves in Fig. BI is
qualitatively different from Fig. 6. For the VVDS Deep sample,
the bias in mean redshift before re-weighting is much smaller at low
flag thresholds, reflecting the reduced field-to-field variance. The
final bias in redshifts after reweighting, however, does not differ
significantly from the previous results where the full sample is
used. This illustrates that in general, field-to-field variance could
largely be corrected for through the re-weighting process (see
also H18).
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Figure B1. Same as the top two panels of Fig. 6, but for VVDS Deep (field
1) alone.

APPENDIX C: COMPARISON WITH GRUEN &
BRIMIOULLE (2017)

To compare our results on selection bias to real spectroscopic
samples, we run an analysis of the type of Gruen & Brimioulle (2017).
We use the same catalogues and formalism but with a magnitude cut
to match the DES-like sample used in this paper, and with four
redshift bins. We do not force the redshift bins to be the same as
those in the DES Y1 analysis, instead allowing the bin boundaries
in redshift to adapt so that there are equal numbers of spectroscopic
objects in each, as was done in Gruen & Brimioulle (2017).

The catalogue used in Gruen & Brimioulle (2017) was constructed
from the overlap of the four CFHTLS Deep fields® with near-infrared
imaging from the WIRCam Deep Survey (WIRDS; Bielby et al.
2012), which we cut at icpgr < 23.4. Photometric redshifts are
determined by a template fit with Photo-z (Bender et al. 2001)
to the ugriz CFHT and JHK, WIRDS fluxes. This is the only
source of redshift we use in this test, which assumes that the eight-
band photometric redshift closely approximates the truth. Typical
uncertainties on photo-z from eight bands covering the u—K-band

9http://www.cfht.hawaii.edu/Science/CFHLS/cfhtlsde
epwidefields.html
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Figure C1. Comparison of the bias in mean redshift found through our
simulated data sets in this work and the observed data sets used in Gruen &
Brimioulle (2017).

wavelength range are ~3—4 per cent at the depths considered here.
See, for instance, Hartley et al. (2013).

Spectroscopic redshift measurements are compiled from the
VIMOS VLT Deep Survey (Le Fevre et al. 2005), the VIPERS
(Garilli et al. 2014; Guzzo et al. 2014), the VIMOS Ultra Deep
Survey (Le Fevre et al. 2015; Tasca et al. 2017), zCOSMOS-bright
and zCOSMOS-deep (Lilly et al. 2007), or the Deep Extragalactic
Evolutionary Probe-2 (DEEP2) survey (Newman et al. 2013). We
mark objects with Flags 3 or 4 as successful spectroscopic redshift
determinations and label these as ‘spectroscopically selected’. Note
that VIPERS, zCOSMOS-deep, VVDS, and DEEP2 have colour-
based pre-selection of targets applied (cf. Section 3.1) in addition to
the purely spectroscopic selection effects primarily studied in this
work (Section 3.2).

Spectroscopic incompleteness 4785

We build a single colour—magnitude decision tree by performing
splits at the median of whichever of i, g — i, r — i, or i — z
separates the two subsamples best in redshift. These subsamples,
called leaves, are divided further until no additional split significantly
separates the subsamples in redshift, or until there are fewer than
10 spectroscopically selected galaxies left in a leaf. These leaves
are then ordered by the mean photometric redshift of all galaxies
they contain and separated into bins of consecutive leaves such
that each contains approximately one quarter of the total number
of photometric galaxies. The mean true redshift of each bin is
defined as the mean photometric redshift of all photometric galaxies
it contains. We make a second estimate of the mean redshift using
the photometric redshifts of the spectroscopically selected objects.
When computing this second mean, each spectroscopically selected
galaxy is weighted by the ratio of photometric to spectroscopically
selected galaxies in its leaf. In this way, we emulate reweighting by
griz colour—magnitude to reduce the spectroscopic selection bias.

Fig. C1 shows the difference of these two estimates, i.e. the
spectroscopic selection bias, as a function of mean photometric
redshift of the bin. Unlike the main result of this paper, this is a
mix of the VIMOS-like implicit selection effect of Section 3.2 with
corresponding effects for DEIMOS/DEEP2 and colour pre-selection
effects as in Section 3.1. Depending on the mix of spectroscopic
surveys used, the spectroscopic selection bias found could potentially
vary substantially. Despite these differences, the overall amplitude
and redshift trend of spectroscopic selection bias is rather similar to
the main result of this work.

APPENDIX D: REWEIGHTED COLOUR SPACE

One very basic requirement of the reweighting scheme used in Lima
et al. (2008) is that the entire colour—magnitude space of the target
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Figure D1. Weighted (green) and unweighted (orange) magnitude and colour—space distributions in our four redshift intervals, compared with the target
photometric sample. Distributions are shown for the fiducial case: i < 23.4 and spectroscopic Flag >3. The weighted spectroscopic sample closely mimics
the target photometric sample in terms of their photometric distributions, correcting the mismatch in sampling from the unweighted incomplete spectroscopic
sample. Nevertheless, the redshift distribution is not correctly recovered (see Section 3.2).
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data set is sampled by objects with spectroscopic redshifts (albeit
poorly in some regions). If it is not, then the photometric distributions
cannot be matched, and there would be no reason to believe that the
resulting redshift distribution would be representative of the target
sample. In Fig. D1, we show the photometric space of the target
galaxy sample alongside the weighted and unweighted distributions
of objects with successful spectroscopic redshift assignments, for our
fiducial case: Flag >3, i < 23.4, in the simulations used in Section 3.
The weights applied to the spectroscopic data do a good job in
replicating the photometric space of the target data set. However, as
we showed in Section 3.2, the redshift distribution is not accurately
recovered in all four redshift intervals.
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