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Abstract: Let X and Y be pathwise connected and paracompact Hausdorff spaces equipped with free involu-
tionsT: X —» Xand S: Y — Y, respectively. Suppose that there exists a sequence

hy .
(Xi, T)) — (Xiy1, Tis1) forl<ic<k,

where, for each i, X; is a pathwise connected and paracompact Hausdorff space equipped with a free
involution Tj, such that Xy, = X, and h; : X; — Xj;1 is an equivariant map, for all 1 <i < k. To achieve
Borsuk-Ulam-type theorems, in several results that appear in the literature, the involved spaces X in the
statements are assumed to be cohomological n-acyclic spaces. In this paper, by considering a more wide
class of topological spaces X (which are not necessarily cohomological n-acyclic spaces), we prove that there
is no equivariant map f: (X, T) — (Y, S) and we present some interesting examples to illustrate our results.
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1 Introduction

Let X be a topological space. An involution on X is a homeomorphism T : X — X which is its own inverse.
A classical example is the antipodal map A : S" — S™", A(x) = —x, for all x € S™, where S™ denotes the
n-sphere.

Suppose that X and Y are topological spaces equipped with involutions T : X — Xand S : Y — Y, respec-
tively. A continuous map f : X — Y is called an equivariant mapif S o f = f o T. A pair (X, T) will be referred to
as a topological space X equipped with an involution T : X — X, which is free, that is, T(x) # x, forany x € X.

One formulation of the Borsuk-Ulam Theorem [3] is that there is no map from S™ to S" equivariant with
respect to the antipodal map, when m > n (see, for example, [1, Section 7.2]).

In [7], it was proved that if X and Y are pathwise connected and paracompact Hausdorff spaces with
free involutions T : X — Xand S : Y — Y such that for some naturaln > 1, I:Ir(X, Z>)=0,forl<r<n,and
H"™Y(Y/S, Z,) = 0, where Y/S is the orbit space of Y by S, then there is no equivariant map f : (X, T) — (Y, S).

In [6], the previous result is generalized for the relative case (X, A), where A is a T-invariant subset of X
(see [6, Theorem 1.1]).

The aim of this paper is to generalize these results for filtered spaces, as follows.
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Theorem 1. Let X and Y be pathwise connected and paracompact Hausdorff spaces equipped with free invo-
lutionsT: X — Xand S : Y — Y, respectively. Let us suppose that there exists a sequence

hi .
(Xi, Ti) — (Xiv1, Tiy1) forl<ic<k,

where, for each i, X; is a pathwise connected and paracompact Hausdorff space equipped with a free involu-
tion T; : X; — X; such that Xy, = X and h; is an equivariant map. Assume that for some sequence of natural
numbers no = 0 < ny < ny < --- < ny the following hold:

() H(Xi3Z,)=0,forni_i <r<njl<i<k,

(i) hf : HY(Xi15 Z2) — H"(X;3 Z>) is the null homomorphism, for 1 < i < k,

(iii) H™*1(Y/S; ;) = 0,

where H denotes the Cech cohomology. Then there is no equivariant map f : (X, T) — (Y, S).

Let us consider the case that (X, T) is a filtered pair with filtration
(A1, T1) c (A, To) - (A, Ti) = (X, ),
that is, X is a filtered space with filtration
A1 cAycAsc---cAr=X,

where each element A; of the filtration is a pathwise connected and paracompact Hausdorff space and each
involution T; : A; — A; is the restriction of T to A;.

In this particular case, in which h; is the inclusion map, for each 1 < i < k, one has the next result, that
follows from Theorem 1.

Corollary 1. Let X and Y be pathwise connected and paracompact Hausdorff spaces, equipped with free invo-
lutionsT: X —» Xand S : Y — Y, respectively. Let us consider X a filtered space with filtration

Ay cAycAsc---CcAr=X,

where each element of the filtration is a pathwise connected and paracompact Hausdor{f space. Suppose that

for some sequence of natural numbers np = 0 < n; < ny < --- < ng the following hold:

(i) H'(Ai3Z,) =0, forni.y <r<nj,1<i<k,

(ii) j; : H"(Air15 Zo) — H"(A; Z,) is the null homomorphism, for 1 < i < k, where j; : A;j — Ay, is the nat-
ural inclusion,

(i) H™*1(Y/S; 22) = 0,

where H denotes the Cech cohomology. Then there is no an equivariant map f : (X, T) — (Y, S).

2 Preliminaries

We start by introducing some basic notions and notations. We assume that all spaces under consideration
are pathwise connected and paracompact Hausdorff spaces. The symbol = denotes the appropriate isomor-
phism between algebraic objects. Throughout this paper, H will always denote the Cech cohomology with Z,
coefficients, unless otherwise indicated.

If G is a compact Lie group which acts freely on a paracompact Hausdorff space X, then X — X/Gisa prin-
cipal G-bundle [4, Chapter II, Theorem 5.8]. Let G — EG — BG be the universal G-bundle, where BG is the
classifying space of the group G. Then we can take a classifying map X/G — BG for the principal G-bundle
X — X/G. The group G acts diagonally on the space X x EG with orbit space Xg = (X x EG)/G. The projec-
tion g : X x EG — EG is a G-equivariant map, that is, g(ax) = aq(x), for all a € G and for all x € X, and gives
afibration X — X — BG. This construction is originally due to Borel [2, Chapter IV]. The case of main inter-
est for us in this work is G = Z,. We recall that BZ, = RP®. Let us observe that a free involution T: X — X
determines a Z, free action on X.

Let BZ, be the classifying space for Z, and denote by a € H'(BZ,) the Euler class of the univer-
sal principal Z,-bundle over BZ,. Since X is a paracompact Hausdorff space, one can take a classifying
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map g : X/T — BZ, for the principal Z,-bundle X — X/T.From g* : H'(BZ,) — H'(X/T) one gets the Euler
class
ex =g*(a) e H(X/T) (2.1)

of X — X/T.
Moreover, from [4, Section 3.10 (Sequence 10.5 of p. 161)], one has the Smith—Gysin exact sequence

—ex

00— HO(X/T) p—> HO(X) BN HO(X/T) [ I:Il(X/T) — ...
S B D B S BT S BT —

where p : X — X/T is the projection, 7 : H'(X) —» H"(X/T) is the transfer homomorphism and -, is the cup
product with the Euler classes given in (2.1).
We will use the following well-known lemma to prove the main result.

Lemma 1. Let us suppose that X and Y are pathwise connected and paracompact Hausdorff spaces, equipped
with free involutions T : X — X and S : Y — Y, respectively. Let ex € HY(X/T) and ey € H'(Y/S) be the Euler
classes of the principal Z-bundles X — X/T and Y — Y/S, respectively. If for some natural number n > 1, we
have eg'(“ # 0and e’l’;r1 = 0, then there is no an equivariant map f : (X, T) — (Y, S).

Now, for a pair (X, T), let us suppose that there exists a sequence

Xir Ti) 25 (Xio1, Tiar) forl<isk,

where, for each i, X; is a pathwise connected and paracompact Hausdorff space equipped with a free involu-
tion T; : X; — X; such that X1 = X and h; : X; — Xj1 is an equivariant map, foreach 1 <i < k.

Let us consider the following diagram, where all the horizontal sequences are Smith—Gysin sequences
of the spaces under consideration and all vertical morphisms are induced by the maps h; : X; — Xj;1. For
simplicity of notation, in Diagram 1, —, will denote the cup product with the Euler classes of the spaces
under discussion. Moreover, the spaces X;/T; will be denoted by X;.

Diagram 1. We have

0 — HOX*) 25 HO(X) -5 HOX*) =5 HU(X*) — -+ — H'(X*) 2 H'(X) = H'(X*) =5 H L (X*) — ---
|7 & I I |7 | |7 I

0 — HO(X;) 25 HO(Xy) > HO(XE) = HY(X}) — - — H'(X3) £ H'(Xp) 5 H'(X}) — HY(X}) — -
! ! ! ! ! ! ! !

i . i i _ i i . i i -,
05 HO(X?, )% HOXji1) S HO(X:,)) S HY(XS,y) » - » H' (X3, ) % H(Xju1) S HY(X3,,) S HPPL(X:, ) = -

+ + + + + +

[ N A [ N G
0 — HO(X;) L5 HOX) -5 HO(X?) =5 HY(X?) — - — H'(X7) 25 H'(X)) - H'(X}) — HU(XF) — -
! ! ! ! ! ! ! !

i . i i - [ i . i I < i
0 - HOX3) &5 HO(X,) 5 HO(X3) =5 HY(XS) — -+ — H'(X3) 25 H'(X,) 5 HT(X3) = HU(X3) — -

|7 [ | | |7 |1 |7 |

0 — HO(X?) 25 HO(Xy) -5 HOXT) =5 HY(XD) — -+ — H'(X]) 25 H'(Xy) — H'(X]) — H™L(XD) — -+

3 Proof of the main theorem and examples

3.1 Proof of Theorem 1

The idea is to show that e;“l # 0, by using Diagram 1, and then apply Lemma 1. An inductive construction

will be done, as follows.
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Firstly, considering only the space X1, we have by hypothesis that H"(X;) = 0, forall 1 < r < ny, for some
ni € IN. To show that eg’(ll # 0, let us first consider the last row of Diagram 1:

0 —— HO(Xy/T1) s FOXy) —"s HO(X1/T1) —ots HY(X4/Ty) — -
_ (3.1)
. I ex; -
s H'(Xy) —— H'(X1/T1) — B (X1 /T1) — - .

By the connectivity, p* : HO(X,/T;) - H°(X;)isan isomorphism, and therefore the transfer homomorphism
71 : H(X1) — H°(X1/T1) is the null homomorphism. Then — ex, is a monomorphism.
Therefore, ex, =1 — ex, # 0.
For each r, 1 < r < n1, we have by hypothesis that H'(X;) = 0 and since the rows in Diagram 1 are exact,
this implies that
—eyx, : H'(X1/T1) » H*(X1/T1)

is injective and thus ezl = ey, — ex, # 0. Inparticular,

-1

n _ _m -
ex, = ex, ex, # 0.

Now, we will show that e}lzﬂ # 0. For this, let us consider the principal Z,-bundles

X1 —)Xl/Tl and X2—>X2/T2.
Denoting by
h1 :Xl/Tl - XZ/TZ;

the map induced by h; : X; — X, and considering
82 :X2/Tr = BZ,,

a classifying map for the principal Z,-bundle X, — X,/T,, we have the following diagram:

XlL)XZ

l 1 (3.2)
Xy/Ty — X,/T) % Bz,.

Since h; is an equivariant map, the square in (3.2) is commutative, and therefore g o El is a classifying
map for the principal Z,-bundle X; — X1/T1. Let a € H'(BZ,) be the Euler class of the universal Z,-bundle
EZZ i BZz. Then

ex, =g and ex, = hy(g3(@) = hy(ex,).

. _
Therefore, we have h; (e;’;z) = e;'(ll # 0, that is, e;'é cannot be zero.

To show that e;g” # 0, let us consider the part of the last two rows of Diagram 1, as follows:

D HM(Xy) —2 HM(X,/Ty) —2 HMH (X, /Ty) — -

lhf lﬂj lﬁf

D HM(Xy) —2 HM(X/T1) ——b HML(X/Ty) —— -

If e}j’l =0, then e;’é € Ker(—¢y, ) and by exactness, e';é = T2(Bn, ), for some B, € H™(X;). But by hypothesis,
h} : H"(X,) — H™(X1) is the null homomorphism, consequently,

0= 710 hi(Bn,) = hy (T2(Bn,) = h (e}) = €} #0.

This implies that e;’é” + 0, as we wanted to show.

Now let us suppose that e}i’”l # 0, for some 1 < s < k. To prove that e?;s:'ll # 0, firstly we will show

that ey’ # 0.
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Consider the following row of Diagram 1 corresponding to X;:

Ts

H'(Xs) = H'(Xy/Ts) — B (X Ts) — -

By hypothesis, H'(Xs) =0, forng + 1 < r < ng,1. Thus —ey, IS injective, for ns + 1 < r < nsy1 and then e?js + 0.
Let us consider Xg — Xs/Ts and Xs,1 — Xs.1/Ts41 the principal Z,-bundles, with the induced map

hs : Xs/Ts — X511/ Tsy1. Let us take g1 : X1/ Ts+1 — BZ, a classifying map for the principal Z,-bundle

Xsi1 — Xs41/Ts41, illustrated in the following commutative diagram:

h
Xs — Xsi1

l h l 8s+1

hs
Xs/Ts —— Xs¢1/Tse1 — BZ,.

Then the map gs41 © ﬁs : Xs/Ts — BZ, is a classifying map for the principal Z,-bundle X; — Xs/Ts.
For a € H'(BZ,) the Euler class of the universal Z,-bundle, we have

ex,. =8, (@ and ey, =Ry (gl,1(@) = hy (ex,..).

Thus, hg (e} ) = e} # 0, which implies e}  #0.
Now, let us consider the part of Diagram 1 related to X and X, 1, respectively:

S+ €Xs+
- —— H™(Xs541) BLELN H™(Xs1/Ts41) e, H"* Y (Xg41/Tspq) — -

b s E

D H™(Xg) — s HM(Xs/Ts) — =y HM*1(Xg/Ts) —— -+

Suppose that e?(:ll = 0. Then eg';m € Ker(—e,_ ). As previously, e}sm = Ts41(Bn,), for some B, € H™ (Xs41).
But since by hypothesis h} : H" (Xs.1) — H™ (X;) is the null homomorphism, we have

0=Tsoh(Bn,) = hg (Tsr1(Bn,)) = hs (€} ) = €} #0.

Consequently, e;’;sjll # 0. This concludes the inductive construction.
Finally, to finish the proof, since e}**" # 0 and by hypothesis e}*** = 0, it follows from Lemma 1 that

there is no equivariant map f: (X, T) — (Y, S).

3.2 Examples

In this subsection, we will present examples which show the relevancehof our results. First, in Example 1,
we will construct spaces equipped with involutions and a map (X, T1) — (X, T) which satisfy conditions (i)
and (ii) of Theorem 1, while the image h(X;) ¢ X does not satisfy conditions (i) and (ii) of Corollary 1.

In Example 2, we will show that Theorem 1 (Corollary 1) can be applied in the context of manifolds. By
using cobordism theory, we will construct a pair (M, T), in which M is a manifold, T : M — M is a free invo-
lution, with a natural filtration for the pair (M, T), satisfying all the hypotheses of Theorem 1 (Corollary 1).
We emphasize that for such class of manifolds, the classical results about Borsuk—Ulam Theorems cannot be
applied, since in general, such results are valid for n-acyclic spaces, that is, spaces with zero cohomology at
r-levels, with 1 <r < n.

Example 1. Given Z a topological space and A c Z a closed subspace equipped with free involution ¢ : A — A,
firstly we will construct a topological space X with a free involution i such that A c X and the involution ¢
restricted to A is the given one.

Let Xo = Z x {0} and X; = Z x {1} be two copies of Z. Let X = (Xo LU X;)/~ be the identification space
obtained by identifying (x, i) with (¢p(x), 1 — i), i = 0, 1, whenever x € A.



6 —— C.Biasiatal., Borsuk-Ulam theorem for filtered spaces DE GRUYTER

Let i : X — X be the map induced by [(x, i)] — [(x, 1 - )], i = 0, 1. Note that the map  is a well-defined
free involution, which coincides with ¢ in the copy of A in X, that is,

Pl D] =[x, 1-1] = [(9(), 1 - (1 =1)] = [(p(x), D].

This construction gives us a topological space X equipped with a free involution i, where A ¢ X and |4 = ¢.

Now, we will construct a pathwise connected and paracompact Hausdorff space X equipped with a free
involution T: X — X and a map h : (X1, T1) — (X, T), where (X1, T1) is a pair constituted by a pathwise
connectegli and paracompact Hausdorff space X; and by a free involution T; on X; in such a way that
(X1, T1) — (X, T) satisfies hypotheses (i) and (ii) of Theorem 1.

Let m and n be positive integers, with m < n, and let X be the connected sum of two copies of S™*1 x §"~™,

To define an involution 1 on X, we will consider a specific construction to X. Let Z be the resultant space
after removing an open disk from S™*1 x $"~™ and let S be the boundary of the disk. In S, one can define an
involution ¢ : S — S induced by the antipodal map on the sphere.

Applying the previous construction by considering Z as a copy of S™*1 x S"~™ with an open disk removed,
A = Sand ¢ = T, the result of this construction is a pair (X', ¥), in which X’ is a topological space (equipped
with a free involution 1) which is a connected sum of two copies of S™*! x $" and such that X’ is homeo-
morphic to X.

Now, we shall define the desired map h.

Let us consider (X1, Ty) := (S", A), where S" is the n-dimensional sphere and A is the antipodal map.
Let E be the space obtained from S™ contracting the boundaries of two symmetrical and non-connected disks,
homeomorphic to the wedge of three spheres S} v S5 v S5, with wedge points in the North and South poles
of §J. Let D be the space obtained from E identifying two opposites hemispheres in the subspaces correspond-
ing to ST and S}, in such a way that the wedge points are preserved. This means that D is homeomorphic to
the wedge DY v S} v D}, where D' and D} are n-dimensional disks, the wedge points are the South and North
poles and they are on the boundaries of the disks, as illustrated in Figure 1.

The next step is to define an equivariant map f; : D — Y in which the restriction f; : S} — S is an equiv-
ariant homeomorphism between S5 and S ¢ X, and f;(D}) is a copy of S™*! x {P}. Moreover, f; maps D% to
the symmetrical opposite (f1(D%) = p(f1(D))).

A way to define a map f; satisfying the above condition over D} and D} is to take an intermediary step,
contracting the disks D} and D} into an (m + 1)-dimensional disks D™ and Dg"“, respectively, and then
identifying the respective boundaries. Then we obtain an intermediary space W which is homeomorphic
to ST v S v S+

Now, we can send S’l’“rl to S™*1 x {P} and Sg’” to Y(S™1 x {P}) in straightforward way by a map f>. The
composite map of f, with the projection is the desired map f; .

The composite of the projection S" — D with f; is the desired equivariant map h : (8", A) — (X, Y).

Let us observe that since the disks D} and D are contractible, h : (S", A) — (X, 1) is homotopic to a map
g : S" — X withimage g(S") = S. This means that the induced map on cohomology h* : F/(X) — H/(S") is the
null homomorphism, for all j > 0.

Therefore, the pairs (S, A) and (X, ¥), along with the equivariant map h : (8", A) — (X, P), constitute
an example of a sequence

h;
Xi, Ti) — (Xiv1, Tis1)

satisfying conditions (i) and (ii) of the Theorem 1. However, the pair (h(S™), ) does not.
Theorem 1 holds for S™ — X on the previous example and for any space Y equipped with a free involution
S : Y — Y satisfying condition (iii) of Theorem 1. For example, (Y, S) = (S", A).

Example 2. First, we will consider the following general case.

Let A be a pathwise connected and paracompact Hausdorff space, equipped with a free involution
T:A — A.If Ais aclosed subspace of a topological space Z, one can create a new topological space X with
a free involution ¢ : X — X, with A c X and such that the restriction ¢p|4 = T in the following way.

Let us consider the disjoint union Z x {0} u Z x {1} of two copies of Z. The new topological space X will
be the quotient space obtained by identifying (x, 1) with (T(x), 0), whenever x € A.
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Let ¢ : X — X be the induced map given by [(x, i)] — [(x, 1 — i)]. Note that ¢ is a well-defined involution
which coincides with T on A, since ¢[(x, 0)] = [(x, 1)] = [(T(x), 0)].

Now, let us consider the previous situation in the context of manifolds with free involutions.

Let A = M, be a closed manifold which admits a free involution T;. By Conner and Floyd [5], we have
that M; bounds, i.e., there exists a manifold Z = W, such that oW, = M; and dim W5 = dim M; + 1. There-
fore, X = M, = 2W, the double of M; is a closed manifold which admits a free involution T,. If we replay this
step n-times, we obtain the sequence

(Ml’ Tl) C (MZa TZ) C (M3’ T3) c---C (M = Mn, Tn)’

with dim M,, = dim M, + n — 1. See Figure 2.
Since each M; is the boundary of W;, the inclusion M; < M;j,; induces the null homomorphism for all
nonzero dimensions. Hence

(M1, T1) ¢ (M2, T2) € (M3, T3) C --- < (Mp, Ty)

satisfies conditions (i) and (ii) of Theorem 1.

As a specific example, let W, be the torus with an open disk removed and 0 W, = M, identified with the
circle S'. Also, let T; : M1 — M; be the antipodal map. Applying the previous construction, we obtain the
bitorus M, equipped with the free involution T5.

The bitorus is a 2-dimensional closed manifold. Thus, there exists a 3-dimensional compact manifold
W3 such that 0W3 = M,. Repeating the construction for W5 and (M>, T,), we obtain (M3, T3). If we replay
this step n-times, we obtain the sequence

(My, Ty) ¢ (M, Ty) ¢ (M3, T3) C --- € (Mp, Ty).

Since each M; is the boundary of W;, the inclusion M; <— M;j,; induces the null homomorphism for all
nonzero dimensions. Hence

(M, T1) ¢ (M2, T2) ¢ (M3, T3) C -+ < (Mp, Ty)

satisfies the conditions conditions (i) and (ii) of Theorem 1 (Corollary 1).
Let us note that the manifold M = M,, has nonzero cohomology group atlevelsk, 1 < k < dimM;+n-1 =
dim M,,. In this case, the classical Borsuk-Ulam-type theorems cannot be applied.
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