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necessarily central and of order 2.) Letting (a,b) denote the commutator of
a and b, and (a, b,c) the associator of a, b and c, we have then that for any
a,b,ce L,

(a,b)=1ors and (a,b,c)=1o0rs.

In L, the map

(1.1)

for £ € L extends (by linearity) to an involution (that is, an antiautomor-
phism of period two) of the alternative ring RL.

Finally, we note that an RA loop L is generated by its centre and any three
elements z,y,u € L which do not associate. Letting G be the group gener-
ated by z and y, the loop L is completely determined by G, * and u? (see
10, §I1.5.2 and Theorem IV.3.1]), so we use the notation L = M(G, *,u2).

Let f: L — {1} be a homomorphism and, for & = " a,f € RL, define
af = 3 f(€)agl~1. We say that a is f-unitary if of = a1 or of = —a~1.
It is easy to verify that & — o is an antiautomorphism of the loop ring and
that the set Uz (RL) of f-unitary units of RL is a subloop of the full loop
U(RL) of units.

The concept of an f-unitary unit in a group ring RG was introduced by
Bovdi [1]. In the special case that f(g) = 1 for all g € G, af is generally
denoted o* and a unit is called simply unitary if a* = o~1. This situation
has received quite a bit of attention recently. V. Bovdi and L. G. Kovacs
determined when U, (KG) (K a field) is normal in (K G) [4]. A. Bovdi and
L. Erdei have considered the possibility that a group may have a normal
complement in the unitary group U.(ZL) [3]. Gongalves and Passman have
studied groups G whose unitary subgroup in KG does not contain a free
group [9] and Giambruno and Polcino Milies determined conditions for this
subgroup to satisfy a group identity [8].

The purpose of this paper is to determine precisely which RA loops L
have the property that every unit in the integral loop ring ZL is f-unitary
(for some f). Equivalently, when is it the case that Ug(ZL) = U(ZL)? This
problem has been studied for group rings by Bovdi and Sehgal [1, 2.

In the next two sections, we give instances of where all units are f-unitary
and then, in Section 4, we show that our list is complete. Interestingly, our
investigations led to an extension to arbitrary RA loops of a theorem of
G. Higman, a generalization still undecided in group rings. (See Theo-
rem 2.3.)

L 1" = ¢ if ¢ is central
" )sf if £is not central

2. A GENERALIZED THEOREM OF HIGMAN IN THE ALTERNATIVE CASE

An element ¢ in a group {or loop) L is torsion if £ = 1 for some n € N.
If L is an RA loop, the set of torsion elements forms a subloop of L, in
fact, a subloop that is locally finite and normal [10, Theorem VIII.4.1). One
of the earliest, most fundamental (and oft quoted) results in the theory of
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group rings is due to Graham Higman, who determined when all the units
in an integral group ring ZG (with G torsion) are trivial in the sense that
U(ZG)=xG = {xg| g€ G}.

Theorem 2.1. [18] If G is a torsion group, then all units in ZG are irivial
if and only if G is

(1) an Abelian group of ezponent dividing 4 or 6, or
(2) o Hamiltonian 2-group.

This theorem hag been generalized to loops whose loop rings are alterna-
tive, but not necessarily associative ({16], but see [10, Theorem VIIL.3.2] for
an elegant modern proof).

Theorem 2.2. Let L be a torsion RA loop. Then all units in ZL are trivial
if and only if L is a Hamiltonian Moufang 2-loop.

Recently, we have found another theorem characterizing RA loops with
trivial unit loops without any restriction on the loop. Recall that the
augmentation map on a loop ring RL is the homomorphism €: RL — R
defined by €(a) = Y ay for @ = 3_ apl € RL. The scalar ¢(c) is called the
augmentation of a.

Theorem 2.3. Let L be an RA loop with torsion subloop T. Then all uniis
of ZL are trivial if and only every subloop of T is normal in L, and T is an
Abelian group of exponent dividing 4 or 6 or a Hamiltonian Moufang 2-loop.

Proof. Our argument, and many others in this paper, uses the fact that in
an RA loop (unlike Moufang loops in general), the test for normality of a
subloop is the same as it is for groups (10, Corollary IV.1.11]. (See also [7,
Corollaries 2.4 and 2.11}.)

Assume all ynits of ZL are trivial. In particular then, U(ZT) = &T,
which is a torsion group or a torsion RA loop. Thus, by Theorems 2.1 and
2.2, T is an Abelian group of exponent dividing 4 or 6 or a Hamiltonian
Moufang (possibly associative) 2-loop. Next, lett € T, z € L and suppose
that z-Ytz ¢ (t). Let £ =14t +t?+--- + ¢!, where n is the order of t.
The element (1 — t)zf has square 0, s0 1+ (1 — t)zf € ZL is a unit and not
trivial {10, Lemma VIIL.2.2]. This contradiction shows that every subloop
of T is normal in L.

Conversely, assume that every subloop of T is normal in L and that T is an
Abelian group of exponent dividing 4 or 6 or a Hamiltonian Moufang 2-loop.
Inanyevent,Thasa.nexponentdjvidingllorﬁ. In an RA loop L, squares
are central, so elements of odd order are also central [10, Theorem 1v.1.8].
(See also [11].) If ¢ € L has order 2, then t too must be central since, for any
z € L, z-'tz € () = {1,£}. There are no noncentral elements ¢ of order 6,
since z—1tz = st = t5 implies t* = s and 8 = 1, a contradiction. It follows
that any noncentral element in T must have order 4. If{ is a primitive fourth
root of unity, the map o: £ — £4/2%1 is in the Galois group of Q(£)/Q, so
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every idempotent of QT is central in QL [10, Theorem XIII.1.10]. See also
[15, Theorem 3.3].)

Now let u € U(ZL). Replacing L by the subloop generated by a finite set
containing the support of s and three elements which do not associate, we
may assume that L is finitely generated. By Corollary XIII1.2.2 of [10], QL
containg no (nonzero) nilpotent elements, so the same applies to QT which
is therefore the direct sum of division rings. Now Corollary XII.1.2 of [10]
(see also {14, Lemma 2.3]) says that U(ZL) = L-U(ZT). Since U(ZT) = iT
by Theorem 2.2, the result follows.

Corollary 2.4. Let L be an RA loop with torsion subloop T. If every subloop
of T is normal in L, and T is either an Abelian group of exponent dividing
4 or 6 or a Hamiltonian Moufang 2-loop, then every unit in ZL is f-unitary
(for any homomorphism f: L — {£1}).

Proof. The hypothesis and Theorem 2.3 imply that if 4 € ZL is a unit, then
p=+Lforsome L€ L. Forany f: L {1}, uf = £ = +u~1 so pis
f-unitary. m]

3. FURTHER EXAMPLES

In this section, we give further instances of RA loops L for which all units
of ZL are f-unitary.

We begin with a useful lemma, first established for groups by Li {19,
Theorem 2.1}.

Lemma 3.1. Let Lo be an RA loop and f: Ly — {1} a nontrivial homeo-
morphism. Let E be an Abelian group of exponent two, let L = Ly x E and
extend f to fi: L — {£1} by setting f1(E) = 1. If every unit of ZLg is
f-unitary, then every unit of ZL is f)-unitary.
Proof. Let p € U(ZL). Then u is a finite integral linear combination of
terms of the form fe, £ € Lo, e € E. Thinking of E as a vector space
over the field of two elements, each such e is a finite linear combination of
basis elements. It follows that  is a linear combination of terms in a loop
Lo x Cy x Cz x --- x Oy, so it suffices to establish the lemma for the case
L=Lyx(c, 3=

Write p = py + pac, p1, pz € ZLo. Let v = vy + me = p~t, 11,14 € ZL,.
The equation uv = 1 implies

Mt g =1

and

pive + povy =0,

50 (p1 T p2)(v1 £ ) = 1. Thus p1 + pp and py — g are units in ZLg and
hence f-unitary. It follows that

(81 + p2)f = £(p1 + p2) ™ = (01 + 1)
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and

(1 — p2) = £(p1 - p2) ™! = (01 — va).

In the case that all the signs here are the same, we obtain ,u{ = +un,
ul = tug, sopf =4y and pl =1y + e = u{+v{c=ip«f‘. We can
complete the proof, therefore, by showing that neither “mixed case” can
occur. Suppose, for example, that (11 +p2)’ = (41 +p2) ™! but (m —p2)f =
—(m1 ~ p2)~". Thus

(o1 + 2) (1 + ) = 1= (1 — o)~ + 1sd)-
We obtain

gl + s + pops] + e =1
—pmaped + e + pop] — pmred =1
and addition gives
(3.1) pr + papf = 1.

Let iy = Ete apl, ap € Z, and pg = Ezez,o Bel, By € Z. Then u{ =
T f(@aef™, p5 = T f(€)et™", and the coefficient of 1 on the left side
of (3.1) is a sum of terms of the form f(£)asBs + F(£)Brcs which is even, a
contradiction. The proof of the other mixed case—{ss; +p2)f = —(p1t+m2)7t,
(1 — p2)f = +(u1 — p)~'—is similar. O

In the next three theorems, we give specific examples of loops L for which
all units in ZL are unitary.

Theorem 8.2.'Let L = C x (b} X E be the direct product of the Cayley loop,
C, a cyclic group (b) of order 4 and a (possibly trivial) Abelian group E of
exponent two. Let A = C x (*) x E. Then every unit in ZL is f-unitary,
where ker f = A.

Proof. Because of Lemma 3.1, we may assume that E is trivial. Let p be a
unit of ZL. Without loss of generality, the augmentation of u is 1. Now &
is & unit in the integral loop ring of L/(b?), which is 8 Hamiltonian 2-loop,
8o i = £ for some ¢ € L (Theorem 2.2), hence u = £ + (1 — b?)a for some
a € ZL. Similarly, & = U(Z[L/L"]) is trivial, so £ + (1 — b2)& = k for some
k € L. Multiplying by 1 + b2, we obtain
1+ 02) = k(1 +82),
so £ =k or £ = b2k. In the latter case, uy = b*¢+ (1 —8)8, B € ZL and, since
Bt =t—(1- R,
p=L+(1-bNa=E+(1-38),
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for some v € ZL, s0 (1 — b%)a = (1 — 8)y. Write v = 79 +71b + 12b® + 133,
% € ZC. In a similar way, write a = ag + a1b + agb? + a3b®, but note
(1-8%)a = (1 - 8%)|(ap — a2) + (@1 — @3)}].

Thus we may assume that as = a3 = 0, hence that a = og + ayb. Consider
the equation

(1 - 8)(20 + 1ab+ 712b° + 73b%)
= (1 — b%)(ag + a1b) = ap + a1b — agb? — oy b°.

Since the supports of ap and a1b are disjoint, and since the supports of
Y0, Mb, 12b?, Y3b® are also disjoint, it follows that ap = (1 — 8)y and
a1=(1-8)71, 50 &= (1-)(y0+mb) and p = £+ (1 —63)(1— )y, £ L
and v = v + b, %0, M € ZC. Thus

pl =24 (103 (1 - sy
and

ppf = £1 4+ (1 =831 - 8)[ty £yt + 4y]].

There are two cases to consider, according as £ € C or £ € Cb, but before we
do s0, it is important to observe that since f(£) = 1 and

P £ if £ is central

" )€ if £is not central

for all £ € C, we have £~! = £* [see (1.1)] and the restriction of the map f
to ZC is the canonical involution a — a* in an alternative loop ring.

Case 1. If £ € C, then
ppf =14+ (1 -3 - s)jr + 4271 + 4yvf].
Remembering tlha.t b is central, we have
ey + 487 =85 = 157) + (0 + mb)E”

(3.2) = (01§ +l) — O1b7" + mbe.

The first term, £y§ + o£*, has the form 8 + §°, which is central in ZC [10,
Theorem I11.2.1]. Writing =3, .5 Biz +24,es, Biti, where the elements
in §; are central and those in S2 are not, we have §* = Pones, Bin +
83 45, Piti and B+ 0* =23 Bizi + (14 8)r, T € 2C, 80 (1 — 8)(B+ %) =
2(1 ~ 8) 3" fiz. The product of 1 — b? with the remaining terms in (3.2) is

(1= B3)(=xib~! + 1be") = (ML + L1})b — £yfb~! — oL,

Now (71£* + £41)b is of the form (8 + §7)b so, as before, it is an element
with even coefficients, and the same is true for —£y75~ — 3 b3¢* = — (€4} +
7£)b1. All this shows that puu’ belongs to the group ring of the centre
of L, which is an Abelian group of exponent 4, and that pu/ has the form

1 + 7 where 7 has even coefficients. So uu’ is trivial. Since it has 1 in its
support, uuf =1, 80 uf = p~! and 4 is f-unitary.
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Case 2. If £ = gb, g € C, then

pi! = -1+ (1= - 8)lgbr! — 497671 + 417’}
Now

gy’ — g7t = gb(35 ~ 7{b™!) - (% + Mb)g !

= gbYs — 971 —109°07 + g

The element 11¢* — g7, being of the form g — §*, is a multiple of 1 - s, s0
the product with 1 — g gives an element with even coefficients. The product
of gbys —0g*b=! with 1—b2 is (g3 +709")b— (Yog*+973)b~1. Asin Case 1,
this an element in the group ring of the centre of L with even coefficients and,
as before, we obtain ppf = ~1. Thus uf = —p~! and p is f-unitary. O

Theorem 3.3. Suppose L = A(b) is the product of ¢ Hamiltonian Moufang
2-loop, A, and a cyclic group (b} of order 2, b ¢ A. Suppose also that
z7lex = a ! for alla € Aand all z ¢ A. Then every unit in ZL is
f-unitary, where ker f = A.

Proof. Let p be a unit in ZL and write p = 1 + pb, p1,u2 € ZA. As
noted in the proof of Theorem 3.2, the map f coincides with the canonical
involution & — a* in the alternative loop ring ZA. Thus ul = uy — bps.
Furthermore, since ba~! = ab for a € A, we have buj = usb, so

upd = (g1 + p2b) (1] — p2d)
= ppi — (p2b)(p2d) — pa1(p2bd) + (p2b)ui.

Using diassociativity and bug = u3b, the product (ugb)(ugb) = papsh? =
ops. If T is in the support of ugb, then z ¢ A, so (u2b)p] = p1(pab). Thus
ppf = pip} — papl is 8 unit in the loop ring ZA and hence trivial. For
a € ZA, let & denote the image of @ in Z[L/L']. Since @* = &, we have
! = p? — gk It follows that fi; % iz are units in the group ring of an
Abelian group of exponent 2. By Theorem 2.2, they are both trivial. There
are four cases to consider. The arguments in each case are similar. We
present one.

Suppose i1 + iz = @ and f; — fiz = £, a,£ € A. It follows readily that
G=1L0=f;and ig =0, 80 gy = a+ (1 —8)m and pz = (1 — s)y2 with
7,72 € ZL. So

puf =la+(1 - )mla® + (1 - )il — 2(1 - 8)0m3
=1+(1-8)ml + 0 —27m)
(since a* = a~1). Now 71£* + £} has the form § + 5*, so it can be written
25 Biz + (1 + 8)7, with 2z € A central and 7 € ZA. Since the product of
such an element with 1 — s has even coefficients, 1 is in the support of the
trivial unit up/, so ppf = 1, pf = p~! and p is f-unitary. m]

Let 16T'2c; be the group {a,b | a* = b* = (a%,b) = 1,(a,b) = a?). (The
notation is due to Hall and Senior {17].) The RA loop M(16T'2cz,%,a%),
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which has been denoted Ma(16T'5¢;, 16T'3c;, 16T3ch, 16T'2d) [5), is 32/65 in
the catalogue of Moufang loops of small order by Goodaire et al [13]. As an
RA loop, this can be generated by a,b and a third element u. The unique

nonidentity/commutator in this loop is s = a? = u2.

Theorem 3.4. Let E be an Abelian group of exponent two. Then every unit

of M(16T'2¢2,%,a%) x E is f-unitary, where ker f = {a,u) x E.

Proof. By Lemma 3.1, we may assume that E is trivial. In [12, Theorem

6.1}, it is proven that the unit loop of ZL is +LV, where 1 € V has the form
B =14 (1-3)(1+b5)|(a0 + @18 + azb + azab)

+ (B0 + P16 + F2b + Fzab)u),
where oy, ...,3,5,...,03 are integers satisfying a certain condition not
relevant here. It suffices to show that every unit of this form is f-unitary.
On the one hand (by Theorem 6.1 of {12]), we have

pl =14+ (1-38)(1+b)[(ao + c16~! — azh — azab)
+ Bou~l + Bi(au)~! — Bobu — Baab - u].
On the other hand,
pf =14 (1= 8)(1 +8%)[(a0 + cna™! — azb™" — aab) ™)
+ Bou~! + Bi(au) ™! — Ba(bu)~! — B3(ab-u)™Y).
Thus it is enough to show that
(1 - )1 + b*)[—azb — azab — Bobu — Baab-u
+ ab™! + a3(ab) ™ + Ba(bu) ! + Bs(ab - u)~l] = 0.
Remembering that every element z ¢ A = (a,u) has square b?, we have
rlez=2d—r=2(?-1)=2z(* -1).
Since (1 + b?)(b® — 1) = 0, the result follows. ]

We conclude this section with a final scenario in which the units of a loop
ring are f-unitary.

Theorem 3.5. Suppose L is an RA loop containing a subloop A of index
2 and that L = AU Ab with b of order 8. Suppose every subloop of T, the
torsion subloop of L, is normal in L. If T is the direct product of (b) and an
Abelian group of order dividing 4, then every unit of ZL is f-unitary, where
ker f = A.

Proof. The hypotheses imply that U(ZL) = U(ZT) - L [10, Proposition
XI1.1.3]. By Theorem 2, part 5.3 of [1], every unit of ZT is f-unitary.
Since the elements of L are f-unitary, the same holds true for 4(ZL). 0O
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4. THE CLASSIFICATION

In this section, we state and complete the proof of the major theorem of
this paper, which follows.

Theorem 4.1. Let L be an RA loop with torsion subloop T. ThenUy(ZL) =
U(ZL) if and only if L is described by one of the conditions below.
(1) every subloop of T' is normal in L, and T is either an Abelian group
of ezponent dividing 4 or 6 or o Hamiltonian Moufang 2-loop;
(2) every subloop of T is normal in L and T = (b) x C, C en Abelian
group of order dividing 4;
(8) L = A(b) is the product of a Hamilionian Moufang 2-loop A and o
cyclic group (b) of order 2, b ¢ A, and z™'ax = a7} foralla € A
and allz ¢ A;
(4) L is the direct product of an Abelian group of exponent two and the
loop M(16r262: *, 0'2);
(5) L =C x {b) x E is the direct product of the Cayley loop, C, a cyclic
group (b) of order 4 and an Abelian group E of exponent two.

In Sections 2 and 3, we showed that loops with the indicated struc-
ture have the desired property, so here, we assume that all units of ZL
are f-unitary and show that L has one of the structures described. Some
of our arguments follow those of A. Bovdi [1], whose paper inspired this
one. Throughout, L is an RA loop, f: L — {£1} is a homomorphism and
Us(ZL) =U(ZL) (whether or not this is explicitly stated).

We begin with an elementary lemma.

Lemma 4.2. If f(€) = 1 for all £ € L, then Us(ZL) = U(ZL) implies that
all units in ZL are trivial, so L is described by part (1) of Theorem {.1.

Proof. Let p = Y,y el be & unit. We have pnf = 1. Since pf =
3 ugt1, the coefficient of 1 in puf is 3 uf > 0. In particular, upd = +1,
implying that pg, = +1 for a unique £ and g = 0 for all £ # . Thus
U(ZL) = £L and reference to Theorem 2.3 completes the proof. a

Now assume that f is not identically 1 on L. We collect some information
about this situation, which we assume for the rest of this paper.

First of all, A = ker f is a subloop of L of index 2, hence normal, and
L =AUAbfor any b ¢ A. If B is any commutative subloop of an RA
loop L and z € L is any element, the subloop (B,z) generated by B and
z is a group {10, Corollary IV.2.4]. In the present context, it follows that
A cannot be commutative. This implies, in particular, that the unique
nonidentity commutator s of L is in A, so f(s) = 1.

Next, if b is not central, then b cannot commute elementwise with A. To
see why, remember that L = AU Ab, so ab = ba for all @ € A would imply
that b commutes with all elements of L (by diassociativity). As noted in the
introduction, this implies that b associates with all pairs of elements of L;
in other words, b would be central.
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Also, since f(a) =1 for all a € A, Lemma 4.2 says U(ZA) = +A, so, by
Theorem 2.3, every subloop of the torsion subloop T'(A) of A is normal in A,
and T(A) is an Abelian group of exponent dividing 4 or 6, or a Hamiltonian
Moufang 2-loop. , ’

The next lemma allows us to assume that L\ A contains a torsion element.

Lemma 4.3. Let L be an RA loop with torsion s:ubloop T. Assumelly(ZL) =
U(ZL) for some f: L — {£1}. Then z7'z € (t) for anyt € T and any
z¢T.

Proof. Let t =1+t +1t2+ - +t"1, n the order of t. Since a = (1 — t)zf
is nilpotent, 4 = 1 + a is & unit with inverse ! = 1 — a. By assumption,
f =441
uf =dpt,
If uf = u~1, then 14+ af =1— @, s0 o+ af =0. This implies
(1 -t)ef £ 271271 =0,

so tz = t'z~! for some i, or tz = t'z~1t~! for some i. In the first case,
22 € (t) has finite order, which is not true. The second case implies that for
some j, 27! = ¥zt = /+1z or stitlz, either possibility again contradicting
the fact that z2 has infinite order.

Ifu/ =—-p* thenl+eo/ =-1+a,s0a—al =2 Sinceta =0, we
obtain 2t = —ta’, hence 2 = —af which is not true (of is a zero divisor).
So uf = —u~! cannot occur and the proof is complete. O

Corollary 4.4. Let L be an RA loop with torsion subloop T. If every
element of L \ A has infinite order and all units of ZL are f-unitary, for
some f, then L has the property described in part (1) of Theorem {.1.

Proof. The hypothesis says that the torsion subloop T of L is the torsion
subloop of A. Thus, as observed in remarks just preceding Lemma 4.3, T
is an Abelian group of exponent dividing 4 or 6 of a Hamiltonian Moufang
2-loop and every subloop of T is normal in A. Because of the lemma, every
subloop of T is actually normal in L. The result follows. O

In view of Corollary 4.4, we may assume in the sequel that L\ A contains
an element b of finite order. Since the torsion subloop of A has exponent
dividing 4 or 6, if b € L\ A has finite order, b2 € A has order 2, 3, 4 or 6. If
b? has order 3, b® has order 2, so b3 € A. Since b? € A too, we would have
b € A, which is not true. Similarly, if b2 has order 6, then 53 has order 4, so,
again, b% € A implying b € A, which is not true. Henceforth, then, we may
assume that L \ A contains an element b of order dividing 8.

Throughout this section, we use the notation T'(A) and T(L) to denote -
the torsion subloops of A and L, respectively. It is easy to see that T(L) =
T(A)UT(A)b.

Case 1: L\ A contains an element b of order 2. If b is central,
then L = A x (b) and, since all units of ZA are trivial, the same holds for
ZL by {10, Theorem VIIL.3.1, Step 1]. Theorem 2.3 then says that L meets
the criteria of part (1) of Theorem 4.1.
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Suppose b is not central. As noted in the remarks after Lemma 4.2,
this implies ab # ba for some a € A. Since (1 — b)a(1 + b) has square 0,
p =1+ (1-ba(l+5)is a unit with pg~! = 1 — (1 - b)a(l +b) and
pf = 1+(1-5"1)a"1(1+b77) (recall that a — a is an antiautomorphism).
By hypothesis, uf = +u~! and since 4! and p/ each have augmentation 1,
necessarily, pf = +u~!. This implies (1-b"1)a"}(1+b71) = —(1-b)a(1+d),
hence a1+ a1 —b-la"1 = b~ la~tb~! = —a — ab + ba + bab, so

al+alb+a+ab=ba+bab+bta +b7 a0
Since a~! is in the support of the left hand side, it is in the support of the
right as well, that is,
a1 € {ba,bab,b"'a"1, 67 a7 171},

If a~! = ba, then b = a2 is central (10, Theorem IV.1.8}, which is not true.
If a~! = b~la™!, then b = 1, which is not true, and if a™! = b-lg1b~1 =
ba—'b = sa—1b® = sa~!, then s = 1, which is not true. The only possibility
is a=! = bab, which implies a—*b™! = ba = sab, s0 a~* = sa and @ = 5.

Now fix an ag € A which does not commute with b (hence a} = 5) and
let @ € A. If ab # ba, then a® = 5. Suppose ab = ba. Then aag does not

commute with b, so
2.2 2
g_ __ Ja'ag=13a if aap = aga
(aa)” = # {sazaa= 2 if aag = sapa.
We claim that the second case cannot occur. To see why, suppose the
contrary (and remember that ab = ba and b? = 1). Let a; = aap. Then
a? = 3, 80 (a1b)? = safb? = 1. Consider
{a1+ a1b)? = a4+ alb+arbay + (alb)"'
" =s+sbt+salb+1l=s+sb+b+1=(1+s)(1+b)
Thus (a; + 615)(1 — &) has square 0, so p = 1+ (a1 + a1b)(1 — 8) is a unit
with p~1 = 1 — (a1 + 610)(1 — 5). Remembering that s € A (so f(8) =1),
we have
#l =1+ (af + (a10))(1 - 5)

=1+ (a7’ = (@) )1 - 2)

=1+ (sa1— b~lart)(1 - 8)

=1+ (say — sbay)(1 — 8) = 1 + (sa1 + a1b)(1 — 8). .
Because e(u~1) = e(u) = +1, we must have p/ = p~%, 50 1+(sa1+a1b)(1-
8) = 1 — [(61 + a1b)(1 — 8)], implying

(sa1 + a1b + 81 + a1b)(1 — 8) =0,
{2410+ a1 + sa;)(1—-8)=0,
%2a;b + a; + 8a; — 28016 — 36, — a1 =0,
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the last equation giving 2a;5(1 — 8) = 0, which is not true. This verifies the
claim and allows us to conclude that

2_Js ifab#ba
|1 if 6b = ba.

This implies that A has exponent 4 (so L is a torsion loop) and also that
b~ab = a~! for all a € A, because

. | :
-1, _ Ja=a if ab = ba
4 “b"{sa=a-1 if ab # ba.

Now let b; € L be any element not in A. Then b; = a;b for some a; € A.
If a1b # bay, then b = sa}b? = sa} = 1, 50 if b; is central (for any such
by), then L is as described in part (1) of Theorem 4.1, from what we have
already seen. On the other hand, if b; is never central, then, again using
what we have already shown, b; 'ab; = a~! and L is as described by part (3)
of Theorem 4.1.

Suppose a1b = ba; (and hence (a1,b,z) = 1 for any z € L). By the known
structure of A, every subloop of 4 is normal in A. Since also b;'labl =a or
a~1, every subloop of A is normal in L. If z ¢ A, write z = agl; for some
agz € A. Then

azhy  if aghy = byay
aazbl if azb1 75 blaz.

In the latter case, b~'zb; = adby = (azb;)® because o = s. It follows that
every subloop of the torsion loop L is normal in L and L is as described
in part (1) of Theorem 4.1. (See remarks preceding Lemma 4.3.) This
concludes Case 1 and permits us to assume, henceforth, that L\ A does not
contain an element of order 2.

Case 2: L \‘ A contains an element b of order 4. We analyze two
subcases.

Case 2a: (b) is normal in L. First suppose that ab = ba for all
a € T(A). If T(A) is an Abelian group of exponent dividing 4 or 4, then so
is T(L) = T(A) UT(A)b. It is easy to see that 2™tz = ¢ for every ¢ € T(L).
Together with Lemma 4.3, this implies that every subloop of T'(L) is normal
in L, 8o the structure of L is given by part (1) of Theorem 4.1.

Suppose, on the other hand, that T(A) is a Hamiltonian 2-loop. Thus
T(A) = K x E where E is an elementary Abelian 2-group and K = Qg,
the quaternion group of order 8, or K = C, the Cayley loop [10, Section
IL4]. If b°> € K, then as a central element of order 2, b2 = 5. Take an
a € K with a? = 5. Then (ab)? = a2b? = 1. This contradicts the explicit
assumption made after Case 1 that L \ A contains no elements of order
2. Thusb* ¢ K,so0® = ke, k € K, 1 # ¢ € E. Write E = B x {(e).
Then [K x Ey] N (b) = {1} since b® = kyes, k1 € K, e; € Ey, implies
kie1 =ke€ K x E, s0 e = e; € Ej, a contradiction. Also X x E; 9T(L)

bl‘lzbl = bl_l(azbl)b; = bl_laz =bag = {
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because every subloop of T'(A) is normal in A and b commutes with every
element of T(A). Thus T(L) = T(A)(b) = K x Ey x (b).

Choose a,c € K such that {a,c) = Qg. Note that bc = cb because ¢ €
T(A). Suppose z € L has infinite order. Then z? € A has infinite order, so
#2¢ has infinite order. By Lemma 4.3, (z2¢)~1(ab)(z%c) € {ab), contradicting
(%)~} (ab)(z2c) = c~1(ab)c (by centrality of 22) = ¢ 'ach = a~'b. Thus
no such z exists, so L = T(L). In particular, K cannot be associative, so L
is as described by part (5) of Theorem 5.

We may now assume that there exists a € T(A) with ab # ba. Thus
a~1ba = sb = b3, s0 b% = 5. Also (ab)? = sa?h* = a?. Since we are assuming
that L \ A contains no elements of order 2, we have ¢? # 1. Elements
of odd order in an RA loop are central, so the order of a is not 3, nor
is it 6 since, if this were the case, b~'ab = a® = sa would imply a* = s
and a8 = 1. The only possibility is that a has order 4. Form the unit
p=1+(1—a)bi, & =1+a+a®+a? note that p~' =1 — (1 — a)bi and
pf =1-alb-1(1 —a3). We have uf = p~1 and, since e(pf) =1=¢p?),
it must be that uf = +u~1. Since &f = &, this implies

(1 +a+a6?+a®b~1(1-a) = (1 - a)b(1 +a +a® +a%),

b1 4 ab~! + a1 + 6%~ + ab + aba + aba? + aba®

= b+ ba + ba? + ba® + b~1a® + ab~1a® + 0?67 'a® + 007",
and so

be {b7,ab"1,a%b"?,a%, ab, aba, aba?, aba’}.
If b= b1, then b = 1; if b = ab™, then o = b* commutes with b; if b =
a3b1, then b? = a3 and a is central; if b = ab, thena = 1; if b= aba? = sba’,
then a =aa.nglaisoentral;ifb=abaa=sba‘=sb, then s = 1. None of
these conclusions is correct, 80 b = a2b~) or b = aba = sba?, both of which
give a2 = b? = 5. Now fix an a9 € T(4) with agh # bag (80 af = 8). Let
a € T(A) and suppose ab = ba. Then aap does not commute with b, so

2,2 ;
_ 2_ Jaga” =sa if apa = aag
s = (aga) {3a%a2= 2 if aga # aag,

and it follows that a? = 1 or a? = 5. If a? = s, however, then (ab)? = 1,
contradicting our assumption that L\ A contains no elements of order 2. So
we have .

ab # ba == a?=s and ab=bs < a’=1

In particular, this implies that (a1b)® = p? = s for any @) € T(A) since
(a1)? = a?b? or sa?b? according as @b = ba; or ab # ba, respectively. So
a3b has order 4 and (a1b) < L because the subloop in question contains &
[10, Corollary TV.1.11].
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Let a,a; € T(A). If z = a,, we have z~1az € (a) because every subloop
of T(A) is normal in A. If z = a;b, a1 € T(A), applying to = what we have
learned about b, then

1

.9 a=a
T ar= 3
8a=4g

if ax = za
if az # za.

Also, for any z € L and any a; € T(4), 27} (a1b)z = a;b or z71(a1b)z =
8(a1b) = (a1b)®. We have shown that every subloop of T(L) is normal in L.
Since T(L) = T(A) U T(A)b is not an Abelian group, T(L) is Hamiltonian.
It’s a 2-loop because T'(A) is and (ab)? = s for all a € T(A). So L is
described by part (1) of Theorem 4.1.

Case 2b: (b) is not normal in L. In particular, this means that b is
not central and s ¢ (b) [10, Corollary IV.1.11]. As noted in the remarks a&gr
Lemma 4.2, there exists a € A with ab # ba. The element 4 =1+ (1-b)ab,
b=14+b+5+0b% is a unit with u=! = 1 — (1 — b)ab. Since & =
1571457253 = 1-b+52—8%, we have uf = 1+(1~b+b2—b3)a— 1 (145°1),
Since u~! and pf have augmentation 1, we have uf = +u~1, 50

(A—b+8 - 6%)a" (1 +b71) = —[(1 — B)a(1 + b+ b2 + b3)),
which implies
a 407171 + 0% + 82057 + o + ab + ab? + ab®

= ba + bab + bab? + bab® +ba~" + ba~1b1 + 1%L 4 5% 1b71,
hence

a € {ba, bab, bab?, bab®,ba~",ba~ b1, 5%, b3~ 1p1}.
Ifa=ba,thenb=1;ifa=bab=sab2,thenb2=s;ifa=ba.b2=b"’a,
then b® = 1; if a = bab® = sab* = sq, then 5 = 1; if a = ba~l, then
b = a? is centrl; and if a = 4%, then 5 = a? is central. None of the
conclusions here is correct, so either @ = ba~'b~! = sa~! and a? = s, or
a=ba"10"1 = 5% 14! = st%a~! and a? = sb%. We claim that the latter
cannot occur, that is a? # sb?.

To see why, suppose a? = 852 and note then that (a+b)? = a2+ 5%+ ab +
ba = (1+ s)(ab+b?). This would mean that 1+ (a+b)(1 — s) is & unit with
pr=1~(a+b)1-s)and p/ =1+ (1-s)(a"! - b1). Since uf = p-1
(in view of augmentations), we would have

(1-8)@™ -5 = —[(a + b)(1 - 9)),
and so
a7 l-blegalysbl=—-a—-b+sat 8b,
implying a € {sa,sb,b™,5a1}. Now a # sa because s # 1; g 3 sb because
a and b do not commute; a # b~! because b ¢ A. If @ = sa~?, then a? = g
and & = sa® = 1, which is not true. This justifies our claim and establishes
that if ab # ba, then a2 = s. '
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Now fix ag € A with agh # bag (thus aj = s) and let a € A be arbitrary.
If ab # ba, then a? = s. If ab = ba, then aag does not commute with b, so

202 — gq2 if = ana
a1 2_,_ Ja®al=sa® ifaa=ao
(41) (ao)” = s {sa’a% =a? if agp = sapa.

Thus a? = 1 or a? = s according as aag = aga or aag # apa, respectively. In
particular, we learn that A = T{A) is & torsion loop of exponent 4. Since A
ig never commutative, A must be a Hamiltonian Moufang 2-loop.

Let e € A and €2 = 1. Then e is central in L because it is central in A
and commutes with b. (We know that if eb # be, then &% = 5.) Moreover,
eb is not central. If a € A has order 4, then a? = s. If ab were central, then
ab would have order 4—(ab)? = a%b? # 1 (since b? # s)—and we would be
finished by Case 2a. So we may assume ab is not central for any a € A.
Finally, if a € A and a has order 4, then % = s and aap # aga, 50 a is
not central. It follows that Z(L), the centre of L, is {e € A | €2 = 1}.
Furthermore, if @ has order 4, none of a, b, ab is central, so the LC property
implies ab # ba. This establishes

(4.2) ab # ba <= a has order 4.

We claim that z™'az = a™! for any a € A and any z € L. This is true
if @ has order 2, since then g is central and z-'az = a = a~}. If a has
order 4, then ab # ba, a® = 8 and b~'ab = sa = a® = a1, Finally, consider
(a1b) a(a1d) for a; € A. If a1b = bay, then a; has order 2 because of (4.2),
80 a; is central and (a;b)'a(a;b) = b~'ab = a~1. If a1b # ba;, then (4.2)
implies (a15)? = sa?b? = b?. Having established Case 2a, we may assume
that a;b is not central. Also, since b® # s, (a;b)® # s, 50 s ¢ (a1b). This
implies that {a;b) is not normal in L and, replacing b by a1b in the foregoing,
we obtain (a;6)~'a(azb) = a™ L.

Suppose there exists w € Z(L) \ A. Let a € A have order 4. Then
wlaw = a~! = g, a contradiction. Thus Z(L) C A. If there exist z,y,u €
A which do not associate, then L = (z,y,u, Z(L)} C A, which is false. It
follows that A is a group, 80 A = Qg x E where E is an elementary Abelian
2-group. Since A is a group, the identity (zy, z,w) = (z, z, w){y, z, w), which
holds in any RA loop [10, Theorem IV.1.14], and L = AUAb show that there
exist z,y € A with (z,y,b) # 1. Thus L = M(Qs x E,*,b%). Since (b) is
not normal, b2 ¢ {1,s}, so b ¢ Qs and we may write b* = ge, ¢ € Qs,
1# e € E. Since E = Ep x (e} for some subgroup Eg of E, we have
L = M(Qs x (€) X Eq,*,b%) = M(Qs x (e}, ) x Eg by [10, Proposition
V.1.6]. As the only RA loop of order 32 with exactly three squares, the RA
loop M(Qs X {€), *,b?) has to be the loop denoted 32/65 in [13]. Thus L is
described by part (3) of Theorem 4.1.

Case 3: b has order 8. In this case, T(A) has to be an Abelian group
since b2 € A is a central element of order 4 (and there are no such elements
in a Hamiltonian Moufang 2-loop).
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Case 3a: (b) is normal in L. Suppose ab = ba for all a € T(A). It is
easy to prove that z~ltz =t for all z,t € T(L) = T(A) UT(A)b so, together
with Lemma 4.3, we see that every subloop of T(L) is normal in L. Also,
T(L) = T(A)UT(A)b is a torsion Abelian group and all units in its integral
group ring are f-unitary. Applying Theorem 1 of [1] to the group G = T'(L)
and Bovdi’s A our T(A), there are two possibilities (which we label as in
Bovdi’s Theorem):

4. the torsion subgroup of A/(b*) has exponent two and bab~! = a for
all G € A/(b%); or
5.3 the torsion subgroup of T(L) (which is T(L) itself) is the direct
product of (b) and an Abelian group whose order divides 4.
Since we are assuming that b commutes with all elements of a, case 4 implies
that A is torsion, so L = AUAbis torsion. But L = T(L) contradicts the fact
that L is a not an Abelian group. Thus we are in case 5.3, which described
by part (2) of Theorem 4.1,

Now assume that there exists a € T(A) with ab # ba. Now a~lba €
{b3,85,b7} and, easily, a~'ba = b° = sb, 5o b* = 5. Form the unit p = 1+
(1-a)ba, & = 1+a+a+---+a""%, nthe order of a. Then u~! = 1—(1—a)ba,
! =1—ab"'(1 ~ a~) (since &' = &), so u~! = p/ implies
(4.3) (1-a)bs = ab~1(1-a™1).

Since elements of odd order are central and T(A) has exponent dividing
4 or 6, we must have n = 2, n = 4 or n = 6. If n = 2, equation (4.3) is
(1-a)b(1+a)=(1+a)b'(1-a),s0

b € {ab,aba,b~1,ab™1}.

The only possibility is b = aba = sa?b, giving a2 = s.
If n = 4, we obtain

be {b71,ab72,a%!,a% ", ab, aba, aba?, aba®}

and hence a® = b? or a® = 5. (See Case 2a.) Since a? = b? implies that a
has order 8, which is not true, we again have a2 = s.
If n = 6, equation (4.3) implies that

b € {ab, aba, aba?, aba®, aba*, aba®, b7}, ab™1, a1, 6%, a*b™1, aBb1}.

We claim that b = aba in which case b = sba? and a2 = 5. Indeed, there is
no other possibility: b = ab implies a = 1; b = aba® = a3 implies a3 = 1 (s0
a is central); b = aba® = sba* implies a* = s 80 a has order 8; b = abat = a%b
implies a® = 1; b = aba® = sba® implies a® = s, 80 a has order 12; b = b1
implies & = 1; b = ab™! implies a = b? is central; b = a?b~! implies a2 = ¥?,
80 a has order 8; b = %! implies a® = b? is central, so a is central;
b = ab~! implies a* = b2 50 a has order 16; and b = a®b~! implies o® = b?
is central, so a is central.

These arguments show that if a € T(A) and ab # ba, then a? = 5 (%0
a has order n = 4). Fix such an ag € T(A) (thus o} = s), let a € T(A)
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and suppose that ab = ba. Then b and aag do not commute, so (ag)? = s.
Since T(A) is Abelian, s = a?a3 = sa?, so a2 = 1. This shows that T(4) in
fact has exponent dividing 4 and, more precisely, that if a € T(4),

(4.4) a?=1 <> ab=ba and a’=3s <= ab#ba.

We claim that every subloop of T(L) = T(A) UT(A)b is normal in L, so
that L is described by part (1) of Theorem 4.1.

For this, let 6,z € T(A) and observe that z~laz = a because T(4) is
Abelian while (zb)~ta(zb) = b~z lazb = b~lab = a or sa and, in the
latter case, ab # ba, so sa = a?a = a® € (a). Also, since (ab)? = a%? or
sa2b? according as ab = ba or ab # ba, respectively, observation (4.4) implies
that (ab)? = b? in any case, so (ab)* = b* = s, implying s € (ab) and hence
{ab) < L.

Case 3b: (b) is not normal in L. Recall that this condition implies
that s ¢ (b). Moreover, b cannot be central o, as noted earlier, there exists
a € A with ab # ba. Form the unit y = 1+(1-—-lz)ab. Then 4 is a unit
with inverse g~} = 1 — (1 — b)ab and uf = 1+ bfa=2(1 + b7?). Since
B =1—b+b2— b+ b — 8 +b5— b, e(uf) = 1, so we must have pf = 1.
This implies . A

Ma 'l +b7Y) = —(1 - b)ab.
A calculation which, by now, should be familiar, shows that
b € {ba, bab, bab?, bab®, bab*, bab®, bab®, bab” ,ba !, ba b7,
a1, 5301671, bBa 1, bPa 0L, b, bTa b )
We show that ¢ = ba~1b~Yora = %a~b~t ora =b%a~1b~' ora = bTa" 167!
by eliminating all other possibilities.

If a = ba, then b = 1; if a = bab = sab?, then b* = s and, similarly, each of
the conditions g = bab?, a = bab®, a = bab*, a = bab®, a = bab® and a = bab”
implies that s € (b), which is not correct. If a = ba™" then b= a? is central
and hence commutes with b; similarly, each of a = b3a~!, a = b%a~! and
a = b7a~! implies that b is central, which is not correct. Thus it is indeed
the case that

a=ba"lb"l=sa! go that a? = s,
ora=>5b%"1"1=sb?a! sothat a? = sb?,
or @ =bPa~1p~! = sbla=! 5o that a? = sb,
ora=>bla~tb! = sb®a~! so that a® = sb°.
In every case, a® = 1. Now fix ag € A with agb # bao (so that a§ = 1) and
take a € A. If ab # ba, then a® = 1 as above. If ab = ba, then aag does not
commute with b, so (aag)® = 1. Now

2,2
2_ )09 if aag = aga
(ago) {sa%% if aag # aga
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8o, in any event, (aag)® = a®a§ = a® = 1. It follows that A has exponent
dividing 8, so A = T(A) is Abelian, which is not the case. (See remarks
after Lemma 4.2.)
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