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WHEN IS A UNIT LOOP /-UNITARY? 

EDGAR G. GOODAIRE AND CESAR POLCINO MILIES 

ABSTRACT. Let L be an RA loop, that is, a loop whOlle loop ring in any 

characteristic is an alternative, but not 8880Ciative, ring. Let /: L -

{±1} be a homomorphism and, for a = Eatl E ZL, define al = 
Ef(l)a1r 1

• Call Q /-UnitarJI if c:,I = a-1 or al = -a-1. In this 

paper, we identify the RA loops L with the property that all units 

in ZL are /-unitary, Along the way, we extend a fa.moUB theorem of 

G. Higman to a case still undecided in group rings. 

1. INTRODUCTION 

A loop ring is an algebraic object RL, constructed in the same way as a 

group ring, but in which the underlying loop L is not necessarily associa­

tive. This paper is concerned with loop rings which are alternative, but not 

associative. Loops which give rise to such loop rings ( over commutative asser 

ciative rings R of any characteristic) are called RA (ring alternative) loops. 

The best reference for information about RA loops and their loop rings is 

the monograph (10], though we record here some properties of particular 

relevance to this paper. 
RA loops are Moufang and hence diassociative; that is, the subloop gener­

ated by two elements is always associative (so parentheses are never needed 

to indicate order of multiplication in monomials). We use implicitly through­

out this paper that if two elements of an RA loop commute, then they as­

sociate with every third element (10, Theorem IV.1.1 and Corollary IV.1.3J. 

An RA loop L has the so-called LC property; namely, elements x,y E L 

commute if and only if x or y or xy is central. [10, Section IV.2]. (See 

also (6).) An RA loop L possesses a special element (which we always label 

s) which is both a unique nonidentity commutator and a unique noniden­

tity associator; that is, if a, b E L do not commute, then ba = sab and, if 

a, b, c EL do not associate, then (ab)c = [a(bc)Js. (It is easy to see thats is 

2000 Mathematica Suhj«t ClauijicaJ.ion. Primary 20N05; Secondary 17D05, 16834, 

16U60. 
The first author is again grateful to FAPESP of Brasil and to the Instituto de 

Matematica e &tat!stica of the Univenddade de Siio Paulo where he is always made 

to feel very weloome and where the environment for pursuing mathematics is mlll'V8llo118. 

This research was supported by a Discovery Grant from the Natural Sciences and En­

gineering Research Council of Canada and by FAPESP, Proc. 2000/0~0 and CNPq., 

Proc. 300243/79-0 (RN) of Bl'llllil. 
September 10, 2003. 



2 EDGAR G. GOODAIRE AND CESAR POLCINO MilJES 

necessarily central and of order 2.) Letting (a, b) denote the commutator of 
a and b, and (a,b,c) the 8880Ciator of a, band c, we have then that for a.ny 
a,b,c EL, 

(a,b)=lors and (a,b,c)=lors. 
In L, the map 

(1.1) l i--+ t• = { l if l is central 
sl if l is not central 

for l E L extends (by linearity) to an involution (that is, an a.ntiautomor­
phism of period two) of the alternative ring RL. 

Finally, we note that an RA loop L is generated by its centre and any three 
elements x, 11, u E L which do not associate. Letting G be the group gener­
ated by x and 711 the loop Lis completely determined by G, * and u2 (see 
[10, §II.5.2 and Theorem IV.3.1]), so we use the notation L = M(G,•,u2). 

Let/: L-+ {±1} be a homomorphism and, for a= Eatl ERL, define 
al= E/(l)a,i-1. We say that a is /-unitary if o/ = a-1 or al= -a-1. 
It is easy to verify that a 1-+ o/ is an antiautomorphism. of the loop ring and 
that the set U1(RL) of /-unitary units of RL is a subloop of the full loop 
U(RL) of units. 

The concept of an /-unitary unit in a group ring RG was introduced by 
Bovdi [1]. In the special case that f(g) = 1 for all g E G, al is generally 
denoted a• and a unit is called simply unitary if a•= a-1. This situation 
has received quite a bit of attention recently. V. Bovdi and L. G. Kovacs 
determined whenU.(KG) (Ka field) is normal in U(KG) (4]. A. Bovdi and 
L. Erdei have considered the possibility that a group may have a normal 
complement in the unitary group u.(ZL) [3). Gon~ves and Passman have 
studied groups G whose unitary subgroup in KG does not contain a free 
group [9] and Giambruno and Polcino Milles determined conditions for this 
subgroup to satlsfy a group identity [8]. 

The purpose of this paper is to determine precisely which RA loops L 
have the property that every unit in the integral loop ring ZL is /-unitary 
(for some f). Equivalently, when is it the case that U1(ZL) = U(ZL)? This 
problem has been studied for group rings by Bovdi and Sehgal [1, 2]. 

In the next two sections, we give instances of where all units are /-unitary 
and then, in Section 4, we show that our list is complete. Interestingly, our 
investigations led to an extension to arbitrary RA loops of a theorem of 
G. Higman, a generalization still undecided in group rings. (See Theo­
rem 2.3.) 

2. A GENERALIZED THEOREM OF HIGMAN IN THE ALTERNATIVE CASE 

An element l in a group (or loop) Lis torsion if tn = 1 for some n E N. 
H L is an RA loop, the set of torsion elements forms a subloop of L, in 
fact, a subloop that is locally finite and normal (10, Theorem VIII.4.1]. One 
of the earliest, most fundamental (and oft quoted) results in the theory of 
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group rings is due to Graham Higman, who determined when all the units 

in an integral group ring ZG (with G torsion) are trivial in the sense that 

U(ZG) = ±G = {±g I g E G}. 

Theorem 2.1. [18) If G is a torsion group, then all units in ZG are trivial 

if and only if G is 

(1) an Abelian group of exponent dividing 4 or 6, or 

(2) a Hamiltonian 2-group. 

This theorem has been generalized to loops whose loop rings are alterna­

tive, but not necessarily 8580ciative ([16], but see [10, Theorem VIIl.3.2] for 

an elegant modern proof). 

Theorem 2.2. Let L be a torsion RA loop. Then all units in ZL are trivial 

if and only if L is a Hamiltonian Moufang 2-loop. 

Recently, we have found another theorem characterizing RA loops with 

trivial unit loops without any restriction on the loop. Recall that the 

augmentation map on a loop ring RL is the homomorphism e: RL -+ R 

defined by t(a) = Eat for a= Eatl ERL. The scalar e(a) is called the 

augmentation of a. 

Theorem 2.3. Let L be an RA loop with torsion 8Ubloop T. Then all units 

of ZL are trivial if and only e11ery subloop of T ia normal in L, and T ia an 

Abelian group of e:zponent dividing 4 or 6 or a Hamiltonian MOfJ.fang 2-loop. 

Proof. Our argument, and many others in tlns paper, U8e8 the fact that in 

an RA loop (unlike Moufang loops in general), the test for normality of a 

subloop is the same 88 it is for groups [10, Corollary IV.1.11]. (See &!so [7, 

Corollaries 2.4 and 2.11].) 
Assume all 1fDits of ZL are trivial. In particular then, U(ZT) = ±T, 

which is a torsion group or a torsion RA loop. Thus, by Theorems 2.1 and 

2.2, T is an Abelian group of exponent dividing 4 or 6 or a Hamiltonian 

Moufang (possibly 8S80ciative) 2-loop. Next, let t e T, :i: EL and suppose 

that x-1i:i: ¢. (t). Let i = 1 + t + t2 + • • • + t"-1, where n is the order oft. 

The element (1 - t)xi has square 0, so 1 + (1 - t)xi E ZL is a unit and not 

trivial (10, Lemma Vlll.2.2]. This contradiction shows that every subloop 

of T is normal in L. 
Conwrsely, assume that every subloop of Tis normal in Land that Tis an 

Abelian group of exponent dividing 4 or 6 or a Hamiltonian Moufang 2-loop. 

In any event, T has an exponent dividing 4 or 6. In an RA loop L, squares 

are central, so elements of odd order are also central [10, Theorem IV.1.8]. 

(See also [11}.) Ht e L h88 order 2, then t too must be central since, for any 

x e L, x-1 t.:z: e (t) = {1, t}. There are no noncentral elements t of order 6, 

since x-1tx = st = t5 implies t4 = s and t8 = 1, a contradiction. It follows 

that any noncentral element in T must have order 4. He is a primitive fourth 

root of unity, the map cr: e .-. e<4t2)+1 is in the Galois group of Q({)/Q, so 
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every idempotent of QT is central in QL [10, Theorem XIIl.1.10]. See also 
[15, Theorem 3.3].) 

Now letµ e U(ZL). Replacing L by the subloop generated by a finite set 
containing the support of µ and three elements which do not associate, we 
may assume that Lis finitely generated. By Corollary XIIl.2.2 of [10], QL 
contains no (nonzero) nilpotent elements, so the same applies to QT which 
is therefore the direct sum of division rings. Now Corollary XII.1.2 of [10] 
(see also [14, Lemma 2.3]) says thatU(ZL) = L·U(ZT) . SinceU(ZT) = ±T 
by Theorem 2.2, the result follows. D 

Corollary 2.4. Let L be an RA loop with torsion wbloop T. If every wbloop 
of T is normal in L, and T is either an Abelian group of exponent dividing 
4 or 6 or a Hamiltonian Moufang 2-loop, then every unit in ZL i., /-unitary 
{for any homomorphism f: L t--+ { ± 1}). 

Proof. The hypothesis and Theorem 2.3 imply that ifµ e ZL is a unit, then 
µ = ±l for some le L. For any f: L,.... {±1}, µI= ±t-1 = ±µ- 1, soµ is 
!-unitary. □ 

3. FUltl'HER EXAMPLES 

In this section, we give further instances of RA loops L for which all units 
of ZL are /-unitary. 

We begin with a useful lemma, first established for groups by Li [19, 
Theorem 2.1]. 

Lemma 3.1. Let Lo be an RA loop and f: Lo - { ±1} a nontrivial homo­
morphism. Let E be an Abelian group of exponent two, let L = L 0 x E and 
extend f to Ji: L - {±1} b11 aetting fi(E) = 1. If every unit of ZLo is 
/-unitary, then every t1.nit of ZL ia Ji -unitary. 

Proof. Let µ E, U(ZL). Then µ is a finite integral linear combination of 
terms of the form le, l e Lo, e e E . Thinking of E as a vector space 
over the field of two elements, each such e is a finite linear combination of 
bBBis elements. It follows that µ is a linear combination of terms in a loop 
Lo x C2 x C2 x · · · x C2, so it suffices to establish the lemma for the case 
L = Lo x {c}, c2 = 1. 

Writeµ= µ1 + ~c, µ1,µ2 e ZL0• Let 11 = 111 + 112c = µ- 1, 111,11-J e ZLo. 
The equation µ11 = 1 implies 

µ1111 +~l"'J = 1 

and 

µ111-J + ~Ill = 0, 

so (µ1 ± ~)(111 ± 112) = 1. Thus µ1 + µ2 and µ1 - µ2 are units in ZLo and 
hence /-unitary. It follows that 

(µ1 + µ2)/ = ::!::(µ1 + 1-'2)-l = ±(11t + Vol) 
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and 

In the case that all the signs here are the same, we obtain µ{ = ±vt, 
,4 = ±11-J, soµ{= ±vt and µ-1 = "1 + i>.zc = µ{ + v{c = ±µIi. We can 

complete the proof, therefore, by showing that neither "mixed case" can 

occur. Supp088, for example, that (µ1 + J,vJ)f = (µ1 + µ2)-1 but (µ1 - 1-'2)/ = 
-(µ1 - l-'2)-1. Thus 

(µ1 + 1-'2)(µ{ + ,4) = 1 = (µ1 - µ2)(-µ{ + µ{). 
We obtain 

µ1µ{ + l-'1'4 + JvJµ{ + µ,,.u{ = 1, 

-µ1µ{ + µ1µ{ + µ2µ{ - l-'m% = 1 

and addition gives 

(3.1) µ1'4 + l-'21-'i = 1. 

Let 1-'l = 'Ete1 atl, at E Z, and 1-'2 = 'EteLo f3tl, f3t E Z. Then µ{ = 

E f (l)a,r1, 1-'2 = E f (l)/Jtl-1 , and the coefficient of 1 on the left side 
0£ (3.1) is a sum 0£ termB of the form J(l)cx.1{31 + J(l)/3tCX.t which is even, a 

contradiction. The proof of the other mixed case----{µ 1 +µ2)1 = -(µ1 +JvJ)-1, 
(µ1 - J,vJ)/ = +(µ1 - J,vJ)-1-is similar. D 

In the next three theorems, we giw specific examples of loops L for which 

&ll units in ZL are unitary. 

Theorem S.2. 'Let L = C x (b} x E be the direct product of the Cayley loop, 
C, a cyclic !/fTJ1JP (b) of onler 4 and a {poaaibly triflial) Abelian !/fTJ1JP E of 
exponent two. Let A= C x (b2) x E. Then everJ.I unit in ZL i6 f-unitaf'T/, 

where ker /=A. 

Proof. Because of Lemma 3.1, we may assume that E is trivial. Let µ be a 
unit of ZL. Without 1068 of generality, the augmentation of µ is 1. Now jj 

is a unit in the integral loop ring of L/(b2), which is a Hamiltonian 2-loop, 

so jj = l for some l e L (Theorem 2.2), hence µ = t + {1 - b2)a for some 

a e ZL. Similarly, µ = U(Z[L/ L1) is trivial, so l + (1 - fil)o: = k for some 

k e L. Multiplying by I + b'I, we obtain 

l(i + b2) = k(i + b2), 

sol= k or l = b2k. In the latter case,µ= b2i+ (1-a){3, fJ E ZL a.nd, since 

b2l-== l- (1- b2)l, 
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for some 'YE ZL, so (1- b2)a = (1- s)'Y. Write 'Y ='Yo+ ,Y1b + 'Y'J,; + 'Yalr, 
'Yi e ZC. In a similar way, write o = ao + 01 b + 02b2 + a3lr, but note 

(1 - b2)a = (1 - b2)[(ao - a2) + (a1 - a3)b]. 

Thus we may assume that 02 = a3 = 0, hence that o = ao + a1b, Consider 
the equation 

{1- s)('YO + 71b + "f'Jb2 + 73b3) 

= (1 - b2)(ao + a1b) = a0 + 01b- aob2 - 01b3. 

Since the supports of ao and a1b a.re disjoint, and since the supports of 
'Yo, 'Ylb, 'Y'Jfil, 'Y3b3 are also disjoint, it follows that oo = (1 - s)'Yo and 
a 1 = (1- s)'Yl, 80 a= (1- a)('ro +'Y!b) andµ= t+ (1-b2)(1- a)-y, le L 
and 'Y = 'Yo + 'Y1 b, 'YO, "ft e 7£. Thus 

µI= ±r1 + (1- b2)(1 - s)'yl 

and 
µµI= ±1 + {1- b2)(1- s)[t-yl ±-yr1 + 4n1]. 

There are two cases to consider, according as I E C or I e Cb, but before we 
do so, it is important to obeerve that since /(t) = 1 and 

1_1 = {l if l is central 
sl if l is not central 

for all I e C, we have 1-1 = r [see (1.1)] and the restriction of the map/ 
to 7£ is the canonical involution a ,.... a• in e.n alternative loop ring. 

Case 1. If l EC, then 

µµI= +1 + (1 - b2){1- s)[t,yl +-yr1 + 4-y-yf]. 

Remembering tha.t b is central, we have 
I 

t-yl + 7r1 = l('Yo - -rib-1) + ('YO +-rib)!" 
(3.2) = (l-y0 + "(of") - l-yib-1 + "(1bl°. 

The first ternI, 1-ro + -rot"', has the form /3 + /J', which is central in U [10, 
Theorem IIl.2.1) . Writing /3 = E,..es1 /J;Z; + Et.es, ~4, where the elements 
in S1 are central and those in S2 a.re not, we have /J' = E,..es

1 
/3;.Z; + 

s I:4es, ~4 and /3 + /3* :c 2 E /3;.Z; + {1 + s)r, r E 7£, so (1- s)(/3 + /3*) = 
2(1- s) }:/3;.Z;. The product of 1- b2 with the remaining terms in {3.2) is 

(1- b2)(-l-yib-1 + 'Y1bl°) = ('Yll° + l-yi)b - l-yib-1 - 'Y1b3r. 
Now ('Y1l* + l-yi)b is of the form (/3 + /r)b so, as before, it is an element 
with even coefficients, and the same is true for -l-rib-1 - ,Y1b3r = -(l-ri + 
'Ylf-)b-1• All this shows that µ.µI belongs to the group ring of the centre 
of L, which is an Abelian group of exponent 4, and tha.t µµI has the form 
1 + r where r has even coefficients. So µ.µ.I is trivial. Since it has 1 in its 
support, µ.µI = 1, 80 µ.I = µ-1 andµ is /-unitary. 
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Case 2. ff l = gb, g e C, then 

µµI = -1 + (1- b2}(1 - s)[glryf - "(g-1b-1 + 4-r'Yf]. 

Now 

gtryl - "(g-lb-1 = gb("fo - ,jb-1) - (,o + 'Y1b)g-1b-1 

=ofrro -0ri-,og•b-1 +,19•. 

The element 'Y19• - tni, being of the form /3 - fJ", is a multiple of 1 - s, so 
the product with 1 - s gives an element with even coefficients. The product 

of ofrro-,og•b-1 with 1-1>2 is (tn0 +,og•)b-(,og•+9ro)b-1• As in Case 1, 

this an element in the group ring of the centre of L with even coefficients and, 

as before, we obtain µµI= -1. Thus µI= -1r1 andµ is /-unitary. D 

Theorem S.3. Suppose L = A(b} is the product of a Hamiltonian Moufang 

2-loop, A, and a cyclic group {b} of order 2, b ¢ A. Suppose also that 

x-1ax = a-1 for all a E A and all x ~ A. Then every unit in ZL is 
/-unitary, where ker /=A. 

Proof. Letµ be a unit in ZL and writeµ = µ1 + JS2b, µ1,µ2 E ZA. As 
noted in the proof of Theorem 3.2, the map / coincides with the canonical 

involution a 1-+ a• in the alternative loop ring ZA. Thus µl = µi - bJ.12. 
Furthermore, since ba-1 = ab for a EA, we have bµ2 = JS2b, so 

µµf = {µ1 + 1-&2b)(µi -1,&2b) 

= µ1µi - (µ2b)(µ,b) - µ1(1-'2b) + (µ2b)µj. 

Using diassoci&tivity and bµ2 = J.12b, the product (µ2b)(µ2b) = 1,&2J.12b2 = 
1-'2J.12· ff z is in the support of 1,&2b, then z ~ A, so {µ2b)µi = µ1(µ2b). Thus 
µµI = µiµi - l-'2J.12 is a unit in the loop ring ZA and hence trivial. Fbr 

a e ZA, let o denote the image of a in Z(L/£1. Since a• = a, we have 

µµf = jl~ - ~1 It follows that jl1 ± il2 are units in the group ring of an 
Abelian group of exponent 2. By Theorem 2.2, they are both trivial. There 
a.re four cases to consider. The arguments in each case a.re similar. We 
present one. 

Suppose ilt + µ,. = ii and il1 - jl2 = l, a, l E A. It follows readily that 

ii= l = P.1 and il2 = 0, so µ1 = a+ (1- a)'Y1 and µ2 = (1 - sm with 

'Yl,'Y'J e ZL. So 

µµI = [a+ (1 - s)"fll[a• + (1 - s)'Yi] - 2(1 - s)'Y2'Y2 

= 1 + {1- s)(,1l" +t,i -2"f'J'Y2) 

(since a• = a-1 ). Now ,ti* + l-ri has the form /3 + f3•, so it can be written 

2E/3iZi + (1 + s)r, with Zi e A central and Te ZA. Since the product of 
such an element with 1 - a has even coefficients, 1 is in the support of the 

trivial unit µµl, so µµI = 1, µI = µ- 1 and µ is /-unitary. 0 

Let l6f20J be the group {a,b I a4 = b' = (a2,b) = l,(a,b) = a2
). {The 

notation is due to Hall and Senior (17}.) The RA loop M(l6f20J,•,a2), 
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which has been denoted Ma2(l6f2c2, l6f2C3, l6f2~, l6f2~) (5], is 32/65 in 
the catalogue of Moufang loops of small order by Goodaire et al (13]. As an 
RA loop, this can be generated by a, b and a third element u. The unique 
nonidentity/commutator in this loop is s = a2 = u2• 

Theorem 3.4. Let E be an Abelian group of exponent two. Then every unit 
of M(16f2C3,•,a2) x E ii /-unitary, where ker / = (a,u} x E. 

Proof. By Lemma 3.1, we may assume that Eis trivial. In [12, Theorem 
6.1], it is proven that the unit loop of ZL is ±LV, whereµ EV has the form 

µ = 1 + (1- s)(l + b2)[(ao + a1a + a2b + aaab) 

+(,Bo+ {ha+ fhb + ,6Jab)u], 

where ao, ... , 03, /3o, ... , /3s are integers satisfying a certain condition not 
relevant here. It suffices to show that every unit of this form is /-unitary. 
On the one hand (by Theorem 6.1 of [12]), we have 

µ-1 = 1 + (1 - s)(l + b2)[(ao + a1a-1 - a2b - aaab) 

+ .Bou-1 + .Bi(au)-1 - /hbu - /3sab · u). 

On the other hand, 

µI= 1 + {1- s)(l +b2)((oo + 0 1a-1 - o 2b-1 -aa(ab)-1) 

+ fJou-1 + .81(au)-1 - /h(bu)-1 - /Js(ab · u)-1). 

Thus it is enough to show that 

(1 - •)(1 + b2)[-02b- aaab - /3-i.bu - /Jsab · u 

+ a2b-1 + a3(ab)-1 + /h.(bu)-1 + /Js(ab · u)-1] = 0. 

Remembering that every element x ¢ A = (a, u) has square b2 , we have 

x-1 - x = x3 - x = x(x2 - 1) = x(b2 - 1). 

Since (1 + b2)(b2 - 1) = 0, the result follows. D 

We conclude this section with a final scenario in which the units Qf a loop 
ring are /-unitary. 

Theorem 3.5. Suppose L is an RA loop containing a subloop A of index 
2 and that L = A U Ab with b of order 8. Suppose every subloop of T, the 
torsion aubloop of L, i, normal in L. I/Tis the direct product of (b) and an 
Abelian group of order dividing 4, then every unit of ZL is /-unitary, where 
kerf =A. 

Proof. The hypotheses imply that U(ZL) = U(ZT) · L [10, Proposition 
Xll.1.3]. By Theorem 2, part 5.3 of [1], every unit of ZT is /-unitary. 
Since the elements of Lare /-unitary, the same holds true for U(ZL). □ 
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4. THE CLASSIFICATION 
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In this section, we state and complete the proof of the major theorem of 

this paper, which follows. 

Theorem 4.1. Let L be an RA loop with torsion subloop T. ThenU1(ZL) = 
U(ZL) if and only if L is described by one of the conditions below. 

(1) every subloop of Tis normal in L, and Tis either an Abelian group 

of exponent dividing 4 or 6 or a Hamiltonian Moufang 2-loop; 
(2) every subloop of T is normal in L and T = (b} x C, C an Abelian 

group of order dividing 4; 
(3) L = A(b) is the product of a Hamiltonian Moufang 2-loop A and a 

cyclic group (b} of order 2, b ¢ A, and x-1ax = a-1 for all a E A 

and all x <t A; 
( 4) L is the direct product of an Abelian group of exponent two and the 

loop M{l6f2C2, •, a2); 

(5) L = C x (b) x E is the direct product of the Cayley loop, C, a cyclic 

group (b) of order 4 and an Abelian group E of exponent two. 

In Sections 2 and 3, we showed that loops with the indicated struc­

ture have the desired property, so here, we assume that all units of iL 
are /-unitary and show that L has one of the structures described. Some 

of our arguments follow those of A. Bovdi [1], whose paper inspired this 

one. Throughout, Lis an RA loop,/: L t-t {±1} is a homomorphism and 
U1(ZL) = U(ZL) (whether or not this is explicitly stated). 

We begin with an elementary lemma. 

Lemma 4.2. If f(l) = 1 /or all l EL, then U1(ZL) = U(ZL} implies that 

all units in ZL are trivial, so L is described by part (1) of Theorem ,l.1. 

Proof. Let µ = LtcLµtl be a unit. We have µµI = ±1. Since µI = 
"2:,µ1t-1, the c6efficient of 1 in µµI is "2:,µJ > O. In particular, µµI= +1, 

implying that µ4 = ±1 for a unique lo and JJt = 0 for all l ¥ lo. Thus 

U(ZL) =±Land reference to Theorem 2.3 completes the proof. 0 

Now 888Ullle that / is not identically 1 on L. We collect some information 

about this situation, which we assume for the rest of this paper. 

First of all, A = k.er J is a subloop of L of index 2, hence normal, and 

L = A U Ab for any b <t A. H B is any commutative subloop of an RA 

loop Land z EL is any element, the subloop {B,x) generated by Band 

xis a group [10, Corollary IV.2.4]. In the present context, it follows that 

A cannot be commutative. This implies, in particular, that the unique 

nonidentity commutators of Lis in A, so f(s) = 1. 
Next, if b is not central, then b cannot commute elementwise with A. To 

see why, remember that L = A U Ab, so ab = ba for all a E A would imply 

that b commutes with all elements of L (by diassociativity). AB noted in the 

introduction, this implies that b associates with all pairs of elements of L; 
in other words, b would be central. 
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Also, since /(a) = 1 for all a E A, Lemma 4.2 mys U(ZA) = ±A, so, by 
Theorem 2.3, every subloop of the torsion subloop T(A) of A is normal in A, 
and T(A) is an Abelian group of exponent dividing 4 or 6, or a Hamiltonian 
Moufang 2-loop. _ · 

The next lemma allowe us to assume that L \A contains a torsion element. 

Lemma 4.3. Let L be an RA loop with torsion subloop T. Assume U 1(ZL) = 
U(ZL) for some f: L-+ {±1}. Then x-1tx E (t) for any t ET and any 
x¢T. 

Proof. Let i = 1 + t + t2 + • • • + tn-1, n the order oft. Since a = (1 - t)xi 
is nilpotent,µ= 1 + a is a unit with inverse µ- 1 = 1- a. By assumption, 
µI= ±µ-1. 

If µI= µ- 1, then 1 +al= 1 - a:, so a:+ a:f = 0. This implies 

(1 - t)xt ± ilx-1(1 ± t-1) = 0, 

so tx = t'x-1 for some i, or t:t = t'x-1r 1 for some i. In the first case, 
x2 E (t) has finite order, which is not true. The second case implies that for 
some j, x-1 = tixt = tJ+l:z: or sti+lx, either possibility again contradicting 
the fact that x2 has infinite order. 

If µI= -µ- 1
, then 1 +al= -1 + a, so a-al= 2. Since ta= 0, we 

obtain 2t = -tal, hence 2 = -al which is not true (al is a zero divisor). 
So µI = -µ-1 cannot occur and the proof is oomplete. □ 

Corollary 4.4. Let L be an RA loop with torsion subloop T. If every 
element of L \ A has infinite order and all unit., of ZL are /-unitary, for 
&ome /, then L h06 the property described in part (1) of Theorem .1,1. 

Proof. The hypothesis says that the torsion subloop T of L is the torsion 
subloop of A. Thus, as observed in remarks just preceding Lemma 4.3, T 
is an Abelian group of exponent dividing 4 or 6 of a Hamiltonian Moufang 
2-loop and every subloop of T is normal in A. Because of the lemma, every 
subloop of T is actually normal in L. The result follows. □ 

In view of Corollary 4.4, we may assume in the sequel that L \ A contains 
an element b of finite order. Since the torsion subloop of A has exponent 
dividing 4 or 6, if b E L \ A has finite order, b2 e A has order 2, 3, 4 or 6. If 
b2 has order 3, b3 has order 2, so b3 E A. Since b2 E A too, we would have 
b E A, which is not true. Similarly, if b'J has order 6, then b3 has order 4, so, 
again, b3 E A implying b E A, which is not true. Henceforth, then, we may 
assume that L \ A contains an element b of order dividing 8. 

Throughout this section, we use the notation T(A) and T(L) to denote · 
the torsion subloops of A and L, respectively. It is easy to see that T(L) = 
T(A) U T(A)b. 

Case 1: L \ A contains an element b of order 2. If b is central, 
then L =Ax (b) and, since all units of ZA are trivial, the same holds for 
ZL by {10, Theorem VIIl.3-1, Step 1). Theorem 2.3 then says that L meets 
the criteria of part (1) of Theorem 4.1. 
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Supp~ b is not central. AB noted in the remarks after Lemma. 4.2, 

thls implies ab 'I- ba for some a E A. Since (1 - b)a(l + b) has square 0, 

µ = 1 + (1 - b)a(l + b) is a unit with µ-1 = 1 - (1 - b)a(l + b) and 

µI= 1+(1-b-1)a-1(1+.b-1) (recall that a-+ al is an antiautomorphism). 

By hypothesis, µf = ±µ-1 and since µ-1 and µI each have augmentation 1, 

necessarily, µ.I = +µ- 1. This implies (l-b-1 )a-1(1 +b-1) = -(1-b)a(l+b), 

hence a-1 + a-1b-1 - b-1a-1 - b-1a-1b-1 = -a - ab+ ba + bab, 80 

a-1 + a-1b +a+ ab= ba + bab + b-1a-1 + b-1a-1b-1. 

Since a-1 is in the support of the left hand side, it is in the support of the 

right 88 well, that is, 

a-1 E {ba, bab, b-1a-1, b-1a-1b-1 }. 

If a-1 = ba, then b = a-2 is central [10, Theorem IV.1.8], which is not true. 

If a-1 = b-1a-1, then b = 1, which is not true, and if a-1 = b-1a-1b-1 = 
ba-1b = sa-11? = sa-1, then s = 1, which is not true. The only possibility 

is a-1 = bab, which implies a-1b-1 = ba = sab, so a-1 = sa and a2 = a. 

Now fix an ao e A which does not commute with b (hence a~ = s) and 

let a E A. If ab 'I= ba, then a2 = s. Suppose ab = ba. Then aao does not 

commute with b, 80 

(aao)2 = 8 = {a2ag = sa
2 

if aao = aoa 
sa2ag = a2 if aao = saoa. 

We claim that the second case cannot occur. To see why, suppose the 

contrary (and remember that ab = ba and b2 = 1). Let a1 = aao. 'Then 

a~ = s, so (a1b)2 = sa~l? = 1. Consider 

(a1 + a1b)2 =a~+ ajb + a1ba1 + (a1b)2 

, = s+ab+ sa~b+ 1 = s+sb+b+ 1 = {l +s)(l+b). 

Thus (a1 + a1b)(l - s) has square 0, soµ = 1 + (a1 + a1b)(l - s) is a unit 

with µ-1 = 1 - (a1 + a 1b)(l - s). Remembering that s E A (so J(s) = 1), 

we have 

µf = 1 +(a{+ (a1b)')(l - s) 

= 1 + (a11 - (a1b)-1}(1- s) 

= 1 + (sa1 - b-1a11)(1 - s) 

= 1 + (sa1 - sba1)(l - s) = 1 + (sa1 + a1b}(l - s). 

Because f(µ-1) =~(µI)= +1, we must have µI= µ-1, so l+(sa1+a1b)(l­

s) = 1- [(a1 + a1b)(l - s)], implying 

(sa1 + a1b+ a1 + a1b}(l - s) = 0, 

{2a1b + a1 + sa1)(l - a)= 0, 

2a1b + a1 + sa1 - 2sa1b- sa1 - a1 = 0, 



12 EDGAR G. GOOD.AIRE AND CESAR POLCINO MILIF.8 

the last equation giving 2a1b(l - s) = 0, which is not true. This verifies the 
claim and allows us to conclude that 

a2 = {s if ab =I ba 
1 if ab= ba. 

This implies that A has exponent 4 (so L is a torsion loop) and also that 
b-1ab = a-1 for all a E A, because 

{
a= a-1 if ab = ba b-1ab = 
sa = a-1 if ab -::/= ba. 

Now let bi EL be any element not in A. Then b1 = a1b for some 01 EA. 
If a1b yl, ba1, then ~ = safb2 = sai = 1, so if b1 is central {for any Buch 
bi}, then Lis 88 described in part (1} of Theorem 4.1, from what we have 
already seen. On the other hand, if b1 is never central, then, again using 
what we have already shown, b11abi = a-1 and Lis 88 described by part (3) 
of Theorem 4.1. 

Suppose a1b = ba1 (and hence (a1, b, x) = 1 for any x E L). By the known 
structure of A, every subloop of A is normal in A. Since also b11 abi = a or 
a-1, ~ eubloop of A iii normal in L. If :i; ff A, write x = a2bi for some 
a:,i EA. Then 

b-1 b _ b-1( b )b _ b-1 _ bi _ {a2bi if a:.ib1 = bia2 1 x 1 - 1 02 1 ~ - 1 02 
- a:.i - sa2bi if a2b1 -/= b1a2, 

In the latter case, b-1xb1 = a~bi = (a2bi)3 because a~ = s. It follows that 
every subloop of the torsion loop L is normal in L and L is as described 
in part (1) of Theorem 4.1. (See remarks preceding Lemma 4.3.) This 
concludes Case 1 and permits us to .assume, henceforth, that L \ A does not 
contain an element of order 2. 

Case 2: L \ A contains an element b of order 4. We analyu two 
subcases. 

Case 2a: (b} is normal in L. First suppose that ab = ba for all 
a E T(A). H T(A) is an Abelian group of exponent dividing 4 or 4, then so 
is T(L) = T(A) UT(A)b. It is easy to see that x-1tx = t for every t E T(L). 
Together with Lemma 4.3, this implies that every subloop of T( L) is normal 
in£, so the structure of L is given by part (1) of Theorem 4.1. 

Suppose, on the other hand, that T(A) is a Hamiltonian 2-loop. Thus 
T(A) = K x E where E is an elementary Abelian 2-group and K = Q8, 
the quaternion group of order 8, or K = C, the Cayley loop (10, Section 
II.4}. ff b2 E K, then as a central element of order 2, b2 = s. Take en 
a E K with a 2 = s. Then (ab)2 = a2b2 = 1. This contradicts the explicit 
assumption made after Case 1 that L \ A contains no elements of order 
2. Thus b2 r/. K, so b2 = ke, k E K, 1 -::/= e E E. Write E = E1 x (e). 
Then [K x E1) n (b) = {1} since b2 = k1e1, k1 E K, e1 E E1, implies 
k1e1 = ke E K x E, so e = e1 E E1, a contradiction. Also K x E 1 ~ T(L) 
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because erery subloop of T(A) is normal in A and b commutes with every 

element of T(A}. Thus T(L) = T(A)(b) = K x E1 x (b). 

Choose a, c E K such that {a, c} £!! Qs, Note that be = cb because c E 

T(A). Suppose x EL has infinite order. Then x2 EA bas infinite order, so 

x2chas infinite order. By Lemma4.3, (x2c)-1(ab)(x2c) E (ab), contradicting 

(x2c)-1(ab)(x2c) = c-1(ab)c (by centrality of x2) = C-1acb = a-1b. Thus 

no such x exists, so L = T(L). In particular, K cannot be associative, so L 

is as described by pa.rt (5) of Theorem 5. 

We may now a.ssume that there exists a E T(A) with ab ! ba. Thus 

a-1ba = sb = b3, so b2 = s. Also {ab)2 = sa2b2 = a2• Since we a.re assuming 

that L \ A contains no elements of order 2, we have a2 :f:: 1. Elements 

of odd order in an RA loop are central, so the order of a is not 3, nor 

is it 6 since, if this were th& case, b-1ab = a5 = sa would imply a' = s 

and a8 = 1. The only possibility is that a has order 4. Form the unit 

µ = 1 + (I - a)ba, a = I + a + a2 + a3, note that µ-1 = 1 - (1 - a)ba and 

µI = 1-afb-1(1- a3). We have µf = ±µ-1 e.nd, since E(µf) = 1 = E(µ- 1 ), 

it must be that µf = +µ-1. Since al= a, this implies 

(1 +a+ a2 + a 3)b-1(1- a3) = (1- a)b(l +a+ a 2 +a3), 

b-1 + ab-1 + a 2b-1 + a3b-1 +ab+ aba + aba2 + aba3 

= b + ba + ba2 +baa+ b-ta3 + ab-la3 + a2b-la3 + a3b-la3' 

and so 
be {b-1, ab-1 , a2b-1 , a3b-1, ab, aba, aba2 , aba3} . 

If b = b-1, then b2 = l; if b = ab-1, then a = b2 commutes with b; if b = 
a3b-1, then b2 = a3 and a is central; if b = ab, then a = 1; if b = aba2 = sba3

, 

then a3 = s an<J a is central; if b = aba3 = sba' = sb, then s = 1. None of 

these conclusions is correct, 80 b = a2b-1 orb= aba = sba2, both of which 

give a2 = b2 = s. Now fix an ao e T(A) with aob =/: bao (so aa = s). Let 

a e T(A) and suppose ab= ba. Then aa0 does not commute with b, 80 

{oaa2 = sa2 if aoa = 0tJo 
s = (aoa)2 = 

s~a2 = a2 if aoa :/: aao, 

and it follows that a2 = l or a2 = s. H a2 = s, however, then (ab)2 = 1, 

contradicting our 888U1Dption that L \ A contains no elements of order 2. So 

we have 

ab :/: ba <==> a2 = s and ab = ba ~ a2 = 1. 

In particular, this implies that (a1b)2 = b2 = s for any a1 E T(A) since 

(a1b)2 = a}b2 or sa}b2 according as a1b = ba1 or ab:/: ba, respectively. So 
a1b has order 4 a.nd (a1b) ~ L because the subloop in question contains s 

{10, Corollary IV.1.11). 
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Let a, a1 e T(A). U z = a1, we have z-1az E (a) because every subloop 
of T(A) is normal in A. H x = a1b, a1 e T(A), applying to x what we have 
learned about b, then 

{
a = a-1 if ax = xa :,;-lax= 
sa = a3 if az :/- za. 

Also, for any x E L and any a1 e T(A), x-1(a1b)x = a1b or x-1(a1b)x = 
s(a1b} = (a1b)3. We have shown that every subloop ofT(L} is normal in L. 
Since T(L) = T(A) u T(A)b is not an Abellan group, T(L) is Hamiltonian. 
It's a 2-loop because T(A) is and (ab) 2 = a for all a e T(A) . So L is 
described by part {l) of Theorem 4.1. 

Case 2b: (b) is not normal in L. In particular, this means that bis 
not central ands(/. (b} [10, Corollary IV.1.11]. AB noted in the remarks after 
Lemma 4.2, there exists a e A with ab 'F ba. The element µ. = 1 + (1- b )ab, 
i, = 1 + b + b2 + b3, is a unit with µ.- 1 = 1 - {l - b)ab. Since 'i,I = 
l-b-1+b-2-b-3 = 1-b+b2-b3, wehaveµ.f = l+(l-b+b2-b3)a-1(l+b-1). 
Since µ.- 1 and µI have augmentation 1, we have µI= +µ-1, so 

(1- b + b2 - b3)a-1(1 + b-1) = -{(l - b)a(l + b + b2 + b3)], 

which implies 

a-1 + a-1b-1 + b2a-1 + b2a-1b-1 +a+ ab+ ab2 + ab3 

= ba + bab + bab2 + bab3 + ba-1 + ba-1b-1 + b3a-1 + b3a-1b-1, 

hence 
a e {ba,bab,bab2,bab3,ba-1,ba-1b-1 ,b3a-1 ,b3a-1b-1}. 

Ha= ba, then b = l; if a= bab = sab2, then b2 = s; if a= bab2 = b3a, 
then b3 = 1; if a = bab3 = sab°' = sa, then s = 1; if a = ba-1, then 
b = a2 is central; and if a = b3a-1, then b3 = a2 is central. None of the 
conclusions here is correct, so either a = ba-1b-1 = sa-1 and a2 = s, or 
a= b3a-1b-1 = sb3b-1a-1 = sb2a-1 and a2 = sb2. We claim that the latter 
cannot occur, that is a 2 =f. sb2. 

To see why, suppose a2 = sb2 and note then that (a+b)2 = a 2 +b2+ab+ 
ba = (1 + s)(ab+ b2). This would mean that 1 + (a+b)(l-s) is a unit with 
1r1 = 1 - (a+ b)(l - s) and µI = 1 + {l - s)(a-1 - b-1). Since µI = µ.-1 

(in view of augmentations), we would have 

(1- s)(a-1 - b-1) =-[(a+ b)(l - a)], 
and so 

a-1 - b-1 - sa-1 + sb-1 = -a- b+ sa+ sb, 
implying a e {sa,sb,b-1,sa-1}. Now a =f. sa because s,;, I; a =f. sb because 
a and b do not commute; a 'F b-1 because b r,. A. If a= sa-1, then a2 = s 
and b2 = sa2 = 1, which is not true. This justifies our claim and establishes 
that if ab-:/: ba, then a2 = s. 
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Now fix ao EA with aob ::/= baa (thus~= s) and let a EA be arbitrary. 

H ab :/, ba, then a2 = s. H ab = ba, then aao does not commute with b, so 

(4.1) {
a2ag = sa2 if aao = aaa 

(aao)2 = s = 
sa2ag = a2 if aao = saaa. 

Thus a2 = 1 or a 2 = s according as aao = aaa or aao -# aaa, respectively. In 

particular, we learn that A= T(A) is a torsion loop of exponent 4. Since A 
is never commutative, A mUBt be a Hamiltonian Moufang 2-loop. 

Let e E A and e2 = 1. Then e is central in L because it is central in A 
and commutes with b. (We know that if eb I be, then e2 = s.) Moreover, 

eb is not central. If a EA has order 4, then a2 = s. H ab were central, then 

ab would have order 4-(ab)l = a2b2 :/, 1 (since b2 ,j: 8)-and we would be 

finished by Case 2a. So we may assume ab is not central for any a E A. 
Finally, if a E A a.nd a has order 4, then a2 = s and aao :/, aaa, so a is 

not central. It follows that Z(L), the centre of L, .is {e E A I e2 = 1}. 
Furthermore, if a has order 4, none of a, b, ab is central, so the LC property 

implies ab f ba. This establishes 

( 4.2) ab :/:, ba <==} a has order 4. 

We claim that x-1ax = a-1 for any a E A and any x E L. This is true 

if a has order 2, since then a is central and x-1ax = a = a-1• If a has 

order 4, then ab::/= ba, a2 = s and b-1ab = sa = a3 = a-1• Finally, coDBider 
(a1b)-1a(a1b) for a1 € A. If a1b = ba1, then 01 has order 2 beca.wie of (4.2), 

so a1 is central and (a1b)-1a(a1b) = b-1ab = a-1• H a1b -# ba1, then (4.2) 

implies (a1b)2 = safb2 = b2. Having established Case 2a, we may assume 

that a1b is not central. Also, since b2 ::/= s, (a1b)2 ::/= s, so s (/. {a1b). This 
implies that {a1b} is not normal in Land, replacing b by a1b in the foregoing, 

we obtain (a1b)-1a(a1b) = a-1. 

Suppose there exists w E Z(L) \ A. Let a E A have order 4. Then 

w-1aw = a-1 = a, a contradiction. Thus Z(L) s; A. If there exist x, 1J, u E 

A which do not associate, then L = {x,y,u,Z(L)) ~ A, which is false. It 

follows that A is a group, so A = Qa x E where E is an elementary Abelian 

2-group. Since A is a group, the identity (.xy, z, w) = (x, z, w)(y, z, w), which 

holds in any RA loop [10, Theorem IV.1.14], and L = AUAb show that there 

exist x,y EA with (x,y,b) ::/= 1. Thus L = M(Qs x E,•,b2). Since (b) is 

not normal, b2 (/. {1,s}, so ti' (/. Qa and we may write ti' = qe, q E Qa, 

1 =f. e e E. Since E = Eo x (e) for some subgroup Eo of E, we have 

L = M(Qs x (e) x Eo, ., b2) = M(Qa x (e), ., ti') x Eo by [10, Proposition 

V.1.6]. As the only RA loop of order 32 with exactly three squares, the RA 
loop M(Q8 x (e),•,b2) has to be the loop denoted '32/65 in [13]. Thus Lis 

described by part (3) of Theorem 4.1. 

Cue 3: b bas order 8. In this case, T(A) has to be an Abelia.n group 

since ti' E A is a central element of order 4 ( and there are no such elements 

in & Hamiltonian Moufang 2-loop). 
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Case 3a: (b} la normal in L. Suppose ab = ba for all a E T(A). It is 
easy to prove that z-1tx = t for all x,t e T(L) = T(A)UT(A)b so, together 
with Lemma 4.3, we eee that every subloop of T(L) is normal in L. Also, 
T(L) = T(A) UT(A)b is a torsion Abelian group and all unit.a in its integral 
group ring a.re !-unitary. Applying Theorem 1 of (1] to the group G = T(L) 
and Bovdi's A our T(A), there are two possibilities (which we labe1 as in 
Bovdi's Theorem): 

4. the torsion subgroup of A/(b') hBB exponent two and bi.ib-1 = a for 
all a e A/{b'); or 

5.3 the torsion subgroup of T(L) (which is T(L) itself) is the direct 
product of (b) and an Abelian group whose order divides 4. 

Since we are 8Slluming that b commutes with all elements of a, case 4 implies 
that A is torsion, so L = AU Ab is torsion. But L = T(L) contradicts the fact 
that L is a not an Abelian group. Thus we are in case 5.3, which described 
by part (2) of Theorem 4.1. 

Now assume that there exists a e T(A) with ab "f' ba. Now a-11,a e 
{b3,b6,b7} and, easily, a-11,a = b5 = sb, sob'= 11. Form the unitµ= 1 + 
(1-a}ba, a= l+a+a2+· .. +a"-1, n the order of a. Tbenµ- 1 = 1-(1-a)ba, 
,_.1 = 1 - at,-1(1- a-1 ) (since al = a), 80 ,..-1 = ,_., impliers 

(4;3) (1 - a)ba = ab-1(1 - a-1). 

Since elements of odd order are central and T(A) bas exponent dividing 
4 or 6, we must have n = 2, n = 4 or n = 6. If n = 2, equation (4.3) is 
(1- a)b(l + a) = (1 + a}b-1(1 - a), 80 

b E {ab,aba,b-1,ab-1}. 

The only possibility is b = aba = sa2b, giving a2 = s. 
If n = 4, we obtain 

b'e {b-1 ab-1 a2b-1 a3b-1 ab aba aba2 -'--3} , , , t , , ,(4UU, 

and hence a2 = b2 or a2 = s. (See Case 2a.) Since a2 = b2 implies that a 
has order 8, which is not true, we again have a 2 = 11. 

If n = 6, equation (4.3) implies that 

b € {ab aba aba2 aba3 aba' _,._r, b-1 ab-1 a2b-1 a3b-1 a'b-1 a6b-1} , , , ' ,u.uu ' , , , ' , • 

We claim that b = aba in which case b = sba2 and a2 = a. Indeed, there is 
no other possibility: b = ab implies a= 1; b = aba2 = a3b implies a3 = 1 (so 
a is centra.l); b = aba3 = sba' implies a4 = s 80 a has order 8; b = aba4 = a5b 
implies a5 = 1; b = aba6 = sba6 implies a6 = s, so a has order 12; b = b-1 

implies b2 = 1; b = ab-1 implies a = b2 is central; b = a 2b-1 implies a2 = b2, 
80 a has order 8; b = a 3b-1 implies a3 = b2 is central, so a is central; 
b = a'b-1 implies a' = b2 so a has order 16; and b = a 11b-1 implies a 6 = b2 
is central, so a is central. 

These arguments show that if a E T(A) and ab "I' ba, then a 2 = 11 (so 
a has order n = 4). Fix such an ao E T(A) (thus ~ = s), let a E T(A) 
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and suppose that ah= ba. Then band aao do not commute, so (aao)2 = s. 
Since T(A) is Abelian, s = a2~ = sa2 , so a2 = 1. This shows that T(A) in 

fact has exponent dividing 4 and, more precisely, that if a E T(A), 

(4.4) a2 = 1 ~ ab= ba a.nd a2 = s ~ ab ,f- ba. 

We cla.im that every subloop of T(L) = T(A) U T(A)b is normal in L, so 

that Lis described by pa.rt (1) of Theorem 4.1. 
For this, let a, x e T(A) and observe that x-1ax = a bees.use T(A) is 

Abelian while (xb)- 1a(xb) = b-1x-1axb = b-1ab = a or sa and, in the 

latter case, ab =I= ba, 80 sa = a2a = a3 e {a}. Also, since (ab)2 = a2b2 or 

sa2b2 according a.s ab = ba or ab =I= ba, respectively, observation ( 4.4) implies 

that (ab)2 = b2 in any ca.se, so (ab)4 = b4 = s, implying s E (ab} and hence 

(ab)~ L. 
Case 3b: (b) is not normal in L. Recall that this condition implies 

thats 'I, (b). Moreover, b cannot be central so, as noted earlier, there exists 

a E A with ab ,I ba. Form the unit µ = 1 + (1 - b)ab. Then µ is a unit 

with inverse µ-1 = 1 - (1 - b)ab a.nd µf = 1 + bf a-1(1 + b-1). Since 

bf= 1-b+b2 -b3+b4 -ll'+b6 -b1 , e(µf) = 1, so we must have µI= µ-1• 

This implies 
bl a-1(1 + b-1) = -(1- b)ab. 

A calculation which, by now, should be familiar, shows that 

b E {ba, bab,bab2, bab3, bab',bab5,bab6,bab1,ba-1 ,ba-1b-1, 

bsa-1, bsa-1b-1, br,a-1, b5a-1b-1, b7 a-1, b7 a-lb-1 }. 

We show that a= 1,a-1b-1 or a= b3a-1b-1 or a= b5a-1b-1 or a= b1 a-1b-1 

by eliminating all other possibilities. 
Ha = ba, then b = 1; if a = bab = sab2, then b2 = B and, similarly, each of 

the conditions q = bab2, a= bab3, a= bab', a= bab5 , a= bab6 and a= bah7 

implies thats E (b}, which is not correct. If a= ba-1 then b = a2 is central 

and hence commutes with b; similarly, each of a = b3a-1, a = b5a-1 and 

a= b7a-1 implies that bis central, which is not correct. Thus it is indeed 

the case that 

a= ba-lb-1 = sa-1 so that a2 = a, 

or a= b3a-1b-1 = sb2a-1 so that a2 = sb2, 

or a= b5a-1b-1 = sb4a-1 so that a2 = sb', 

or a= b1a-1b-1 = sb6a-1 so that a2 = sb6• 

In every ~. a8 = 1. Now fix ao e A with aob ,I bao (so that a3 = 1) and 

take a E A. If ab I, ba, then a8 = 1 as above. If ab = ba, then aao doe.s not 

commute with b, 80 (aao)8 = 1. Now 

{
a2

~ if aao = aoa 
(aao)2 = 

sa2
~ if aao =I= aoa 
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so, in any event, (aao)8 = a8<4 = a8 = 1. It follows that A has exponent 
dividing 8, so A = T(A) Is Abelian, which is not the case. (See remarks 
after Lemma 4.2.) 
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