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Abstract: Let X and Y be pathwise connected and paracompact Hausdorff spaces equipped with free involu-
tions T : X → X and S : Y → Y, respectively. Suppose that there exists a sequence

(Xi , Ti)
hi󳨀→ (Xi+1, Ti+1) for 1 ≤ i ≤ k,

where, for each i, Xi is a pathwise connected and paracompact Hausdorff space equipped with a free
involution Ti, such that Xk+1 = X, and hi : Xi → Xi+1 is an equivariant map, for all 1 ≤ i ≤ k. To achieve
Borsuk–Ulam-type theorems, in several results that appear in the literature, the involved spaces X in the
statements are assumed to be cohomological n-acyclic spaces. In this paper, by considering a more wide
class of topological spaces X (which are not necessarily cohomological n-acyclic spaces), we prove that there
is no equivariant map f : (X, T) → (Y, S) and we present some interesting examples to illustrate our results.
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1 Introduction
Let X be a topological space. An involution on X is a homeomorphism T : X → X which is its own inverse.
A classical example is the antipodal map A : Sn → Sn, A(x) = −x, for all x ∈ Sn, where Sn denotes the
n-sphere.

Suppose that X and Y are topological spaces equippedwith involutions T : X → X and S : Y → Y, respec-
tively. A continuousmap f : X → Y is called an equivariantmap if S ∘ f = f ∘ T. A pair (X, T)will be referred to
as a topological space X equippedwith an involution T : X → X, which is free, that is, T(x) ̸= x, for any x ∈ X.

One formulation of the Borsuk–Ulam Theorem [3] is that there is no map from Sm to Sn equivariant with
respect to the antipodal map, when m > n (see, for example, [1, Section 7.2]).

In [7], it was proved that if X and Y are pathwise connected and paracompact Hausdorff spaces with
free involutions T : X → X and S : Y → Y such that for some natural n ≥ 1, Ȟr(X,ℤ2) = 0, for 1 ≤ r ≤ n, and
Ȟn+1(Y/S,ℤ2) = 0, where Y/S is the orbit space of Y by S, then there is no equivariantmap f : (X, T) → (Y, S).

In [6], the previous result is generalized for the relative case (X, A), where A is a T-invariant subset of X
(see [6, Theorem 1.1]).

The aim of this paper is to generalize these results for filtered spaces, as follows.
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Theorem 1. Let X and Y be pathwise connected and paracompact Hausdorff spaces equipped with free invo-
lutions T : X → X and S : Y → Y, respectively. Let us suppose that there exists a sequence

(Xi , Ti)
hi󳨀→ (Xi+1, Ti+1) for 1 ≤ i ≤ k,

where, for each i, Xi is a pathwise connected and paracompact Hausdorff space equipped with a free involu-
tion Ti : Xi → Xi such that Xk+1 = X and hi is an equivariant map. Assume that for some sequence of natural
numbers n0 = 0 < n1 ≤ n2 ≤ ⋅ ⋅ ⋅ ≤ nk the following hold:
(i) Ȟr(Xi;ℤ2) = 0, for ni−1 < r < ni, 1 ≤ i ≤ k,
(ii) h∗i : Ȟ

ni (Xi+1;ℤ2) → Ȟni (Xi;ℤ2) is the null homomorphism, for 1 ≤ i ≤ k,
(iii) Ȟnk+1(Y/S;ℤ2) = 0,
where Ȟ denotes the Čech cohomology. Then there is no equivariant map f : (X, T) → (Y, S).

Let us consider the case that (X, T) is a filtered pair with filtration

(A1, T1) ⊂ (A2, T2) ⊂ ⋅ ⋅ ⋅ ⊂ (Ak , Tk) = (X, T),

that is, X is a filtered space with filtration

A1 ⊂ A2 ⊂ A3 ⊂ ⋅ ⋅ ⋅ ⊂ Ak = X,

where each element Ai of the filtration is a pathwise connected and paracompact Hausdorff space and each
involution Ti : Ai → Ai is the restriction of T to Ai.

In this particular case, in which hi is the inclusion map, for each 1 ≤ i ≤ k, one has the next result, that
follows from Theorem 1.

Corollary 1. Let X and Y be pathwise connected and paracompact Hausdorff spaces, equipped with free invo-
lutions T : X → X and S : Y → Y, respectively. Let us consider X a filtered space with filtration

A1 ⊂ A2 ⊂ A3 ⊂ ⋅ ⋅ ⋅ ⊂ Ak = X,

where each element of the filtration is a pathwise connected and paracompact Hausdorff space. Suppose that
for some sequence of natural numbers n0 = 0 < n1 ≤ n2 ≤ ⋅ ⋅ ⋅ ≤ nk the following hold:
(i) Ȟr(Ai;ℤ2) = 0, for ni−1 < r < ni, 1 ≤ i ≤ k,
(ii) j∗i : Ȟ

ni (Ai+1;ℤ2) → Ȟni (Ai;ℤ2) is the null homomorphism, for 1 ≤ i ≤ k, where ji : Ai 󳨅→ Ai+1 is the nat-
ural inclusion,

(iii) Ȟnk+1(Y/S;ℤ2) = 0,
where Ȟ denotes the Čech cohomology. Then there is no an equivariant map f : (X, T) → (Y, S).

2 Preliminaries
We start by introducing some basic notions and notations. We assume that all spaces under consideration
are pathwise connected and paracompact Hausdorff spaces. The symbol ≅ denotes the appropriate isomor-
phism between algebraic objects. Throughout this paper, Ȟ will always denote the Čech cohomology withℤ2
coefficients, unless otherwise indicated.

IfG is a compact Lie groupwhich acts freely on a paracompactHausdorff space X, then X → X/G is a prin-
cipal G-bundle [4, Chapter II, Theorem 5.8]. Let G 󳨅→ EG 󳨅→ BG be the universal G-bundle, where BG is the
classifying space of the group G. Then we can take a classifying map X/G → BG for the principal G-bundle
X → X/G. The group G acts diagonally on the space X × EG with orbit space XG = (X × EG)/G. The projec-
tion q : X × EG → EG is a G-equivariant map, that is, q(ax) = aq(x), for all a ∈ G and for all x ∈ X, and gives
a fibration X 󳨅→ XG → BG. This construction is originally due to Borel [2, Chapter IV]. The case of main inter-
est for us in this work is G = ℤ2. We recall that Bℤ2 = ℝP∞. Let us observe that a free involution T : X → X
determines aℤ2 free action on X.

Let Bℤ2 be the classifying space for ℤ2 and denote by α ∈ Ȟ1(Bℤ2) the Euler class of the univer-
sal principal ℤ2-bundle over Bℤ2. Since X is a paracompact Hausdorff space, one can take a classifying
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map g : X/T → Bℤ2 for the principalℤ2-bundle X → X/T. From g∗ : Ȟ1(Bℤ2) → Ȟ1(X/T) one gets the Euler
class

eX = g∗(α) ∈ Ȟ1(X/T) (2.1)

of X → X/T.
Moreover, from [4, Section 3.10 (Sequence 10.5 of p. 161)], one has the Smith–Gysin exact sequence

0 󳨀→ Ȟ0(X/T)
p∗
󳨀→ Ȟ0(X) τ

󳨀→ Ȟ0(X/T)
⌣eX󳨀→ Ȟ1(X/T) 󳨀→ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 󳨀→ Ȟr(X/T)
p∗
󳨀→ Ȟr(X) τ

󳨀→ Ȟr(X/T)
⌣eX󳨀→ Ȟr+1(X/T) 󳨀→ ⋅ ⋅ ⋅ ,

where p : X → X/T is the projection, τ : Ȟr(X) → Ȟr(X/T) is the transfer homomorphism and⌣eX is the cup
product with the Euler classes given in (2.1).

We will use the following well-known lemma to prove the main result.

Lemma 1. Let us suppose that X and Y are pathwise connected and paracompact Hausdorff spaces, equipped
with free involutions T : X → X and S : Y → Y, respectively. Let eX ∈ Ȟ1(X/T) and eY ∈ Ȟ1(Y/S) be the Euler
classes of the principal ℤ2-bundles X → X/T and Y → Y/S, respectively. If for some natural number n ≥ 1, we
have en+1X ̸= 0 and en+1Y = 0, then there is no an equivariant map f : (X, T) → (Y, S).

Now, for a pair (X, T), let us suppose that there exists a sequence

(Xi , Ti)
hi󳨀→ (Xi+1, Ti+1) for 1 ≤ i ≤ k,

where, for each i, Xi is a pathwise connected and paracompact Hausdorff space equipped with a free involu-
tion Ti : Xi → Xi such that Xk+1 = X and hi : Xi → Xi+1 is an equivariant map, for each 1 ≤ i ≤ k.

Let us consider the following diagram, where all the horizontal sequences are Smith–Gysin sequences
of the spaces under consideration and all vertical morphisms are induced by the maps hi : Xi → Xi+1. For
simplicity of notation, in Diagram 1, ⌣e will denote the cup product with the Euler classes of the spaces
under discussion. Moreover, the spaces Xi/Ti will be denoted by X∗i .

Diagram 1. We have

0 H0(X∗) H0(X) H0(X∗) H1(X∗) ⋅ ⋅ ⋅ Hr(X∗) Hr(X) Hr(X∗) Hr+1(X∗) ⋅ ⋅ ⋅

0 H0(X∗k ) H0(Xk) H0(X∗k ) H1(X∗k ) ⋅ ⋅ ⋅ Hr(X∗k ) Hr(Xk) Hr(X∗k ) Hr+1(X∗k ) ⋅ ⋅ ⋅

0 H0(X∗j+1) H0(Xj+1) H0(X∗j+1) H1(X∗j+1) ⋅ ⋅ ⋅ Hr(X∗j+1) Hr(Xj+1) Hr(X∗j+1) Hr+1(X∗j+1) ⋅ ⋅ ⋅

0 H0(X∗j ) H0(Xj) H0(X∗j ) H1(X∗j ) ⋅ ⋅ ⋅ Hr(X∗j ) Hr(Xj) Hr(X∗j ) Hr+1(X∗j ) ⋅ ⋅ ⋅

0 H0(X∗2) H0(X2) H0(X∗2) H1(X∗2) ⋅ ⋅ ⋅ Hr(X∗2) Hr(X2) Hr(X∗2) Hr+1(X∗2) ⋅ ⋅ ⋅

0 H0(X∗1) H0(X1) H0(X∗1) H1(X∗1) ⋅ ⋅ ⋅ Hr(X∗1) Hr(X1) Hr(X∗1) Hr+1(X∗1) ⋅ ⋅ ⋅ .

←→ ←→
p∗

←→ h∗k

←→τ

←→ h∗k

←→
⌣e

←→ h∗k

←→

←→ h∗k

←→ ←→
p∗

←→ h∗k

←→τ

←→ h∗k

←→
⌣e

←→ h∗k

←→
←→ h∗k

←→ ←→
p∗

←←

←→τ

←←

←→
⌣e

←←

←→

←←

←→ ←→
p∗

←←

←→τ

←←

←→
⌣e

←←

←→

←←

←→ ←→
p∗

←→ h∗j

←→τ

←→ h∗j

←→
⌣e

←→ h∗j

←→

←→ h∗j

←→ ←→
p∗

←→ h∗j

←→τ

←→ h∗j

←→
⌣e

←→ h∗j

←→

←→ h∗j

←→ ←→
p∗

←←

←→τ

←←

←→
⌣e

←←

←→

←←

←→ ←→
p∗

←←

←→τ

←←
←→

⌣e

←←

←→

←←

←→ ←→
p∗

←→ h∗1

←→τ

←→ h∗1

←→
⌣e

←→ h∗1

←→

←→ h∗1

←→ ←→
p∗

←→ h∗1

←→τ

←→ h∗1

←→
⌣e

←→ h∗1

←→

←→ h∗1

←→ ←→
p∗ ←→τ ←→

⌣e ←→ ←→ ←→
p∗ ←→τ ←→

⌣e ←→

3 Proof of the main theorem and examples

3.1 Proof of Theorem 1

The idea is to show that enk+1X ̸= 0, by using Diagram 1, and then apply Lemma 1. An inductive construction
will be done, as follows.
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Firstly, considering only the space X1, we have by hypothesis that Ȟr(X1) = 0, for all 1 ≤ r < n1, for some
n1 ∈ ℕ. To show that en1X1 ̸= 0, let us first consider the last row of Diagram 1:

0 󳨀󳨀󳨀󳨀→ Ȟ0(X1/T1)
p∗
󳨀󳨀󳨀󳨀→ Ȟ0(X1)

τ1󳨀󳨀󳨀󳨀→ Ȟ0(X1/T1)
⌣eX1󳨀󳨀󳨀󳨀→ Ȟ1(X1/T1) 󳨀󳨀󳨀󳨀→ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 󳨀󳨀󳨀󳨀→ Ȟr(X1)
τ1󳨀󳨀󳨀󳨀→ Ȟr(X1/T1)

⌣eX1󳨀󳨀󳨀󳨀→ Ȟr+1(X1/T1) 󳨀󳨀󳨀󳨀→ ⋅ ⋅ ⋅ .
(3.1)

By the connectivity, p∗ : Ȟ0(X1/T1) → Ȟ0(X1) is an isomorphism, and therefore the transfer homomorphism
τ1 : Ȟ0(X1) → Ȟ0(X1/T1) is the null homomorphism. Then⌣ eX1 is a monomorphism.

Therefore, eX1 = 1 ⌣ eX1 ̸= 0.
For each r, 1 ≤ r < n1, we have by hypothesis that Ȟr(X1) = 0 and since the rows in Diagram 1 are exact,

this implies that
⌣eX1 : Ȟr(X1/T1) → Ȟr+1(X1/T1)

is injective and thus er+1X1 = e
r
X1 ⌣ eX1 ̸= 0. In particular,

en1X1 = e
n1−1
X1 ⌣ eX1 ̸= 0.

Now, we will show that en1+1X2 ̸= 0. For this, let us consider the principalℤ2-bundles

X1 → X1/T1 and X2 → X2/T2.

Denoting by
h1 : X1/T1 → X2/T2,

the map induced by h1 : X1 → X2 and considering

g2 : X2/T2 → Bℤ2,

a classifying map for the principalℤ2-bundle X2 → X2/T2, we have the following diagram:

X1 X2

X1/T1 X2/T2 Bℤ2.

← →h1

←→ ←→

←→h1 ←→
g2

(3.2)

Since h1 is an equivariant map, the square in (3.2) is commutative, and therefore g2 ∘ h1 is a classifying
map for the principalℤ2-bundle X1 → X1/T1. Let α ∈ Ȟ1(Bℤ2) be the Euler class of the universalℤ2-bundle
Eℤ2 → Bℤ2. Then

eX2 = g∗2(α) and eX1 = h
∗
1(g∗2(α)) = h

∗
1(eX2 ).

Therefore, we have h
∗
1(e

n1
X2 ) = e

n1
X1 ̸= 0, that is, e

n1
X2 cannot be zero.

To show that en1+1X2 ̸= 0, let us consider the part of the last two rows of Diagram 1, as follows:

⋅ ⋅ ⋅ Hn1 (X2) Hn1 (X2/T2) Hn1+1(X2/T2) ⋅ ⋅ ⋅

⋅ ⋅ ⋅ Hn1 (X1) Hn1 (X1/T1) Hn1+1(X1/T1) ⋅ ⋅ ⋅ .

←→ ←→τ2

←→ h∗1

←→
⌣eX2

←→ h∗1 ←→ h∗1

←→

←→ ←→τ1 ←→
⌣eX1 ←→

If en1+1X2 = 0, then e
n1
X2 ∈ Ker(⌣eX2 ) and by exactness, e

n1
X2 = τ2(βn1 ), for some βn1 ∈ Hn1 (X2). But by hypothesis,

h∗1 : Hn1 (X2) → Hn1 (X1) is the null homomorphism, consequently,

0 = τ1 ∘ h∗1(βn1 ) = h
∗
1(τ2(βn1 )) = h

∗
1(e

n1
X2 ) = e

n1
X1 ̸= 0.

This implies that en1+1X2 ̸= 0, as we wanted to show.
Now let us suppose that ens−1+1Xs ̸= 0, for some 1 ≤ s < k. To prove that ens+1Xs+1 ̸= 0, firstly we will show

that ensXs ̸= 0.
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Consider the following row of Diagram 1 corresponding to Xs:

⋅ ⋅ ⋅ 󳨀󳨀󳨀󳨀→ Ȟr(Xs)
τs󳨀󳨀󳨀󳨀→ Ȟr(Xs/Ts)

⌣eXs󳨀󳨀󳨀󳨀→ Ȟr+1(Xs/Ts) 󳨀󳨀󳨀󳨀→ ⋅ ⋅ ⋅ .

By hypothesis, Ȟr(Xs) = 0, for ns + 1 ≤ r < ns+1. Thus⌣eXs is injective, for ns + 1 ≤ r < ns+1 and then e
ns
Xs ̸= 0.

Let us consider Xs → Xs/Ts and Xs+1 → Xs+1/Ts+1 the principal ℤ2-bundles, with the induced map
hs : Xs/Ts → Xs+1/Ts+1. Let us take gs+1 : Xs+1/Ts+1 → Bℤ2 a classifying map for the principal ℤ2-bundle
Xs+1 → Xs+1/Ts+1, illustrated in the following commutative diagram:

Xs Xs+1

Xs/Ts Xs+1/Ts+1 Bℤ2.

← →hs

←→ ←→

←→hs ←→
gs+1

Then the map gs+1 ∘ hs : Xs/Ts → Bℤ2 is a classifying map for the principalℤ2-bundle Xs → Xs/Ts.
For α ∈ Ȟ1(Bℤ2) the Euler class of the universalℤ2-bundle, we have

eXs+1 = g∗s+1(α) and eXs = h
∗
s (g∗s+1(α)) = h

∗
s (eXs+1 ).

Thus, h
∗
s (e

ns
Xs+1 ) = ensXs ̸= 0, which implies ensXs+1 ̸= 0.

Now, let us consider the part of Diagram 1 related to Xs and Xs+1, respectively:

⋅ ⋅ ⋅ Hns (Xs+1) Hns (Xs+1/Ts+1) Hns+1(Xs+1/Ts+1) ⋅ ⋅ ⋅

⋅ ⋅ ⋅ Hns (Xs) Hns (Xs/Ts) Hns+1(Xs/Ts) ⋅ ⋅ ⋅ .

←→ ←→
τs+1

←→ h∗s

←→
⌣eXs+1

←→ h∗s ←→ h∗s

←→

←→ ← →τs ← →
⌣eXs ← →

Suppose that ens+1Xs+1 = 0. Then ensXs+1 ∈ Ker(⌣eXs+1 ). As previously, ensXs+1 = τs+1(βns ), for some βns ∈ Hns (Xs+1).
But since by hypothesis h∗s : Hns (Xs+1) → Hns (Xs) is the null homomorphism, we have

0 = τs ∘ h∗s (βns ) = h
∗
s (τs+1(βns )) = h

∗
s (e

ns
Xs+1 ) = ensXs ̸= 0.

Consequently, ens+1Xs+1 ̸= 0. This concludes the inductive construction.
Finally, to finish the proof, since enk+1X ̸= 0 and by hypothesis enk+1Y = 0, it follows from Lemma 1 that

there is no equivariant map f : (X, T) → (Y, S).

3.2 Examples

In this subsection, we will present examples which show the relevance of our results. First, in Example 1,
we will construct spaces equipped with involutions and a map (X1, T1)

h
→ (X, T)which satisfy conditions (i)

and (ii) of Theorem 1, while the image h(X1) ⊂ X does not satisfy conditions (i) and (ii) of Corollary 1.
In Example 2, we will show that Theorem 1 (Corollary 1) can be applied in the context of manifolds. By

using cobordism theory, we will construct a pair (M, T), in which M is a manifold, T : M → M is a free invo-
lution, with a natural filtration for the pair (M, T), satisfying all the hypotheses of Theorem 1 (Corollary 1).
We emphasize that for such class of manifolds, the classical results about Borsuk–Ulam Theorems cannot be
applied, since in general, such results are valid for n-acyclic spaces, that is, spaces with zero cohomology at
r-levels, with 1 ≤ r ≤ n.

Example 1. Given Z a topological space and A ⊂ Z a closed subspace equippedwith free involutionϕ : A→ A,
firstly we will construct a topological space X with a free involution ψ such that A ⊂ X and the involution ψ
restricted to A is the given one.

Let X0 = Z × {0} and X1 = Z × {1} be two copies of Z. Let X = (X0 ⊔ X1)/∼ be the identification space
obtained by identifying (x, i) with (ϕ(x), 1 − i), i = 0, 1, whenever x ∈ A.



6 | C. Biasi at al., Borsuk–Ulam theorem for filtered spaces

Let ψ : X → X be themap induced by [(x, i)] 󳨃→ [(x, 1 − i)], i = 0, 1. Note that themap ψ is a well-defined
free involution, which coincides with ϕ in the copy of A in X, that is,

ψ[(x, i)] = [(x, 1 − i)] = [(ϕ(x), 1 − (1 − i))] = [(ϕ(x), i)].

This construction gives us a topological space X equippedwith a free involution ψ, where A ⊂ X and ψ|A = ϕ.
Now, we will construct a pathwise connected and paracompact Hausdorff space X equipped with a free

involution T : X → X and a map h : (X1, T1) → (X, T), where (X1, T1) is a pair constituted by a pathwise
connected and paracompact Hausdorff space X1 and by a free involution T1 on X1 in such a way that
(X1, T1)

h
󳨀→ (X, T) satisfies hypotheses (i) and (ii) of Theorem 1.

Letm and n be positive integers, withm < n, and let X be the connected sumof two copies of Sm+1 × Sn−m.
To define an involution ψ on X, we will consider a specific construction to X. Let Z be the resultant space

after removing an open disk from Sm+1 × Sn−m and let S be the boundary of the disk. In S, one can define an
involution ϕ : S → S induced by the antipodal map on the sphere.

Applying the previous constructionby considering Z as a copy of Sm+1 × Sn−m with anopendisk removed,
A = S and ϕ = T, the result of this construction is a pair (X󸀠, ψ), in which X󸀠 is a topological space (equipped
with a free involution ψ) which is a connected sum of two copies of Sm+1 × Sn−m and such that X󸀠 is homeo-
morphic to X.

Now, we shall define the desired map h.
Let us consider (X1, T1) := (Sn , A), where Sn is the n-dimensional sphere and A is the antipodal map.

Let E be the space obtained from Sn contracting the boundaries of two symmetrical and non-connected disks,
homeomorphic to the wedge of three spheres Sn1 ∨ S

n
2 ∨ S

n
3, with wedge points in the North and South poles

of Sn2. LetD be the space obtained from E identifying two opposites hemispheres in the subspaces correspond-
ing to Sn1 and S

n
3, in such a way that the wedge points are preserved. This means that D is homeomorphic to

thewedge Dn1 ∨ S
n
2 ∨ D

n
3, where D

n
1 and D

n
3 are n-dimensional disks, the wedge points are the South andNorth

poles and they are on the boundaries of the disks, as illustrated in Figure 1.
The next step is to define an equivariant map f1 : D → Y in which the restriction f1 : Sn2 → S is an equiv-

ariant homeomorphism between Sn2 and S ⊂ X, and f1(D
n
1) is a copy of Sm+1 × {P}. Moreover, f1 maps Dn3 to

the symmetrical opposite (f1(Dn3) = ψ(f1(D
n
1))).

A way to define a map f1 satisfying the above condition over Dn1 and D
n
3 is to take an intermediary step,

contracting the disks Dn1 and D
n
3 into an (m + 1)-dimensional disks Dm+11 and Dm+13 , respectively, and then

identifying the respective boundaries. Then we obtain an intermediary space W which is homeomorphic
to Sm+11 ∨ S

n
2 ∨ S

m+1
3 .

Now, we can send Sm+11 to Sm+1 × {P} and Sm+12 to ψ(Sm+1 × {P}) in straightforward way by a map f2. The
composite map of f2 with the projection is the desired map f1 .

The composite of the projection Sn → D with f1 is the desired equivariant map h : (Sn , A) → (X, ψ).
Let us observe that since the disks Dn1 and D

n
3 are contractible, h : (Sn , A) → (X, ψ) is homotopic to amap

g : Sn → Xwith image g(Sn) = S. Thismeans that the inducedmapon cohomology h∗ : Ȟ j(X) → Ȟ j(Sn) is the
null homomorphism, for all j > 0.

Therefore, the pairs (Sn , A) and (X, ψ), along with the equivariant map h : (Sn , A) → (X, ψ), constitute
an example of a sequence

(Xi , Ti)
hi󳨀→ (Xi+1, Ti+1)

satisfying conditions (i) and (ii) of the Theorem 1. However, the pair (h(Sn), ψ) does not.
Theorem1holds for Sn h

󳨀→ X on the previous example and for any space Y equippedwith a free involution
S : Y → Y satisfying condition (iii) of Theorem 1. For example, (Y, S) = (Sn , A).

Example 2. First, we will consider the following general case.
Let A be a pathwise connected and paracompact Hausdorff space, equipped with a free involution

T : A → A. If A is a closed subspace of a topological space Z, one can create a new topological space X with
a free involution ϕ : X → X, with A ⊂ X and such that the restriction ϕ|A = T in the following way.

Let us consider the disjoint union Z × {0} ⊔ Z × {1} of two copies of Z. The new topological space X will
be the quotient space obtained by identifying (x, 1) with (T(x), 0), whenever x ∈ A.
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Figure 2

Let ϕ : X → X be the inducedmap given by [(x, i)] 󳨃→ [(x, 1 − i)]. Note that ϕ is a well-defined involution
which coincides with T on A, since ϕ[(x, 0)] = [(x, 1)] = [(T(x), 0)].

Now, let us consider the previous situation in the context of manifolds with free involutions.
Let A = M1 be a closed manifold which admits a free involution T1. By Conner and Floyd [5], we have

that M1 bounds, i.e., there exists a manifold Z = W2 such that ∂W2 = M1 and dimW2 = dimM1 + 1. There-
fore, X = M2 = 2W2 the double ofM1 is a closedmanifold which admits a free involution T2. If we replay this
step n-times, we obtain the sequence

(M1, T1) ⊂ (M2, T2) ⊂ (M3, T3) ⊂ ⋅ ⋅ ⋅ ⊂ (M = Mn , Tn),

with dimMn = dimM1 + n − 1. See Figure 2.
Since each Mi is the boundary of Wi, the inclusion Mi 󳨅→ Mi+1 induces the null homomorphism for all

nonzero dimensions. Hence

(M1, T1) ⊂ (M2, T2) ⊂ (M3, T3) ⊂ ⋅ ⋅ ⋅ ⊂ (Mn , Tn)

satisfies conditions (i) and (ii) of Theorem 1.
As a specific example, letW2 be the torus with an open disk removed and ∂W2 = M1 identified with the

circle S1. Also, let T1 : M1 → M1 be the antipodal map. Applying the previous construction, we obtain the
bitorus M2 equipped with the free involution T2.

The bitorus is a 2-dimensional closed manifold. Thus, there exists a 3-dimensional compact manifold
W3 such that ∂W3 = M2. Repeating the construction for W3 and (M2, T2), we obtain (M3, T3). If we replay
this step n-times, we obtain the sequence

(M1, T1) ⊂ (M2, T2) ⊂ (M3, T3) ⊂ ⋅ ⋅ ⋅ ⊂ (Mn , Tn).

Since each Mi is the boundary of Wi, the inclusion Mi 󳨅→ Mi+1 induces the null homomorphism for all
nonzero dimensions. Hence

(M1, T1) ⊂ (M2, T2) ⊂ (M3, T3) ⊂ ⋅ ⋅ ⋅ ⊂ (Mn , Tn)

satisfies the conditions conditions (i) and (ii) of Theorem 1 (Corollary 1).
Let us note that themanifoldM = Mn has nonzero cohomology group at levels k, 1 ≤ k ≤ dimM1+n−1 =

dimMn. In this case, the classical Borsuk–Ulam-type theorems cannot be applied.
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