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Abstract

The combined data of Fluorescence and Surface Detectors of the Pierre Auger Observatory has recently
provided the strongest constraints on the validity of predictions from current models of hadronic
interactions. The unmodified predictions of these models on the depth of shower maximum (Xmax) and
the hadronic part of the ground signal are unable to accurately describe the measured data at a level of
more than 50 in the energy range 3-10 EeV. This inconsistency has been shown to originate not only
from the predicted amount of muons at the ground level, but also from the predicted scale of Xmax,
which must be adjusted to better match the observed data. The resulting deeper Xmax scales of the
models imply a heavier mass composition to be interpreted from the Xmax measurements.

We show the results of the test with an updated data set of the Pierre Auger Observatory, studying also
the energy evolution of the fitted modification parameters and new versions of the models of hadronic
interactions. Additionally, we discuss the phenomenological consequences of the deeper Xmax scale of
models on the interpretation of the features of the energy spectrum and the muon problem in air-shower
modelling.
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The combined data of Fluorescence and Surface Detectors of the Pierre Auger Observatory has
recently provided the strongest constraints on the validity of predictions from current models
of hadronic interactions. The unmodified predictions of these models on the depth of shower
maximum (Xpn,x) and the hadronic part of the ground signal are unable to accurately describe the
measured data at a level of more than 5o in the energy range 3-10 EeV. This inconsistency has
been shown to originate not only from the predicted amount of muons at the ground level, but also
from the predicted scale of Xn,ax, which must be adjusted to better match the observed data. The
resulting deeper Xmax scales of the models imply a heavier mass composition to be interpreted
from the Xp,.x measurements.

We show the results of the test with an updated data set of the Pierre Auger Observatory, studying
also the energy evolution of the fitted modification parameters and new versions of the models of
hadronic interactions. Additionally, we discuss the phenomenological consequences of the deeper
Xmax scale of models on the interpretation of the features of the energy spectrum and the muon
problem in air-shower modelling.
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1. Introduction

The combined data from the Surface and Fluorescence Detectors of the Pierre Auger Observa-
tory [1] allow to put strong constraints on the predictions of models of hadronic interactions. The
method of fitting two-dimensional histograms of the ground signal at 1000 m from the shower core
and the depth of shower maximum, X;,x, has shown, for the first time, S0 tension between the
prediction of hadronic interaction models Epos-LHC [2], QGSJeT 11-04 [3], SiByLL 2.3d [4] and
measured data for energies 3-10 EeV [5]. The model predictions were assumed to be modified by
mass and energy independent parameters AXpmax and Rpaq(6), shifting the predicted Xmax scale and
rescaling the hadronic part of the ground signal at 1000 m from the shower core, respectively. In
this way, we removed the main differences between the model predictions. The data were shown to
be best described when not only the hadronic part of the ground signal was increased by ~(15-25)%,
but also the predicted X, scale was shifted deeper by ~(20-50) g/cm?. The fitted primary fractions
of four primary species: protons (p), helium (He), oxygen (O), and iron (Fe) nuclei combine to
a heavier mass composition than is usually estimated from the Xy fits to the unmodified model
predictions [6]. We have also shown that in the case of the QGSJeT 1I-04 model, there is a strong
indication of too hard muon spectra generated by the model at 1000 m from the shower core.

In this proceedings, we present an update of the method applied to newer data than in [5]
with an extended energy range 10'34-19-3 ¢V, and we test new versions of the models of hadronic
interactions: Epos-LHC-R [7], QGSJet III-01 [8] and slightly modified model SiByLL 2.3e. We
also test for the energy dependence of the modification parameters and indicate phenomenological
consequences about the energy spectra and muon scale.

2. Testing New Models of Hadronic Interactions

We follow the high-quality selection of combined Surface and Fluorescence Detector data as in
[5] extended by about 20% more events in the energy range 10337190 ¢V, collected from 1 January
2004 up to 31% December 2021. On top of this benchmark energy range with 2740 events, we extend
our analysis to energy ranges 10847183 ey, 101857187 ey 10187190 ey and 101907193 eV with
1407, 1670, 1070 and 516 events, respectively, to study a possibility of an energy dependence of
modification parameters. Monte Carlo simulations were produced using CORSIKA 7.8010 [9-11]
and the detector simulation and shower reconstructions were processed using the Auger Offline
code [12].

We show in Fig. 1 and Fig. 2 the resulting modification parameters of the simulated templates,
and their correlations, after application of the log-likelihood fit described in [5] for the benchmark
energy range. The primary fractions (see the right panel of Fig. 2) obtained using the new model
versions are compatible with the values found for the older versions in [5], despite the large
differences in predictions of the old and new versions of models QGSJeT and Epos.

The model S1BYLL 2.3e shows compatible value of AXpax as for StByLr 2.3d in [5], as expected,
but the needed rescaling of the hadronic part of the ground signal is now by 5-10% larger, mainly
as a consequence of improvements applied in the reconstruction of the Surface Detector signal.

There are large changes in the predictions on air-shower properties in the case of the updated
QGSJET model, including deeper Xmax predictions for protons by ~ 15 g/cm?, while for iron nuclei
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Figure 1: Correlations between A Xp,x and Ryag (Omax = 55°) (left) and Ryaq (Omin = 28°) (right) modifications
of the model predictions obtained from the data fits in the energy range 10'8-3-19-9 eV, The contours correspond
to 1o, 30, and S0 statistical uncertainties. The gray rectangles are the projections of the total systematic
uncertainties.

by ~ 25¢g/ cm?. The Xpmax fluctuations for iron nuclei in this model are now at the level of the total
defragmentation of the nucleus, which was previously pointed out by [13] as a bug in the model
Epos-LHC, and was fixed in the new Eros version. As a consequence, the fitted Xyqx shift for
QGSIJeT 1II-01 is now smaller than in [5] for QGSJEeT II-04, being at the level of 20 g/cmzonly,
however, the hadronic signal at 1000 m needs to be increased by a larger value at the level of 30-40%.

The best performing model, in general, is the Epos-LHC-R model with the predicted Xp,qx scale
compatible according to the test. However, there are large differences in the hadronic rescaling at
the two extreme zenith angles (see the left panel of Fig. 2), strongly indicating that the predicted
muon spectra at 1000 m from the shower core are too hard than what is measured, and the hardest
among the studied models.

We have also tested possible energy dependence of modification parameters, see Fig. 3 for
AXmax, by dividing the measured data into multiple ranges of energy. Given the available event
statistics, the benchmark values of AXp.x obtained in the energy range 10'8-3-190 ¢V were found
compatible with the values for other energy ranges for all three models. Similar results were found for
the two values of Ryaq(6). This finding supports the assumption of mass-independent modification
parameters, which would be otherwise expected to manifest through the energy-per-nucleon scaling
as a consequence of the Superposition model [14]. Our specific searches for mass dependencies of
modification parameters further support this claim. From data on AXp,,x we can not also exclude a
mild energy dependence in the studied energy range given the available statistics. However, such
an effect is expected for the energy evolution of {(In A) by ~ 1 [15] between 10'84719-3 ¢V, which
affects the mass-dependent bias on AX;,,x coming from the method itself as it was shown in Fig. 12
in [5] for the older versions of models. We illustrate estimation of such an effect using gray lines
corresponding to the change of AXpqx bias by 4 + 1 g/cm?per decade of energy in Fig. 3.
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Table 1: The AX,« values with statistical and systematical uncertainties found for older versions of hadronic
interaction models in [5] and here for the new models in the energy range 10'8-3-19-0 ¢V,

Epos-LHC QGSJer11-04  SmsyLL2.3d

AXmax /(g/em?) | 22+3 %L 47249 29 +2*19
Epros-LHC-R  QGSJer III-01 SiByLL2.3e

AXmax /(gfem?) | —1£2%0%  18=17%G  28x2%),

3. Phenomenology Consequences of Deeper Scale of Xp,,«

Given the non-observation of dependencies of modification parameters on energy or mass, we
show in Fig. 4 the primary fractions obtained by fitting the Xp,ax distributions [16] using modified
simulation templates by AXp,.x from the Table 1 for older and newer versions of the models, without
taking statistical and systematic uncertainties into account. Note the N and Fe nuclei represent
groups for nuclei of similar masses. Under the assumption of a constant AXp,x modification in
models, we see a general trend of suppression of protons and helium nuclei beyond the ankle energy
(= 5EeV). An increase of the nitrogen fraction between the ankle and instep (= 13 EeV) energy
[17] is also noticeable for all modified model predictions. In case of the iron nuclei, an increase of
the relative fraction towards the highest energies is common for all predictions of modified models.

In Fig. 5, we multiply the total energy spectrum from [18] by the primary fractions obtained
in Fig. 4. Tt illustrates that despite a global shift towards deeper predictions on Xp,x with the
new models, the remaining differences in other model predictions like Xyax fluctuations or p-Fe
difference in (Xpax) even increased. As a consequence, there is no convergence in the interpreted
mass composition and thus of the individual energy spectra. However, the connection between
the instep feature in the energy spectrum and the start of fading of nitrogen nuclei from the beam,
as proposed in [19], seems to be a common feature of all the model predictions, if the predicted
Xmax scale is shifted by AXny.x. Note that this interpretation of instep as a transition between the
dominance of different mass groups is consistent with what was found in [20], where the instep
feature was attributed to the change in dominance of He to N nuclei due to injection and propagation
effect.

Finally, we illustrate the alleviation of the muon problem in Fig. 6 for the measurement in [21]
for zenith angles 62° < # < 80°. The original model predictions (dashed lines) are also shifted
for AX.x obtained in [5]. The underestimation of the muon scale in the models is then reduced
to about 15-25%, which is in line with the values obtained in [5] for the zenith angles 6 < 60°.
The new model Eros-LHC-R predicts more muons at larger zenith angles than its previous version,
therefore better compatibility with measurement of the muon size in inclined showers is expected.

4. Summary

The powerful combination of Surface and Fluorescence Detectors of the Pierre Auger Ob-
servatory allowed to test new versions of three models of hadronic interactions Epos-LHC-R,
QGSJeT III-01 and SiByLL 2.3e using the method from [5]. Although an improvement in the de-
scription of the measured Xpax scale has been observed in the new versions of Epos and QGSJET,
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Figure 4: The energy evolutions of four primary fractions fitted to the Xy, distributions using modified
templates by AXpax for older (bottom panel) and new (top panel) versions of the hadronic interaction models.
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Figure 5: The total energy spectrum measured by the Pierre Auger Observatory [18] decomposed into four
primary components using relative primary fractions shown in Fig. 4 for older (right panel) and new (left
panel) versions of the hadronic interaction models.
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Figure 6: The muon scale (R,) vs. Xpax measurement at the Pierre Auger Observatory using inclined
showers at energy ~10EeV from [21]. We estimate predictions between p and Fe nuclei for original models
of hadronic interactions (dashed lines) and for their shifted Xnax predictions by AXpax (full lines).

all models are still unable to describe the measured data satisfactorily well in the energy range
1018-5-19-0 ¢y All models seem to predict too hard spectra of muons causing less steep attenuation
of the hadronic signal than is favored by the data. Yet, interestingly, the primary fractions found to
best describe the measurements are consistent between the older and new versions of the models,
when AXpax and Rp,q(6) modifications of the simulated templates are assumed.

The results of our studies in various energy ranges are compatible with no energy dependence
of the modification parameters in the energy range 10'84-193 eV, which brings us to probe some
basic phenomenology consequences regarding the energy spectrum and the lack of predicted muon
scale compared to the direct measurement. For that, we assume a constant AX,,x offset obtained in
108:5-19-09 eV and apply it in the model predictions on Xpmay to the full energy range 10184193 eV,
As a consequence of this assumption, for all models the protons and helium nuclei seem to be
suppressed above the ankle energy. The nitrogen nuclei increase their fraction in the primary
beam above this energy up to the instep feature and start to steeply fade just beyond this energy.
Iron nuclei seem to increase their abundance towards the highest energies. In case of the AXpax
modifications, the problem of models from direct muon measurements at 10 EeV is alleviated to the
level of 15-25% for older versions of the models, consistent with the result of [5] at lower energy

and zenith angles.
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