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Pullback attractors with forwards unbounded behaviour are to be found in the
literature, but not much is known about pullback attractors with each and every
section being unbounded. In this paper, we introduce the concept of unbounded
pullback attractor, for which the sections are not required to be compact. These
objects are addressed in this paper in the context of a class of non-autonomous
semilinear parabolic equations. The nonlinearities are assumed to be non-dissipative
and, in addition, defined in such a way that the equation possesses unbounded
solutions as the initial time goes to —oo, for each elapsed time. Distinct regimes for
the non-autonomous term are taken into account. Namely, we address the small
non-autonomous perturbation and the asymptotically autonomous cases.
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1. Introduction

In this paper, we investigate the dynamics of solutions of the following non-
autonomous semilinear parabolic equation

Up = Upy + b(t)u+g(u), xe€l0,7], t>s (1)
u(t,0) =u(t, ) =0,
u(s, x) = uo(),
where b € C1(R) is a bounded function with bounds b; and by satisfying
1 <by <b(t)<bg, forall teR. (2)

We also assume that g : R — R is a bounded, locally Lipschitz C? function. The
global well-posedness in L2([0, 7]) and W, *([0, ) for equation (1) is known from
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[1-3,9]. The dynamics of the non-autonomous equation (1) is described by the
evolution process {S(t, s) : t > s}, defined by

S(t, s)ug = ult, s;up)

where u(t, s;up) is the unique global solution of (1) with initial condition w.
We write (1) in the semilinear abstract form

up + Au = F(t,u)

where A is the unbounded linear operator A : D(A) C L*([0,7]) — L?([0, n]), with
domain

D(A) = {ue W>*([0,7]) :u=0inz=0,7},

given by Au = —u,,. Let X denote the L?([0,7]) space. The operator A being
sectorial has an associated scale of fractional power spaces X< given by X« =
D(A®) with graph norm

[ulla = [[A%]|, 2 € X

The eigenvalues associated with the operator A, under Dirichlet boundary condi-
tions, will be denoted by A;,

No=34% j=1,2,3....

The nonlinear evolution process {S(t,s) : t > s} is well defined on X, for o > 1/4.
We let f(t,u) :=b(t)u + g(u) and define F': R x X* — X by

F(t,u)(x) = b(t)u(z) + g(u(z)).
Similarly, the operator G : X* — X may be defined by

G(u)(z) = g(u()).

As we are assuming that g is bounded in R, the function G(u)(+) is also bounded.
We denote the bound by I"

|G(u)(x)] <T, forall ze€[0,nr] and ue X (3)

In what follows, we remark two main features of equation (1). We first notice
that the requirement b(t) > 1, for every ¢ € R, destroys the dissipative properties
usually imposed on the nonlinearities. Therefore, the associated pullback attractor
A(+), if it exists, necessarily possesses unbounded fibres A(t), for each time ¢. This
is proved in lemma 3.1. Therefore, A(t) cannot be compact.

Autonomous dynamical systems with bounded absorbing set have been exten-
sively studied by many authors. However, if solutions unbounded with time exist,
the equation has no bounded attractor. Despite the fact that unbounded attractors
are quite common objects in dynamical systems, much less is known on their regard.
As far as we are concerned, they were first introduced in [10,11], for semilinear
equations and systems of parabolic type. See also [12] for the context of evolution
equations.

The particular case of equation (1) with the parameter b is independent of time
was recently investigated. Such equations with linear growing nonlinearities are
known as slowly non-dissipative equations. The case f = f(u) is treated in [4] and, in
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[17] the general case f = f(x,u,u,) is addressed. In this setting, the generated semi-
group was proved to possess an unbounded attractor, referred to as non-compact
global attractor, and its heteroclinic connectivity was completely described. Despite
the non-dissipativity, the semigroup is gradient-like and, consequently, solutions
remaining bounded converge to bounded equilibria. The unbounded solutions, on
their turn, grow-up to infinity norm in the direction of eigenfunctions associated
with negative eigenvalues of the linear sectorial operator —d,, — bI.

The limiting objects of unbounded solutions at infinity are interpreted as equilib-
ria at infinity. In addition to that, the grow-up solutions, or unbounded solutions,
play the role of heteroclinic orbits connecting bounded equilibria to equilibria at
infinity. This interpretation allows for a characterization of non-compact global
attractors that is similar to that we find for compact global attractors: it decom-
poses into the set of bounded equilibria, the set of equilibria at infinity, and the set
of their heteroclinic connections, including the extended notion we just described.

The second main feature of (1) is that it produces a non-autonomous dynamical
system and, therefore, the recently developed theory on non-dissipative equations
does apply directly. We know that non-autonomous equations have attracted much
attention over the years and, unlike what happens in an autonomous setting, the
analysis of the asymptotic behaviour for such systems may be carried out in different
ways. In this setting, pullback attractors have shown to be an appropriate choice
of analogues in non-autonomous contexts for capturing the asymptotic behaviour
of solutions, even if we only wish to study forwards dynamics (see [5, 6]).

Although pullback attractors with forwards unbounded behaviour are considered
in the literature, for instance, in the context of non-autonomous scalar logistic
equations [15], not much is known about pullback attractors A(-) with unbounded
sections A(t), for each time ¢.

Our main goal is to investigate the forwards and backwards dynamics of S(t, s)
under further assumptions on the non-autonomous term b(¢). Namely, we con-
template two situations: small non-autonomous perturbations and asymptotically
autonomous systems. We expect to describe the structure on the associated
unbounded pullback attractor, by assuming such distinct regimes for the parameter
b = b(t). Despite given detailed information on the behaviour of solutions only for
the two cases listed above, all the results and remarks in §§ 3 and 4 hold for the
general equation (1), with no further assumption on b(¢).

We organize the paper as follows. In § 2, we review the recently developed theory
of non-dissipative autonomous reaction-diffusion equations. We focus on the class
of equations possessing linearly growing nonlinearities, that is, the autonomous
equation (1) with b(t) = b.

In § 3, we explore the dynamics of solutions to equation (1) as much as we can,
without assuming further conditions on b(t). The sections .A(t) on the associated
pullback attractor A(-) are proved to be unbounded for each and every time ¢ € R,
which requires the introduction of the concept of unbounded pullback attractor. In
addition, we ensure that solutions which are unbounded as the initial time s goes
to —oo, for each elapsed time ¢, converge to ‘autonomous equilibria at infinity’.

The dynamical structure at infinity is addressed in § 4. The study is firstly moti-
vated by the analysis of the linear problem with g = 0, which suggests that the
structure of A(-) for arbitrarily small initial times is, in some sense, independent of
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time ¢. This statement is then confirmed by applying a common technique, used for
investigating the dynamics of unbounded attractors. It basically consists of consid-
ering Poincaré projections of the phase space, aiming at the compactification of the
dynamics. We conclude the section with some remarks on the number of equilibria
at infinity contained at each section A(t) of the unbounded pullback attractor.

Further properties of solutions to equation (1), with the additional assumption
that b(¢) is a small non-autonomous perturbation of a fixed parameter b, are investi-
gated in § 5. We prove that, under small perturbations of this nature, the unbounded
pullback attractor satisfies robustness properties.

Section 6 is devoted to the study of the dynamics of the unbounded pullback
attractor when assuming b(t) is backwards asymptotically autonomous. We addi-
tionally make some comments on the case where b(t) is autonomous forwards in
time.

The forwards dynamics of (1), under fairly general assumptions on b(t), is
addressed in § 7. We comment on the existence and description of the related
unbounded uniform attractor.

2. The autonomous setting

In this section, we follow [4,17] to present the full characterization of the non-
compact global attractor related to equation (1) with time independent b, that is,
to the following equation:

Up = Uy + bu+ g(u), =€ [0,7] (4)
u(t,0) =u(t,m) =0
u(0,2) = up(x).

Although the results in [17] are proved for the corresponding Neumann problem,
they hold similarly for the Dirichlet equation (4).

We assume b > 1 and g € C%(R) is a bounded Lipschitz function. We let X =
L2([0,7]) and consider the sectorial operator A := —d,, — bI. Then the fractional
power spaces associated with the operator A; = A + (b+ 1)I are well-defined and
given by

X =D (A7),
for each o > 0, with the graph norm
[]la = lAT2]|, = e X

Since b > 1, it follows from an analysis of the Fourier decomposition of solutions
that there exists at least one initial condition with corresponding solution blowing-
up in infinite time, see [4, 17]. Hence, equation (4) is non-dissipative and, therefore,
it does not have a global attractor for the induced semiflow. The object to be
considered is non-compact global attractor, defined as the nonempty minimal set
which is positively invariant and attracts all bounded sets in the state space.

Moreover, the existence of a Lyapunov functional for equation (4) yields a
gradient-like structure. As a consequence, any solution u(t,x) of (4) either con-
verges to a bounded equilibrium or is a grow-up solution. It also follows that the
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non-compact global attractor A for equation (4) can be characterized by
A = UveEbWu(’U),

where E® denotes the set of bounded equilibria and W*(v) denotes the associated
unstable manifold of v.

Let {¢;(-):j=1,2,...} be the orthonormal basis in L?([0,7]) composed by
eigenfunctions of the operator A under Dirichlet boundary conditions. The cor-
responding eigenvectors are denoted by A;, for j =1,2,....

Regarding the asymptotic behaviour of grow-up solutions, the following result
was obtained, [4,17].

LEMMA 2.1. Let u(t) be a grow-up solution of (4). Then u(t) goes to infinity with
time, being attracted to the following finite dimensional subspace of L*([0, 7])

Span{@h P2y @[ﬂ]}?
where [] denotes the integer part.

Even more can be said about the longtime behaviour of grow-up solutions u(t)
of (4). They go to infinity asymptotically approaching the eigenvector direction of
a unique @;(-), for some j € {1,...,[vb]} depending on u(t). See [4,17].

In addition, the inertial manifold theory along with nodal properties of such
unbounded solutions provide the exact eigenspace Fj;, corresponding to S\j, they
are being attracted to. Therefore, the projections of ¢1, o, .. NS infinity
norm are objects at infinity regarded as equilibria at infinity. A Poincaré projection
analysis of the phase space confirms these objects, in fact, correspond to equilibria
of the projected equation. This justifies the term equilibria at infinity. See [4,17]
for the details.

Regarding the backwards behaviour of unbounded solutions lying on the attrac-
tor, it follows from the gradient structure of (4) that they all converge to bounded
equilibria. Therefore, the non-compact global attractor contains only trajectories
that are bounded in the past.

The following result, obtained in [4, 17], provides a detailed characterization for
the non-compact global attractor related to equation (4).

THEOREM 2.1. The non-compact global attractor A of (4) is given by
A = E* U E> U {heteroclinic connections},

where E°° denotes the set of all equilibria at infinity.

The characterization in theorem 2.1 is similar to that of compact global attractors
if the grow-up solutions are understood as heteroclinic orbits connecting bounded
equilibria to equilibria at infinity. The connecting orbit structure as displayed in
theorem 2.1 is obtained in terms of blocking principles typically considered in the
scalar reaction-diffusion equation setting. The argument regarding the dynamics at
infinity includes the nondegeneracy condition b # n?, to ensure hyperbolicity for the
equilibria at infinity. In addition to theorem 2.1, a combinatorial characterization
of A, in terms of a permutation, is obtained in [17].
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3. Unbounded pullback attractor

We present a preliminary result that leads to the unboundedness of the pullback
attractor. More precisely, we guarantee that the evolution process {S(t,s) : ¢ >
s} contains global solutions wu(t, s;ug) which are unbounded as s — —oo, for each
time t.

LEmMMA 3.1. If b(t) > 1, for every t € R, then there exists at least one initial
condition ug such that the corresponding solution u(t, s;ug) of equation (1) satisfies

imJu(t, s5u0)l[ L2 ((0,7]) = 005
for each elapsed time t € R.

Proof. Let u(t, s;up) be a solution of (1). We can write
o0
u(t, s;up) Z i(t, s5u0);(¢)

where 1, (t, s;u9) satisfies the non-autonomous ODE
(@) (t) = =Aju;(t) + b(t)a;(t) + g,(t) (5)

with @ (¢, s;u0) = (u(t, s;u0),¢;(+)) and g;(t) = (G(u)(-),;(-))-
Each eigenmode of u(t, s, ug) is given by

t
i15(t, 5, ug) = dig ge~ ¢ CabrNAr | / o= ILu=bO)a05 (1. (6)
with @ ; = (uo(-), ¢;(-)). Then we write (6) in the form

t s, Uo < e 2N b(a))dagj(r)dr) — JEOG=b(r))dr (7)
+

/e S =b(8)d 04, (r)dr.

We assume \; —b(0) < 0, for every 6. In order to get this, we can take, for
instance, j = 0. Indeed, b(t) > b; > 1 = A, for every t € R, then

Xo—Db(t) <0, teR.
Notice that we have the following bound for the second term in (7)

t
’ / e 1100005 (1) q,] <

1 e SN —b(0))de
/\j — b(t) T—00 )\j — b(T)

1 el u—be)as
N —b(l) e A, —b(r)
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where T is defined in (3). Of course, the same holds for

S
/ e [1Ou=b0)a05 (1.

oo

Hence, we consider an initial condition ug such that

Qo j # SEI—noo e~ ff(’\j_b(e))degj(r)dr,

The corresponding solution wu(¢, s;ug) then satisfies, for each time ¢ € R,

lim |4;(t, s;uo)| = oo,

S§——00
since
lim e~ Jd(i—b(r)dr

S§——00

= Q.

Therefore, we conclude that the L?-norm of the corresponding solution wu(t, s; ug)

o0
> Jult, s;u0)?
J=0

goes to infinity as s — —oo, for any time t. O

REMARK 3.1. It is worth mentioning that in order to ensure the existence of
unbounded fibres in the pullback attractor, the lower bound for b(t) was only
needed, in lemma 3.1, for arbitrarily large or arbitrarily small times.

This lemma suggests the need for a different notion of pullback attractor where
the sections A(t), t € R, are not required to be compact. We are then led to
introduce the definition of unbounded pullback attractors.

We denote by dist(A, B) the Hausdorff semidistance between A and B subsets
of the phase space X, defined as

dist(A, B) = sup inf [la — b,
ist(4, B) = sup inf [|la —b]

For the non-dissipative non-autonomous equation (1), we define the following.

DEFINITION 3.1. An unbounded pullback attractor A(-) for the process S(-,-) is a
family of subsets {A(t) : ¢ € R} in the phase space X* such that

(i) A(-) is invariant with respect to S(-,-), that is,
S(t,s)A(s) = A(t) forallt>s;
(ii) for each t € R, A(t) pullback attracts bounded sets at time ¢

lim dist(S(¢,s)B, A(t)) =0

§——00

for any bounded set B C X¢; and
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(iii) A(-) is the invariant family of closed sets minimal with respect to prop-
erty (ii).

As in the compact setting, the minimality assumption is crucial for uniqueness of
the unbounded pullback attractor. In order to illustrate this assertion, we consider
the evolution process

S(t,s)x=e"¥z,  for x€R and t>0.
Any family K(-) of compact sets of the form
K(t) = [-e®9a,e*9q], teR,

with a fixed positive real number a, is trivially invariant, in the non-autonomous
sense (¢). Moreover, K(t) pullback attracts bounded sets of R at time t.

Although being unbounded, the pullback attractor A(-) related to (1) is locally
compact. This follows from the fact that A(-) lies in a finite-dimensional attracting
invariant manifold. Indeed, it results from [14, Chap. 6] the existence of an invariant
manifold

M ={(t,p,q) ERXx PhnX xQnX :p=o0(t,q)}
where 0 : R x QX — X satisfies

||U(t7Q)||Oé < Ca ||O.(taQI) - a(t’Q2)||(x < Lqu - qQHa

for constants C' and L, with Py being the orthogonal projection onto the N first
eigenvalues of A and

Qv =1—Px.

In addition, g being locally Lipschitz in u implies the invariant manifold M is
exponentially attracting, see [14, Chap. 6]. The fact that M (t) contains A(¢), for
every t € R, then follows. We also refer to [16] for sharp conditions on the existence
of invariant manifolds related to more general non-autonomous equations.

It is worth mentioning that each section M (¢) of M is non-compact. This is due
to the invariance property of M in the context of non-dissipative equations with
unbounded attractors.

Although definition 3.1 allows unbounded pullback attractors with more complex
dynamical structures, we understand that those that are locally compact or with
finite fractal dimension play a more fundamental role in the theory.

LEMMA 3.2. Suppose b(t) satisfies (2). Let u(t, s;up) be any solution of (1) that is
unbounded as s goes to —oo, for any t. Then, there exists j < [\/ba] such that the
normalized solution

u(t, s;up)
llu(t, s5u0) |22 ([0,x])

pullback converges to £p;(+) in the L*-norm, where the integer j and the sign of
+¢;(-) depend only on u(t, s;up).
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Proof. We first prove that (¢, s; ug) remains bounded as s — —oo as long as j >
[v/b2]. As in lemma 3.1, we write any solution u(t, s;ug) in the form

oo

u(t, s;ug) = Z (t, s;u0)e; ().

with eigenmodes 1 (t, s;ug) given as in (6). By assuming that j% > bo, the first term
in (6) is obviously bounded as s — —oo, since

lim e JiQi=brdr — o for all ¢ € R.

§——00

For the second term in (6), we get a bound as follows:

t
/ o [ —b(6))d g,

1 o= J1 (X =b(0))do
A —b(t) A —b(s)

<

t
/ o= JEu=bO)A0G (1

=T

Y

which is bounded as s — —oo, since

§——00

t
lim —/ (Aj —b(0))dd = —c0, for all teR.

In the remaining part of this proof, we show that, for any grow-up solution
u(t, s;uo)

u(t, s;up)
m
s——oo |lu(t, s;u0) £2(j0,x])

=+0;(),

for some j with j2 < by, depending on u(t, s; ug).
We take, for simplicity, b(t) oscillating between two gaps of the spectrum of A.
That is to assume there exists a fixed integer N such that

AN—1 < by <b(t) < by < Ani1. (8)

The general case ensues from a similar argument.

It follows from lemma 3.1 that, for any unbounded solution w(t,s;ug) the
eigenmodes @; (¢, s;up) with A; < b(t), for every ¢, can grow to infinity norm as
s — —o0. Therefore, the modes u;(t, s;up) with j < N — 1 are allowed to become
unbounded as s — —oo. On the contrary, we know from the above calculations that
@;(t, s;up) remains bounded if j2 > by. Hence, 4;(Z, s;uo) is uniformly bounded in
sifj>N+1.

By assuming (8), we cannot affirm whether or not @y (t, s; 1) remains bounded as
s — —oo. We can, however, conclude the following on the possible growth behaviour
of 1;(t,s;up), for any j < N. It follows from lemma 3.1 that, if (¢, s;up) is a
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growing mode, then the first term in (7) gives the growth rate of (¢, s;u), that
is, if @;(t, s;up) grows to infinity norm as s — —oo then the growth is given by
e~ f';(>\J—b(T))(17’7

for any time ¢. As a result, the smaller \; is, the faster 4;(t, s; ug) grows to infinity
norm as s runs backwards in time. In particular, if 4y (¢, s; us) becomes unbounded
as s — —00, it is necessarily the growing mode with the slowest growth.

We keep all the above information about backwards behaviour of each @; (¢, s; us),
and write the following equality

u(t, s3 uo)

llu(t, s5u0)llL2((0,x))

a;(t, 83 uo)

[u(t, s3u0)llL2([0,7))

F 0Oz =2%£2

As a consequence,

’U,(t, 53 UO)

lim — o BUO
A Tt sl 0
if, and only if,
.
lim st siu0) -1

s——o0 [[u(t, s;u0) || L2 ([0,7)

The previous discussion then leads to the following conclusion: if a solution
u(t, s;up) becomes unbounded as s — —oo, then the normalized solution converges
to £¢;(-) with j corresponding to the growing eigenmode 4, (¢, s; ug) with the lowest

subscript.
In addition, the sign of the limiting function £¢,(-) should be the same as
u(t, s;u0)(0) for all s € (o0, sg), for some so < 0. O

The above lemma gives us a direction of pullback attraction for unbounded
solutions, figuring as a non-autonomous analogue of lemma 2.1.

It was established in [12] the existence of non-compact global attractors, referred
to as mazimal attractors, for general evolution equations not necessarily satisfying
dissipativity conditions. On the next result, similar non-autonomous arguments are
used to obtain the existence of an unbounded pullback attractor for equation (1).

THEOREM 3.1. Let b and g satisfy the conditions we have asserted. Then the
evolution process S(-,-) of (1) possesses an unbounded pullback attractor A(-).

It is important to mention that a characterization for the attractor as in [12]
cannot be directly obtained, as it requires a much more detailed investigation of
the dynamics of solutions. This is expected to be obtained, for evolution processes
in general settings, in a forthcoming paper.

We also stress the fact that the existence of an unbounded pullback attractor for
equation (1) does not follow immediately. The invariance property requires solu-
tions on the attractor to be globally defined, but this is not verified in regularizing
processes for arbitrary initial data.

The next step is to obtain a better description of backwards asymptotic dynamics
of unbounded solutions and, consequently, a more accurate characterization of the
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dynamics at infinity on the unbounded pullback attractor. The next section is
devoted to obtaining useful information on this regard.

4. Autonomous behaviour at infinity

In this section, we investigate the dynamics of (1) at the infinity of the phase space.
In order to do that, we first restrict ourselves to the linear version of (1), that is,
the case g = 0. Since g is taken to be bounded, we do not expect that the dynamics
of (1), for arbitrarily large initial conditions will be affected by g. Then, at this
point, we are interested in the following equation

Ut = Ugg + O(L)u, x € [0,7] 9)
u(t,0) =u(t,m) =0
where b(t) satisfies (2).

We start by recalling the concept of non-autonomous equilibria for evolution
processes. These objects are defined as follows. See [8, 9].

DEFINITION 4.1. Let £ : R — X© be a global solution for equation (1). We say that
¢ is a non-autonomous equilibrium if the zeros of £(¢,-) are independent of t.

For any non-autonomous equilibrium &, we denote by W*(£(+))(:) the unstable
manifold of & defined by

W(&())(t) = {z € X : there exists a global solution ¢ : R — X< such that
¢(t) ==z and lim dist(¢(s),&(s)) = 0},
for each time t.

We stress the fact that (9) satisfies the following convenient condition. The
projected equation onto the eigenspace F;, associated with A;, has the form

() = —A; + b(t)dy,

for each j =1,2,.... Therefore, as it occurs in the autonomous setting b(t) = b,
each eigenspace Ej is invariant under the flow (9).
We fix the real constant b > 1 and take the integer N satisfying

N = [V (10)
As we may recall from § 2, the autonomous linear equation
Up = Uyy +bu, x€]0,n] (11)

possesses a non-compact global attractor A. In addition, if N satisfies (10), A is
the unbounded finite-dimensional invariant subset W*(0), whose basis is composed
by the N first eigenfunctions ¢;(-).

When dealing with non-autonomous problems, the notion of hyperbolicity of
equilibria is expressed in terms of the exponential dichotomy of bounded global
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solutions. In the sequel, we recall the definition of linear evolution processes with
exponential dichotomy.

DEFINITION 4.2. Let T'(t,s) be a linear evolution process. We say that T'(¢, s) has
an exponential dichotomy with projection P(-) = {P(t) : t € R}, exponent w and
constant M, if the following conditions are satisfied:

(i) P()T(t,s) =T(t,s)P(s), for all t > s;

(ii) the restriction of T'(¢,s) to the image of P(s) is an isomorphism onto the
image of P(t);

(iii)
IT(t,s)(I = P(s))|| < Me =% ¢ >
and

T(t,s)(P(t))]| < Me** %), ¢ <s.
|

Let T'(-) be the semigroup induced by the autonomous equation (11). Then 7'(-)
is given by e~ 4?, where

A=—-9,, —bl.

The linear process St(-,-) associated with T'(-) has exponential dichotomy with
projection P(t) = P, t € R, where P is the orthogonal projection onto the N first
eigenfunctions ¢; of A with Dirichlet boundary conditions. The related exponent
w is given by Ay = N2 — b (see, for instance, [9]).

A global bounded solution of a nonlinear process is said to be hyperbolic if the
associated linearized process has an exponential dichotomy. Linear processes with
exponential dichotomy have, of course, all the global bounded solutions being hyper-
bolic. Similarly to the autonomous counterpart, the evolution process related to (9)
has exponential dichotomy with exponent w depending on the bounds b; and by for
b(t). Therefore, any bounded non-autonomous equilibrium for (9) is hyperbolic. In
particular, ¢ = 0 is a hyperbolic non-autonomous equilibrium of (9) and, moreover,
the related unstable manifold W (¢ = 0)(-) satisfies

W& =0)(t) C A(t), forall teR.

where A(+) is the unbounded pullback attractor of (9).

In what regards the equilibria at infinity, for the autonomous equation (11), the
nondegeneracy condition b # n? is assumed. With this condition imposed, (11) has
exactly 2N equilibria at infinity, for N given as in (10).

For the non-autonomous equation (9), the following can be asserted regarding
the dynamics at infinity. It follows from lemma 3.2 that equation (9), with b(t)
satisfying (2), has at least 2N; equilibria at infinity, where Ny = [/b1], contained
in each section A(t) of the pullback attractor. In fact, any unbounded solution
u(t, s;up) has at least 2N possible limiting object at infinity, as s — —oo. Besides,
it follows from the proof of Lemma 3.1 that we can always construct an unbounded
solution converging to any of these equilibria at infinity.
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If we assume that
Ay < b < b(t) < by < )\N+17 for all ¢t e R. (12)

Then, each section A(t) will contain exactly 2N equilibria at infinity. This shows,
in particular, that the number of equilibria at infinity of equation (9) does not
depend on b(t), if it varies as in (12). Also, we may prove that the dynamics at
infinity of (9) is not affected by ‘nonsmall’ perturbations, even including the intra-
infinite heteroclinics, as long as b(t) lies on a unique gap as in (12). In addition,
each section on the unstable manifold W*(£ = 0)(-) of £ =0 has dimension N, if
b(t) satisfies (12).

As we can notice, the image of b(¢) in R is paramount for determining the num-
ber of equilibria at infinity and, more generally, the dynamics at infinity. Some
particular cases where b(t) may vary inside two gaps are considered in § 6.

The above analysis of the linear non-autonomous equation (9) suggests that the
longtime dynamics, as s goes to —oo, is autonomous. The remaining part of this
section is devoted to confirm and clarify this statement. More specifically, if E>°(t)
denotes the set of all equilibria at infinity contained in each section A(t), then we
claim that regarding the structure at infinity, only the cardinality of the set E>°(t)
may vary with time t.

As in [13], we rely on Poincaré projections of the phase space to get a better
understanding of the asymptotic profile of unbounded solutions. In what follows,
reproduce the discussion in [13] for the context of our nonlinear non-autonomous
equation (1).

Firstly, we identify X with the hyperplane X< x {1} C X® x R. The inner
product in X is defined as

<uvv>a - <Aau7 AQU>L27 u,v € X

Then, the space X® x {1} is projected onto the infinite dimensional upper
hemisphere

H= {(x,z) e X*xR: (X,X>a+22:l,z>0}

which is tangent to the hyperplane X x {1} at its north pole.

We denote by P(M) the Poincaré projection of any point M on the hyperplane.
As we allow M to go to infinity, its image P (M) goes to the equator of H, that is,
to the subset

He ={(x,2) e H:2=0}
The coordinates of P(M) = (x, 2), for M = (u, 1), may be explicitly computed:

U 1
X="T"—"F""" 75 z =
(

1+ (u,u)y)t/2’ (1+ (u,u)o) /2
To ease the computation, we choose, as it is done in [13], to work on planes rather
than spheres. For each fixed eigenvector e € {gpja cj=1,2,...} @ = A"%;, we
project M again onto the vertical hyperplane C' which is tangent to H at the point
(e,0) € H,. This projection is defined only for those points in H such that the line
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through M, P(M) and the origin (0,0) € X* x R intersects the hyperplane C'. If
we denote by (&, ) the coordinates of P(M) projected on C, we have

We define the non-autonomous operator

L(u,t) = uge +b(t)u + g(u)
for u € X and t € R. In addition, we let L (¢,t) be the homothety of £ with factor
¢, that is,

Le(€t) = CLICTIE ).

A direct calculation then yields

Cug (U, e)q — ulug, €)q
S N

= ,C(’LL, t)( - UC<£(U'7 t)C» e>a

- ‘CC(fat) - <£C(§a t)v e>o¢§

and

<ut7 e>04

{u, )2

[e3

G =

- _C<‘CC(§7 t)7 e>o¢-
By taking the coordinates of § in the orthonormal basis {¢§ : j =1,2,...},

gn = <£7 (Pg>aa

we get

(f’ﬂ)t = <‘CC(€’t), 902>a - <£C(£7t)’ e>a§n

= (€ea +O(H)E + g((€)7 90?;>a — (€zz +0(1)E + gg(f), e)an,
where g¢ is defined by

9¢(8) = Cg(¢1e).
If we take, for instance, e = +¢§', the hyperplane C' = Cii is given by

CF={(6,0) € X* xR: & = +1}.

Then, &, satisfies the following equation on Cii

(§7z)t = (_/\n + )\igi)gn + (b(t) + b(t)fi)fn + <gC(§)v @%)a + <gC(£)a ¢z>a§n
= (>‘l - An)gn + <gC(£)7 90%>a + <gC(£)a @%afm

(13)
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for all n # i. The coordinate ¢ satisfies the equation below on the hyperplane C’Z-i

(C)t = C<§u + b(t)f + gg(ﬁ), i@?>u
= —Xi¢ F (9¢(8), @i)al- (14)

In addition, because g is bounded, the nonlinear terms in (13) and (14) go to
zero as ( — 0. Hence, the equations on the equator H. become

(gn)t = (i2 - n2)£n7 ¢ =0

for all i # n.

By projecting the points M € X* x {1} onto the hyperplanes Cji, correspond-
ing to each of eigenvectors +¢;(-), we obtain the following equilibria lying on the
equator

+,00 | -
(&7 :5=1,2,...}, (15)
where each dsji’oo is given by
Qij-t’oo ={(x,2) eH:x;=%1, 2=0 and x, =0, Yn#j}.

Moreover, the heteroclinic connectivity at infinity is comparable with the Chafee-
Infante structure, as in the autonomous setting. See [4, 17].

We recall additionally that grow-up solutions of (1) have only a finite number
of possible limiting objects at infinity. As a consequence, each section A(t) of the
pullback attractor of (1) contains only a finite number of those. As we know, from
lemma 3.2, such number depends only on b(t). The general case where the non-
autonomous term b(t) is only required to be bounded, as in (2), is such that the
set of equilibria at infinity E°°(t) contained in the section .A(t) is composed of 2N
objects where [v/b1] < N < [v/b2] and N varies with ¢.

The cases where b(t) is a small non-autonomous perturbation of a fixed b or b(t)
is asymptotically autonomous are discussed in §§ 5 and 6, respectively.

5. Structure of the unbounded pullback attractor for small
non-autonomous perturbation

This section is devoted to the analysis of the dynamics related to equation (1)
when b(t) is a small non-autonomous perturbation of a fixed b. More precisely, we
are interested in the equation

Ut = Ugy + bc(t)u+ g(u), x€[0,7], t>s (16)
u(0,t) = u(m,t) =0,
u(s, x) = up(x),

where the non-autonomous term b.(t) satisfies, additionally to the hypotheses
described in § 1, the following

lim sup |bc(¢) — b| = 0, (17)

e—0 teR

for some fixed constant b > 1.
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Before we treat the general form of (16), suppose b(t) = b, is independent of ¢,
that is, suppose we are considering the equation

Up = Ugy + beut + g(u) (18)

In this particular case, we know from the results in [4,17] that, for each e > 0,
equation (18) is a slowly non-dissipative equation with non-compact global attractor
decomposing as

Ac = EZ U E2° U {heteroclinic connections}.
where EY is the set of equilibria
E¢ = {v§,v5, ... 7’026}
of (18), E2° is the set of equilibria at infinity
EX = {#7,..., 05}

and the set of heteroclinic connections between equilibria, which also includes the
grow-up solutions.
If we consider ¢ sufficiently small such that

[V/beo] = [V

then N, = N = [\/b], for any € < ¢. If this is the case, then the dynamics at infinity,
for each € < €y, does not depend on €. We observe that the nondegeneracy condition
b # n?, pointed out in § 2, is fundamental at this point.

Then we proceed as in [17] to decompose the non-compact global attractor A,
as

Ao = ASUA™

where A¢ is the maximal compact invariant subset in X< and A2° is composed by
the set of equilibria at infinity

EX = E® = {o>, . o™}

and the set of grow-up solutions of (16). It follows that A¢ contains the set of
bounded equilibria E¢ and their heteroclinic orbit connections.

We want to prove that N, does not depend on e and, moreover, the heteroclinic
connectivity on the limiting attractor A is preserved by the perturbation (16).

Let us define the following subsets of X

U= {ug € X : ||u(t;e,up)|| — 0o, as t— oo}

for each €, where wu(t;€,ug) denotes the unique solution of the (18) with initial
condition wug.
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We claim that ¢ does not depend on the parameter e, if € is sufficiently small.
Indeed, if ug € U then

lim ||u(t; €, up)|| 2 = 0.
t—o0
Consequently, there exists some j < [v/b] = N such that the norm |i;(¢; €, ug)| goes

to infinity as ¢ — oo. It follows from lemma 3.1 that

0
(05 €, u0) # / Qo055 (5)ds

and, therefore,

0
(05 0,ug) = (u(0;0,u0), ;(-)) = (uo(-), ¥;(-)) = 1;(0; €, uo) 75/ AP35, (5)ds.

o)

If € is sufficiently small, then we also have

(050, ug 7é/ “Dsg.(s)ds. (19)

Again lemma 3.1 is applied to obtain, from (19), that |4;(t;0, uo)| goes to infinity
as t — oo and, therefore,

tlim llu(t; 0,up)||L2 = oc.
We have then concluded that uy € U° := U, that is to say that /¢ C I. Similarly,
we obtain that /¢ C U, for e small. Hence,
uc=u,

for all e sufficiently small.
In particular, we have shown that the set of initial conditions corresponding to
unbounded solutions of the limiting equation

Up = Ugy + bu + g(u) (20)

besides being stable under small perturbations, it is also invariant as we vary e, for
small values of e.

Next, we prove that U is an open subset of X®. More precisely, if u(, is sufficiently
close to ug € U, in the X“*-norm, we are claiming that the corresponding solution
u'(t;0,uy) satisfies

lim ||u’(¢;0,ug)| z2 = oo.
t—o0

Indeed, the unique solution u(¢;ug) through ug € U satisfies

T 0
(0 ug) = / o (2)p; (x)dz # / Q50 (5)ds.

Hence,

T 0
) (0;up) = / ()3 () # / Q=035 (5)ds. (21)

as long as wy is sufficiently close to ug.
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We define the following subset of X, which will be very useful for our
investigation of the solution dynamics for equation (18)

B=X"\U.

As defined, B € X is a closed subset. In particular, B is a complete metric space.
We let T.(-) be the semigroup induced by equation (18). If we consider T(:)
restricted to B, we may apply the standard theory for compact global attractors
and dissipative semigroups (see, for instance, [14]).
It follows that T.(-) restricted to B is a gradient semigroup with respect to the
set of hyperbolic equilibria

E¢ = {v],v5,...,vn},

for every e sufficiently small. Notice, in particular, that n. = n is independent on
€. Moreover, the associated global attractor is given by

AC = (0 W (vg)> nB (22)
=1

and
tim [[of () — () | = 0, (23)

where {vy,vq,...,v,} is the set of equilibria for the limiting equation (20).
Hence, the non-compact global attractor A of equation (18) decomposes as

Ao = ASUA™

where AZ° is an unbounded subset containing the set of equilibria at infinity in
E and grow-up solutions. The compact set A¢ is given as in (22). Moreover,
A, decomposes into the union of E¢, E*° and the orbits connecting each of these
equilibria.

As we will see below, a few more can be said about the structure of solutions
within the non-compact global attractor A..

The heteroclinic connectivity on A2 is determined, for each ¢, from the infor-
mation on the zero number of each of the grow-up solutions. This is proved in [17]
using inertial manifold theory. Hence, if € is small enough, the connections to infin-
ity are necessarily preserved. That is to say that bounded equilibria connected to
an equilibria at infinity @;E’OO via a solution of the limiting equation (20), remains
connected to @f’oo via a solution of the perturbed equation (18).

In what regards the heteroclinic connectivity on A¢, it is also preserved by small
perturbations. This follows from the Morse-Smale property of (18). Indeed, the
semiflow induced by (18) satisfies the so-called Sturm property (or zero number or
lap number property): for any solution v(¢, ), the zero number z(v(t, -)), which is
the number of strict sign changes of v(¢,-), is nonincreasing in ¢. One of the con-
ditions that Morse-Smale semiflows satisfy is that unstable and unstable manifolds
W and W* of any two (bounded) equilibria intersect transversely. This fundamen-
tal feature follows from the above nodal property. Moreover, Morse-Smale systems

Downloaded from https://www.cambridge.org/core. USP Sao Carlos-ICMC-Biblioteca do Instituto de Ciencias Matematicas e da Computacao, on
30 Jan 2020 at 17:56:40, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/prm.2018.51


https://www.cambridge.org/core/terms
https://doi.org/10.1017/prm.2018.51
https://www.cambridge.org/core

Autonomous and non-autonomous unbounded attractors under perturbations 895

are structurally stable. Therefore, we conclude that bounded connections of (18)
are also preserved.
We summarize the above findings in the following result.

THEOREM 5.1. Suppose € > 0 is sufficiently small. Let b.(t) = b. satisfies (17).
Then the global attractor Ac of equation (18) decomposes into bounded equilibria

E¢={vi,...,v5},
equilibria at infinity
+, +,
E>* = {@1 °°,...,¢N°°}

and heteroclinic connecting orbits, where the compact subset AS satisfies (22) and
E¢ satisfies (23). Moreover, the heteroclinic connections in the attractor A of (20)
are preserved in Ae.

The investigation of the non-autonomous perturbation (16) is carried in a similar
way. The non-compact global attractor for the limiting autonomous equation (20)
is given by

A=A°UA>
where A = (U, W*(v;)) N B and B = X\ U, with U defined as
U={uy € X |Ju(t;s,0,up)|| — 0o, s— —oc}.
Here, u(t; s,0,up) denotes the unique solution of (20) with initial condition wug at

time s.
We assume ¢ is sufficiently small such that

[Vbe(t)] = [VB], forall teR,

for all € < ¢y. Lemma 3.2 then implies that backwards unbounded solutions
u(t; s,0,up) converge to one of the following equilibria at infinity

E® = {7, .. o™}

for any time t € R.
Similarly to the autonomous case, we define

U= {ug € X ||u(t; s,€,up)|| — 00, s— —o0},
where u(t; s, €,u9) is the unique solution of (16) with initial condition wug. Our

claim is that, as in the autonomous setting, . does not depend on e, if € is suffi-
ciently small. Indeed, if ug € U then there exists some integer j < N such that the
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corresponding solution u(t; s, €, ug) satisfies

lim |4;(t;s, € up)| = oo.

§——00

Lemma 3.1 then yields

SEEHOO e f,,.s(/\rbe(o))degj (r)dr # (u(0; s, €,up), p;(+))

If we choose € sufficiently small, the following also holds

S

(05,0, u0), 5 () # i [ e =005, (7.

Then, we apply lemma 3.1 to conclude that

lim |Ju(t;s,0,u0)|| = o0
S§— — 0O

and, therefore, ug € U. An analogous argument shows that U C U¢ for small values
of €. In addition to /¢ = U be independent of ¢, it does not depend on time ¢ either.

Also, U is an open subset of X®. The proof follows as in the autonomous case.
Suppose ug € U€, then

(G); # lim /e(’\j_b‘(g))dggj(r)dr.

§——0Q

If ug is close to up in X, then

(W), = [ wh()gi(ahde # tim_ [ ot O00g, )
0 o'}
We conclude that U is open in X and, therefore,
B=X*\U

is a closed subset of X“. In order to obtain information on the dynamics of bounded
solutions, we restrict our attention to the subset B, as we did in the autonomous
case.

The semigroup 7'(+) induced by the limiting autonomous equation and the evo-
lution process Sc(:,-) of (16), both restricted to B, satisfy dissipativeness and
boundedness properties. Consequently, we may apply the standard theory of pull-
back attractors. In particular we may apply theorems 8.7 and 5.36 in [9] to obtain
the following result.

THEOREM 5.2. If b.(t) satisfies (17) and all the equilibria of the limiting
autonomous equation are hyperbolic, then there are hyperbolic global solutions &; .
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of Se(+,-) satisfying

lim sup[|&;.e () = 0s()[la = 0
e—U teR

fori=1,2,...,n. Moreover, the pullback attractor of Sc(-,-) with phase space B is
given by

A(t) = (UL W™ (& (1)) N B, tER,
if € is sufficiently small.

As we mentioned before, lemma 3.2 implies that, for each time ¢, any unbounded
solution u(t; s, €, up) may only converge to one of the following equilibria

EX = E* = {97,637,

Also, lemma 3.1 implies that all of the equilibria at infinity lying in the set EZ® =
E®° are in fact contained in each of the fibres A.(t) of the pullback attractor. Then,
E~° is the set of equilibria at infinity for each A..

Because S¢(+,) is dynamically gradient with respect to the family

{’51,6(')7 e 7£n,e(')}7

any global bounded solution ¢ on the pullback attractor A¢ satisfies
Jim [60) ~ G (Blla =0, and lm €0~ €ect)la =0, (20

for some k, [ satisfying 1 <k <l < n.

We claim that all bounded heteroclinic connections for the limiting semiflow
T(-) are preserved by small non-autonomous perturbations as in (16). If this is the
case, any two distinct equilibria v; and v are connected by a solution contained in
the limiting attractor A€ if, and only if, there is a global bounded solution on A¢
connecting & () and & ((+), in the sense of (24).

The argument follows as in the small autonomous perturbation case. However, we
need a non-autonomous equivalent result for equation (16) stating that all intersec-
tions of stable and unstable manifolds of distinct equilibria are transverse. In fact,
this assertion was recently proved in [7]. Therefore, we affirm that the heteroclinic
connections within A4¢ are indeed preserved by the non-autonomous perturbation
(16), as long as we take € small enough.

6. Structure of the unbounded pullback attractor for asymptotically
autonomous equations

In this section, we consider the non-autonomous equation (1) with b(¢) being
backwards asymptotically autonomous. Since theorem 5.2 holds for small non-
autonomous perturbations, we can apply it for obtaining the existence and descrip-
tion of the pullback attractor A(:) in the setting of asymptotically autonomous
evolution processes.
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We investigate the dynamics of

Up = Uy + b(t)u + g(u) (25)
with b(t) satisfying
b < b(t) < by and . 11131 b(t) =0b (26)

It is known that the backwards limiting equation

has a finite set of equilibria, which we also denote by E¢ = {v,...,v,}, if all
the equilibria are assumed to be hyperbolic. In this case, the non-compact global
attractor is gradient and given by

A= UL, W(v;).

As we mentioned before, the limiting attractor A decomposes into a compact subset
A€ and an unbounded subset A4*°. The grow-up solutions and the 2N; equilibria
at infinity are all contained on A.

For the asymptotically autonomous problem (25) with b(t) satisfying (26), we
prove the following.

THEOREM 6.1. Assume (26) holds and all the equilibria of (27) are hyperbolic.
Then there are global hyperbolic solutions £(+) of (25), 1 < i < n, satisfying

. lim I€:(t) —vi()||la =0, i=1,2,...,n.

Moreover, the evolution process S(-,-) of (25), when restricted to the subset of
bounded solutions B C X, has a pullback attractor given by

A(t) = (UL, W (&()() N B, teR.

Proof. In order to obtain information on the evolution process related to (25), we
apply theorem 5.2 to the forwards truncated evolution process S, (-, -) generated by

Ut = Ugy + O (B)u + g(u) (28)
where
e
b (1) = b(t), 1.ft < -7
b(r), ift > —r.
and 7 > 0.

Because (28) is a small non-autonomous perturbation of (27), the subset B of
bounded solutions of (28) may be defined as in § 5. In particular, B is independent
of 7.
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Theorem 5.2 guarantees the existence of hyperbolic global solutions &; » such that

lim sup [|& () —vi(-)||a =0

T—00 tGR

and the pullback attractor of S;(-,-) in the restricted phase space B C X is the
following

AS() = (U W (€ (D) NB, teR

for T sufficiently small.

Let S(t,s) be the evolution process of (25). Then, we observe that the pro-
cesses S, (t,s) and S(t, s) coincide if s < ¢ < —7. A prompt conclusion is that their
corresponding pullback attractors on B satisfy

AC(t) = AS(t), for t < —T.

At this point, we remark that B is also the subset of global bounded solutions
for the process S(t, s), as long as s < ¢ < —7. This is due to the fact that

Sr(t,s) =S(t,s), ifs<t<—7.

In addition, B is independent of time, then the set of bounded solutions for each
section A(t) is given by B, for every time ¢ € R. As a consequence, we may recover
Ac(t), for t = —7, by appealing to the invariance property of A°(t). We get

AC(t) = S(t,s)A%(s), forall s < —7<t.
(]

Regarding the equilibria at infinity, the following can be stated. We know that the
evolution process S, (t, ) of equation (28) coincides with S(¢, s), for any s < ¢t < —7.
Hence, if t < —7, any unbounded solution wu(¢; s, 7,ug) converges to some @f’oo, as
s — —00, where j necessarily satisfies

J < Ni.

This is a consequence of S.(¢,s) being a small non-autonomous perturbation of
(27). We conclude that

o) =+, =+,
E® = {05, 05}

is the set of equilibria at infinity on A(t) for arbitrarily small times ¢.

However, notice that the number of objects on the set E*(t) C A(t), may
increase or decrease as t varies. In the particular case where (25) is also forwards
asymptotically autonomous, we may also obtain the set E*°(t) for arbitrarily large
times t.
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Suppose, for instance, that b(t) satisfies (26) and

tlim b(t) = ba.
In this particular setting, we can additionally conclude the following for equation
(25). Let k be a positive real number and by (t) be defined as

bi(t) = {b(t)’ i.f

Then, if we choose k sufficiently large, the process S (¢, s) induced by
Ut = Ugy + D (t)u + g(u)
is a small non-autonomous perturbation of
Up = Ugy + Dot + g(u).

It follows from § 5 that, for any time ¢, the set E> C A(t) contains 2N, elements,
where Ny = [/bs]. Because

Sk(t,s) = S(t,s), fork<s<t,

the set of limiting objects an unbounded solution u(t; s, ug) may limit (as s — —00)
to is given by

oo +,00 +,00
E (t):{él a”'v¢N2 )

for large times ¢.

7. The uniform attractor for the non-autonomous dynamical system

It is well known that in opposition to the behaviour of autonomous systems, the for-
wards and pullback dynamics are distinct, in general, for non-autonomous systems.
The analysis of both asymptotics provides, however, complementary information
on the dynamics of a non-autonomous problem. Since all the previous sections have
mostly been concerned to the pullback behaviour of the system (1), we dedicate
this section to the forwards analysis.

As regards the forward dynamics within infinity, the following may be affirmed.
Analogues of lemmas 3.1 and 3.2 also hold true when taking into account the
behaviour of solutions as ¢ — oo, for each initial time s. That is to say that, the
existence of forwards unbounded solutions of (1) is guaranteed, for every initial
time s. Then, by performing the Poincaré projection analysis, one can find the
number of equilibria at infinity a forwards unbounded solution may converge to. As
in the pullback realm, the number of equilibria will depend on the specific behaviour
of b(t).

If the main features of the pullback attractor are the invariance and the pullback
attraction, the uniform attractor, on its turn, is a non-invariant set but it satisfies
the crucial forwards attraction property. Therefore, a description of the uniform
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attractor related to (1) would greatly complement the information provided in the
previous sections.

We now follow the recent literature on the asymptotic behaviour of non-
autonomous systems. See [5]. A family of nonlinearities is defined as a base semiflow
to be driven by a time shift operator 6;. More precisely, the nonlinearity f(t,-) € X
is a bounded continuous function of t € RT,

f € Cy(RT, X),
then we let ¥y denote the set of all translates of f

So(f) ={0:(f) == f(- +t);t eRT}

We take the metric p to be given by the uniform convergence on compact
subintervals. The hull of the function f is given by

Y :=X,(f) = closure of ¥¢(f) in Cy(R, X) with respect to p.

The continuity of §; on ¥ follows from the continuity of ¥y. The semiflow {60;}:>0
on X will be the base semiflow, referred to as the driving semigroup.
In addition, for each o € %, consider the semiflow

p:RTxX - X
(ta uO) = Qﬁ(t, U)UO = S(t,o; U)UO

where S(t, s;0) is the process related to (1) with f replaced by the translate o.
Then, ¢ defines a semiflow

P RTxEYxX - X

called the cocyle semiflow. The semiflows 6 and ¢ define the non-autonomous
dynamical system (¢,0) on (X,X). The associated skew product semiflow {I1(t) :
t > 0} given by

1(t)(u,0) = (¢(t,0) , b:0)

is a semigroup on X x X.

It follows from the forwards analogues of lemmas 3.1 and 3.2 that the compact-
ness assumption on the uniform attractors has to be dropped in the setting of
equation (1).

DEFINITION 7.1. The minimal subset of X that is forwards uniformly attracting
for all bounded subsets of X and 3, uniformly with respect to the initial time, is
called the unbounded uniform attractor for the non-autonomous dynamical system

(907 9)(X,E)

If we assume that b/(¢) is bounded on R then, as we will see in theorem 7.1,
equation (1) possesses a uniform attractor. The boundedness on b’ (t) implies b(t)
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is globally Lipschitz. As a consequence, any sequence of translations
01, (b) = bt + )

with t,, — oo as n — o0, has a subsequence converging uniformly on compact inter-
vals. Then, we conclude that the driving semigroup 6; on ¥ with metric p possesses
a global attractor S.

In addition to the existence of an attractor for 6;, we have the following. For
each o € X, the evolution process S(t, s; o) possesses a finite dimensional attracting
invariant manifold M, (), with unbounded sections M, (t) contained in X.

By combining both statements we can obtain the existence of an attracting
unbounded subset in X x ¥ for {II(¢) : ¢ > 0}. As a consequence, the skew product
semiflow II(¢) = (¢(t, 0),0:0) has an unbounded global attractor.

We will prove in a future work that, as in [5, theorem 2.7] the non-autonomous
dynamical system (¢,0)x x) related to equation (1) has an unbounded uniform
attractor A given by

a=J U4 (29)
nel teR
where I is the set of all bounded solutions 7 : R — S for 6, and {A,(t)}+cr is the
unbounded pullback attractor for the evolution process

Sy(t, s)u =@t —s,n(s)u, uwelX, t=s.
The following result will be proved.

THEOREM 7.1. Suppose V' (t) is bounded in R. Then the non-autonomous dynamical
system (p,0) related to equation (1) has an unbounded uniform attractor A given
by (29).

It is worth noticing that the non-autonomous attracting invariant manifolds,
existing for each o in the attractor of #;, have all the same attraction exponent.
Since b satisfies (2), the rate of attraction for any limiting translate function will
only depend on the upper bound b, and on ¢’. However, the precise behaviour at
infinity on each manifold, and also on A, is still to be described. The details will be
too long to insert here.
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